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Abstract

This is the first of three papers on the modelling of various types of surf zone phenomena. In
this first paper, part I, the model is presented and its basic features are studied for the case of
regular waves. The model is based on two-dimensional equations of the Boussinesq type and it
features improved linear dispersion characteristics, possibility of wave breaking, and a moving
boundary at the shoreline. The moving shoreline is treated numerically by replacing the solid
beach by a permeable beach characterized by an extremely small porosity. Run-up of nonbreaking
waves is verified against the analytical solution for nonlinear shallow water waves. The inclusion
of wave breaking is based on the surface roller concept for spilling breakers using a geometrical
determination of the instantaneous roller thickness at each point and modelling the effect of wave
breaking by an additional convective momentum term. This is a function of the local wave
celerity, which is determined interactively. The model is applied to cross-shore motions of regular
waves including various types of breaking on plane sloping beaches and over submerged bars.
Model results comprise time series of surface elevations and the spatial variation of phase-aver-
aged quantities such as the wave height, the crest and trough elevations, the mean water level, and
the depth-averaged undertow. Comparisons with physical experiments are presented. The phase-
averaged balance of the individual terms in the momentum and energy equation is determined by
time-integration and quantities such as the cross-sectional roller area, the radiation stress, the
energy flux and the energy dissipation are studied and discussed with reference to conventional
phase-averaged wave models. The companion papers present cross-shore motions of breaking
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irregular waves, swash oscillations and surf beats (part I} and nearshore circulations induced by
breaking of unidirectional and multidirectional waves (part I1I). © 1997 Elsevier Science B.V.
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1. Introduction

The classical method of describing wave transformation in the surf zone is based on
the phase-averaged approach, in which the depth-integrated momentum and energy
equations are time-averaged over a wave period and solved with respect to the spatial
variation of the wave height, the setup and the wave-induced current. Important
quantities such as the wave celerity, the radiation stress and the energy flux are modelled
by the use of sinusoidal theory or more advanced theories such as the stream function
theory. The energy dissipation is modelled by empirical relations e.g. based on the
hydraulic jump analogy or the surface roller concept. Numerous examples of such
models are given in the literature, for a review see e.g. Battjes (1988) and Hamm et al.
(1993). More recent contributions include Dally and Brown (1995) and Lippmann et al.
(1996).

A more detailed description of the nonlinear interaction processes in the surf zone
requires phase-resolving models, formulated either in the time domain in terms of mass
and momentum equations or in the frequency domain in terms of evolution equations.

The first examples of time domain models to be used in the surf zone, were based on
the nonlinear shallow water (NSW) equations combined with a special treatment of
bores and shocks: Hibberd and Peregrine (1979) used a dissipative Lax—Wendroff
scheme to study run-up of regular bores, while e.g. Kobayashi et al. (1989) and Watson
and Peregrine (1992) used more advanced shock-capturing methods to study swash
oscillations due to regular and irregular wave trains. Due to the absence of frequency
dispersion the NSW formulation is restricted to very shallow water and to the propaga-
tion of bores in the inner surf zone after wave breaking has fully developed.

The Boussinesq equations are an attractive alternative to the NSW equations, as they
incorporate frequency dispersion and can be applied to a much wider wave spectrum and
a larger part of the coastal region (see Freilich and Guza, 1984; Elgar et al., 1990; and
others). In contrast to the NSW equations, the Boussinesq equations do not automati-
cally lead to wave breaking in shallow water, because the frequency dispersion will tend
to balance the amplitude dispersion and to stabilize the wave profiles. For this reason an
extension of these equations to include the surf zone requires the introduction of
breaking criteria and dissipation mechanisms.

Frequency domain formulations of the Boussinesq equations have been presented by
e.g. Freilich and Guza (1984) and Madsen and Sgrensen (1993) for nonbreaking waves
and extended to the surf zone by Mase and Kirby (1992), Kaihatu and Kirby (1995) and
Eldeberky and Battjes (1996). The key problem in these formulations is the spectral
distribution of energy dissipation, which Eldeberky and Battjes assumed to be in
proportion to the energy level at each frequency, while Mase and Kirby weighted the
dissipation towards high frequencies through a frequency squared dependence.
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Time domain formulations of Boussinesq type equations operate directly on wave
profiles, and surf zone models have been obtained in a number of ways: The eddy
viscosity concept related to horizontal gradients in the depth-averaged velocity (Tao,
1983; Abbott et al., 1983; Sato et al., 1991; Karambas and Koutitas, 1992), the frictional
concept proportional to the depth-averaged velocity (Sato et al., 1991), the roller concept
accounted for by an additional pressure term in the momentum equations (Deigaard,
1989; Brocchini et al., 1992), and the roller concept resulting in an additional convective
momentum term (Schiffer et al., 1993).

The present work is based on the time domain formulation by Schiffer et al. (1993),
which is extended in a number of ways: Firstly, the formulation is generalized to two
horizontal dimensions. Secondly, the underlying Boussinesq equations are chosen to
incorporate improved accuracy of linear dispersion and nonlinear energy transfer.
Thirdly, the model is extended to the swash zone by including a numerical treatment of
the moving shoreline. Finally, an interactive determination of the wave celerity is
introduced, which is important for the case of irregular waves and for the interaction of
short and long waves in the swash zone.

The objective of this series of papers (parts I-III) is to study a number of surf zone
and swash zone phenomena. The phenomena to be studied include the transformation,
breaking and decay of regular and irregular wave trains, the resulting run-up and swash
oscillations and the generation of surf beats and wave induced circulations. In addition
to the wave breaking mechanism, some of the key phenomena to be studied will be triad
interactions in general, with special emphasis on the interaction between short and long
waves. In part I we shall present the numerical model and concentrate on cross-shore
motions of regular waves. The regular wave examples and the analyses of wave-aver-
aged quantities are chosen in order to establish the link to traditional phase-averaged
models. The real strength of the model lies in its applicability to more complex physical
phenomena as pursued in parts II and II of this work. Part II (Madsen et al., 1997)
concentrates on cross-shore motions of irregular waves, swash oscillations and surf beat,
while part 11T (Sgrensen et al., 1998) deals with two-dimensional situations with a
detached breakwater and a rip-channel, respectively, including nearshore circulations
induced by irregular multidirectional breaking waves.

This paper is organized as follows: The formulation of the numerical model is given
in Section 2. In Section 3 the model is applied to various types of wave breaking on
plane sloping beaches and over submerged bars. In Section 4 we concentrate on a
number of phase-averaged quantities such as the undertow, the roller area, the radiation
stress and the energy flux, which play an important role in conventional phase-averaged
momentum and energy equations. The net energy dissipation resulting from the present
modified Boussinesq equations is determined and compared to explicit expressions from
the literature. Section 3 and Section 4 further include a comparison with data from
various laboratory experiments.

2. Formulation of the numerical model

The numerical model is based on two-dimensional equations of the Boussinesq type
using a flux-formulation with improved linear dispersion characteristics. The model is
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extended to include the possibility of wave breaking of regular and irregular waves in
two horizontal dimensions and to take into account a moving shoreline allowing for a
study of the surf zone and swash zone.

The incorporation of wave breaking in the two-dimensional Boussinesq model is
based on the concept of surface rollers. We shall outline the roller model in the
following and analyze it in further detail in Section 4. The breaking procedure can be
split up into four parts:

- The effect of the roller on the wave motion (Section 2.1).
- The position of the break point (Section 2.2).

- The geometrical determination of the roller (Section 2.3).
- The determination of the roller celerity (Section 2.4).

Finally, the moving shoreline is treated numerically by replacing the solid beach by a
permeable beach characterized by an extremely small porosity. This technique is
described in Section 2.5, which also includes a verification of the procedure on run-up
of nonbreaking waves.

2.1. Basic equations including a model for wave breaking

The determination of the effect of the surface rollers on the wave motion is inspired
by the simple model suggested by Svendsen (1984a). The basic principle is that the
surface roller is considered as a volume of water being carried by the wave with the
wave celerity and this is assumed to result in the vertical distribution of the horizontal
particle velocity shown in Fig. 1. By assuming this velocity profile to be valid in case of
wave breaking, the following modified version of the Boussinesq equations appears

dn P 40
at dx dy
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— + — | — — | — — + ~+gd— + ¢ +— = 2.1b
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Here (P, Q) is the depth integrated velocity (the volume flux) in the Cartesian
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Fig. 1. Definition sketch: Cross-section of a breaking wave and assumed vertical profile of the horizontal
particle velocity components.
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coordinate system (x, y), d =h+ n is the instantaneous depth and 7 is the surface
elevation.

The terms denoted R, ,, R,, and R account for the excess momentum originating
from the nonuniform velocity distribution due to the presence of the roller and they are
defined by

R P\’ P o\ (@)
(R )= =iz 5] [~ G =G =)

(2.2)

This is a two-dimensional generalization of the formulation by Schiffer et al. (1993).
Here 8= 6(z, x, y) is the thickness of the surface roller and (c,, c ) are the
components of the roller celerity. The determination of these quantities is described in
Sections 2.3 and 2.4. In Section 4 we shall analyze in detail the effect of introducing
these terms and determine the resulting energy loss.

The terms denoted ¢, and ¢, are dispersive Boussinesq type terms which in shallow
water may be taken from Peregrine (1967). Here we use the formulation derived under
the mild-slope assumption by Madsen and Serensen (1992) providing improved fre-
quency dispersion:
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The dispersion coefficient, B is set to the value 1 /15, which provides linear dispersion
characteristics corresponding to a Padé [2,2] expansion of the Stokes linear dispersion
relation.

Finally, bottom friction is included in the formulation of (Eq. (2.1b)) and (Eq. (2.1¢))
by the terms 7./p and 7,/p. In part [ bottom friction will be neglected as it is
insignificant for the cross-shore applications studied here.

2.2. Determination of the break point

Incipient breaking is assumed to occur when the local slope of the surface elevation
exceeds an initial critical value, tan ¢ as suggested by Deigaard (1989). For a number
of test cases with spilling breakers on plane sloping beaches Schiffer et al. (1993) found
that acceptable results could be obtained by using the universal value ¢y = 20 deg. Also
in the present work we shall use this value as our default breaking criterion, although we
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realize that it will probably not be generally applicable for other types of breaking. We
shall investigate this in further detail in Section 3, where e.g. two cases of plunging
breakers are considered and other values of ¢ are tested.

The calibration of ¢ is obviously closely related to the accuracy of the computed
surface elevations before breaking occurs and unfortunately this is one of the weak
points in conventional Boussinesq models: While the Boussinesq terms given by (Egs.
(2.3a) and (2.3b)) provide excellent linear shoaling characteristics for k# (wave number
times depth) as large as 3 (see Madsen and Sgrensen, 1992), the transfer of energy to
super-harmonics is generally underestimated e.g. the second harmonic is underestimated
with more than 10% for kh larger than 0.5 (see Madsen and Sgrensen, 1993). As
nonlinear shoaling is a combination of linear shoaling characteristics and nonlinear
transfer to higher harmonics the combination of the two mechanisms result in underesti-
mated wave heights and crest elevations near the breaking point. This general conclusion
is supported by the simulations presented in Section 3.

It should also be emphasized that in contrast to the present flux formulation, a
velocity formulation of the standard Boussinesq equations will typically lead to overesti-
mated higher harmonics (at least for small wave numbers) and a general improvement of
nonlinear shoaling requires a higher order formulation of the equations. Transfer
functions for a variety of lower and higher order Boussinesq type equations can be
found in Madsen and Schiffer (1997).

For the above reasons the present model can be expected to underestimate nonlinear-
ity and wave heights in the vicinity of the break point, and consequently the chosen or
calibrated breaker angle ¢, would typically be smaller than values observed in
laboratory experiments. It is expected that a future model based on a combination of the
roller concept and higher order equations will require a revision of ¢y,

2.3. Determination of the surface rollers

The temporal and spatial determination of the rollers is based on a heuristic,
geometrical approach as described in detail by Schiffer et al. (1993). Due to the
transition from initial breaking to a bore-like stage in the inner surf zone, the critical
angle, ¢, is assumed to gradually change from ¢y to a smaller terminal angle ¢,.
Hence the instantaneous value of ¢ will depend on the age of the roller and is assumed
to follow an exponential time-variation,

tan ¢ (1) =tan ¢, + (tan ¢, — tan q’)o)exp[—ln2 tt IB], (2.4)
1/2

where ¢, , defines the time scale for the development of the roller and ¢, is the time of
incipient breaking. Locally, the roller is defined as the water above the tangent of slope
tan ¢ and wave breaking is assumed to cease when the maximum of the local slope
becomes less than tan ¢. After the determination of the roller at each time step, the
roller thickness, 8, is multiplied by a shape factor f; prior to the inclusion in the
governing equations. In two horizontal dimensions the toe of the roller becomes a curve
instead of a single point and the tangent becomes a set of generating lines determined by
the instantaneous local angle ¢(r). Whereas ¢(¢) in the one-dimensional case is
constant within each roller, it is allowed to have a lateral variation in the two-dimen-
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sional case. This makes the detection of rollers more complicated and we shall return to
a detailed discussion of this problem in the companion paper, part III.

One disadvantage of the heuristic determination of surface rollers is that in addition
to ¢pg, it relies on three parameters ¢, f,,, and f;. We have tested the effect of
varying each of these parameters and have obtained the following experience:

Firstly, the value of ¢, is not critical for applications, where breaking continues all
the way to the shoreline. A small decrease of ¢, will have almost no effect on the
evolution of the roller area except for a moderate increase in the maximum value which
again leads to a larger energy dissipation and a slightly steeper wave height decay.
Based on the analogy to the hydraulic jump, Deigaard (1989) estimated ¢,, to be of the
order 10 deg and this choice is used as the default value in our calculations. However, in
a special case of breaking over a horizontal part of a submerged bar (studied in Section
3.2), reasonable agreement with laboratory experiments requires that ¢, is reduced to
7-8 deg in combination with a similar reduction of ¢g.

Secondly, the parameter 1, ,, defines the transition between the two breaker angles
and we have tested the influence of varying it in the interval 7/10 to T/2, where T is a
characteristic period of the incident wave train. An increase of ¢, ,, effects the roller area
in two ways: The maximum value is reduced and the initial growth becomes smaller.
This results in a slightly milder decay of the wave height. We use the value 7/5 as the
default value in our calculations.

Thirdly, the parameter f; has been varied in the interval from 1.0 to 2.0. It turns out
that although a large f; gives a large roller in the instantaneous determination, the wave
averaged effect is weak. One explanation for this is, that an effort to enlarge the roller
(imposing a large f;) results in an increasing dissipation tending to reduce the roller size
in the time steps to follow. We have fixed f; to the value of 1.5 in all calculations
presented here.

In order to quantify the model as a predictive tool, all test cases (in parts 1-III) are
modelled with the default parameter set (¢g, ¢y, 1, 5. f5) = (20 deg, 10 deg, T/5, 1.5).
In addition, some test cases are shown with other sets of breaker parameters.

2.4. Determination of wave celerity

The wave celerity, which is assumed to be identical to the roller velocity is an
essential parameter in the roller model. In previous publications such as Schiffer et al.
(1993) we have used the approximation ¢ = 1.3\/g_h, where £ is the still water depth,
and this simple formulation works quite well for the case of regular waves, except in the
swash zone. However, for wave groups and irregular waves this simple approximation is
inadequate as it fails to incorporate e.g. the interaction between short and long waves in
the surf zone and swash zone.

The new approach adopted here is to determine ¢ interactively from the instantaneous
wave field. Locally, we assume that the surface elevation can be expressed by
n=nwr—k x— k, y) corresponding to a regular, progressive wave field. By defini-
tion

(corey) = (k.. k)‘)k—“;, (2.5)
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where k is the wave number, @ is the angular frequency and the subscripts denote x-
and y-components. In terms of the surface elevation this can be expressed as

)=l

) \0/3y) (am/ax)t + (am/ay)

which we apply locally at the steepest point of each wave front. Thus, in a wave-follow-
ing manner, this method provides a well-defined value of the celerity for irregular waves
as well as for regular waves. In principle Eq. (2.6) only applies for progressive waves
but it turns out to be a good local approximation as long as reflections of the primary
waves are small.

A general problem with any interactive determination of the wave celerity is, that the
feedback to the mass and momentum equations through the roller model makes it a
recursive system and instabilities may occur in this process. Noise may occur in
connection with the use of Eq. (2.6), which is therefore low pass filtered using a second
order recursive filter.

An obvious alternative to Eq. (2.6) would be to determine ¢ simply from the
trajectories of characteristic points such as the toe of the roller or the steepest point of
the wave. Such options have been tried without success, the main problem being that
any trajectory can only be determined with a limited accuracy even with a subgrid
representation. Hence a direct time-differentiation of this trajectory inevitably leads to
very noisy solutions.

In Fig. 2 we consider regular waves breaking on a plane sloping beach with a slope
of 1/40. The wave period is 1.79 s and the incoming wave height is 0.145 m in a depth
of 0.70 m. The measured celerity presented by Stive (1984) is shown as a reference. In
addition to the celerity computed from Eq. (2.6), Fig. 2 also shows the theoretical
celerities determined by Stokes linear theory and by ¢ = \/EB- and ¢ = ].3\/517 . Outside
the surf zone the computed celerity follows Stokes theory quite closely at least as long
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Fig. 2. Spatial variation of the wave celerity for the test of Stive (1980). (1) celerity determined interactively.
(2) Celerity using Stokes linear theory. (3) ¢ =y/gh. (4) ¢ = 1.3y/gh. (O) Experimental data.
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Fig. 3. Definition sketch of a beach incl. an artificial porous flow regime.

as the wave is fairly linear. In this region the computed celerity is seen to oscillate,
which is due to small reflections from the breaker line. Near the break point the
computed celerity exceeds the linear celerity which is to be expected because of
amplitude dispersion and inside the surf zone the agreement with the measurements is
excellent.

Notice also that the simple approximation of ¢ = 1.3\/g_h is fairly good inside the
surf zone. This approximation is, however, not valid for bichromatic or irregular waves
in which case features like the deceleration of primary waves due to downrush of long
waves in the swash zone become important. Such features are automatically incorpo-
rated by the new method based on Eq. (2.6) as will be further investigated in the
companion paper, part II.

2.5. Modelling a moving shoreline

One of the difficult points in simulating run-up of regular and irregular waves is the
numerical treatment of the moving shoreline. In the present work we take the following
approach: The computational domain is extended artificially by replacing the solid beach
by a permeable beach characterized by a very small porosity. Near the moving shoreline
the water surface will intersect with the sea bed and continue into the porous beach.
Hence the instantaneous position of the shoreline is simply determined by this intersec-
tion (Fig. 3).

Each vertical cross-section comprises a physical regime with clear water on top of an
artificial porous flow regime. The idealized vertical variation of the porosity will be
unity in the physical flow regime and e( < 1) in the porous regime below. In order to
avoid numerical instabilities it is necessary to introduce a transition between the two
regimes. Hence, using an exponential transition we assume the following vertical
variation of the porosity

1, Z, <z

(D=1, (1—€)ebe-2)/ -2 7 < <7’ (2.7)

where y(z) is the porosity, € is the minimum value of vy, B8 is a constant shape factor
defining the exponential transition between the two flow regimes, z is the vertical
coordinate, n(x, y, 1) is the surface elevation, Z,(x, y) defines the physical sea bed and
Zy defines the lower limit of the porous region, which should at least cover the swash
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zone. In practise, Z; is normally chosen as the datum at the toe of the slope. The
variation of y(z) is shown in Fig. 4 (using 8= 100 and €= 0.01), and it can be
compared to the reference value of unity in clear water and zero in the porous regime.
Notice that only 10% of the porous regime is included in the figure.

In principle, € should be as small as possible and B as large as possible in order to
avoid a distortion of the mass balance and a disturbance of the flow in the physical
domain. On the other hand, the numerical solution becomes unstable for extreme values
of the two parameters. In practise, it turns out that € should be chosen in the interval of
0.01 to 0.001 and B of the order 100. We shall return to the determination of these
parameters later in this section.

Having specified the vertical variation of the porosity, it is straightforward to
determine the resulting effective water depth by integration

ACx. v )= [My(2)dz (28)

This effective water depth will generally replace the physical water depth in the
depth-integrated momentum equations i.e.

P o [ P? d { PQ an
—+—|—|+—[—|+gdA—+... =0 (2.9a)
at ax\ A dy\ A dx
aQ 8 [Q* d [ PQ an
— — = —|—|+gA—+...=0 .9b
vyl A dx A) oy (2:90)

The remaining question is how to determine a representative porosity, a to be used
in the depth-integrated continuity equation

L, (2.10)

Because of the mixture of a physical regime with clear water on top of an artificial
regime with a very low porosity, one can not use the obvious choice of a depth-averaged
porosity, which would lead to porous flow conditions everywhere. Instead we use
a(x, y, t)=vy(n) (2.11)
Hence, a is a function of the local surface elevation, and it is unity in clear water and

0.1 1 ] T
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‘L - Seabed

!
i Porous
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=0.1 f | i r E— l

0.0 0.2 0.4 0.6 0.8 1.0 1.2
v(2)

Fig. 4. Vertical variation of the porosity, y(z).
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decays exponentially to the value of € whenever the water surface disappears into the
porous beach.

The description given so far in principle defines the numerical technique for handling
the moving shoreline. However, in order to make this technique operational in connec-
tion with Boussinesq type models a couple of problems call for special attention: Firstly,
the Boussinesq terms are switched off at the still water shoreline, where their relative
importance is extremely small anyway. Hence in this region the equations simplify to
the nonlinear shallow water equations. Secondly, an explicit filter is introduced near the
still water shoreline to remove short-wave instabilities during uprush and downrush and
to dissipate the wave energy in the area where the surface roller can not be resolved.

One of the advantages of the present method is that it is quite easy to implement and
apply in two horizontal dimensions. The drawback is that the method will always
introduce minor errors in the mass balance and these will generally lead to an
underestimation of the maximum uprush and downrush on impermeable slopes. In
situations with a very rapid variation in the shoreline motion stability problems may
occur.

Horizontal motion (m)

Time (s)

Fig. 5. Horizontal motion of the shoreline. Analytical solution (—————) by Carrier and Greenspan (1958).
(a) Present model with € = 0.005 and (1) (- - -) B =20; (2) (---) B8 =230; (3) (——-) B = 100. (b) Present
model with 8 =100 and (1) (- - -) € =0.01; (2) (---) € = 0.005; (3) (-~-) € = 0.001.
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0.02

Surface elevation (m)
o
o
i

Distance (m)

Fig. 6. Envelope of surface elevations. Analytical solution by Carrier and Greenspan (1958) (---); Present
model with € =0.001 and g =100 (—————).

In the following we shall verify the accuracy of the method against the analytical
solution by Carrier and Greenspan (1938) for nonbreaking shallow water waves on a
sloping beach. Since the analytical solution is based on the nonlinear shallow water
equations, we have switched off the Boussinesq terms everywhere for this comparison.
The test case considered has an initial water depth of 0.5 m, a wave period of 10 s, a
slope of 1/25, and a wave height of 50% of the value giving breaking at run-down (this
corresponds to an incident wave height of 0.006 m at 0.5 m depth). Fig. 5a shows the
horizontal motion of the shoreline computed with a constant value of €= 0.005 and
three different values of =20, 30 and 100. The full line gives the analytical result.
Obviously, the numerical solution is quite sensitive to the value of B but converges
towards the analytical solution for increasing B values. In Fig. 5b the value of B is kept
constant 8 = 100 while three different € values have been considered (0.01, 0.005 and
0.001). Again, the numerical solution is clearly converging towards the analytical
solution, but even for an e value of 0.001 the maximum run-up is still underestimated
by 8%. The reason is that the upper part of the swash zone is containing only a thin film
of water and this is quite sensitive to even small portions of water entering the porous
beach. However, this is unimportant for the rest of the solution as can be seen more
clearly from Fig. 6, showing the envelope of surface elevations. The numerical solution
is obtained for the choice of € = 0.001 and B8 = 100 and the overall agreement with the
analytical solution is most satisfactory.

3. Shoaling and breaking of regular waves

In this chapter the applicability of the breaker model is tested on wave breaking over
gently sloping plane beaches and on wave breaking over submerged bars. The study
concentrates on shoaling of unidirectional regular waves and spilling as well as plunging
type of breaking is considered. The numerical model is compared with measurements
from 8 laboratory experiments representing a range of different wave conditions (see
Table 1). These are characterized in terms of h/L,, H,/L, and {, where L, is the deep
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Table 1
List of experiments with regular waves
REFERENCE Case T (s) H (m) h/Ly Hy /L, I'e
Stive (1980) 1 1.79 0.145 0.14 0.032 0.14
Hansen and Svendsen (1984) 2 2.0 0.120 0.058 0.019 0.21
Ting and Kirby (1994) 3 5.0 0.125 0.010 0.002 0.60
Luth et al. (1993) 4 1.8 0.30 0.16 0.065 0.20
Beji and Battjes (1993) 5 2.5 0.033 0.041 0.0034 s

6 25 0.041 0.041 0.0042 p

7 1.0 0.052 0.26 0.033 s

8 1.0 0.064 0.26 0.041 p

water wave length, H,, is an estimate of the deep water wave height, & is the water
depth at the wave generator and ¢ is the surf similarity parameter defined as the beach
slope divided by the square root of the deep water wave steepness. Based on Galvin
(1968) classification of wave breaking, Battjes (1974) found that spilling breakers would
occur for { < 0.5, while plunging would occur for 0.5 < { < 3.3.

In all numerical simulations the moving shoreline is treated as described in Section
2.5 (with € = 0.005 and B = 100), while the seaward boundary is treated as nonreflec-
tive using the sponge layer technique described by Larsen and Dancy (1983). Waves are
generated at internal points by source terms representing the volume flux in progressive
waves. For all the test cases a grid spacing of A x = 0.05 m and a time step of Az =0.02
s is used. With respect to the parameters of the breaker model the following standard
values are applied when nothing else is specified: ¢y = 20 deg, ¢, = 10deg, 1, ,, =T/5
and f;=1.5.

3.1. Breaking on a gently sloping beach

Wave breaking on a gently sloping plane beach is an obvious starting point for any
testing of a breaking model. Stive (1980) presented experimental results for monochro-
matic waves breaking on a plane slope of 1 /40, a depth of 0.70 m in the horizontal part
of the flume, a wave period of 1.79 s and an incoming wave height of 0.145 m. This
gives a typical spilling breaker, see case 1 in Table 1. A second order Stokes wave is
used as input at the toe of the slope. Fig. 7 shows the spatial variation of the wave height
and the setup obtained by the measurements (circles) and by the model (full line). The
overall agreement is seen to be fairly good but there are some discrepancies: The last
part of the shoaling before breaking is under-estimated and the predicted break point is
half a meter off in the offshore direction. Furthermore, the measured wave height decay
just after breaking is clearly steeper than the computed one indicating a stronger initial
energy dissipation. With a slightly higher breaker angle (¢, = 22 deg, not shown) the
predicted position of the break point can be corrected from 19.0 m to 19.5 m as
measured, but this does not improve the overall agreement. The well known horizontal
shift between the break point and the point where setup starts is clearly seen in the
measurements. This feature is captured by the model and it may be explained as a result
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Fig. 7. Spatial variation of wave height and setup for the test of Stive (1980). Present model (—————);

numerical solution by Kobayashi et al. (1989) (---); experimental data (O).

of initial conversion of potential energy into forward momentum flux. We shall discuss
this mechanism in further detail in Section 4. Fig. 7 also shows the numerical results by
Kobayashi et al. (1989), who solved the nonlinear shallow water equations (NSW) by
using a dissipative shock-capturing method in which bores or shock fronts are frozen to
cover only a few grid points. For steep waves a NSW model will predict breaking to
occur very near to the seaward boundary due to the lack of frequency dispersion. For
this reason the NSW calculations were started close to the observed break point at a
depth of 0.2375 m with an incoming wave height of 0.172 m. Fig. 7 shows that the
overall performance of the NSW model is good except that the positions of the break
point and the start of setup coincide.

As the next test case we consider the flume experiment by Hansen and Svendsen
(1984) and Svendsen et al. (1987), who presented results for the wave height, setup and
undertow. They used a slope of 1/34.25 with a depth of 0.36 m in the horizontal section
of the flume, a wave period of 2.0 s and an incoming wave height of 0.12 m ie. a
spilling breaker in shallow water (case 2, Table 1). The Boussinesq model is started 2.7
m offshore the toe of the slope (15 m from the shoreline) using a conoidal input. The
computed spatial variation of the wave height and the setup is shown in Fig. 8 in
comparison with the measurements. The pronounced shoaling just up to the break point
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Fig. 8. Spatial variation of wave height and setup for the test of Hansen and Svendsen (1984). Present model
(—————); numerical solution by Kobayashi et al. (1989) (---); experimental data (O).

is clearly reproduced rather poorly by the model (for the reasons discussed in Section
2.2), while the position of the break point is well predicted using ¢z = 20 deg. It is
evident that in a model with better nonlinear shoaling characteristics than the present
one, the optimal value of ¢, would have to be higher. Nevertheless, except for the
discrepancies in the vicinity of the break point, the present model leads to a fairly good
prediction of the surf zone variations of the wave height and setup. The agreement in
Fig. 8 is seen to be much improved as compared with the NSW results by Kobayashi et
al. (1989), who started the calculations near the toe of the slope. However, this position
being quite far from the break point makes it a very difficult test for the NSW model,
which fails to predict the break point and starts the decay of the wave height much too
early. This test case will be studied in further detail in Section 4.

Ting and Kirby (1994) presented measurements for plunging breakers on a slope of
1 /35 with an initial depth of 0.40 m, and with regular waves being generated with a
wave period of 5.0 s and a wave height of 0.125 m (case 3, Table 1). Although the
present breaker model is not designed to handle plunging breakers a fairly successful
result can be obtained even with standard breaker parameters. The spatial variations of
the crest and trough elevations and of the mean water level are shown in Fig. 9, with full
lines corresponding to computations with standard parameters. We notice that the trough
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Fig. 9. Spatial variation of wave crest elevation, wave trough elevation and mean water level for the test of
Ting and Kirby (1994) with plunging breakers (7 = 5 ). Present model with default parameters (——);
present model with calibrated parameters (¢p = 25 deg and 1, ,, =T /10) (---); experimental data (O).

and the mean water level are in good agreement with the measurements, while the crest
elevation is less satisfactory. The computed break point is approximately one meter
seawards of the measured location. This may be improved by increasing ¢, from 20
deg to 25 deg and reducing ¢, ,, from 7,/5 to T/10 (shown with dotted lines in Fig. 9),
in which case the break point is shifted shorewards and the crest elevation follows the
measurements quite closely even in the vicinity of the break point. The reason for the
nonlinear shoaling being so much better compared to what was achieved in cases 1-2 is
that the wavenumbers are much smaller in the present case. It is somewhat surprising to
see that although the break point is shifted and the wave height at the break point is
increased using ¢y =25 deg, this does not really affect the spatial variation of the
trough elevation and the mean water level. The peculiar bump appearing in the crest
elevation in both simulations at x =13 m is caused by a secondary peak in the
computed wave profile, which evolves in the surf zone due to limitations in the present
breaker model.

3.2. Breaking over a submerged bar

Wave transformation over submerged bars is a challenging test case for most wave
models as it involves a number of complicated processes such as nonlinear shoaling and
growth of bound harmonics on the uphill slope and subsequent release of higher
harmonics on the downhill slope. A successful simulation of these processes requires a
model with highly accurate dispersion characteristics and nonlinear transfer properties.
When wave breaking is involved in the transformation process further complications are
added. Firstly, the breaking may occur on the uphill slope in which case the surf-similar-
ity parameter is still valid as an indication of the type of breaking. Secondly, breaking
may occur on the horizontal part on top of the bar, in which case it is more difficult to
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define the type of breaking. A special complication in connection with the breaker
model is the prediction of the position of wave breaking which is determined by the
angle of incipient breaking, ¢5: While breaking on a plane slope will be detected sooner
or later for a given value of ¢y, we may completely miss the breaking on the bar if ¢y
is too large.

Luth et al. (1993) performed a series of flume experiments with regular as well as
irregular waves using the bathymetry as shown in Fig. 10. Here we concentrate on a
case of regular waves with a period of 1.8 s and a wave height of 0.3 m. In this case
breaking occurs on the uphill slope of the bar and the type of breaking can be classified
as spilling, see case 4 in Table 1. Fig. 10 shows a comparison between measurements
and the computed spatial variation of the significant wave height and the mean water
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Fig. 10. Spatial variation of significant wave height (four times the standard deviation of %), the mean water
level and the bathymetry for the test of Luth et al. (1993). Present model (—————); experimental data (O).
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level using standard breaker parameters. The wave height variation is seen to be
predicted quite well but the initial decay after breaking is slightly underestimated by the
model. As expected, the setup is shifted shorewards relative to the predicted break point
but it is still approximately one meter off in the offshore direction in comparison to the
measured setup curve. This indicates that breaking is predicted to occur somewhat too
early. Relative to the still water level, the magnitude of the set-down is comparable to
the set-up due to overall conservation of mass in the flume. Fig. 11 shows computed and
measured timeseries of surface elevations at three locations: before the break point, in
the breaking zone and after breaking. The agreement with the measurements is quite
good.

Beji and Battjes (1993) used a bathymetry which was practically identical to the one
used by Luth except for a scaling factor of 0.5 (see Fig. 12). Their experiments included
four different tests with regular waves as listed in Table 1. In all cases breaking was
rather mild and the measured break point was located either very near the end of the
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Fig. 11. Timeseries of surface elevations for the test of Luth et al. (1993). (a) Station 1, (b) station 2 and (c)
station 3. Present model (—————); experimental data (- - -).
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Fig. 12. Spatial variation of wave height and the bathymetry for the test of Beji and Battjes (1993). Present
model with default parameters (—————); present model with calibrated parameters (¢ = 14 deg and
¢, = 7 deg) (---); present model excluding breaking (- - -); experimental data (O).

uphill slope of the bar or on the flat part on top of the bar. This makes the value of the
surf-similarity parameter { irrelevant and consequently the classification of breaking in
Table 1 is based on visual observations: Spilling breakers (s) and plunging breakers (p).
With breaking occuring on top of the bar rather than on the uphill slope the test series
proved to be very difficult to simulate using standard breaker model parameters: In case
6 and 8 (plunging) the energy dissipation during breaking was strongly underestimated
and in case 5 and 7 (spilling) breaking was completely missed by the model. It turns out,
however, that good agreement with the measurements can be obtained by reducing the
breaker angles ¢y and ¢, to approximately 14-16 deg and 7-8 deg, respectively. As
an example model results from the plunging case 6 will be discussed in the following.
Fig. 12 shows the spatial variation of the significant wave height computed for three
different sets of model parameters: Breaking with (¢, ¢,) = (14 deg, 7 deg), breaking
with standard parameters i.e. (¢, @) =1(20 deg, 10 deg) and finally a simulation
excluding breaking. It is obvious that the first of the three simulations is superior in
comparison with the measurements, while the use of standard breaker parameters leads
to a clear underestimation of the dissipation. Fig. 13 shows the corresponding time series
of surface elevations at three locations on top of the bar (defined in Fig. 12). The profile
in station 1 is a typical nonlinear shallow water wave with higher harmonics bound to
the profile. These higher harmonics are partly released between station 1 and 2 and start
dominating the profile in stations 2 and 3, when breaking is not included. Using standard
breaker parameters does introduce some dissipation but the overall wave shape is still
very similar to the nonbreaking case. The wave profiles computed with the special set of
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Fig. 13. Timeseries of surface elevations for the test of Beji and Battjes (1993). (a) Station I, (b) station 2 and
(c) station 3. Present model with default parameters (—————); present model with calibrated parameters
(¢p =14 deg and ¢, = 7 deg) (- —-); present model excluding breaking (- - -); experimental data (O).

breaker parameters i.e. (¢y, @) = (14 deg, 7 deg) are, however, significantly different
from the nonbreaking case in stations 2 and 3 and the agreement with the measured

profiles is very good.

3.3. Summary

From the test cases studied in the present chapter we can conclude that the breaker
model with standard parameters works well for a range of different wave conditions.
Although the roller model has been designed for spilling breakers on gently sloping
beaches, other types of breaking may also be simulated with a moderate change of
breaker angles. Plunging type of breaking appears to require a slight increase in breaker
angles while breaking on top of submerged bars requires a reduction. On the other hand,
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a systematic change of breaker parameters from the standard set calls for a general
strategy in order to have a deterministic model and we can offer no such strategy at this
moment. Fortunately, it turns out that the much more important case of breaking of
irregular waves is generally less sensitive to the choice of breaker angles, and although
the breaking process of irregular wave trains may easily involve spilling as well as
plunging type of breaking, the variety of test cases studied in part II of this work will
demonstrate that the standard set of breaker parameters is adequate for most cases.

4. Discussion of phase-averaged quantities

This chapter is devoted to an analysis and a discussion of phase-averaged momentum
and energy equations consistent with the present time-domain formulation. The objective
is twofold: Firstly, we want to demonstrate how the present time-domain model behaves
for regular waves in a time-averaged sense. This investigation reveals the role of the
individual terms in the governing equations. Secondly, the discussion will focus on
important phase-averaged quantities such as the roller area, the undertow, the setup, the
radiation stress, the energy flux and the energy dissipation. These quantities will in the
present context be determined for regular waves by direct numerical integration over a
wave period of the computed time-domain solution. These results are compared with
approximative expressions used in conventional phase-averaged models (see e.g. Svend-
sen, 1984a,b; Dally and Brown, 1995).

The investigations in this chapter are made using the test case of Hansen and
Svendsen (1984) with monochromatic spilling breakers on a plane sloping beach. This
test was described in Section 3.1 and results for the wave height and setup were
presented in Fig. 8. Throughout the chapter the overline notation will be used to indicate
phase-averaged quantities.

4.1, The roller area and the undertow

One of the key quantities in phase-averaged models using the surface roller concept is
the cross-sectional area of the roller. In line with Svendsen (1984a) and Dally and
Brown (1995) we determine the roller area from the time-averaged roller thickness by
using A = cT8. In this context ¢ is determined interactively by computing Eq. (2.6) at
the steepest point of the wave front.

Fig. 14 shows the spatial variation of A computed by the Boussinesq model on the
basis of the Hansen and Svendsen test treated earlier in Fig. 8. We notice that A
increases gradually after the break point to a maximum value of 0.011 m? and then
decreases towards the shoreline. The peak value of 0.011 m? obtained with the present
model corresponds to approximately 1.0 H* (using the locally computed wave height),
which apparently is in good agreement with Svendsen (1984a,b), who approximated the
roller area by 0.9H * on the basis of hydrofoil experiments by Duncan (1981). Svendsen,
however, assumed an unrealistic sudden growth of A from zero to a maximum right at
the break point, while a much more gradual growth was found in the experimental study
by Hansen (1991) and in Dally and Brown (1995) calculations. Using digital image
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Fig. 14. Spatial variation of the roller area for case 2.

processing of video recordings of breaking waves, Hansen was able to measure not only
the total aerated area, but also the part of this area which stayed at the front face of the
breaking wave (the roller area). For spilling breakers with a rather small value of the
surf similarity parameter, {=0.16, maximum values of A/H?® were around two to
three. Additional results from these experiments for a case essentially the same as the
Hansen and Svendsen (1984) test exhibit values of max(A/H?) below two and
scattered around 1.5 (Hansen, 1995). Hence in comparison with these experiments Fig.
14 indicates that the roller area computed by the present model is of the right order of
magnitude but a bit on the low side.

For the same data set Dally and Brown (1995) obtained a significantly larger roller
area (with max(A/H?) = 4, see their Fig. 2). The main reason for this discrepancy is
that they estimated the incoming organized energy flux by linear wave theory combined
with measured wave heights at the break point. For a given wave height sinusoidal
waves are far more energetic than nonlinear waves, and for this reason the actual energy
flux was significantly overestimated (almost a doubling compared to the value at the
offshore boundary).

The roller area is important for the return flow below the wave trough, known as the
undertow. The present model allows for an estimate of the depth-averaged undertow as
shown in the following. Outside the surf zone the undertow from the classical Stokes
drift can be determined as, U, where U is the depth-averaged velocity defined by

P 7
U= sz‘hudz (4.1)
Inside the surf zone the undertow is represented by u,, where u, is defined by the
velocity profile in Fig. 1, by which
P—cd
*o h+n—206
Svendsen (1984b) approximated the time average of Eq. (4.2) by the expression
c —~
Uy = — ) (§2+hMWL5), (4.3)

MWL

(4.2)
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where

{=n—-m, hywi =h+7 (44)

The first term in Eq. (4.3) accounts for the undertow in nonbreaking waves (Stokes
drift), while the additional roller effect is reprgsented by the second term.

Fig. 15 shows the spatial variation of U and &, computed by numerical time
averaging of Eq. (4.1), Eq. (4.2) and the approximation Eq. (4.3), respectively. Again ¢
is determined as described in Section 2.4. We notice that Eq. (4.3) is a rather crude
approximation to Eq. (4.2) but that both expressions increase the magnitude of the
undertow in comparison with Eq. (4.1), which ignores the roller effect. The agreement
between Eq. (4.2) and the measurements of Hansen and Svendsen is relatively good.
Also the NSW results of Kobayashi et al. (1989) are shown in Fig. 15, and the observed
significant discrepancy with the measurements is primarily due to the large deviation in
wave height (see Fig. 8) but also due to the neglect of the roller effect.

4.2. The momentum equation and the setup

In this section we shall discuss the phase-averaged momentum equation consistent
with the present time domain formulation. Neglecting bottom friction, the time-average
of Eq. (2.1b) in one horizontal dimension (writing ¢ for ¢ and R for R ) yields

dqm IF _ IR _
h— + — 4+ pth+ p— =0, 4.5
pgho—+ —— +pY+p (4.5)

where p is the density of water and

- P 1 , _
F=p - + -2—gn“ . (4.6)

Here F is the radiation stress due to the momentum from the depth averaged velocity
and due to the hydrostatic part of the dynamic pressure, while py represents the
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Fig. 15. Spatial variation of undertow for case 2. (1) U from Eq. (4.1); (2) u, from Eq. (4.2); (3) u, from the
approximation Eq. (4.3); (4) numerical solution by Kobayashi et al. (1989); experimental data (O).



278 P.A. Madsen et al. / Coastal Engineering 32 (1997) 255-287

nonhydrostatic part of the dynamic pressure due to vertical accelerations, and pdR/dx
is the excess momentum effect due to the nonuniform velocity distribution caused by the
surface roller. _

In line with Svendsen (1984a), a first estimate of F can be obtained by assuming
P = \/gh ¢, which in combination with Eq. (4.4) yields

F=pg(307%+5(m)°) (4.7)
The first term in Eq. (4.7) can be recognized as the shallow water radiation stress, which
for sinusoidal waves simplifies to 3/16pgH?. The second term in Eq. (4.7) represents
the nonlinear part of the gravity term, which can be combined with the linear gravity
term simply by replacing h by hyy, in the first term of Eq. (4.5).

Fig. 16 compares the time-average of F computed using respectively Eq. (4.6), Eq.
(4.7) and the sinusoidal approximation on the basis of the Boussinesq model results. It
can be noticed that Eq. (4.7) is a good approximation to Eq. (4.6), while both of these
estimates are clearly lower than the sinusoidal approximation. The reason is the
horizontal asymmetry inherent in the computed profiles, which represent a relatively
small energy for a given wave height.

The roller effect on the time-averaged momentum equation is represented by the term
pdR /3x where R according to Eq. (2.2) can be computed by numerical time averaging
of

o
R=——(c-U) .
o=V (48)
A first approximation to R is
R=c% (4.9)

as used by e.g. Svendsen (1984a) and Dally and Brown (1995). Fig. 17 shows the spatial
variation of pR determined from Eq. (4.8) and Eq. (4.9) on the basis of the model
results and again ¢ is determined interactively as described in Section 2.4. It is seen that
Eq. (4.9) is a relatively poor approximation to the time-average of Eq. (4.8).

Radiation stress (N/m)
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Fig. 16. Spatial variation of the radiation stress for case 2. (1) F using Eq. (4.6); (2) F using Eq. (4.7); (3)
3/16pgH?.
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Fig. 17. Spatial variation of the roller excess momentum term pR for case 2. Obtained from Eq. (4.8)
(———); obtained from the approximation Eq. (4.9) (---).

The computed spatial variation of the terms in the momentum balance Eq. (4.5) is
shown in Fig. 18. It can be seen that pﬁﬁ/ax gives a major contribution, and it is
clearly responsible for the lateral shift between the wave height decay and the start of
the setup: Instead of starting the setup at the location of x = 8.7 m, the setdown is
actually increased initially until the setup eventually starts at the location of x=9.4 m.
The wave-averaged effect of the nonhydrostatic pressure pi is insignificant in this
context. The sum of all terms in Eq. (4.5) is zero as expected.

4.3. The energy equation and the energy loss

In this section we focus on the phase-averaged energy equation consistent with the
present time domain formulation. An obvious question to address is how the introduc-
tion of the excess roller momentum term, pdR /dx in Eq. (2.1b) can result in dissipation

Momentum eq. terms (N/m/m)
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Fig. 18. Spatial variation of the terms in the wave-averaged momentum Eq. (4.5) for case 2. (1) pghdn/dx;
(2) oF /3x; (3) pyr; (4) paR /dx.
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of the organized wave energy and how to estimate this energy loss. To answer this
question we shall study the depth integrated energy equation for the wave motion i.e.

_+_;.+D=0’ (410)

where D is the energy dissipation, and where the energy density, E and the energy flux,
E,. are defined by

T’ 9 2
E%pgnz-}-%pf h(u“+w“)dz (4.11a)

- n .
EFE[/hu(ﬁ+pgn)dz+%pf)’u(uz+w“)dz, (4.11b)

with 7 being the nonhydrostatic part of the dynamic pressure.
As a first estimate of the kinematics for nonbreaking shallow water waves we can
express the vertical distribution of u, w and p by

u(x, z, 1) =U(x, 1) (4.12a)
U A(hU)

w(x, z,1) = —z Py (4.12b)
a*(hU) z* *U

z
p{x, z,1) = . — 4.12
Plx ) =plim 5 T (4.12¢)
which are the lowest order Boussinesq approximations satisfying local continuity and
incorporating the effect of vertical accelerations. We insert Eqs. (4.12a), (4.12b) and
(4.12¢) in Egs. (4.11a) and (4.11b) and obtain expressions for the energy density and

energy flux. These are split up into nondispersive contributions
Ey=p(3gn° +3U%),  Epy=pU(gnd+1U%d) (4.13)
and dispersive Boussinesq type contributions,

h3(3U)2 h?  9U oh

R 32U R AU oh
E =p|l— + —U— —
2 dx O0x

’ EF,lz_pU(—

ox

3 dxdr 2 dr dx )’
(4.14)
where Eq. (4.14) has been simplified by including quadratic nonlinearities only and

using mild-slope approximations. On the basis of Eq. (4.13) and the depth-integrated
continuity equation, we obtain the relation

6

OE, dEg, 9 I an

a—z+ . =pU(ﬁ—t(Ud)+a(U d)-l-gd—a;) (4.15)
while Eq. (4.14) leads to

OE,  OEg,

=t U (4.16)
with

n U on *U
¥, = ~h? (4.17)

- ? dx0r 8_,{ oxadt
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We note that s, is the dispersive momentum term which can be defined in terms of the
nonhydrostatic pressure as

o 9p
= —d 4.18
n=[ 54 (4.18)
and that Eq. (4.18) agrees with Eq. (4.17) when Eq. (4.12c¢) is used.

The next step is to combine Eq. (4.15) and Eq. (4.16) and time-average the result
over a wave period, which yields

dEz, OEg,
dx dx

U ‘ d ’ 2d dﬁn 4.19
=pU| — +— +gd— + _
pU| 5. (Ud) + 5 (U%d) +gd -+, (4.19)

From Eq. (4.19) we conclude that the depth-integrated energy equation can be obtained
simply by multiplying the depth-integrated momentum equation by the depth-averaged
velocity U, followed by a time-averaging of the result.

For nonbreaking waves the actual momentum Eq. (2.1b) solved by the present model
deviates from the right hand side of Eq. (4.19) in the sense that ¢ defined by Eq. (2.3a)
is not identical with ¢, given by Eq. (4.17). This indicates that the kinematics assumed
in Egs. (4.12a), (4.12b) and (4.12¢) are not in full agreement with the momentum
equation solved by the present model and consequently the expression Eq. (4.14) for
Er, is only a first estimate of the energy flux in the model. To investigate this
discrepancy we split up ¢ from Eq. (2.3a) into the two contributions

P h oh 9P

| I
Ui axdt 3 ox axdt’
Bh? o°p h—— o 2 oh o' 4.20
= — Bh? - +2g—— :
Vo oxdr S T8 ax? (4.20)

Note that y; represents the linear terms of higher order added to the momentum
equation in order to improve the linear dispersion characteristics (Madsen and Sgrensen,
1992). In theory as well as in practice ¢, has little influence on the time-averaged
equations in shallow water and in the surf zone. The other term, i, simplifies to &,
using the approximation P = Uh. This approximation is consistent with the neglect of
higher order nonlinearities in connection with the dispersive terms, but in practice it will
deviate from i, where strong nonlinearities occur. Hence, although to the lowest order
in dispersion and nonlinearity the energy fluxes expressed by Eq. (4.13) and Eq. (4.14)
are consistent with the equations solved by the present model, the difference between ¢,
and ¢ can not be ignored in practice, and by substituting Eq. (2.1b) without the R-term
into Eq. (4.19), we get

aEF,D 6EF 1
dx dx

= pU(d, — ). (421)

which is the depth-integrated and time-averaged energy equation corresponding to the
present model in case of no dissipation.
When the waves are breaking the R-term will appear in the momentum equation and
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repeating the above procedure i.e. multiplying the momentum equation by U followed
by time-averaging leads to
dEy , . JEy

=L oK 422
e e —pU(t/fl—dr)—pUa—x (4.22)

Note that Eq. (4.22) has been derived without consideration of the vertical distribution
of the horizontal velocity (Fig. 1) although this is exactly what is causing the R-term in
the first place. If such vertical details are taken into account in the formal derivation of
the energy and the energy flux, an alternative energy equation will appear as we shall
see later in this section. Here we emphasize, however, that the objective is to estimate
the dissipative effect of the R-term occuring in the depth-integrated momentum equa-
tion. From that point of view vertical details are irrelevant as terms are formulated in
bulk quantities such as the surface elevation and the depth-averaged velocity. The last
term in Eq. (4.22) appears only in connection with wave breaking, hence it is natural to
interpret this term as the effective energy dissipation occuring in the model i.e.

__ R

Dy =pU—— (4.23)

Fig. 19 shows the computed spatial variation of the terms in the energy balance Eq.
(4.22). First of all it is seen that the sum of the terms is practically zero everywhere,
which needs to be checked, since Eq. (4.22) is actually not solved by the numerical
model. We notice that pUdR /dx obviously plays an important role in the surf zone and
that it basically burns off the amount of energy flux from the seaward boundary.

Fig. 20 shows the computed spatial variation of the time-averaged energy fluxes,
where Ep, is split into the two contributions given by Eq. (4.13). As expected, the
contribution from the hydrostatic part of the dynamic pressure is generally dominating,
while the cubic velocity term is rather small. The effect of the nonhydrostatic part of the
dynamic pressure represented by the time-average of Ep, from Eq. (4.14) is always
counteracting the hydrostatic part and it is typically 10% of its magnitude.

Energy eq. terms (N/m/m)
il
;T
i
i
i

12 14 16
Distance (m)

Fig. 19. Spatial variation of the terms in the time-averaged energy equation Eq. (4.22) for case 2. (1) sum of
all terms, (2) d(Eg )/ dx; (3) (Ep)/dx; (4) pU(Y — 4,); (5) pUIR Jax.
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Fig. 20. Spatial variation of the time-averaged energy fluxes for case 2. (1) pgnUd; (2) p/2U: (3) Eg ; (49
Epg+ Ep .

In general the use of phase-averaged models involves an explicit formulation of the
energy loss D and a common model from the literature is based on the classical
hydraulic jump analogy (see e.g. Svendsen et al., 1978; Svendsen, 1984a). More recently
Deigaard (1989) used the roller concept and estimated the energy dissipation as the
product of the local roller pressure gradient and the horizontal flow velocity, while Dally
and Brown (1995) estimated the dissipation by the friction at the interface between the
roller and the underlying flow. In both cases the energy dissipation due to the roller was
formulated as

D,=pgcdpp, (4.24)
where B, is a function of the angle of inclination of the roller and proportional to the
angle if this is small. While Deigaard suggested to use the value B, = 0.18 (correspond-
ing to a fixed roller angle of 10 degrees), Dally and Brown calibrated their model with
By, = 0.10. We have computed the spatial variation of Eq. (4.24) with B = 0.10 by
using the Boussinesq model results for & and ¢ (determined interactively). Fig. 21
shows a comparison between D, from Eq. (4.24) and D, from Eq. (4.23), representing
the actual energy loss occuring in the simulation. The agreement is quite good and gives
some support to the value of B, =0.10.

12

o)
1

T

Energy loss (W/m/m)
o

|
ES

T T
10 12 14 16

Distance (m)

oo

Fig. 21. Spatial variation of the energy loss for case 2. pUIR /dx (————); 0.1 pgcd (---).
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Finally we shall return to the formal derivation of the energy and the energy flux
taking the vertical details of the velocity profile in Fig. 1 into account and deriving an
energy equation from Eq. (4.10) without directly involving the momentum equation. For
simplicity we shall assume that w and 5 can still be approximated by Egs. (4.12a),
(4.12b) and (4.12¢). In addition to (E,, Ey,) and (E,, Ep,) given by Eq. (4.13) and Eq.
(4.14) this leads to the following excess energy density (E,) and excess energy flux
(Eyg,) due to the surface roller

E,=1p(cB+ui(d—8)—U),  Ep,=3p(c8+uj(d—38)—U'd)

(4.25)
and the resulting time-averaged energy equation reads
a ,_ - — —
a—x—(EF_U+EFJ +Ep,)+ D=0, (4.26)

which is similar to the equation considered by Svendsen (1984a) and Dally and Brown
(1995). Note that in Eq. (4.26) D has to be modelled explicitly e.g. by the use of Eq.
(4.24). The role of E, in Eq. (4.26) is mainly a redistribution of the energy loss
somewhat similar to the redistribution of the setup in the time-averaged momentum
equation.

If the intention is to incorporate an independent energy equation in the system of
model equations, Eq. (4.26) is a logical consequence of the velocity profile introduced in
Fig. 1. However, with the present phase-resolving Boussinesq model combined with the
breaker model described in Section 2 there is no need of an independent energy equation
like Eq. (4.26) and the model has no inherent information about it. Instead Eq. (4.22)
derived directly from the momentum equation is the relevant energy equation in this
context.

5. Conclusion

A phase-resolving numerical model for waves and wave-driven currents in and near
the surf zone is presented. The nondissipative part of the model is of Boussinesq type
and it includes improved dispersion properties relative to the classical Boussinesq
equations. The dissipative part is based on a surface roller concept for spilling breakers.
The instantaneous determination of the surface roller is based on a simple heuristic
approach. The roller gives rise to additional convective terms in the depth-integrated
momentum equations leading to a loss of energy. The shoreward boundary condition
allows for a moving shoreline thus including the swash zone. The model is formulated in
two horizontal dimensions.

In this paper (part I) we concentrate on cross-shore motion of regular waves with
emphasis on how the time-domain model behaves in a phase-averaged sense. We
analyze the mechanisms of the roller model by computing the balance in the mass,
momentum and energy averaged over a wave period. In this connection important
phase-averaged quantities such as the roller area, the undertow, the setup, the radiation
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stress, the energy flux and the energy dissipation are computed by numerical time-aver-
aging and the role of the individual terms in the governing equations is discussed and
illustrated. The following conclusions are made: Firstly, the inclusion in the mass
balance of the net mass transport due to the roller has a significant effect on the
time-average of the depth-averaged particle velocities and it improves significantly the
prediction of the depth-averaged undertow in the surf zone. Secondly, the inclusion in
the momentum balance of additional convective terms due to the roller, leads to the well
known shift between the break point and the point where the setup in the mean water
level is initiated. Hence due to the presence of these additional terms the radiation stress
may keep constant for a while, even though the wave height starts to decay. Thirdly, we
address the question of how the introduction of the excess roller momentum term can
result in energy dissipation and wave height decay. It is demonstrated that the effective
energy dissipation occuring in the model should be determined as the time average of
the roller momentum term multiplied by the depth averaged velocity. In the literature a
more sophisticated phase-averaged energy equation is often applied including the excess
roller energy flux and an explicit expression for the dissipation. We conclude that such
an equation is irrelevant in the present context although it is a logical consequence of the
velocity profile used.

In order to establish the relation to traditional phase-averaged formulations we
compare the radiation stress, the roller momentum and the energy dissipation computed
by the present model with various approximative expressions from the literature: Our
computations confirm that a simple approximation of the radiation stress in terms of the
surface elevation alone is quite good while an approximation using sinusoidal theory
gives a significant overestimation. The excess momentum flux due to the surface roller
is found to be significantly overestimated by the approximation commonly used in
phase-averaged models. Two expressions from the literature suggest that the local
time-averaged dissipation is proportional to the product of the celerity and the mean
roller thickness. Our example supports this formulation favouring the factor of propor-
tionality proposed by Dally and Brown (1995).

The present phase-resolving model is verified on a number of test cases involving
regular waves breaking on a plane sloping beach or over a bar profile. The determination
of the surface roller relies on four parameters. A sensitivity analysis indicates that for a
number of cases the choice of these parameters is not very critical. A standard set of
parameters is chosen, and with this set the model can be used as a predictive tool. All
results are shown using the standard parameter set and in the few cases where the results
are less satisfactory, it is shown how the adjustment of these parameters could better the
agreement with measurements. All cases calling for adjustment of the parameter set
were known a priori to be difficult examples: This is either due to plunging type wave
breaking, while the present model is developed for spilling breakers, or to breaking
occuring on the flat top of a bar, which (to our knowledge) no other model can simulate
to satisfaction without calibration,

The examples of cross-shore motion of regular waves tend to illuminate the weak-
nesses rather than the strengths of the present model, and many calibrated phase-aver-
aged models can most likely perform equally well (if not better) on these relatively
simple cases. The real strength of the present model lies in its flexibility, which makes it
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possible to automatically capture the (time-varying) point of incipient breaking as well
as cessation of breaking. This allows for the simulation of wave breaking and run-up of
irregular, multidirectional waves in two horizontal dimensions and a study of phenom-
ena like swash oscillations and surf beats induced by short-wave groups as well as rip
currents and nearshore circulations. Such applications are presented in part II and III of
this work.

Acknowledgements

This work was financed by the Danish National Research Foundation and their
support is greatly appreciated. Many thanks are due to Jiirjen Battjes, Yasser Eldeberky
and Marteen Dingemans, who kindly provided experimental data for some of the test
cases. Rolf Deigaard and Karim Rakha also influenced the work in this paper and finally
we thank Buhr Hansen for providing some unpublished data and Bill Dally for sending
his manuscript before publication.

References

Abbott, M.B., Larsen, J., Madsen, P.A., Tao, J., 1983. Simulation of wave breaking and run-up. In Seminar on
Hydrodynamics of waves in coastal areas. 20th Congr. of JAHR. IAHR, Moscow.

Beji, S., Battjes, J.A., 1993. Experimental investigations of wave propagation over a bar. Coastal Eng. 19,
151-162.

Battjes, J.A., 1974. Surf Similarity. In: Proc. of the 14th Coastal Eng. Conf. ASCE, pp. 466—480.

Battjes, J.A., 1988. Surf-zone dynamics. Annu. Rev. Fluid Mech. 20, 257-293.

Brocchini, M., Drago, M., Iovenitti L., 1992. The modelling of short waves in shallow waters: Comparison of
numerical models based on Boussinesq and Serre equations. In: Proc. of the 23th Coastal Eng. Conf., ch. 4,
pp. 76-89.

Carrier, G.F., Greenspan, H.P., 1958. Water waves of finite amplitude on a sloping beach. J. Fluid Mech. 4,
97-109.

Dally, W.R., Brown, C.A., 1995. A modeling investigation of the breaking wave roller with application to
cross-shore currents. J. Geophys. Res. 100 (C12), 24873-24883.

Deigaard, R., 1989. Mathematical modelling of waves in the surf zone. Prog. Rep. 69. ISVA, Technical
University, Lyngby, pp. 47-59.

Duncan, J.H., 1981. An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. R.
Soc. London Ser. A 377, 331-348.

Eldeberky, Y., Battjes, J.A., 1996. Spectral modelling of wave breaking: Application to Boussinesq equations.
J. Geophys. Res. 102, 1253-1264.

Elgar, S., Freilich, M.H., Guza, R.T., 1990. Model-data comparisons of moments of non breaking shoaling
surface gravity waves. J. Geophys. Res. 95 (C9), 16055-16065.

Freilich, M.H., Guza, R.T., 1984. Nonlinear effects on shoaling surface gravity waves. Philos. Trans. R. Soc.
London A311, 1-41.

Galvin, C.J. Jr., 1968. Breaker type classification on three laboratory beaches. J. Geophys. Res. 73 (12),
3651-3659.

Hamm, L., Madsen, P.A., Peregrine, D.H., 1993, Wave transformation in the nearshore zone: A review.
Coastal Eng. 21, 5-39.

Hansen, J.B., Svendsen, 1.A., 1984. A theoretical and experimental study of undertow. Proc. of the 19th
Coastal Eng. Conf., pp. 2246-2262.

Hansen, J.B., 1991. Air entrainment in surf zone waves, Proc. Copedec, Mombassa, pp. 1357-1371.



P.A. Madsen et al. / Coastal Engineering 32 (1997) 255-287 287

Hansen, J.B., 1995. Private communication,

Hibberd, S., Peregrine, D.H., 1979. Surf and run-up on a beach: A uniform bore. I. Fluid Mech. 95 (Part 2),
323-34S.

Kaihatu, J.M., Kirby, J.T., 1995. Nonlinear transformation of waves in finite water depth. Phys. Fluids 7,
1903-1914.

Karambas, Th., Koutitas, C., 1992. A breaking wave propagation model based on the Boussinesq equations.
Coastal Eng. 18, 1-19.

Kobayashi, N., De Silva, G.S., Watson, K.D., 1989. Wave transformation and swash oscillation on gentle and
steep slopes. J. Geophys. Res. 94 (C1), 951-966.

Larsen, J., Dancy, M., 1983. Open boundaries in short wave simulations: A new approach. Coastal Eng. 7,
285-297.

Lippmann, T.C.. Brookins, A.H., Thornton, E.B., 1996. Wave energy transformation on natural profiles.
Coastal Eng. 27, 1-20.

Luth, H.R., Klopman, G., Kitou, N., 1993. Kinematics of waves breaking partially on an offshore bar, Report
H1573, Delft Hydraulics.

Madsen. P.A., Sgrensen, O.R., 1992. A new form of the Boussinesq equations with improved linear dispersion
characteristics. Part 2. A slowly-varying bathymetry. Coastal Eng. 18, 183-204.

Madsen, P.A., Sgrensen, O.R.. 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20,
359-388.

Madsen, P.A., Sgrensen, O.R., Schiffer, H.A., 1997. Surf zone dynamics simulated by a Boussinesq type
model. Part II. Surf beat and swash oscillations for wave groups and irregular waves. Coastal Eng. 32,
289-320.

Madsen, P.A., Schiffer, H.A., 1997. Higher order Boussinesq-type equations for surface gravity waves:
Derivation and analysis. Submitted.

Mase, H., Kirby, J.T., 1992. Hybrid frequency-domain KdV equation for random wave transformation. in
Proc. 23rd Int. Conf. on Coastal Engineering, Venice, pp. 474-487.

Peregrine, D.M., 1967. Long waves on a beach, J. Fluid Mech., vol. 27, Part 4.

Sato, S.. Kabiling, M.B., Suzuki, H., 1991. Prediction of near-bottom velocity history by a nonlinear
dispersive wave model. Coastal Eng. Jpn. 35 (1), 67-82.

Schiffer, H.A., Madsen, P.A., Deigaard, R., 1993. A Boussinesq model for waves breaking in shallow water.
Coastal Eng. 20, 185-202.

Stive, M.J.F., 1980. Velocity and pressure field of spilling breakers. Proc. of the 17th Coastal Eng. Conf., pp.
547-566.

Stive, M.J.F., 1984. Energy dissipation in waves breaking on gentle slopes. Coastal Eng. 8, 99—127.

Svendsen, I.A., Madsen, P.A., Hansen J.B., 1978. Wave characteristics in the surf zone. In: Proc. 16th Coastal
Eng. Conf., Hamburg, vol. I, pp. 520-539.

Svendsen, I.A., 1984a. Wave heights and setup in a sorf zone. Coastal Eng. 8, 303-329.

Svendsen, L.A., 1984b. Mass flux and undertow in a surf zone. Coastal Eng. 8, 347-365.

Svendsen, L.A., Schiffer, H.A., Hansen, J.B., 1987. The interaction between the undertow and the boundary
layer flow on a beach. J. Geophys. Res. 92 (c11), 845-856.

Sgrensen, O.R., Schiiffer, H.A., Madsen, P.A., 1998. Surf Zone Dynamics Simulated by a Boussinesq type
model. Part IIl. Wave induced horizontal nearshore circulations, Coastal Eng., submitted.

Tao, J., 1983. Computation of wave run-up and wave breaking. Internal Report, Danish Hydraulic Institute, 40
Pp.

Ting, F.CK,, Kirby, I.T., 1994. Observation of undertow and turbulence in a laboratory surf zone. Coastal
Eng. 24, 51-80.

Watson, G., Peregrine, D.H., 1992. Low frequency waves in the surf zone. In Proc. of the 23th Coastal Eng.
Conf,, ch. 61, pp. 818-831.



