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ABSTRACT

Madsen. P.A., Murray. R. and Sorensen. O.R.. 1991. A new form of the Boussinesq equations with
improved linear dispersion characteristics. Coastal Eng., 15: 371-388.

A new form of the Boussinesq equations is introduced in order to improve their dispersion charac-
teristics. It is demonstrated that the depth-limitation of the new equations is much less restrictive
than for the classical forms of the Boussinesq equations. and it is now possible to simulate the propa-
gation of irregular wave trains travelling from deep water to shallow water. In deep water, the new
cquations become effectively linear and phase celerities agree with Stokes first-order theory. In more
shallow water. the new equations converge towards the standard Boussinesq equations. which are
known to provide good results for waves up 1o at least 75% of their breaking height. A numerical
method for solving the new set of equations in two horizontal dimensions is presented. This method
is based on a time-centered implicit finite-difference scheme. Finally. model results for wave propa-
gation and diffraction in relatively deep water are presented.

I INTRODUCTION

Numerical models based on the two-dimensional Boussinesq equations have
been shown to be capable of reproducing the combined effects of most of the
wave phenomena of interest to the coastal engineer (Madsen and Warren,
1983; Larsen et al., 1984; Berenguer et al., 1986; Yu Kuang-ming et al., 1987).
These include shoaling. refraction, diffraction and partial reflection of direc-
tional, irregular, finite-amplitude waves propagating over complex
bathymetries.

The Boussinesq equations include non-linearity as well as frequency dis-
persion. Basically, the frequency dispersion is introduced in the flow equa-
tions by taking into account the effect that vertical accelerations (or the cur-
vature of the streamlines) have on the pressure distribution. The simplest
way of including this effect in the vertically integrated momentum equations
1s to assume a horizontal velocity distribution which is uniform throughout
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the depth. This leads to a vertical velocity distribution which increases line-
arly from zero at the bed to a maximum at the free surface. However, there
are other methods available to derive the Boussinesq equations, and a variety
of different forms exist (Peregrine, 1967, 1974: Svendsen, 1974: McCowan,
1985).

First of all, the dependent variables can be chosen in different ways, and
tyvpical velocity variables are the surface velocity, the bottom velocity, the
depth-averaged velocity and the depth-integrated velocity. Secondly, since the
nonlinear and dispersive terms are of higher order, they can be manipulated
by invoking the long-wave equation. Examples of this manipulation have been
given by e.g. Mei (1983), presenting four different forms of the KdV equa-
tion. Common for all the standard forms of the Boussinesq equations is that
all products of derivatives have been neglected relative to the derivatives
themselves. Serre (1953), on the other hand, retained the additional terms
arising from the convective terms in the expression for the vertical velocity,
the convective terms in the vertical flow equation and bed slope effects. How-
ever, this does not make the Serre equations more accurate or complete than
the more simple forms of the Boussinesq equations because Serre’s derivation
strictly relies on the assumption of a uniform vertical distribution of the hor-
1zontal velocity.

The practical range of application of the various forms of the Boussinesq
equations has been studied in detail by McCowan (1981, 1985, 1987). He
has demonstrated that the form of the coefficient for the third derivative
Boussinesq term, P, is highly relevant for modelling nonlinear waves in
shallow water. The optimal choice has been shown to be 42, where 4 is the
still water depth (McCowan, 1985). By using this coefficient and including
only the P, Boussinesq term. McCowan (1987) achieved excellent agree-
ment with the stream function solutions of Chaplin (1980) for waves almost
up to their breaking height.

The major restriction of the Boussinesq equations is their water-depth lim-
itation: The worst forms of the equations break down for depth to deep-water
wave-length ratios (/1/L,) larger than 0.12 while the best forms are limited to
about 0.22, corresponding to a 5% celerity error.

For many applications, a less restrictive water-depth limitation is desirable.
This requirement of an improved linear dispersion property in deeper water
has been addressed by Witting (1984 ), who presented a new set of equations
valid for a single horizontal dimension. Unfortunately, it is far from straight-
forward to generalize Witting's approach to two horizontal dimensions.

This paper presents a new form of the Boussinesq equations valid for irreg-
ular wave trains in two horizontal dimensions. From a computational point
of view, the new equations are only slightly different from the standard equa-
tions solved by Abbott et al. (1978). However, the new equations incorporate
a significant improvement of the phase celerity and group velocity properties
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for the linear waves in water depths up to the deep water limit and beyond.
The presentation starts with a review of the linear dispersion properties of the
various classical forms of the Boussinesq equations in Section 2. The new set
of equations are formulated in Section 3, the numerical solution method is
explained in Section 4, and finally the model results are discussed in Section
5.

2 LINEAR DISPERSION PROPERTIES OF VARIOUS FORMS OF THE BOUSSINESQ
EQUATIONS

In the following, the depth limitations of the different existing forms of the
Boussinesq equations will be determined. For this purpose, only the linear-
ized reduction of the various equations will be considered and the corre-
sponding phase celerities and group velocities will be compared to Stokes first-
order theory. Only one horizontal coordinate will be considered for this pur-
pose and. furthermore. the bottom will be assumed to be horizontal.

Various forms of the equations

In the introduction. one way of deriving the Boussinesq equations was de-
scribed. Here. a different method will be chosen because it provides a simple
way of illustrating the most common forms of the Boussinesq equations in-
cluding the approach by Witting. First of all, the depth-integrated continuity
equation and the Bernoulli equation for the surface velocity ( U;) will be taken
as a starting point of the derivation of the equations:

S+ (Ch),=0

(1)
(-]sf+ gS\: 0

where S is the surface elevation. U the depth-averaged velocity. U, the surface
velocity, /1 the still water depth. and the suffices r and x denote partial differ-
entiation with respect to time and space. In order to close the equations, a
relation between the depth-averaged velocity and the surface velocity is nec-
essary. This, however, requires detailed knowledge of the vertical distribution
of the horizontal velocity. The classical way of obtaining this distribution is
to apply a Taylor expansion about the bottom and to express the velocity in
terms of the bottom velocity. U, (see Svendsen, 1974, or Witting, 1984):

l ; 1
U= Ub—;(:+/7)*Ub_n +ﬁ(:+/1)4(}bm\ +.. (2a)

where = 1s the vertical coordinate.
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By using Eq. 2a, the following expressions can be derived for the depth-
averaged velocity, U, and for the surface velocity U,;

_ | . 1

U=Uh_6//1-(/7b\,x+lTO/74 7.\'.\x,r+"' (2’b)
L, I,

USZUb—Sl7-Ub\.‘+BZh Ub,\.\',\:\'+"' (2(:)

Notice that no additional assumptions have been introduced in the deriva-
tion of Egs. 2a-c; hence in that respect the equations are exact (Witting, 1984).
On the other hand, the infinite-series solutions are of little use if they are not
truncated, and this can only be done if the higher-order derivative terms ef-
fectively are of higher order, i.e., if the wave number., k. is small or moderate.
This is exactly where the shallow water assumption comes in. For the present
purpose, the series will be truncated after the second derivative terms, i.e.:

_ -
U~ Ub—gh— 'Yh‘,\, (33)

| R
L”sz Ub_; h_(/lbx_\ (3b)
Substituting Eq. 3a and Eq. 3b into Eq. 1 leads to:
1
S{+ hUb_\_ ——h 3Ub,\~\—x =0
6 (4)
1 -~
Uy, +g5.— 3 h-U,,.,=0
which is just one possible form of the Boussinesq equations (Svendsen, 1974).

An alternative form of the Boussinesq equations can be derived in terms of
the surface velocity, Us. Firstly Eq. 3b is solved with respect to U,

1 al
Upx U5 MU, (5)

Secondly this result is substituted into Eq. 4 and the resulting equations (also
reported by Svendsen, 1974) become:

|
S, +hU,, +§ WU, =0
(6)
Us: +gS\=O

A third form of the Boussinesq equations can be derived in terms of the
mean velocity, U. Now Eq. 3a is solved with respect to Uy:
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I T
Uy= U+€h U, (7)

and combining this with Eq. 5 leads to:

S T
U~ U—~3—11*U\1\, (8)
Substituting Eq. 8 into Eq. 1 finally vields:
T —
S,+hU.=0 (9)

_ 1 .-
U488, =3 h*U,=0

In principle, this is the form used by Abbott et al. (1984) and suggested by
Whitham (1974).

Finally, Witting (1984) introduced a new type of Boussinesq equations
which, among other enhancements, incorporated improved dispersion char-
acteristics. In the following, a linearized form of his equations will be consid-
ered. First of all, Witting replaced the straightforward Taylor expansion in
Egs. 2b~c by the following expansions:

0: U_b( ! )h:C/\\+ b (:)114(:?\-.\-'\-.\-*_ cen ( 10)
U=U-a"h0 . +a®h* U oo+ ...
Notice that the bottom velocity has been replaced by the pseudo velocity U
and the Taylor coefficients have been replaced by calibration coefficients used
to optimize the accuracy of the phase celerity. For the present purpose, the

infinite series are once again truncated after the second derivative terms, and
substituting Eq. 10 into Eq. 1 leads to:

S;+hU.—b"h*0, . =0 (11)
U+gS.—a"h?0.,=0

Witting (1984) did not actually solve the equations on this form, but Eq. 11
merely serves as a practical way of illustrating Witting’s approach.

Phase celerity

In order to derive the dispersion relations corresponding to the various
forms of the Boussinesq equations, the following standard procedure is fol-
lowed. First of all, the wave is assumed to be of constant form, i.e., a phase
function 6(x.7) exists and the local wave number, k, the angular wave fre-
quency, w, and the celerity. ¢, is determined by:
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/\’:0\., Cl):——(),, = (]2)

By eliminating S from Eqs. 4, 6, 9 and 11, and using Eq. 12, the phase celeri-
ties can be determinated corresponding to each of the forms of the Boussinesq
equations:

¢+

g:m (from Eq. 4) (13a)
ﬁ 1 1/(3/13 f Eq. 6 13b
PR (from Eq. 6) (13b)
ﬁ—‘l—— (f] Eq.9) 13
gh™ 1+1k*h? rom 4. (13¢)
2 l b(l)k.’./l

o _IF " (fromEq. 11) (13d)

gh™ 1+a Mk

Witting determined the calibration coefficients @'’ and ‘"’ by matching Eq.
13d with a Taylor expansion of the Stokes first-order celerity:
¢? tanh kh k=h-

o
. R =454
P TR LA AR (14)

A Pade’s expansion technique gave the coefficients ¢'’=2/5 and b=
1/15.

20 -
|
16 -
B:1/6 |
12 (eg 13a) !
g :
8
o
8= )
5 A ! (eq 13:‘)\
g /
< o}
- ;
Z A .
g -
3 \ Bl
24 |
w -8 ~8:0C
o {eq 3¢ '
.12 i J—
\,a:-ws ;
|
(eq 13b)
| \
20
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Fig. 1. Percentage errors of the phase celerity for various forms of the Boussinesq cquations
relative to Stokes first-order theory. i.e., 100 (¢ = cstores )/ Csroxps. where ¢ is determined from
Eq. 15 and ¢gyones from Eq. 14,
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It is now observed that each form of the equations leads to a different celer-
ity expression, but for small wave numbers all the derived expressions con-
verge towards the Stokes first-order theory for waves on arbitrary depth, which
for this purpose will be considered as the exact solution. As the wave number
increascs. the various celerity expressions become more and mare inaccurate
relative to the Stokes theory.

It turns out to be convenient to write the different celerities in the following
form:

¢’ L+ BL-h-

= - 15
eh 1+ (B+1yih- (1>)
where:

/6 (Eq. 13ausmg 7))
B —1/3 (Eg. 13busing L)

- 0 (Eq. 13cusing L)

1/15 (Eq. 13d using Pade’s expansion)

So far, the phase celerities have been expressed 1n terms of the local wave
numbers. These wave numbers are determined from the dispersion relation
embedded in Eq. 15, and by using the defininon:

¢ Y- h 2nm

gh™ ghk> L, k*h*

we can determine the local wave number and phase celerity as a function of
the ratio of the water depth to the deep water wave length. i/ 1,

A comparison with Stokes {irst-order theory is shown in Fig, |. presenting
the difference between ¢ and ceropes 1n percentage of cgrors for different
valucs of B. It is seen that B=—1/3.1.e.. Eq. 13b appears to have the poorest
phase properties, and for /1/L,, > 0.12 solutions to the dispersion relation can-
not be found. As remarked by McCowan (1987 ). this corresponds to the depth
limitation for cnoidal wave theory. It is also seen that B=0. ie.. Eq. I3c has
the best phase properties of the standard Boussinesq equations. This is the
form recommended by Whitham (1974) and applied by most of the existing
numerical models today. The absolute water-depth limit bevond which solu-
tions to the dispersion relation cannot be found is A/L,=0.48. However. in
order 1o restrict phase errors to. say, 3%, the practical upper limit for /i/ 1,
reduces 1o 0.22, which corresponds 1o the water-depth limit determined nu-
merically by McCowan (1981).

Finally. the form suggested by Witting (B=1/13) is seen to be superior to
the other forms. With phase errors restricted 1o 3%, the practical depth limi-
tation of this method becomes as large as 030!
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Group velocity

In order to get the full picture of the range of validity of the various equa-
tions, it 1s necessary also to ispect the performance with respect o the group
veloceity, This will influence the propagation of irregular wave trains and. for
the nonlinear case, 1t will influence the group induced sub- and super-har-
monics. Furthermore. the rate at which a model “warms up” from a cold start
depends on the rate at which energy propagates through the model.

The group velocity can be derived by applving the defintion:

€ =C +/\ {(16)
L”\

where the water depth s kept constant during ditferentiation. Hence. substi-

tuting Eq. 15 into Eq. 16 vields:

el Bk-h- (R+—)A_-fp;} (7
Ce=¢ L+Bkh L+ (B+ ke '

The group velocitics are determined n two steps. Firstly, the local wave
number is determined as a tuncuon ot i/ L, by solving the dispersion relation
embedded in Eq. 13, Secondly. the result is substituted in Eq. 17.

A comparison with Stokes first-order theory s shown in Fig. 2. presenting
the difference between ¢, and ¢ ercpre 10 pereentage of ¢, 0w, « for different
values of B. The errors are surprisinghy large even for relatively shallow water,
By restricting the percentage errors 10. sav. 6% the practical water-depth lim-
itations become:

NTAGE ERROR

PERC

Fig. 1. Percentage errors of the group veloony for various forms of the Boussinesg cquations
relative 1o Stokes first-order theory e TODTC — Coaronin VG one s where o is detlermined
from L. L7,
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0.055 (forB=—-1/3)
0.12 (forB= 1/6)
0.13 (forB= 0)

0.32 (forB= 1/15)

/I/L()—_—

Again Witting’s method is superior to the standard forms of the Boussinesq
equations. Unfortunately, it turns out to be very difficult to generalize Wit-
ting’s approach to two horizontal dimensions. Instead, the excellent linear
dispersion characteristics achieved by Witting’s technique have given the in-
spiration to develop a new set of Boussinesq equations, which will be pre-
sented in the next Section.

3 ANEW SET OF BOUSSINESQ EQUATIONS

It is the intention to formulate a new set of Boussinesq equations which
meet the following requirements:

(a) The equations should be expressed in two horizontal dimensions in
terms of the surface elevation and the depth-integrated velocity components.

(b) The resulting linear dispersion characteristics should follow Eq. 15,
where the coefficient B can be chosen explicitly to improve the accuracy in
deeper water.

As a starting point we shall consider the classical form of the Boussinesq
equations solved by Abbott et al. (1984):

S+P+0Q,=0 (18a)
P PO 1> _

P, + (7)\ + (—d*>l+gd5\— 3 h (P_\'.\I + Q.\j\'l) - O ( l 8b)
0%\ ,(PO\ . o 1, :( )_

where d is the total water depth. / is the still-water depth. S is the surface
elevation, and P and Q are the depth-integrated velocity components (m=/s)
in the x- and y-direction. respectively. The linear dispersion relation of these
equations corresponds to using B=01n Eq. 15.

As discussed previously, it is a classical procedure to simplify higher order
terms by introducing the long-wave equation as a first approximation (see
e.g. Mei, 1983). For a mildly sloping sea bed configuration spatial derivatives
of the still-water depth can be neglected. and as a first approximation we get:

(P,\‘.\'I + Q,\,r!) ~ _gh (S.\:\i\ + S\;l'\') ( I 93 )
(Q_l[\‘l+P,\‘\'l) ~ _gh (S\‘_\ﬁr+ Sr.\'.\‘) ( 1 ()b)

Hence, an alternative to Eqgs. 18a—c could be obtained by using the approx-
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imations from Eqs. 19a-b. In shallow water this would make no difference to

the numerical solution. but in deeper water the dispersion characteristics

would be very poor, corresponding to using B=—1/3in Eq. 15 (see Fig. 1).
Instead we choose to consider the following quantities:

€= —Bh: [P\—,\-1+ Q.\;\'/+g/7(5x:\\ +S\‘\'1') ] (203)
€= —'th[Q,l’l'(+P,\j\'r+gh (S\'{l'}‘+S\'.\',\‘) ] (20b)

According to Egs. 19a-b these terms will be insignificant in shallow water
and they can be added to the standard Boussinesq equations without affecting
the accuracy. By doing so the new equations read:

S+P.+0.=0 (21a)

2 D, 1 N
Pot( %) +(52) vads - B+ 1Pt 0,0 8ot (5,450 =0

(21b)

2 1 .
Q,+(Q—) +(P—dQ> 49, ~ (B4 (0,4 P.) = Bgh'(S,,,+5,,) =0

(21c)

These equations meet the requirements set up at the beginning of this Sec-
tion with the linear dispersion relation corresponding to Eq. 15 and with group
velocities determined by Eq. 17.

In fact, the value of B is not limited to the values discussed previously.
Actually, B can be considered as a pure curve fitting parameter in the process
of obtaining the best overall agreement with Stokes first-order theory. In Fig.
3, the percentage errors in phase celerity are shown for a number of B values.
and it can be seen that it is possible to choose B in such a way as to produce
celerities that are improved even compared to Witting’s solution of B=1/15.
For example, choosing the value B=1/21 leads to celerity errors less than 3%
for the entire range of 0</1/L,<0.75 and to group velocity errors (Fig. 2) of
less than 6% for the range O <#//L,<0.55.

For completeness, it should be mentioned that additional dispersion can be
added to the Egs. 21a-c by introducing additional terms of the tvpe S
and P.,.,,. By doing so. it is possible to incorporate Witting’s “fourth-order
celerity™: '

[ S
gh 1+3ikh>+ 5 k0

which has a phase celerity error of less than 0.05% at the deep water limit
h/Ly=0.5. However, the introduction of the additional fifth-order deriva-
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20 W

PERCENTAGE ERROR

00 01 oz 03 04 [OR=] 06
h/L_o

Fig. 3. Percentage errors of the phase celerity, 100 (¢ —¢srares )/ Cstores. where ¢ 1s determined
from Eq. 13.

tives in the momentum equation currently makes the numerical scheme un-
attractive from a practical point of view.

4 NUMERICAL SOLUTION

The numerical method used in this paper is based on the socalled SYSTEM
21 scheme which was introduced for tidal modelling by Abbott et al. (1973)
and extended to short-wave modelling by Abbott et al. (1978). Since then,
this scheme has been under constant development (see McCowan, 1978, 1981;
Abbott et al., 1981, 1984).

The differential equations are discretized by using a time-centered implicit
scheme with variables defined on a space-staggered rectangular grid. The ADI
(Alternative Direction Implicit) algorithm is invoked, and the resulting sys-
tem of difference equations is reduced to a three-diagonal system, which 1s
solved by the efficient Double Sweep algorithm. The SYSTEM 21 scheme can
be illustrated by considering the Boussinesq equations excluding the convec-
tive terms. In order to emphasize the time-centering of the scheme, all x- and
v-derivatives will be given in their differential form only, since the finite-dif-
ference approximation to the spatial derivative is a straight forward mid-cen-
tering. In this case, the x-sweep equations read:

n+]/2w n ] 1 " .
(——S T 2 >+;<P’é“+P’\'>+5<Qﬁf+“-+Qif”~>=0 (23a)
2 < “~
Pu+l_Pu / 1 /13
| gd*S = (B+) | | PUT =P
( AI ) g R ( 3 A[{( XY XY > +
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( Wr=QuY 2)]—th"‘(&’t.\,\+S’:-y_\-)=0 (23b)

in which §”*!/* and P"*' are the unknown variables. The y-sweep equations
read:

n+l __ Qn+1/2 1 1 5 o
<Sh—,j >+§<P.’Z~+‘ +P.’\’>+7<Qﬁf”/*+Q?+”‘)=0 (23c)
24 <
Q'l_+-3/:-Qn+]/2 * Qe+l 1 h_z n+3/2 n+1/2

(P,'\’,“.L ' Pf(.,.)] —Bgh 3(5}‘;*,, +S57 ) =0 (23d)

in which §”*"and Q”*!/* are the unknown variables. The * used in Eq. 23b
and the ** used in Eq. 23d indicate estimated values at time level n+ 1} and
n+1, respectively. The estimation of the surface elevation on the new un-
known time levels is based on an explicit use of the continuity equation. This
technique was originally introduced by Abbott et al. (1984) in order to time-
center the nonlinear gravity term and the convective terms without using it-
eration. In order to involve a minimal increase in complexity or computation
time relative to the existing model. these estimated surface elevations will be
used also to determine the new Boussinesq correction terms S, .., Srps Siye
and S,...

This explicit determination of the new terms requires a relatively small time
step, especially in deep water where the total Boussinesq effect becomes a
balance between relatively large terms. If the time step becomes too large, the
result will be a significant damping of the wave energy. The damping in-
creases with increasing values of 41/ L. It turns out that the wave period has
to be resolved by approximately 25 time steps in order to avoid the numerical
damping. The resolution of the wave length is less restrictive, and normally
8-10 grid points will suffice.

It should be emphasized that alternatives to the explicit estimation of the
new terms have been considered. One possibility is to introduce the terms
implicitly in the scheme. This can easily be done with the S,,, and S,y terms,
but it will make the momentum operator seven grid points wide and not ame-
nable to simple row elimination to produce a tridiagonal structure. Further-
more, the cross terms S, and S, cannot be introduced implicitly. Another
possibility which has been considered is to apply iteration. This allows for a
larger time step to be used, but it turns out that about three iterations are
necessary to obtain an accurate solution. which makes the computational ef-
fort comparable to or larger than the chosen explicit approach.
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At open boundaries, it 1s essential to take the improved dispersion proper-
ties into account. Otherwise. the boundary condition will have the celerity
characteristics of the standard Boussinesq equations, which means that waves
will not be able to enter the model for /1/L larger than 0.48. The calculation
of the third spatial derivatives of surface elevation at the first internal flux
point requires values of the surface level outside the boundary. These values
can be obtained for a flux boundary by applying the surface slope. S.. together
with the depth-integrated velocity. P. as a boundary condition. For a level
boundary, the surface curvature, S, should be applied together with the sur-
face elevation, S. For waves of constant form on horizontal bottom. .S, and P
can be expressed in terms of the surface elevation, the wave frequency and
the wave number. Hence. by using Fourier series decomposition techniques.
it 1s possible to determine S, and P for any linear irregular surface elevation.
Similarly, it is possible to determine S, and S.

5 DISCUSSION OF MODEL RESULTS

Simulations of the propagation of monochromatic waves in a channel with
horizontal bottom are shown 1n Fig. 4a.b. The depth of the channel is 4.2 m
and the length 1s 120 m. At the eastern boundary, waves are absorbed by using
a sponge layer. Sinusoidal waves are generated at the western boundary with
an incoming wave amplitude of 0.10 m and a wave period of 2.5 s leading to
h/L,=0.43. For this value of /L. the standard Boussinesq equations (i.e.,
B=0) lead to a celerity error of —48% and a group velocity error of —90%,
while the new equations with B=1/21lead to an error of — 3% for the celerity
as well as for the group velocity. The use of B=0 is illustrated in Fig. 4a,
where a western level boundary condition has been applied. Clearly the wave
energy is not able to propagate into the model and the wave length is also seen
to be too small. The use of B=1/21 is illustrated in Fig. 4b, where a western
flux boundary has been specified together with the time series of S.. This is
seen to improve the solution dramatically.

In Fig. 5, a bichromatic wave train is simulated. The wave consists of a
combination of a 2.5 s wave (#/L,=0.43) and a 3.0 s wave (#/L,=0.30),
each having an amplitude of 0.05 m. In the existing model (i.e., B=0), the
group celerity errors are —90% for the 2.5 s wave and —44% for the 3.0 s
wave. Hence, especially the 2.5 s wave is slowed down so much that the re-
sulting time series taken at a position only 12 m down the channel almost
looks like a monochromatic wave, at least until the 2.5 s wave eventually
reaches the point and re-establishes the bichromatic wave pattern. In the new
model (Fig. 5b) with B=1/21, the wave train travels down the channel al-
most undisturbed.

Figure 6 shows a ring test where the waves are generated internally in the
center of the model. Absorbing sponge layers are applied along all surround-
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1978).

(a) Existing model (Abbott et al.,
(b) New model, B

Model data: depth

0.10s.

1/21.

5 m: time step

=0.7

0.1 m; grid size

litude

4.2 m; period=2.5 s; amp

ing boundaries. Again, the water depth is 4.2 m and the period is 2.5 s. Figure

6a shows what happens if the cross Boussinesq correction terms, Sypand S

are omitted in the formulation. Now, the wave will propagate with the correct
celerity only along the grid lines and not in the diagonal direction. If all Bous-

Finally, the new equations have been applied for diffraction in deep water

sinesq correction terms are included, perfectly circular patterns occur (Fig.
(Fig. 7a-b). The water depth is 40 m and the wave period is 8.0 s, leading to

6b).
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Fig. 5. Bichromatic wave propagation in deep water. Time serics of surface elevation 12 m from
west boundary.

(a) Existing model (Abbottetal.. 1978).

(b) New model. B=1/21.

Model data: 4, =0.05 m: @-=0.05 m: 7,=2.50 s: 7.=3.00 s: depth=4.2 m; grid sizc=0.6 m;
time step=0.1s.

h/Ly=0.40. Absorbing sponge layers are applied at the eastern and northern
boundaries, while the western boundary (at x=0) is fully reflective. Due to
the radiation of energy from the point of diffraction, the western boundary



16

386 - P.A MADSENET AL.

35

L
o

~
o

Grid Spacings (150 m)

Grid Spacings (1.50 m)
N .
3]

10 T 10

(a) Grid Spacings (150 mj (b) Grid Spacngs {150 m)

Fig. 6. Circular ring test. Internal wave generation at the center square. Absorbing boundaries.
(a) New model excl. S,,.and §S,,, terms.

(b) New model incl. all correction terms.

Model data: depth=4.2 m: period=2.5 s: grid size=1.30 m: time step=0.125s: B=1/21.

[

Grid Spacings (10 m)

i
80 0%
(a) Gric Spacings {1~ (b) Gric Spacings 110~

Fig. 7. Diffraction in deep water.

(a) Isolines of zero up- and down-crossings.

(b) Relative wave heights.

Modecl data: depth=40 m: period =8 s: grid size=10 m: time step=0.25s: B=1/21.
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has to be placed quite far from the area of interest (eight to nine wave lengths)
to avoid reflections in the shadow zone behind the breakwater. The resulting
relative wave heights (Fig. 7b) are in perfect agreement with the Shore Pro-
tection Manual, which means that the celerity is represented very accurately
in the model. This can also be seen from Fig. 7a showing lines of zero up- and
down-crossings. The distance between every second isoline corresponds to
one wave length, and this is seen to be very close to the expected deep water
wave length of 100 m.

6 CONCLUSIONS

In this paper, a new form of the Boussinesq equations has been derived in
order to improve the linear dispersion characteristics in deeper water. The
improvement is important for studies of wave penetration, refraction and dif-
fraction where the phase celerity and group velocity should be modelled ac-
curately. The new equations make it possible to simulate the propagation of
irregular wave trains travelling from deep water (say #/L,=0.6) to shallow
water.

It should be emphasized that the new equations are not an attempt to de-
velop a general wave theory valid in deep as well as in shallow water and
vertical details like velocity and pressure distributions are not improved rel-
ative to the classical equations. Such an improvement would be considerably
more complicated and is not within the present scope of work.

Nonlinearities are treated in the classical way by including convective terms
and a nonlinear gravity term. The nonlinearities included in this way can be
shown to be proportional to the ratio of the wave height to the water depth,
H/h. Hence, in deeper water these terms become insignificant and the new
equations become effectively linear. In more shallow water, however, the non-
linear properties will be similar to the ones obtained by the standard Boussi-
nesq equations, and waves of up to 75% of their breaking height can be
simulated.

This combination of a linear wave model in deep water and a nonlinear
wave model in shallow water is justified by the fact that waves which are non-
breaking in shallow water will be only weakly nonlinear in deeper water.

The paper presents a numerical method for solving the new set of equations
in two horizontal dimensions without introducing any significant complexity
relative to existing Boussinesq models. Model results have been presented for
wave propagation and diffraction in relatively deep water, and the obtained
accuracy 1s seen to be most acceptable.
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