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ABSTRACT

Madsen, P.A., 1983, Wave reflection from a vertical permeable wave absorber. Coastal
Eng., 7: 381—396.

A theoretical solution for the reflection of linear shallow-water waves [rom a vertical
porous wave absorber on a horizontal bottom is presented. Periodic solutions are matched
at the front face ol the absorber by assuming continuity of pressure and mass. The fric-
tion term describing the energy loss inside the absorber is linearized and, by using Lorentz
principle of equivalent work, the reflection coefflicient is determined as a function of
parameters describing the incoming waves and the absorber characteristics.

INTRODUCTION

Prediction of the reflection from porous rubble mounds plays an im-
portant role in the assessment of the wave conditions in a harbour. A num-
ber of numerical short-wave models are able to account for this phenomenon
but simple theoretical solutions are valuable when it comes to a quick in-
vestigation of the effect of varying the incoming waves or the rubble mound
characteristics.

Theoretical solutions for the transmission of wave motions through per-
meable structures have previously been derived by several authors, for ex-
ample Solitt and Cross (1972), Madsen (1974) and Madsen and White
(1976). However, many breakwaters and piers are not homogeneous but
consist of a number of layers with stone sizes decreasing towards the center
of the structure, leading to an almost impermeable core. In this case the
transmission through the rubble mound is eliminated but because of the
energy dissipation inside the porous layers the reflection will only be partial.
This situation is similar to the case of wave absorbers applied for the damp-
ing of waves in laboratory experiments,

In this paper a theoretical solution for the reflection of linear shallow-
water waves from a vertical homogeneous wave absorber on a horizontal
bottom is derived. Previous analytical approaches to the absorption problem
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are made by Lean (1967) and by Svendsen (1976). However, Svendsen
applied the long-wave approximations for the velocity outside as well as
inside the absorber and hence did not satisfy the continuity equation. Lean,
on the other hand, omitted the porosity in the matching of the velocities at
the front face of the absorber and furthermore his theory was not really
predictive as the resistance coefficient was not determined in terms of the
incoming wave parameters and of the characteristics of the porous structure.
Finally, a numerical model was presented by Nasser and McCorquodale
(1975) describing the unsteady non-Darcy flow in a rockfill embankment
with an impervious core. The method of characteristics and an explicit finite-
difference technique were applied.

The solution technique used here will be similar to the one applied by
Madsen and White (1976) for wave transmission through rubble mounds.
An analytical expression for the reflection coefficient and an implicit ex-
pression for the friction factor (applying Lorentz’ principle) will be given.

Actual breakwaters are often multilayered as well as of trapezoidal form
and energy dissipation takes place not only inside the porous structure but
also on the seaward slope due to friction. This leads to a two-dimensional
problem where the vertical velocities must be taken into account. So far, no
two-dimensional analytical solution has been derived, but approximative
methods are suggested by Madsen and White (1976) for the case of trans-
mitting rubble mounds. Numerical solution is possible, but has not yet been
attempted.

ANALYTICAL SOLUTION FOR THE REFLECTION COEFFICIENT

The problem to be treated here is illustrated in Fig. 1. A rubble-mound
structure with impermeable core is represented by an impervious wall with a
porous structure in front of it. The structure is considered to be homo-
geneous and rectangular and the bottom to be horizontal. The incoming
waves are assumed to be linear shallow-water waves which do not break at

the entry to the absorber.

ag ary
~—— —

Fig. 1. Definition sketch.
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The governing equations for the motion inside the absorber are:
n¢t +hlUx =0 (continuity) (1a)
1
— U +gix + U +31U1)=0 (momentum) (1b)
n

where « and § account for the laminar and turbulent friction loss respec-
tively and n is the porosity of the structure.

Madsen and White (1976) included a coefficient attached to the accelera-
tion term describing the effect of added mass. However, they concluded that
the value assigned to this coefficient was of little consequence and that it
could safely be taken as 1.

The solution technique used in the following will be similar to the one
used by Madsen and White (1976) for wave transmission through porous
structures. First of all the non-linear friction term is linearized by using the
approximation

Ul +pIUN = — U (2)

where f is a friction factor which will be assumed to be independent of x and
t.

Thus looking for periodic solutions of radian frequency, w, we may ex-
press ¢ and U in complex notations as:

¢ =Re[n(x)e'], U= Re[v(x)elw!] (3)

By substituting eq. 3 into eq. 1 and eliminating U we find for n the
equation:

2

w
+ — [1—1 =0 4
Nxx P | fln (4)
and for v:
gn 1
V== 5
w [+i x (5)

Hence, according to Madsen and White (1976), the general solution for the
flow within the porous structure is found to be:

¢ = Re{(a,e ¥ + g el ¥)eiw 1} O0<x<uw (6a)

U=Re{(a,e™** _ g, ei“x)\/—;gt celwt
1

where

, O0<x<w (6b)
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_ " 7

= T (7)

K= e J1=f (8)
gh

Svendsen (1976) found the same expression for ¢ but did not use the con-
tinuity equation to obtain the velocity inside the absorber. The effect was
equivalent to assuming that the long-wave approximations for the velocity
could be applied inside as well as outside the permeable structure, cor-
responding to the omission of the ¢ coefficient in eq. 6b.

Outside the porous structure the linear shallow-water wave approxima-
tions lead to the solution:

¢ = Re {aiei(wt—kx) + arei(ut+kx)}’ x<0 (9(‘1)
_ g i(wt—Rx) i(c t+hx) l

U=Rei\/ (aie — age )J . x<0 (9b)

in which:

k= w/\Vgh (10)

and a; and @, are the incoming and reflected wave amplitudes. At this stage
the unknowns in the problem are the complex wave amplitudes a,, a, and
ay. These can be determined by applying the boundary conditions at the
front face of the absorber and at the impervious wall.

Firstly a, can be eliminated by using the fact that the velocity has to be
zero at the impervious wall (x = w). According to eq. 6b this leads to:
ay =a, e 12w (11)

Secondly a; and a, can be determined by assuming continuity of pressure
(i.e. of surface elevation) and of mass (i.e. of velocity) at the front face of
the absorber (x = 0). Hence according to eqgs. 6, 9 and 11 this leads to:

ai +ay =a, (1 +e 125wy (12a)
ai — ay = ea, (1 — e712KW) (12b)
Solving egs. 12a and 12b with respect to a, yields:

ar  1-e+(1 +¢)ei2nw

g l+e+(1-ee 25w

(13)

According to eq. 9a the reflected wave can be expressed by:

$r = lagl cos (wt + kx + ¢)
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where a, and ¢ are independent of x and f. Hence the reflection coefficient
aR is determined as the modulus of the complex reflection amplitude in
eq. 13, i.e.

aR = layl/a (14)

This result yields ag as a function of the friction factor (f), the porosity (n)
and of the wavenumber multiplied by the width of the absorber (kw).
It can be shown that using ¢ equal to:

) n
———— instead of

V1-if 1-1if

the reflection coefficient becomes equal to the expression derived by Lean
(1967). The reason for this discrepancy in e is that Lean neglected the po-
rosity in the matching of the velocities outside and inside the absorber.

The solution of ar as a function of £, n and kw is very easily obtained by
calculating the complex function (eq. 13) and its modulus on a computer.
An example is shown on Fig. 2 where the reflection coefficient is drawn as a
function of kw for a fixed value of f and for two different values of the
porosity. The oscillating nature of the solution is seen to damp out for large
values of kw corresponding to very long absorbers. On the other hand it is
noticed that some reflection will occur no matter how long the absorber
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Fig. 2. Reflection from a porous wave absorber as a function of the wave number mul-
tiplied by the width of the absorber for fixed values of the friction factor and of the
porosity.
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becomes:
For kw — <o, eq. 13 will simplify to:

ay 1-¢
-

— for hw — o (15)
a; 1+e¢

As pointed out by Lean (1967), this situation corresponds to neglecting the
reflective component (a,) within the porous structure because the wave will
be damped out before it reaches the impervious wall, from which it should
be totally reflected.

It can easily be shown that neglecting a, in egs. 6a and 6b leads to the
result eq. 15.

For absorbers of very small width (kw << 1) the reflection becomes
almost total. As seen from Fig. 2, the curve is very flat for small values of kw
and it turns out that a Taylor expansion of the exponentials in eq. 13 would
have to include terms of order O(kw)® to give anything different from unity.
As a comparison Madsen and White (1976) needed only to include first-order
terms in the case of transmission through rubble mounds of small width.

DETERMINATION OF THE FRICTION FACTOR

The reflection coefficient has been derived as a function of the friction
factor (f), the porosity (n) and of the wavenumber multiplied by the width
of the absorber (Rw). However, in order to make a predictive solution, [
which was formally introduced by eq. 2 must be related to parameters
describing the incoming waves as well as the absorber characteristics. To do
this the Lorentz’ principle of equivalent work is applied. This principle states
that the average rate of energy dissipation should be identical whether eval-
uated using the true non-linear resistance law or its linearized equivalent:

woTo wor
ff f; U?dtdx = ff(om“BIUl)Uzdtdx
o 0 o 0

in which T is the wave period and w the width of the absorber.

The value of U to be used in eq. 16 should correspond to the general
solution for the flow inside the absorber. Solving egs. 12a and 12b with
respect to a; and substituting this result combined with eq. 11 into eq. 6b
yields:

-1k i -2

U=a\[E ped 26 —e‘“". “) et L, O0<x<w (17)
"V 1+e+(1-e)ei2xw

a and B in eq. 16 are determined by the empirical formulas by Engelund
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(1953):
a-ay O ;2”)3 - (18a)
5-p, U ;3n) —(1; (18b)

in which d is the grain size, v the kinematic viscosity and «, and §, are
particle form constants which in the following computations have been
taken to be 1000 and 2.8, respectively.

Substituting eqs. 17, 18a and 18b into eq. 16 and rearranging terms finally
leads to an equation which can be used for the determination of f:

F=0 (19)
where:
(1-n)® ( vT ) (1-n) a /{,7
= S T T /2 A-f 20a
°n %nd? w2 2zd Voh (202)

w T
f f |U*|U**dtdx
0

0

N Ty (200
f [ u**dtdx
0 0
r —ix ix(x—2
U* = Re Ze(e™!*Y — ¢ H» w))eiwt (20c)
1+e+(1- €)9—12;<w

Notice that A depends on the friction factor so that eq. 19 has to be solved
by numerical iteration.
An outline of the procedure is given below:
(a) Assume two initial values for f, say f=0and [ = 1.
(b) Compute €, x and U* for these two values.
(c) Compute A by numerical integration and determine F for these two
values of 1.
(d) Determine a new value of f by using the secant method:

F(fn)fn—l - F(fn—l)fn
F(fn) = F(fn-1)

(e) Iterate if necessary.

n+l —

For an accuracy requirement of

Eew - fold - 1% 103

fold
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the iteration scheme typically closes sufficiently after 3—7 cycles.
Having computed the friction factor 7, the reflection coefficient ag can be
determined from eq. 14 as a function of
(a) the porosity, n;
(b) the width of the absorber, w;
(c) the grain size, d;
(d) the water depth, k;
(e) the wave period, T}
(f) the incoming wave amplitude, q;.
Finally it should be remarked that in the simple case where the velocity
inside the porous structure (U*) is independent of x, the double integral in
eq. 20b can be determined analytically to be:

8
3w

This simplification was used by Madsen and White (1976) and by Lean
(1967).

DISCUSSION OF THE RESULTS

Examples of the theoretical solution (eq. 13) are shown in Fig. 3—10. The
reflection coefficient is shown as a function of the width of the absorber, the
incoming wave height and of the porosity.
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Fig. 3. The reflection coefficient as a function of the width of the absorber. - - - = theoret-

ical solution; e = numerical short wave model (DT = 1 sec, DX = 15.5 m, n = 0.95). Basic
parameters: diameter of stones, d = 0.2 m; wave period, T' = 17.3 sec; wave height, H =
1.74 m; water depth, h = 21 m; «, = 1000; 5, = 2.8.
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The theory is compared with solutions obtained by a numerical short-
wave model (Abbott et al., 1981) solving the vertically integrated Boussinesq
equations. Porosity is included in these equations and the energy dissipation
inside the permeable structure is represented by the non-linear term from
eq. 16: U(a + BiUl). One-dimensional tests have been made with this numer-
ical model and the reflection coefficients have been computed from line
plots of the wave envelopes using Healy’s formula,
ap = mex ~ Gmin (21)

Gmax 1 min

In Fig. 3 the reflection coefficient is shown as a function of the width of
the absorber relative to the wave length. The curve is seen to be that of a
damped oscillation with smaller and smaller oscillations for increasing values
of kw. Because of the oscillations, it appears that a long absorber does not
necessarily absorb more energy than a shorter one. On the other hand it
appears that in order to be efficient, rectangular wave absorbers should be at
least ¥4 of the wave length. However, it is interesting to notice that some
reflection will occur no matter how long the absorber. The limiting reflec-
tion coefficient (for kw — <) was determined in eq. 15. It turns out that
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Fig. 4. The reflection coefficient as a function of the wave height. - - - = theoretical

solution; X = numerical short wave model (DT = 1 sec, DX = 15.5 m). Basic parameters:
porosity, n = 0.95; diameter of stones, d = 0.2 m; width of the absorber, w = 77.5 m;
wave period, T'= 17.3 sec; water depth, h = 21 m.
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the agreement between the simplified theoretical solution and the numerical
short wave model is entirely satisfactory (Fig. 3).

In Fig. 4 the reflection coefficient is shown as a function of the wave
height. It turns out that this curve can be interpreted as a combination of the
transmission and reflection from a rubble mound: the higher waves will be
reflected from the front face of the absorber so that this part of the curve
resembles the reflection curve from a rubble-mound (see for example Madsen
and White, 1976). On the other hand, the lower waves will penetrate freely
into the absorber where a double transmission will be performed because of
the reflection from the impervious vertical wall at the end of the absorber.
Hence, this part of the curve will resemble the transmission curve from a
rubble-mound. For some intermediate wave height maximum absorbtion will
occur. This will be the case when the wave height is small enough to allow
for a reasonable amount of energy to be transmitted into the absorber and
when the height is large enough to result in a significant dissipation of the
transmitted energy inside the absorber.

The results obtained by the numerical short-wave model and the sim-
plified theoretical solution are seen to be in excellent agreement (Fig. 4).

In Fig. 5 the theoretical solution is shown as a function of H/h for two
different values of the porosity, 0.5 and 0.95. It is seen that efficient absorb-
tion can be obtained for both of the porosities, although the range of wave
heights for which the two absorbers are optimal is completely different. For
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Fig. 5. The reflection coefficient as a function of H/h for two different porosities. Basic
parameters: diameter of stones, d = 0.2 m; width of the absorber, w = 77.5 m; wave
period, T = 20 sec; water depth, h = 21 m.
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3. The friction factor as a function of H/h for two different porosities. Basic param-
: See Fig. 5.

higher waves a porosity of 0.95 is much more efficient than a porosity of
This is in qualitative agreement with the measurements by Straub
»6). In his experiments wire mesh plates were used to obtain porosities as
as 0.9 to 0.95. On the other hand the porosity 0.5 is optimal for absorb-
very low waves, in which case the high porosity results in almost full
ction.
he efficiency of the absorber can be explained in terms of the friction
or, f. When f is large (low porosity combined with high waves) the ab-
er will act as an impermeable barrier and complete reflection (ag = 1)
occur at the front face. On the other hand, when f is zero (porosity
l to 1) no energy dissipation will occur and complete reflection is ob-
>d from the other end of the absorber. Thus there is an optimum value
for which the reflection is a minimum. It turns out that the minimum
cction occurs for quite low values of f. This is illustrated by Fig. 6 which
vs the friction factors corresponding to the solutions from Fig. 5. In
1 cases (n = 0.5 and 0.95) the optimal absorbtion is obtained for f =
).
ne remark should be made in connection with Figs. 5 and 6. As dis-
ed by Solitt and Cross (1974), the description of the porous flow by the
la and 1b is best when the incident wave height exceeds the particle
1eter of the medium. As the wave amplitude becomes very small, the
3s will begin to interact with individual pieces of breakwater material,
ing to a partial reflection directly off the particle surfaces. In this case
theoretical assumption of a continuum no longer applies. However,
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Fig. 7. The reflection coefficient as a function of H/h for a number of wave periods. Basic
parameters: porosity, n = 0.5 m; width of the absorber, w = 77.5 m; diameter of stones,
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depth, h = 21 m; wave height, H = 0.021 m.
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although one might question the correctness of the solution in Figs. 5 and 6
for the lowest waves, this does not change the conclusions concerning the
differences in using a high or a low value of the porosity.

In Fig. 7 the reflection coefficient is shown as a function of the wave
height for a number of wave periods. Notice that long waves are not neces-
sarily more diffictilt to absorb than shorter waves: the absorbtion depends
on the specific combination of the governing parameters.

In Figs. 8 and 9 the variation of the reflection coefficient with the po-
rosity is shown for two different values of the incoming wave height. Once
again it is noticed that high values of the porosity should be applied to ab-
sorb high waves while lower porosities are more efficient in case of lower
wave heights. In Fig. 8 the theoretical solution as well as the numerical short
wave model predict a minimum reflection to occur for a porosity of 0.47
but the value of this minimum reflection is different in the two cases.
However, on the whole, the agreement is satisfactory.

In Fig. 9 the comparison leaves something to be desired. The discrepancies
for high values of ar are probably due to the way the reflection coefficient
is determined from the wave field computed by the numerical short wave
model. As explained earlier, Healy’s formula (eq. 21) is applied and ap,x and
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Fig. 9. The reflection coefficient as a function of the porosity. - - - = theoretical solution;

X = numerical short wave model (DT = 1 sec, DX = 15.5 m). Basic parameters: diameter
of stones, d = 0.2 m; width of the absorber, w = 77.5 m; wave period, T = 17.3 sec; water
depth, h = 21 m; wave height, H =1.74 m.
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@min are determined from the wave envelope, which is in turn found by
making a number of line plots of the surface elevation during a wave period.
Now complete reflection, ag = 1, means apj, equal to zero, but these kinds
of nodal points will only occur if the waves are strictly linear. Non-linear
effects will have a significant effect on an;, and the resulting reflection
coefficient determined by eq. 21 will be lower than the true reflection co-
efficient. Healy’s formula is especially sensitive to non-linear effects for small
values of anin, i.e. for large values of ar. This is confirmed by Fig. 9 where a
porosity of 1 leads to ar equal to 0.84 instead of 1! Hence, although the
discrepancies in Fig. 9 are due to non-linear effects, they are by no means a
measure of the difference between reflection of linear and non-linear waves.
It has not been possible to locate any literature concerning experiments
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Fig. 10.a. Experimental setup. b. Comparison between theory and measurements. - - - =
measurements (setup shown in Fig. 10a); — = theoretical solution. Basic parameters:
water depth, h = 14 m; wave height, H = 1 m; porosity, n = 0.4.
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with rectangular wave absorbers and although a lot of experimental data is
reported by Straub (1956), it can only be used qualitatively for comparison
purpose. A quantitative comparison has been made against measurements
with almost-rectangular absorbers at the Danish Hydraulic Institute
(Fig. 10a,b). However, it is seen that the surface slopes of these absorbers
(1:3 to 1:4) have increased the efficiency considerably relative to the the-
oretical solutions predicted for rectangular absorbers (Fig. 10b). Relatively,
the three theoretical reflection coefficients are similar to the corresponding
three experimental results, but the absolute values of the theoretical solu-
tions are much higher.

SUMMARY AND CONCLUSIONS

A theoretical solution for the reflection of linear shallow-water waves
from a vertical-face homogeneous porous wave absorber has been derived.
The bottom is assumed to be horizontal, the incident waves are supposed to
be normal to the structure and wave breaking at the entry to the absorber is
not considered.

The solution technique is similar to that used by Madsen and White
(1976) for wave transmission through porous structures. First of all, the flow
resistance in the porous material is linearized. This makes it possible to
determine an analytical expression for the reflection coefficient as a function
of the porosity, the friction factor and the wavenumber multiplied by the
width of the absorber. Secondly, the friction factor is related to parameters
describing the incoming waves and the absorber characteristics. This is done
by employing Lorentz’ principle of equivalent work and an implicit ex-
pression for f is obtained. This expression is solved by combined numerical
integration and iteration and as a result the reflection coefficient is deter-
mined as a function of:

(a) the porosity;

(b) the width of the absorber;

(c) the diameter of stones or grains;

(d) the water depth;

(e) the wave period;

(f) the incoming wave height.

The theory has been compared against solutions obtained by a numerical
short-wave model (Abbott et al., 1981) and the agreement is found to be
most satisfactory. This means that the theoretical solution can be used in the
calibration of numerical short wave models.

However, it should be emphasized that when considering reflection of
irregular wave trains, the theoretical solution cannot be applied. This is due
to the solution being strongly non-linear with respect to wave height as well
as to wave length, which makes it impossible to apply the solution on the
energy spectrum. In this case numerical short-wave models have to be used.
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