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ABSTRACT

Madsen, P.A. and Serensen, O.R., 1992. A new form of the Boussinesq equations with improved
linear dispersion charactenistics. Part 2. A slowly-varying bathymetry. Coastal Eng.. 18: 183-204.

A new form of the Boussinesq equations applicable to irregular wave propagation on a slowly vary-
ing bathymetry from deep to shallow water 1s introduced. The equations incorporate excellent linear
dispersion characteristics, and are formulated and solved in two horizontal dimensions. In an earlier
paper we concentrated on wave propagation and diffraction on a horizontal bottom in deep water. In
this paper these principles are generalized and the Boussinesq equations are extended 1o include terms
proportional to the bottom slope, which are essential for the shoaling properties of the equations. The
paper contains a linear shoaling analysis of the new equations and a verification of the numerical
model with respect to shoaling and refraction-diffraction in deep and shallow water.

1. INTRODUCTION

The extensive use of the Boussinesq equations to practical studies of wave
disturbance in harbours and coastal regions makes it important to establish
the range of application of these equations and if possible to improve it. From
a theoretical point of view these equations are based on shallow water as-
sumptions but practical problems often require that larger values of the depth
to deep water wave length ratios, 4/L, can be taken into account.

In Part 1 of this work (Madsen et al., 1991a) various classical forms of the
Boussinesq equations were discussed and expressions for the corresponding
linear dispersion relations were derived and compared to Stokes linear the-
ory. The best form of the classical equations was shown to provide a 5% celer-
ity error for #/L,=0.22, which is often taken as the practical deep water limit
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for these equations. It turns out that a considerable improvement of the ac-
curacy of the linear dispersion relation can be obtained by combining a poly-
nomial expansion of Stokes first order theory with Pade’s approximant tech-
nique (see also Witting, 1984). In Part 1 we used this technique in
combination with the method of operator correspondence to obtain a new set
of Boussinesq equations expressed in two horizontal dimensions in terms of
the surface elevation and the depth-integrated velocity components. A major
improvement of the accuracy of the phase celerity and group velocity was
demonstrated, and two-dimensional simulations of wave propagation and
diffraction in deep water were performed.

The derivation of the new equations presented in Part 1 neglected all spa-
tial derivatives of the sea bed, and recent analysis (Madsen and Serensen,
1992) has revealed that for this reason they should not be applied on a vari-
able bathymetry.

In the present paper we shall rederive the new Boussinesq equations includ-
ing first derivatives of the sea bed (section 2) and make an analysis of the
resulting shoaling properties (section 3). It will be demonstrated that for the
standard Boussinesq equations the shoaling falsification increases rapidly for
h/L, exceeding 0.12, and for this reason it must be concluded that on a vari-
able bathymetry the accuracy of the phase celerity generally provides a much
too optimistic measure of the practical range of application of the equations
(see above). The new equations, on the other hand, provide an excellent ac-
curacy in shoaling as well as in linear dispersion for #/L, as large as 0.50 and
these equations make it possible to simulate the transformation of irregular
wave trains travelling from deep to shallow water. The numerical scheme for
the new equations will be described in section 4 and finally the model will be
verified with respect to linear shoaling in section 5 and nonlinear refraction-
diffraction in section 6.

2. DERIVATION OF THE BOUSSINESQ EQUATIONS

In this section we shall modify the new Boussinesq equations, presented in
Part 1 of this work, to include first derivatives of the sea bed. The result will
be a set of two-dimensional equations which incorporate excellent linear dis-
persion characteristics and are valid on a slowly-varying bathymetry.

The starting point for the rederivation will be the classical Boussinesq
equations derived by Peregrine (1967) in terms of the depth-averaged veloc-
ity components. Formulated in terms of depth-integrated velocities (i.e.
fluxes) instead his equations become,

S,+P.+0Q,=0 (2.1a)
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p? P
P,+(—) +<—Q> +gdS, +y, =0 (2.1b)
d)., "\ d),
2 P
Q,+<Q—) +<_Q> 4 gdS, +y2 =0 (2.1¢)
d),"\d)/,

where subscripts x, y and ¢ denote differentiation with respect to space and
time, d is the total water depth, 4 is the still water depth, .S is the surface
elevation, P and Q are the depth-integrated velocity components, and y; and
v, are the Boussinesq terms defined by

Ip? ((’g) _ +<%) )—%hz(Pxx,+Qm) (2.2a)

0((9) 7)) ianen

Notice that eqs. (2.2a-b) are expressed in terms of 4, which means that non-
linear effects arising from the difference between d and # have been neglected.
This makes the formulation different from Abbott et al. (1978). From a con-
sistency point of view such effects are of higher order, and should only be
included if they have a positive influence on the simulation of highly nonlin-
ear waves. However, this is not the case and the effect of changing /42 to hd or
d? in egs. (2.2a and b) has been shown to result in an overestimation of the
dispersive effects and an underestimation of the crest in solitary waves (see
McCowan, 1987).

In the following first derivatives of 4 will be considered small, and higher
derivatives and products of derivatives will consequently be neglected. This
leads to the following simplification of egs. (2.2a and b)

Vi

-

Ili

5]

Vi=—3h (Peat Qan) —§ W1, Q=5 hh (2P + Q) (2.3a)
Wo=—13 h*(Quu+Peo) — & hh Py —¢ hh (20, +P,) (2.3b)
The next step is to consider the linear long wave approximations,

P +ghS,=0 (2.4a)
Q,+ghS, =0 (2.4b)
By spatial differentiation these equations lead to the approximations
P..+2eh.S+ghS...=0 (2.5a)
P, +gh.S.+gh.S+ghS,, =0 (2.5b)

Q_V_VI + 2ghySyy + ghS\')')' X O ( 2‘ 5C )
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Qxyt +ghnyy +gthyy +ghSyyx =0 (25d)

It is a classical procedure to simplify higher order terms in the Boussinesq or
KdV equations by introducing eqgs. (2.4a and b) or egs. (2.5a-d) (see e.g.
Mei, 1983). As an example P, type terms can be replaced by S, type terms
by the use of this method. In shallow water it makes no difference, but in
deeper water the form of the Boussinesq terms is critical for the accuracy of
the linear dispersion relation.

The new Boussinesq equations will now be derived by using the method
introduced in Part | of this work: We multiply eqs. (2.5a—d) with —Bh* and
add egs. (2.5a) and (2.5d) to y, defined in eq. (2.3a), while eqs. (2.5b) and
(2.5c¢) are added to . defined in eq. (2.3b). This leads to

Yy=-— (B+ % )h : ( P,\i\‘r + Q,\'y/) - th 3 ( S,\:\'.\‘ + S.\')j\') (263)
- hh\( %le + é le + 2thS\\ + thSn) - hh}'( (l) Q.\'l + thS\\)
WZ = - (B+ % )h2 ( Q}'}‘! + P,\'w) - th ! (S\{\'y + S\‘.\',\') (26b)

- hhl( %Q}'! + éle + 2thS\\ + thS\\) - hh,\‘( éP}'I + thSn)

Except for the slope terms proportional to 4, and 4, these expressions are
identical to the Boussinesq terms presented in Part 1. Here the value of the
coefficient B was determined by matching the resulting linear dispersion re-
lation with a polynomial expansion of Stokes first order theory combined with
the use of Pade’s approximant. By this approach the value B=1/15 was found
and the resulting phase celerity was shown to be in excellent agreement with
Stokes first order theory for 4/L, as large as 0.5 (see Fig. 1 in Madsen et al.,
1991a).

3. ALINEAR SHOALING ANALYSIS

In this section we shall make a linear shoaling analysis of the new Boussi-
nesq equations. For this purpose we consider the linearized one-dimensional
version of egs. (2.1a—c) combined with egs. (2.6a and b), which yields

S, +P.=0 (3.1a)
Pl+ghS.\'_thBSxx_\'_ (B+ % )th.\'xl -hr(ngh:S\v+ %hP\'l) =O (31b)

The corresponding wave equation is derived by replacing P, with -, by the
use of eq. (3.1a), and by cross-differentiating and subtracting eqs. (3.1a) and
(3.1b). This leads to

Sr( _ghS\\’ + th 3S,\'.\'.\'.\' - (B+ % )h :S,\'.\'l/) = ( 32 )
= h\(gS\' + (2B+ 1 )h‘s.\‘fl - Sth ZS\'X,\')
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We shall look for solutions of the form
S(x,t)=A(x)e!t@r—ex) (3.3)

where w is the cyclic frequency, 4 is the local wave amplitude and ¢ is the
phase function, which is related to the local wave number by

P =k(x) (3.4)

where the subscript denotes differentiation with respect to x. The water depth,
the wave number and the wave amplitude are considered to be slowly varying
functions of x, and consequently products of derivatives and higher deriva-
tives of these quantities will be neglected in the following.

The next step is to insert eq. (3.3) into eq. (3.2). To the lowest order all x-
derivatives of #, k and A4 are neglected and we obtain the linear dispersion
relation :

—w?+ghk?+ Bgh®k*— (B+4{)k*h?w?=0 (3.5a)
which leads to

¢>  1+Bk*h?
gh 1+ (B+1)k?h?
where c 1s the wave celerity defined by c=w/k. Collecting terms to the next

order in eq. (3.2) includes the terms proportional to the first derivatives of
h, k and 4 and we get

A, (2ghk+4Bgh’k®—2(B+1)h’w?k) + k. (ghA+ 6Bgh’k*4 (3.6)
~(B+1)h*w?4)+h,(gkd — (2B+ 1) hw?kA+ 5Bgh?k34) =0

The frequency w is eliminated from eq. (3.6) by the use of eq. (3.5a) and
after algebraic manipulations we get

(3.5b)

a1%+a2%+a3%=0 (3.7)
where

a;=2(14+2Bk*h*+B(B+4)k*h*) (3.8a)
a,=1+6Bk*h*+5B(B+4)k*h* (3.8b)
ay=1+(4B—-3%)k*h?*+B(3B+3})k*h* (3.8¢)

The remaining step is to express k. /k in terms of /. /A. Such a relation can be
derived by differentiation of the linear dispersion relation (3.5a). Again we
eliminate « from the expressions and obtain the sclution

K hyx

T (3.9)
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where

(3.10)

Nf—

A=

[1 +(2B—)k*h*+B(B+1)k*h*
1+2Bk*h*+B(B+1)k*h?

Finally eq. (3.9) is inserted into eq. (3.7), which is solved with respect to
A./A and the resulting linear shoaling equation becomes

A, h,
]——as p (3.11)
where
Ay — >y
s a, (3.12)

For reference we shall determine expressions for ¢, and «s based on Stokes
first order theory. In this case the shoaling equation is derived by using the
concept of energy flux conservation, which can be expressed by

a 3
i (4°C,)=0 (3.13)
Here C, is the group velocity defined by
C,=3(1+G)C (3.14)
where

2kh
stin2kh (3.13)

and from the definition of C we find that C./Cis equal to —k./k. Hence eq.
(3.13) can be expressed by

A-‘=%<ﬁ G ) (3.16)

A k~1+G

Again the relative change of the wave number is determined by differentia-
tion of the linear dispersion relation, which leads to eq. (3.9) with «, defined
by

tokes
o =

G
— 17
1+G (317)
Finally eqs. (3.9), (3.15) and (3.17) can be inserted in eq. (3.16) and after
algebraic manipulations we obtain eq. (3.11) with « defined by

stokes _ O (1 +1G(1—=cosh 2kh)

T (1+G)*

(3.18)
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In shallow water, i.e. for kh—0, a Taylor expansion leads to

ai\okcs__)%(l_%kzh2+....) (3193)
a;lokcs_)%(l_kzh2+....) (319b)

and this can be shown to agree with the shallow water approximation to the
Boussinesq expressions (3.10) and (3.12) for arbitrary values of the linear
dispersion coefficient B. On the other hand eqgs. (3.10) and (3.12) simplify
to eqs. (3.19a and b) for arbitrary wave numbers for the case of B=0 (stan-
dard Boussinesq equations).

In Fig. | the vaniation of the shoaling gradient a5 1s shown as a function of
h/L,. This requires that eq. (3.12) is combined with a solution of the Bous-
sinesq dispersion relation from eq. (3.5a), while eq. (3.18) is combined with
Stokes dispersion relation. It can be concluded that the standard Boussinesq
equations with B=0 lead to major discrepancies for /1/L, larger than 0.10,
while B=1/15 has a remarkable effect and results in an excellent agreement
with Stokes first order theory for 4/ L, as large as 0.50.

In Part 1| of this work we neglected the Boussinesq terms proportional to /.
in the momentum equation (3.1b) with the argument of considering a mildly
sloping sea bed. Unfortunately, however, the effect of these terms can be shown
to be accumulative and they have a major influence on the shoaling properties

— Eq (3.18) , Stokes First Order
—— Eq (3.12) with B=0
—— Eq (3.12) with B=1/15
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Fig. 2. Linear shoaling gradient, as when Boussinesq terms proportional to 4, in the momentum
equation are neglected.

of the equations. If these terms are neglected in eq. (3.1b) the coefficient a;
defined in eq. (3.8¢) is changed to

at=1+(2B—1)k*h2+B(B+})k*h* (3.20)

and the effect on the shoaling gradient a5 is shown in Fig. 2. The result is seen
to be a considerable overestimation of the shoaling gradient.

4. THE NUMERICAL SCHEME

In this section we shall specify the finite difference representation of the
governing equations (2.1a-c) with the new Boussinesq terms defined by egs.
(2.6a and b). The presentation includes a specification of the nonlinear con-
vective terms, which were not described in Part 1, and introduces an im-
proved time centering of the cross-Boussinesq terms.

As explained in Part 1 the differential equations are discretized by using a
time-centered implicit scheme with variables defined on a space-staggered
rectangular grid. The method is based on the ADI (Alternating Direction Im-
plicit) algorithm, and the resulting system of finite difference equations is
reduced to a three-diagonal system, which is solved by the Double Sweep
algorithm.

In order to emphasize the time-centering of the terms, the x- and y-deriva-
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tives will be given in their differential form only. The finite-difference ap-
proximation of the spatial derivatives is a straight forward mid-centering ex-
cept for the nonlinear convective terms, which are described in detail at the
end of this section. The resulting x-sweep equations read:

Sn+]/2_Sn
( |Al >+ (Pn+l+Pn)+ (Qn+l/” Q;-]/Z)ZO (4]3)
2
P"'H—P" PZ n+1/2 P n+1/2 .
()5 o) s
h2
—(BH+1) o [P —PL)+3(Qu 7 = Q5 ) =4 (072

— 0% ) )= [P =P QI R =01 ) 5 (01

Y= QR R = Qi ) — (02 - Q1) )

~Bgh?[h(S% +S;‘,>,.) +h (28%+853) +h,.S5%1=0 (4.1b)

in which $”*'/2 and P"*! are the unknown variables. The resulting y-sweep
equations read:

Sn+l_Sn+]/2
—

n+3/2__ n+1/2 s n+1 n+1
<Q AtQ >+ (%) + (Bdg) +gd**Sj’.+‘

—(B+1 )h”[(Q"“/’ Q1)+ 3 (P =P ) = L(Pr—Pi )]

>+%(P§»+'+P.(’-)+%(Q_¥+3/2+Q,?+”2)=0 (4.2a)

[ (QUF¥2_Qu 1Ay 4 1 (Prt _pry_ L (Pr_pn-1)]

hh

—P1) =3 (PY—=PI~") 1= Bgh[h(ST, +ST2)

+h,.(2s;: +ST) +h S*] =0 (4.2b)

in which §"*' 4" ("+3/2 gre the unknown variables. The * used in eq. (4.1b)
and ** used in eq. (4.2b) indicate estimated values of the unknown surface
elevation at time levels n41/2 and n+ 1, respectively. As mentioned in Part
1 these values are calculated by explicit use of the continuity equation and by
doing so the nonlinear gravity term and the convective terms can be time-
centered without using iteration. Furthermore these estimated surface eleva-
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Fig. 3. Grid notation used for x-momentum cquation.

tions are used to determine the new Boussinesq terms S..., Sun Sis Sive
S.o Sy and S.,. This technique however requires a relatively fine resolution
of the wave period in order to avoid artificial dissipation of the wave energy,
a problem which will be enhanced for increasing values of #/L,. It turns out
that a resolution of 24-30 time steps per period is necessary in deep water,
while the wave length resolution can be restricted to 8-10 grid points.

The representation of the cross-Boussinesq terms (i.e. Q.,, Q,, and Q,, in
the x-sweep and P, P, and P,, in the y-sweep ) has required special attention
and in order to obtain the correct time-centering we have used linear time-
extrapolation of these terms. A straight forward representation, like the one
presented in Part 1, leads to a backward centering (half a time step) of these
terms and this will result in artificial dissipation of waves propagating with
an angle to the grid. Again this effect will be enhanced for increasing values
of h/L,, and the extrapolation used to avoid it requires a fine resolution of
the wave period.

The representation of the nonlinear convective terms is described in detail
below. Referring to the notation of Fig. 3 the x-sweep contributions are de-
scribed by

(P_2> [(P"+1+P"f11k> (P,'fk'*'P,"H.k) 1
d).~ 2 2 dry s
"H"‘P,"fll/\)(P//\‘*‘ /—IA> 1 1
- LN LS 4.
( 2 2 | Ax (4.32)
(DA
d y“ 2 4‘-1/—’/\+l/7

+ P, , 1
—<—’2/—> V;l:l]//l_.kal/l] AAV (4.3b)
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where

200012+ Q1)
(df+di tdiv T ds k1)
e 2QPHOILD)
2hk—-1/2— * *
A ! (d;k—l+dj,k+dj+l.k—l+dj*+l.k)

(4.4a)

n+1/2 _
V,/+1/2J\'+ 1/2—

(4.4b)

The cross-momentum term, eq. (4.3b), is time-centered by the use of the
so-called “side-feeding” technique, where every second x-sweep is performed
in the positive y-direction (“‘up”-sweep) in which case a=n and b=n+1,
and the remaining x-sweeps are performed in the negative y-direction
(“down”-sweep) in which case a=n+1 and b=n. Again the * used in eqs.
(4.3) and (4.4) indicates estimated values of the water depth at time level
n+j.

Finally it should be mentioned that the treatment of open boundaries was
discussed in Part 1. Here we shall only repeat that surface elevation bounda-
ries require that S as well as S, (the curvature) is specified and flux bound-
aries require that P as well as S, (the gradient) is specified.

5. VERIFICATION WITH RESPECT TO LINEAR SHOALING

In order to verify the linear shoaling properties of the new Boussinesq model
the following test case has been studied: At the seaward (western) boundary
the water depth is 13 m. The bottom is flat for the first 10 m distance from
the boundary while it has a constant slope of 1/50 from 10 m to 650 m dis-
tance. Finally from 650 m to 700 m the bottom is flat again with a water depth
of 0.2 m. All nonlinear terms in the Boussinesq equations are switched off,
the coefficient B is set to 1/15, and the grid size and time step are chosen to
be 1.0 m and 0.08 s, respectively. The shoreward (eastern) boundary 1s cov-
ered by a 50 point wide absorbing sponge layer, while time series of S (surface
elevation) and S, (the curvature of S) are specified at the open western
boundary.

As a typical deep water example we have chosen the wave period of 4.0 s
leading to a variation of /1/L, from 0.52 to 0.008. A sequence of line plots of
the computed surface elevation, covering one wave period, is shown in Fig.
4a while Fig. 4b shows a comparison between the computed maximum ele-
vations and the shoaling curve obtained from Stokes first order theory. The
agreement is seen to be most satisfactory with relative errors less than 3%
everywhere. The similar comparison is made in Fig. 5a and b for the wave
period of 8.0 s, which is a typical shallow water example leading to the /L,
variation of 0.13 to 0.002. Again the accuracy of the simulation is most
satisfactory.
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Fig. 4. Simulation of linear shoaling from deep to shallow water. Wave period=4.0 s, water
depth=13-0.2m, B=1/15. (a) Envelope of computed surface elevations. (b) Maximum ele-
vations compared to Stokes first order theory.

The absorbing sponge layer at the eastern boundary is extremely efficient
and practically no reflections occur in simulations made on a horizonta] bot-
tom. Hence the small oscillations in Figs. 4b and 5b are due to reflections
from the sloping beach.
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mum elevations compared 10 Stokes first order theory.
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6. VERIFICATION WITH RESPECT TO NONLINEAR REFRACTION-DIFFRACTION

Nonlinear refraction—diffraction over a semicircular shoal was studied ex-
perimentally by Whalin (1971) for waves in deep, intermediate and shallow
water. The topography used by Whalin can be described by

0.4572 (0<x<10.67—G)
h(x,y)=40.4572+ 33 (10.67—-G—x) (10.67—-G<x<18.29—G)

0.1524 (18.29-G<x<21.34)
G(y) =[ry(6.096—y)]'/? (0<y<6.096)

where the length variables x and y are measured in meters. The topography is
symmetric with respect to the centreline at y=3.048 m, the width is 6.096 m
and the water depth varies from 0.457 m to 0.152 m. Whalin conducted three
sets of experiments by generating waves in the deeper part of the model with
periods of 1, 2 and 3 seconds. In Table | the experimental information is
summarized. At the wave maker the waves are linear but after the focusing
on the shoal higher harmonics become significant due to nonlinear effects.
Previous numerical studies of this experiment have been presented by Liu
and Tsay (1984), Liu et al. (1985) and Rygg (1988). Liu and Tsay (1984)
derived a set of nonlinear Schrodinger equations to describe the amplitude
evolution of second order Stokes waves propagating in a single direction over
a slowly varying bathymetry. Their numerical model was applicable for small
values of the Ursell parameter and comparisons were made with the Whalin’s
experiments for the wave periods of 1 and 2 seconds. Liu et al. (1985) studied
the case of T=3 seconds by using the classical Boussinesq equations to derive
evolution equations for spectral-wave components in a slowly varying two-

TABLE |

Experimental information at water depth #=0.4562 m

Wave period Wave amplitude h/Lg (a/b)

(s) (m) (kh)?

1.0 0.0097 0.29 0.0058
1.0 0.0195 0.29 0.0116
2.0 0.0075 0.073 0.0304
2.0 0.0106 0.073 0.0429
2.0 0.0149 0.073 0.0604
3.0 0.0068 0.033 0.0682
3.0 0.0098 0.033 0.0983

3.0 0.0146 0.033 0.1464
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dimensional domain. Finally, Rygg (1988) presented time-domain solutions
to the classical Boussinesq equations for wave periods of 2 and 3 seconds.

The new formulation of the Boussinesq equations presented in this paper
makes it possible to consider all three sets of Whalin’s experiments with 1, 2
and 3 second waves. We shall concentrate on a discussion of the case of 1
second waves, since this has not previously been treated by the use of Bous-
sinesq equations. We start the discussion by considering one-dimensional
simulations with pure shoaling along the centreline of the Whalin’s bathy-
metry (i.e. at y=3.048 m). In this case the value of h/L, varies from 0.29 in
front of the shoal to 0.096 behind the shoal. The minimum wave length be-
comes approximately 1.10 m and in order to achieve a reasonable resolution
a grid size of 0.0762 m and a timestep of 0.01953 s have been chosen. At the
seaward boundary (at x=0) time series of S (surface elevation) and S, (the
curvature of S) are specified. A 50 point wide absorbing sponge layer covers
the region from x=30 m to x=34 m.

Simulations are made with the new Boussinesq equations (with B=1/15)
covering a period of 78 s, which allows possible reflections to develop in the
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Fig. 6. Lincar and nonlincar shoaling along the centre line of Whalin's bathymetry (at y=3.048
m). Period=1.0 s, amplitude=0.0195 m, grid size=0.0762 m. time step=0.01953 s, Boussi-
nesq equation with B=1/15. 1: Nonlincar equations. 2: Linearized equations. (a) Topography.
(b) Maximum elevations of the wave envelope. (¢) Minimum elevations of the wave envelope.
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Fig. 7. Refraction—diffraction in Whalin’s bathymetry. Results presented as envelope of surface
elevations along the centre line (at y=3.048 m). Period=1.0 s, amplitude=0.0195 m, grid
size=0.0762 m, timestep=0.01953 s, Boussinesq equation with B=1/15.

model area. In Fig. 6 the maximum and minimum values of the resulting
envelope of computed surface elevations are presented. For the case of linear
shoaling (i.e. with all nonlinear terms switched off in the Boussinesq equa-
tions) we notice that practically no reflections occur on the shallow shelf which
proves the efficiency of the absorbing sponge layer. Reflections do occur on
the seaward side of the shoal for x< 15 m, and the beat length in the wave
envelope is 0.76 m, which is in perfect agreement with half a wave length. The
case of nonlinear shoaling is practically identical with the linear shoaling for
x< 12 m but clear differences occur on the shelf area for x> 15 m: the maxi-
mum and minimum levels in the envelope are raised and oscillations occur
with a beat length of 1.14 m. These oscillations are not caused by reflections
but are due to interactions between bound second harmonics travelling with
the primary wave and free second harmonics travelling with their own speed.
The release of free second harmonics during the process of shoaling has pre-
viously been discussed by e.g. Mei (1983) and it can be concluded that if in
a horizontal part a permanent wave is present, with no free harmonics, the
shoaling due to depth-variations can destroy the permanency and free har-
monics can be generated (see also Liu, 1989). On a horizontal bottom this
phenomenon is known to occur if linear monochromatic boundary condi-
tions are applied in shallow water in which case a significant amount of free
second harmonic energy will be released. The resulting modulation of the wave
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train has been analyzed by e.g. Mei and Unliiata (1972) and Bryant (1973)
and a discussion of the capability of the new Boussinesq equations to describe
these phenomena can be found in Madsen et al. (1991b), and Madsen and
Serensen (1992). Simulations made on a constant depth of 0.15 m confirm
the beat length of 1.14 m found in Fig,. 6.

We shall now return to the two-dimensional refraction—diffraction problem
and Fig. 7 presents the computed envelope of surface elevations along the
centreline for the case of 1 second waves. A comparison with Fig. 6 shows the
strong focusing effect, which becomes important behind the shoal and a ma-
jor increase in amplitudes is observed. The modulation of the envelope has
also increased and now the two wave systems (of bound and free harmonics)
will propagate not only with different speeds but also with different direc-
tions. The bound second harmonics will follow the primary wave (with
h/Ly=0.096 on the shelf) towards the focusing spot, while the free second
harmonics (with #/L,=0.38) will pass the shoal almost without any change
in direction. This will lead to a complicated modulation pattern as seen from
the perspective plot of the maximum elevations in Fig. 8.

An FFT analysis of time series in each grid point along the centreline has

Fig. 8. Perspective plot of maximum surface elevations in wave envelope (data as in Fig. 7).
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been made and the resulting spatial evolution of first and second harmonics
1s compared with Whalin’s experimental data in Fig. 9. A considerable scat-
tering in the data is seen in front of the shoal but behind the shoal the agree-
ment between the data and the Boussinesq results is acceptable: The first har-
monic is slightly overestimated while the second harmonic is slightly
underestimated. For the purpose of comparison Fig. 9 also includes the re-
sults obtained by Liu and Tsay (1984 ) using the nonlinear Schrodinger equa-
tion. Their results slightly overestimate the second harmonic as well as the
first harmonic. Compared to the Boussinesq equations the second harmonic
is clearly higher while the first harmonic is almost identical except for a region
far behind the focusing area. An explanation for the discrepancy in the second
harmonic can be given by considering regular | second waves with a wave
height of 0.06 m at the water depth of 0.1524 m: Stokes second order theory
(which corresponds to the approach by Liu and Tsay) leads to a first har-
monic of 0.03 m and a second harmonic of 0.0096 m, while Fourier solutions
to the Boussinesq equations (see Madsen and Serensen, 1992) lead to a sec-
ond harmonic of 0.0065 m. These numbers are in qualitative agreement with
the computed conditions at the focus point at x=21 m. The data by Whalin
1s seen to be scattered in the interval between the two different model results.
The oscillations in the second harmonics obtained by the present model once
again are an indication of the combination of bound and free harmonics. From
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Fig. 9. Wave amplitudes for the first and second harmonic along the centre line (period=1.0s,
amplitude=0.0195m). (O), (®) Measured first and second harmonic amplitudes (Whalin,
1971), {——} Boussinesq equation with B=1/15, (— —) results by Liu and Tsay (1984),
(—+-) results by Lozano and Liu (1980).
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the data of Whalin we cannot conclude whether the simulated modulations
should be there or not, and the results by Liu and Tsay do not contain oscil-
lations simply because their equation does not allow for harmonic interac-
tions. Finally Fig. 9 also includes the linear solution presented by Lozano and
Liu (1980). This leads to a major overestimation of the first harmonic as well
as of the focusing effect on the wave height.

The test case with 1 second waves has been repeated by using the standard
Boussinesq equations (B=0) and the result is compared with the new Bous-
sinesq equations in Fig. 10. The effect is seen to be dramatic and the result
obtained by using B=0 is quite useless. The significant and unrealistic de-
crease of the first harmonic from x=7.62 m to x=15 m can be explained as
pure shoaling falsification: The linear shoaling gradients were shown in
Fig. 1 and spatial integration from /#/L,=0.29 at the toe of the shoal to h/
L,=0.096 at the top leads to a 25% decrease in wave height with B=0. With
B=1/15 (and with the exact linear shoaling curve) the wave height is re-
duced with 3% in the first part of the slope. increased with a similar amount
in the second part and at the top it is then approximately the same as it was
at the toe of the slope (see also Fig. 6).

In fact this example demonstrates that Fig. 1 should be taken quite seri-
ously as a measure of the range of application of different tvpes of Boussinesq
equations. Very often the accuracy of the wave celerity is taken as the practi-
cal measure, in which case a 5% error restricts the use of the standard Bous-
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Fig. 10. Comparison with standard Boussinesq equations (data as Fig. 7). 1: New Boussinesq
equation with B=1/15, 2: standard Boussinesq equation, i.e. B=0.
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Fig. 11. Wave amplitudes for the first, second and third harmonic along the centre line (pe-
riod=2.0s, amplitude=0.0075m). (O). (@), (A ) Measured harmonic amplitudes (Whalin,
1971), {——} Boussinesq equation with B=1/15 (grid size 0.1524 m, time step 0.03906 s).
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Fig. 12. Wave amplitudes for the first, second and third harmonic along the centre line (pe-
riod=3.0s, amplitude=0.0068 m). (O), (@), (A ) Measured harmonic amplitudes (Whalin,
1971), {—} Boussinesq equation with B=1/15 (grid size 0.1524 m, time step 0.03516 s).
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sinesq equations to approximately //L,=0.22. However, according to Fig. 1
this 1s clearly much too optimistic in case of a variable bathymetry and the
shoaling falsification increases rapidly for #/L, exceeding 0.12. On the other
hand this only emphasizes the importance of using the new Boussinesq equa-
tions presented in this paper, in which case h/L, as large as 0.5 can be
considered.

We finish this chapter on the Whalin experiments by showing a simulation
with 2 second waves (Fig. 11) and 3 second waves (Fig. 12). In both cases
the agreement with the measurements is most acceptable. The other four shal-
low water test cases listed in Table 1 have also been simulated, but they will
not be reported here, since it can be concluded that for the 2 and 3 second
waves the results obtained by the new equations are almost identical to the
results by Rygg (1988), who used the classical Boussinesq equations.

7. CONCLUSIONS

The principles from Madsen et al. (1991a) are generalized from a horizon-
tal to a sloping bottom, and this paper presents extended Boussinesq equa-
tions applicable to irregular wave propagation on a slowly varying bathyme-
try from deep to shallow water. The equations incorporate excellent linear
dispersion characteristics, which are valuable in shallow water and of the ut-
most importance in deep water.

The linear dispersion coefficient, B is the key parameter in the new Bous-
sinesq equations. With B=0 the standard equations are obtained, while B=1 /
15 is determined from the Pade’s approximant technique. In Part 1 (Madsen
et al., 1991a) other values of B were discussed and it was suggested to con-
sider B as a curve fitting parameter in the process of obtaining the best overall
agreement with Stokes first order theory with respect to phase celerity and
group velocity. In the present paper we have decided to consider the value
B=1/15 for the following reasons:

(a) The Pade’s approximant technique gives a physical/mathematical ex-
planation of this choice.

(b) With this value the discrepancies relative to Stokes theory will increase
continuously with the value of h/L,,.

(c) With this value an excellent agreement in the shoaling coefficient and
the phase celerity is obtained for 4/ L, as large as 0.5.

In Part 1 (Madsen et al.,, 1991a) the new equations were analyzed and
solved for linear wave propagation and diffraction on a horizontal bottom. In
this paper we have concentrated on linear shoaling on a constant slope and
nonlinear refraction—diffraction on the semicircular shoal of Whalin. The ac-
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curacy of the computed results is seen to be most acceptable. Finally it should
be mentioned that the nonlinear properties of the new equations is investi-
gated in further detail by Madsen and Serensen (1992), who present second
order boundary conditions for irregular waves and study the phenomena of
bound waves and wave-wave interaction in shallow water. Also for this pur-
pose the excellent linear dispersion characteristics of the new equations turn
out to be valuable.
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