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PLEASE NOTE 
 

 

COPYRIGHT This document refers to proprietary computer software, which is 

protected by copyright. All rights are reserved. Copying or other 

reproduction of this manual or the related programmes is 

prohibited without prior written consent of DHI A/S (hereinafter 

referred to as “DHI”). For details please refer to your ‘DHI 

Software License Agreement’. 

 

LIMITED LIABILITY The liability of DHI is limited as specified in your DHI Software Li-

cense Agreement: 

 

In no event shall DHI or its representatives (agents and suppliers) 

be liable for any damages whatsoever including, without 

limitation, special, indirect, incidental or consequential damages 

or damages for loss of business profits or savings, business 

interruption, loss of business information or other pecuniary loss 

arising in connection with the Agreement, e.g. out of Licensee's 

use of or the inability to use the Software, even if DHI has been 

advised of the possibility of such damages.  

 

This limitation shall apply to claims of personal injury to the extent 

permitted by law. Some jurisdictions do not allow the exclusion or 

limitation of liability for consequential, special, indirect, incidental 

damages and, accordingly, some portions of these limitations 

may not apply.  

 

Notwithstanding the above, DHI's total liability (whether in 

contract, tort, including negligence, or otherwise) under or in 

connection with the Agreement shall in aggregate during the term 

not exceed the lesser of EUR 10.000 or the fees paid by Licensee 

under the Agreement during the 12 months' period previous to the 

event giving rise to a claim. 

 

Licensee acknowledge that the liability limitations and exclusions 

set out in the Agreement reflect the allocation of risk negotiated 

and agreed by the parties and that DHI would not enter into the 

Agreement without these limitations and exclusions on its liability. 

These limitations and exclusions will apply notwithstanding any 

failure of essential purpose of any limited remedy. 
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1 Introduction 

This document presents the scientific background for the MIKE 3 Flow Model FM. The 

objective is to provide the user with a detailed description of the governing equations, 

numerical discretization and solution methods. 

  

MIKE 3 Flow Model FM has been developed for applications within oceanographic, 

coastal and estuarine environments. The model is applicable to the study of a 

wide range of phenomena related to hydraulics wherever the three-dimensional 

flow structure is important 

 

• tidal exchange and currents 

• stratified flows at various scales (lakes, reservoirs, estuaries, regional oceans)  

• oceanographic circulation 

• heat and salt recurculation 

• internal waves e.g. on the continental shelf  

• jets and plumes, mixing, entrainment (e.g. cooling water, brine, waste water, 

sediment spill)   

 

The model is based on the numerical solution of the three-dimensional incompressible 

Reynolds-averaged Navier-Stokes equations. Both the full 3D Navier-Stokes equations 

and the 3D shallow water equations can be applied. Thus, the model consists of 

continuity and momentum equations, and it is closed by a turbulent closure scheme. The 

free surface is taken into account using a sigma coordinate transformation approach. The 

spatial discretization of the governing equations in conserved form is performed using a 

cell-centered finite volume method. The time integration is performed using a semi-implicit 

scheme. The vertical convective and diffusion terms are discretized using an implicit 

scheme to remove the stability limitations associated with the vertical resolution. The 

remaining terms are discretized using either a first-order Euler method or a second-order 

explicit Runge-Kutta scheme. For the Navier-Stokes equations the projection method is 

employed for the non-hydrostatic pressure. The interface convective fluxes are calculated 

using an approximate Riemann solver. This shock-capturing scheme enables robust and 

stable simulation of flows involving shocks or discontinuities such as bores and hydraulic 

jumps. 
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2 Governing equations 

The governing equations are solved in a sigma coordinate system or a combination of 

sigma coordinate system and a Cartesian coordinate system. For the hybrid system 

sigma coordinate is used from the free surface to a specified depth, and z-coordinate is 

used below. The most important advantage using sigma coordinate is the ability to 

accurately represent the bathymetry and provide consistent resolution near the bed. 

However, sigma coordinates can suffer from significant errors in the horizontal pressure 

gradients, advection and mixing terms in areas with sharp topographic changes (steep 

slopes). These errors can give rise to unrealistic flows. The use of z-level coordinate 

allows a simple calculation of the horizontal pressure gradients, advection and mixing 

terms, but the disadvantages are their inaccuracy in representing the bathymetry and that 

the stair-step representation of the bathymetry can result in unrealistic flow velocities near 

the bottom. 

 

The governing equations can also be formulated in a spherical coordinate system. For 

more details, see Appendix A1. 

2.1 Governing equations in a Cartesian coordinate system 

2.1.1 Navier-Stokes equations 

The non-hydrostatic model is based on the incompressible Navier-Stokes equations 

subject to the assumptions of Boussinesq and with the free surface described by a height 

function. In a Cartesian coordinate system the local continuity equation is written as 

 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 (2.1) 

 

and the conservative form of the momentum equation can be written 

 
𝜕𝑢

𝜕𝑡
+
𝜕𝑢2

𝜕𝑥
+
𝜕𝑣𝑢

𝜕𝑦
+
𝜕𝑤𝑢

𝜕𝑧
 

              = 𝑓𝑣 −
1

𝜌0

𝜕𝑞

𝜕𝑥
− 𝑔

𝜕𝜂

𝜕𝑥
−
1

𝜌0

∂𝑝𝐴
∂𝑥

−
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑥

𝜂

𝑧

+ 𝐹𝑢 − 𝐹𝑣𝑥 +
𝜕

𝜕𝑧
(𝜈𝑡

𝑣
𝜕𝑢

𝜕𝑧
) 

(2.2) 

 

 
𝜕𝑣

𝜕𝑡
+
𝜕𝑢𝑣

𝜕𝑥
+
𝜕𝑣2

𝜕𝑦
+
𝜕𝑤𝑣

𝜕𝑧
 

              = −𝑓𝑢 −
1

𝜌0

𝜕𝑞

𝜕𝑦
− 𝑔

𝜕𝜂

𝜕𝑦
−
1

𝜌0

∂𝑝𝐴
𝜕𝑦

−
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑦

𝜂

𝑧

+ 𝐹𝑣 − 𝐹𝑣𝑦 +
𝜕

𝜕𝑧
(𝜈𝑡

𝑣
𝜕𝑣

𝜕𝑧
) 

(2.3) 

  

 
𝜕𝑤

𝜕𝑡
+
𝜕𝑢𝑤

𝜕𝑥
+
𝜕𝑣𝑤

𝜕𝑦
+
𝜕𝑤2

𝜕𝑧
= −

1

𝜌0

𝜕𝑞

𝜕𝑧
+ 𝐹𝑤 − 𝐹𝑣𝑧 +

𝜕

𝜕𝑧
(𝜈𝑡

𝑣
𝜕𝑤

𝜕𝑧
) (2.4) 

 

Here 𝑡 is the time; 𝑥, 𝑦 and 𝑧 are the Cartesian coordinates; 𝜂 is the surface elevation; 𝑢, 

𝑣 and 𝑤 are the velocity components in the 𝑥, 𝑦 and 𝑧 direction; 𝑞 is the non-hydrostatic 

pressure; 𝑓 = 2Ω𝑠𝑖𝑛𝜙 is the Coriolis parameter (Ω is the angular rate of revolution and 𝜙 

the geographic latitude); 𝜈𝑡
𝑣 is the vertical eddy viscosity; 𝑔 is the gravitational 

acceleration; 𝑝𝐴 is the atmospheric pressure at the free surface; 𝜌 is the density of water; 

𝜌0 is the reference density of water; 𝑭𝑣 = (𝐹𝑣𝑥, 𝐹𝑣𝑦, 𝐹𝑣𝑧) is the drag force due to vegetation 
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(see section 4.4). Eqs. (2.2)-(2.4) are obtained by splitting the total pressure, 𝑝, into a 

non-hydrostatic and a hydrostatic component, 𝑝𝐻, where  

 

𝑝𝐻 = 𝑝𝐴 + 𝜌0𝑔(𝜂 − 𝑧) + 𝑔∫ (𝜌 − 𝜌0)𝑑𝑧
𝜂

𝑧

 (2.5) 

 

The fluid is assumed to be incompressible. Hence, the density does not depend on the 

pressure, but only on the temperature, 𝑇, and the salinity, 𝑆, via the equation of state 

 

𝜌 = 𝜌(𝑇, 𝑆) (2.6) 

 

Here the UNESCO equation of state is used (see UNESCO, 1981). 

 

The horizontal diffusion terms are described using a gradient-stress relation, which is 

simplified to 

 

𝐹𝑢 =
𝜕

𝜕𝑥
(2𝜈𝑡

ℎ
𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜈𝑡

ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)) (2.7) 

 

𝐹𝑣 =
𝜕

𝜕𝑥
(𝜈𝑡

ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)) +

𝜕

𝜕𝑦
(2𝜈𝑡

ℎ
𝜕𝑣

𝜕𝑦
) (2.8) 

 

𝐹𝑤 =
𝜕

𝜕𝑥
(𝜈𝑡

ℎ
𝜕𝑤

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜈𝑡

ℎ
𝜕𝑤

𝜕𝑦
) (2.9) 

 

where 𝜈𝑡
ℎ is the horizontal eddy viscosity. 

 

The surface and bottom boundary conditions for 𝑢, 𝑣 and 𝑤 are 

 

at 𝑧 =  𝜂 

 
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
+ 𝑣

𝜕𝜂

𝜕𝑦
− 𝑤 = 0, (

𝜕𝑢

𝜕𝑧
,
𝜕𝑣

𝜕𝑧
) =

1

𝜌0𝜈𝑡
𝑣 (𝜏𝑠𝑥, 𝜏𝑠𝑦) (2.10) 

 

at 𝑧 =  −𝑑 

 

𝑢
𝜕𝑑

𝜕𝑥
+ 𝑣

𝜕𝑑

𝜕𝑦
+ 𝑤 = 0, (

𝜕𝑢

𝜕𝑧
,
𝜕𝑣

𝜕𝑧
) =

1

𝜌0𝜈𝑡
𝑣 (𝜏𝑏𝑥, 𝜏𝑏𝑦) (2.11) 

 

Here 𝑑 is the still water depth, (𝜏𝑏𝑥 , 𝜏𝑏𝑦) are the 𝑥- and 𝑦-components of the bottom 

stresses (see section 4.2), and (𝜏𝑠𝑥 , 𝜏𝑠𝑦) are the 𝑥- and 𝑦-components of the surface 

stresses due to the wind (see section 4.5) or ice coverage (see section 4.6). 

 

The total water depth, ℎ = 𝜂 + 𝑑, is obtained by vertical integration of the local continuity  

equation and taking into account the boundary condition at the surface and the bottom 

 
𝜕ℎ

𝜕𝑡
+
𝜕ℎ𝑢̅

𝜕𝑥
+
𝜕ℎ𝑣̅

𝜕𝑦
= 0 (2.12) 

 

Where 𝑢̅ and 𝑣̅ are the depth–averaged velocities  

 

ℎ𝑢̅ = ∫ 𝑢𝑑𝑧
𝜂

−𝑑

,     ℎ𝑣̅ = ∫ 𝑣𝑑𝑧
𝜂

−𝑑

 (2.13) 
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In matrix form the continuity equation and the momentum equations may be written 

 
𝜕ℎ

𝜕𝑡
+ ∇ ⋅ 𝑭𝑐 = 0 (2.14) 

 
𝜕𝑼

𝜕𝑡
+ ∇ ⋅ 𝑭𝑚 = 𝑺ℎ+𝑺𝑞 (2.15) 

 

Here  𝑭𝑐 = (𝐹𝑥
𝑐 , 𝐹𝑦

𝑐)
𝑇
= (ℎ𝑢̅, ℎ𝑣̅)𝑇 , 𝑼 = (𝑢, 𝑣, 𝑤)𝑇 and 𝑭𝑚 = 𝑭𝑚𝑐 − 𝑭𝑚𝑑 = (𝑭𝑥

𝑚, 𝑭𝑦
𝑚,  𝑭𝑧

𝑚)𝑇.  

The flux components and the source terms can be written  

 

 

𝑭𝑥
𝑚𝑐 = (

𝑢𝑢 + 𝑔𝜂
𝑢𝑣
𝑢𝑤

)     𝑭𝑦
𝑚𝑐 = (

𝑢𝑣
𝑣𝑣 + 𝑔𝜂
𝑣𝑤

)      𝑭𝑧
𝑚𝑐 = (

𝑢𝑤
𝑣𝑤
𝑤𝑤

) (2.16) 

 

𝑭𝑥
𝑚𝑑 =

(

 
 
 
 

2𝜈𝑡
ℎ
𝜕𝑢

𝜕𝑥

𝜈𝑡
ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

𝜈𝑡
ℎ
𝜕𝑤

𝜕𝑥 )

 
 
 
 

     𝑭𝑦
𝑚𝑑 =

(

 
 
 
 
𝜈𝑡
ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

2𝜈𝑡
ℎ
𝜕𝑣

𝜕𝑦

𝜈𝑡
ℎ
𝜕𝑤

𝜕𝑦 )

 
 
 
 

     𝑭𝑧
𝑚𝑑 =

(

 
 
 
𝜈𝑡
𝑣
𝜕𝑢

𝜕𝑧

𝜈𝑡
𝑣
𝜕𝑣

𝜕𝑧

𝜈𝑡
𝑣
𝜕𝑤

𝜕𝑧)

 
 
 

 (2.17) 

 

𝑺ℎ =

(

  
 
   𝑓𝑣 −

1

𝜌0

∂𝑝𝐴
∂x

−
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑥

𝜂

𝑧

− 𝐹𝑣𝑥

−𝑓𝑢 −
1

𝜌0

∂𝑝𝐴
∂y

−
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑦

𝜂

𝑧

− 𝐹𝑣𝑦

−𝐹𝑣𝑧 )

  
 
            𝑺𝑞 = −

1

𝜌0

(

 
 
 
 

𝜕𝑞

𝜕𝑥
𝜕𝑞

𝜕𝑦
𝜕𝑞

𝜕𝑤)

 
 
 
 

       (2.18) 

2.1.2 Shallow water equations 

If the hydrostatic pressure assumption is applied, the non-hydrostatic pressure will be 

zero. With this assumption, a three-dimensional, hydrodynamic model can be significantly 

simplified because the momentum equation in the vertical direction (Eq. (2.4)) can be 

neglected. 

 

In matrix form the continuity equations and the momentum equations may be written 

 
𝜕ℎ

𝜕𝑡
+ ∇ ⋅ 𝑭𝑐 = 0 (2.19) 

 
𝜕𝑼

𝜕𝑡
+ ∇ ⋅ 𝑭𝑚 = 𝑺ℎ (2.20) 

 

Here  𝑭𝑐 = (𝐹𝑥
𝑐 , 𝐹𝑦

𝑐)
𝑇
= (h𝑢̅, h𝑣̅)𝑇 , 𝑼 = (𝑢, 𝑣)𝑇 and 𝑭𝑚 = 𝑭𝑚𝑐 − 𝑭𝑚𝑑 = (𝑭𝑥

𝑚, 𝑭𝑦
𝑚, 𝑭𝑧

𝑚)𝑇 .  The 

flux components and the source terms can be written  

 

𝑭𝑥
𝑚𝑐 = (

𝑢𝑢 + 𝑔𝜂
𝑢𝑣

)     𝑭𝑦
𝑚𝑐 = (

𝑢𝑣
𝑣𝑣 + gη)      𝑭𝑧

𝑚𝑐 = (
𝑢𝑤
𝑣𝑤
) (2.21) 
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𝑭𝑥
𝑚𝑑 =

(

 
2𝜈𝑡

ℎ
𝜕𝑢

𝜕𝑥

𝜈𝑡
ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
)

      𝑭𝑦
𝑚𝑑 =

(

 
 
𝜈𝑡
ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

2𝜈𝑡
ℎ
𝜕𝑣

𝜕𝑦 )

 
 
     𝑭𝑧

𝑚𝑑 = (
𝜈𝑡
𝑣
𝜕𝑢

𝜕𝑧

𝜈𝑡
𝑣
𝜕𝑣

𝜕𝑧

) (2.22) 

 

𝑺ℎ =

(

 
 
   𝑓𝑣 −

1

𝜌0

∂𝑝𝐴
∂x

−
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑥

𝜂

𝑧

− 𝐹𝑣𝑥

−𝑓𝑢 −
1

𝜌0

∂𝑝𝐴
∂y

−
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑦

𝜂

𝑧

− 𝐹𝑣𝑦
)

 
 
       (2.23) 

 

2.1.3 Transport equations for temperature and salinity 

The transport of temperature, 𝑇, and salinity, 𝑆, follows the general transport-diffusion 

equation as 

 
𝜕𝑇

𝜕𝑡
+
𝜕𝑢𝑇

𝜕𝑥
+
𝜕𝑣𝑇

𝜕𝑦
+
𝜕𝑤𝑇

𝜕𝑧
= 𝐹𝑡 +

𝜕

𝜕𝑧
(𝐷𝑡𝑠

𝑣
𝜕𝑇

𝜕𝑧
) + Ĥ (2.24) 

 
𝜕𝑆

𝜕𝑡
+
𝜕𝑢𝑆

𝜕𝑥
+
𝜕𝑣𝑆

𝜕𝑦
+
𝜕𝑤𝑆

𝜕𝑧
= 𝐹𝑠 +

𝜕

𝜕𝑧
(𝐷𝑡𝑠

𝑣
𝜕𝑆

𝜕𝑧
) (2.25) 

 

where 𝐷𝑡𝑠
𝑣  is the vertical turbulent (eddy) diffusion coefficient and 𝐻̂ is a source term due 

to heat exchange with the atmosphere (see section 4.11). 𝐹𝑡 and 𝐹𝑠 are the horizontal 

diffusion terms defined by 

 

𝐹𝑡 =
𝜕

𝜕𝑥
(𝐷𝑡𝑠

ℎ
𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷𝑡𝑠

ℎ
𝜕𝑇

𝜕𝑦
) (2.26) 

 

𝐹𝑠 =
𝜕

𝜕𝑥
(𝐷𝑡𝑠

ℎ
𝜕𝑆

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷𝑡𝑠

ℎ
𝜕𝑆

𝜕𝑦
) (2.27) 

 

where 𝐷𝑇𝑆
𝑣  is the horizontal turbulent (eddy) diffusion coefficient. The horizontal and 

vertical diffusion coefficients can be a constant value or determined as the scaled eddy 

viscosity. 

 

At the surface, the boundary conditions for the temperature and salinity are 

 

at 𝑧 =  𝜂 

 

𝐷𝑡𝑠
𝑣
𝜕𝑇

𝜕𝑧
=   

𝑄𝑛
𝜌0𝑐𝑝

                    
∂S

∂z
= 0 (2.28) 

 

At the seabed the boundary conditions are 

 

at 𝑧 =  −𝑑 

 
∂T

∂z
= 0                                                             

∂S

∂z
= 0 

(2.29) 

 

 
Here 𝑄𝑛 is the surface net heat flux and 𝑐𝑝 = 4217 𝐽/(𝑘𝑔°𝐾) is the specific heat of the 

water. A detailed description for determination of 𝐻̂  and 𝑄𝑛 is given in Section 4.12. 
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In matrix form the transport equations for 𝑇 and s may be written 

 
𝜕𝑼

𝜕𝑡
+ ∇ ⋅ 𝑭 = 𝑺 (2.30) 

 
where  𝑼 = (𝑇, 𝑆)𝑇 and 𝑭 = 𝑭𝒄 − 𝑭𝒅 = (𝑭𝑥, 𝑭𝑦, 𝑭𝑧)

𝑇. The flux components and the source 

terms can be written 

 

𝑭𝑥
𝑐 = (

𝑢𝑇
𝑢𝑆
)     𝑭𝑦

𝑐 = (
𝑣𝑇
𝑣𝑆
)      𝑭𝑧

𝑐 = (
𝑤𝑇
𝑤𝑆
) (2.31) 

 

𝑭𝑥
𝑑 = (

𝐷𝑡𝑠
ℎ
𝜕𝑇

𝜕𝑥

𝐷𝑡𝑠
ℎ
𝜕𝑆

𝜕𝑥

)     𝑭𝑦
𝑑 =

(

 
 
𝐷𝑡𝑠
ℎ
𝜕𝑇

𝜕𝑦

𝐷𝑡𝑠
ℎ
𝜕𝑆

𝜕𝑦)

 
 
      𝑭𝑧

𝑑 = (
𝐷𝑡𝑠
𝑣
𝜕𝑇

𝜕𝑧

𝐷𝑡𝑠
𝑣
𝜕𝑆

𝜕𝑧

) (2.32) 

 

𝑺 = (𝐻̂
0
) (2.33) 

 

2.1.4 Turbulence model 

The turbulence is modelled using an eddy viscosity concept. The eddy viscosity can be 

described using empirical formula (see section 4.1) or solving a turbulence closure model. 

In the MIKE 3 Flow Model FM, there are two turbulence models available, namely the 𝑘-𝜀 
model and the 𝑘-𝜔 model; both are two-equations models. The 𝑘-𝜀 turbulence model can 

be used with both the Navier-Stokes equations and the shallow water equations. The 𝑘-𝜔 

turbulence model can only be used with the Navier-Stokes equations.  

The k-epsilon model 

The 𝑘- model presented here follows Rodi (1980,1984) and has an additional limiter from 

Larsen and Fuhrman (2018). The model describes 𝑘, the specific turbulent kinetic energy 

and 𝜀, the dissipation rate of turbulent kinetic energy (turbulent dissipation). The eddy 

viscosity, 𝜈𝑡, is defined as 

 

𝜈𝑡 = 𝑐𝜇
𝑘2

𝜀̃
 (2.34) 

 
where 𝑐𝜇 is an empirical constant and 𝜀̃ is a limited version of 𝜀. Solving a system of 

equations for 𝑘 and 𝜀 results in the eddy viscosity in eq. (2.34) and this value can be used 

in the momentum equations for the horizontal and/or vertical eddy viscosity, 𝜈𝑡
ℎ and 𝜈𝑡

𝑣. 

 

The turbulent kinetic energy, 𝑘, and the turbulent dissipation, 𝜀, are obtained from the 

following transport equations. 

 
𝜕𝑘

𝜕𝑡
+
𝜕𝑢𝑘

𝜕𝑥
+
𝜕𝑣𝑘

𝜕𝑦
+
𝜕𝑤𝑘

𝜕𝑧
= 𝐹𝑘 +

𝜕

𝜕𝑧
(
𝜈𝑡0
𝑣

𝜎𝑘
𝑣

𝜕𝑘

𝜕𝑧
) + 𝑃𝑘 + 𝐵𝑘 − 𝜀 (2.35) 

 
𝜕𝜀

𝜕𝑡
+
𝜕𝑢𝜀

𝜕𝑥
+
𝜕𝑣𝜀

𝜕𝑦
+
𝜕𝑤𝜀

𝜕𝑧
= 𝐹𝜀 +

𝜕

𝜕𝑧
(
𝜈𝑡0
𝑣

𝜎𝜀
𝑣

𝜕𝜀

𝜕𝑧
) + 𝑃𝜀 + 𝐵𝜀 − 𝑐2𝜀

𝜀2

𝑘
 (2.36) 
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Here, 𝑃𝑘 and 𝑃𝜀 are production terms, 𝐵𝑘 and 𝐵𝜀 are buoyancy production terms and 𝐹𝑘 

and 𝐹𝜀 are horizontal diffusion terms. The details of the various terms are presented in the 

following. 

 

The production terms are given as 

 
𝑃𝑘 = 𝜈𝑡𝑝0 + 𝑐𝑓𝑘𝑃𝑣 (2.37) 

 

𝑃𝜀 = 𝑐1𝜀𝑐𝜇𝑘𝑝0 + 𝑐𝑓𝜀
𝜀̃

𝑘
𝑃𝑣 (2.38) 

 

where, 𝑐1𝜀 is a closure coefficient. Furthermore, 

 

𝑝0 = 2∑∑𝑆𝑖𝑗𝑆𝑖𝑗

3

𝑗=1

3

𝑖=1

 (2.39) 

 
where 𝑆𝑖𝑗 is the mean strain rate tensor defined as 

 

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) ,   for   𝑖, 𝑗 = 1,2,3 (2.40) 

 

Here, is used the following notation 

 

𝑢1 = 𝑢 , 𝑢2 = 𝑣 , 𝑢3 = 𝑤 (2.41)  

 

𝑥1 = 𝑥 , 𝑥2 = 𝑦 , 𝑥3 = 𝑧 (2.42)  

 

For the shallow water equations, it is assumed the horizontal gradients are much smaller 

than the vertical gradients and the following approximation is made.  

 

𝑝0 ≈ (
𝜕𝑢

𝜕𝑧
)
2

+ (
𝜕𝑣

𝜕𝑧
)
2

 (2.43) 

 
𝑃𝑣 is the production term due to vegetation and 𝑐𝑓𝑘 and 𝑐𝑓𝜀 are two weighting coefficients 

(see section 4.4).  

 

The buoyancy production terms are given as 

 

𝐵𝑘 = 𝜈𝑡𝑝𝑏 (2.44) 

 
𝐵𝜖 = 𝑐3𝜀𝑐𝜇𝑘𝑝𝑏 (2.45) 

 

where 𝑐3𝜀 is a closure coefficient and 𝑝𝑏 is defined from the Brunt-Väisälä frequency 𝑁 as  

 

𝑝𝑏 = −
1

𝜎𝑡
𝑁2, 𝑁2 = −

𝑔

𝜌0

𝜕𝜌

𝜕𝑧
 (2.46) 

 

Here, 𝜎𝑡 is the turbulent Prandtl number.  The Prandtl number can be modified explicitly 

following the empirical expression of Munk and Anderson (1948) (see section 4.1). 

 

The vertical diffusion terms are given directly in the transport equations for 𝑘 and 𝜀. The 

horizontal diffusion terms have a similar form and are given by 
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𝐹𝑘 =
𝜕

𝜕𝑥
(
𝜈𝑡0
ℎ

𝜎𝑘
ℎ

𝜕𝑘

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝜈𝑡0
ℎ

𝜎𝑘
ℎ

𝜕𝑘

𝜕𝑦
) (2.47) 

 

𝐹𝜀 =
𝜕

𝜕𝑥
(
𝜈𝑡0
ℎ

𝜎𝜀
ℎ

𝜕𝜀

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝜈𝑡0
ℎ

𝜎𝜀
ℎ

𝜕𝜀

𝜕𝑦
) (2.48) 

 

The coefficients 𝜎𝑘
ℎ, 𝜎𝑘

𝑣, 𝜎𝜀
ℎ and 𝜎𝜀

𝑣 are closure coefficients. For the diffusion terms is used 

an unlimited version of the eddy viscosity 

 

𝜈𝑡0
ℎ = 𝑐𝜇

𝑘2

𝜀
, 𝜈𝑡0

𝑣 = 𝑐𝜇
𝑘2

𝜀
 (2.49) 

 

If the momentum equations use an empirical formula for either the horizontal or vertical 

eddy viscosity, that value is also used in the diffusion terms in the turbulence model. This 

means, that 𝜈𝑡0
ℎ = 𝜈𝑡

ℎ or 𝜈𝑡0
𝑣 = 𝜈𝑡

𝑣 is used instead of the corresponding expression in eq. 

(2.49). 

 

To limit the eddy viscosity in regions with nearly-potential flow and stabilize the model, 

Larsen and Fuhrman (2018) introduced a limited value of the turbulent dissipation 𝜀,  
 

𝜀̃ = max [𝜀, 𝜆2
𝑐2𝜀
𝑐1𝜀

𝑝0
𝑝Ω
 𝜀] (2.50) 

 

Here, 𝜆2 = 0.05 is a limiter coefficient and  

 

𝑝Ω = 2∑∑Ω𝑖𝑗Ω𝑖𝑗

3

𝑗=1

3

𝑖=1

 (2.51) 

 
where Ω𝑖𝑗 is the rotation tensor, 

 

Ω𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
) ,   for   𝑖, 𝑗 = 1,2,3 (2.52) 

 

For the shallow water equations, the value 𝜆2 = 0 is used, corresponding to no limiter. 

 

Several carefully calibrated empirical coefficients enter the 𝑘-𝜀 turbulence model. In the 

standard 𝑘-𝜀 model (Rodi (1984)), they are  

 
𝑐𝜇 = 0.09, 𝑐1𝜀 = 1.44, 𝑐2𝜀 = 1.92, 𝑐3𝜀 = 0 (2.53) 

 

𝜎𝑡 = 0.9, 𝜎𝑘
ℎ = 𝜎𝑘

𝑣 = 1.0, 𝜎𝜀
ℎ = 𝜎𝜀

𝑣 = 1.3 (2.54) 

 

 

In matrix form, the transport equations for 𝑘 and 𝜀 may be written 

 
𝜕𝑼

𝜕𝑡
+ ∇ ⋅ 𝑭 = 𝑺 (2.55) 

 
where  𝑼 = (𝑘, 𝜀)𝑇 and 𝑭 = 𝑭𝒄 − 𝑭𝒅 = (𝑭𝑥, 𝑭𝑦, 𝑭𝑧)

𝑇. The flux components and the source 

terms can be written 

 

𝑭𝑥
𝑐 = (

𝑢𝑘
𝑢𝜀
) , 𝑭𝑦

𝑐 = (
𝑣𝑘
𝑣𝜀
) , 𝑭𝑧

𝑐 = (
𝑤𝑘
𝑤𝜀
) (2.56) 
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𝑭𝑥
𝑑 =

(

 
 

𝜈𝑡0
ℎ

𝜎𝑘
ℎ

𝜕𝑘

𝜕𝑥

𝜈𝑡0
ℎ

𝜎𝜀
ℎ

𝜕𝜀

𝜕𝑥)

 
 
, 𝑭𝑦

𝑑 =

(

 
 

𝜈𝑡0
ℎ

𝜎𝑘
ℎ

𝜕𝑘

𝜕𝑦

𝜈𝑡0
ℎ

𝜎𝜀
ℎ

𝜕𝜀

𝜕𝑦)

 
 
, 𝑭𝑧

𝑑 =

(

 
 

𝜈𝑡0
𝑣

𝜎𝑘
𝑣

𝜕𝑘

𝜕𝑧

𝜈𝑡0
𝑣

𝜎𝜀
𝑣

𝜕𝜀

𝜕𝑧)

 
 

 (2.57) 

 

𝑺 = (

𝑃𝑘 + 𝐵𝑘 − 𝜀

𝑃𝜖 + 𝐵𝜖 − 𝑐2𝜀
𝜀2

𝑘

) (2.58) 

 

The k-omega model 

The 𝑘-𝜔 model presented here is following Larsen and Fuhrman (2018). It extends the 

model in Wilcox (2008) with a buoyancy term and an additional limiter. The model 

describes the specific turbulent kinetic energy, 𝑘, and the specific dissipation rate, 𝜔. The 

eddy viscosity, 𝜈𝑡, is defined as 

 

𝜈𝑡 = 
𝑘

𝜔̃ 
 (2.59) 

  

where 𝜔̃ is a limited version of 𝜔. This value of the eddy viscosity can be used in the 

momentum equations for the horizontal and/or vertical eddy viscosity, 𝜈𝑡
ℎ and 𝜈𝑡

𝑣.  

 

The transport equations for the turbulent kinetic energy, 𝑘, and the specific dissipation 

rate, 𝜔, reads 

 
𝜕𝑘

𝜕𝑡
+
𝜕𝑢𝑘

𝜕𝑥
+
𝜕𝑣𝑘

𝜕𝑦
+
𝜕𝑤𝑘

𝜕𝑧
= 𝐹𝑘 +

𝜕

𝜕𝑧
(
𝜈𝑡0
𝑣

𝜎𝑘
𝑣

𝜕𝑘

𝜕𝑧
) + 𝑃𝑘 + 𝐵𝑘 − 𝛽𝑘𝜔𝑘 (2.60) 

 
𝜕𝜔

𝜕𝑡
+
𝜕𝑢𝜔

𝜕𝑥
+
𝜕𝑣𝜔

𝜕𝑦
+
𝜕𝑤𝜔

𝜕𝑧
= 𝐹𝜔 +

𝜕

𝜕𝑧
(
𝜈𝑡0
𝑣

𝜎𝜔
𝑣

𝜕𝜔

𝜕𝑧
) + 𝐹𝜔𝑐 + 𝑃𝜔 − 𝛽𝜔𝜔

2 (2.61) 

 

Here, 𝐹𝑘 and 𝐹𝜔 are horizontal diffusion terms, 𝐹𝜔𝑐 is a cross-diffusion term, 𝑃𝑘 and 𝑃𝜔 are 

production terms and 𝐵𝑘 is buoyancy production. The details of the various terms are 

presented in the following. 

 

The production terms are given by 

 
𝑃𝑘 = 𝜈𝑡𝑝0 + 𝑐𝑓𝑘𝑃𝑣 (2.62) 

 

𝑃𝜔 = 𝛼
𝜔

𝜔̂
𝑝0+

𝑐𝑓𝜔

𝜈𝑡
𝑃𝑣 (2.63) 

 

where 𝜔̂ is a limited version of the specific dissipation rate, 𝜔, 𝛼 is a closure coefficient 

and 𝑝0 was defined in eq. (2.39). The buoyancy production 𝐵𝑘 is defined in the same way 

as for the 𝑘-𝜀 model, see eq. (2.44), (2.46). Again, it depends on the Prandtl number 𝜎𝑡. 𝑃𝑣 
is the production term due to vegetation and 𝑐𝑓𝑘 and 𝑐𝑓𝜔 are two weighting coefficients 

(see section 4.4). 

 

The vertical diffusion terms are given directly in the transport equations for 𝑘 and 𝜔. The 

horizontal diffusion terms have a similar form and are given by 

 

𝐹𝑘 =
𝜕

𝜕𝑥
(
𝜈𝑡0
ℎ

𝜎𝑘
ℎ

𝜕𝑘

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝜈𝑡0
ℎ

𝜎𝑘
ℎ

𝜕𝑘

𝜕𝑦
) (2.64) 
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𝐹𝜔 =
𝜕

𝜕𝑥
(
𝜈𝑡0
ℎ

𝜎𝜔
ℎ

𝜕𝜔

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝜈𝑡0
ℎ

𝜎𝜔
ℎ

𝜕𝜔

𝜕𝑦
) (2.65) 

 

The coefficients 𝜎𝑘
ℎ, 𝜎𝑘

𝑣, 𝜎𝜔
ℎ and 𝜎𝜔

𝑣  are closure coefficients. For the diffusion terms is used 

an unlimited version of the eddy viscosity 

 

𝜈𝑡0
ℎ =

𝑘

𝜔
 , 𝜈𝑡0

𝑣 =
𝑘

𝜔
 (2.66) 

 

If the momentum equations use an empirical formula for either the horizontal or vertical 

eddy viscosity, that value is also used in the diffusion terms in the turbulence model. This 

means, that 𝜈𝑡0
ℎ = 𝜈𝑡

ℎ or 𝜈𝑡0
𝑣 = 𝜈𝑡

𝑣 is used instead of the corresponding expression in eq. 

(2.66). The cross-diffusion term in the equation for 𝜔 reads 

 

𝐹𝜔𝑐 =
𝜎𝑑𝑜
𝜔
max {0,

𝜕𝑘

𝜕𝑥

𝜕𝜔

𝜕𝑥
+
𝜕𝑘

𝜕𝑦

𝜕𝜔

𝜕𝑦
+
𝜕𝑘

𝜕𝑧

𝜕𝜔

𝜕𝑧
 } (2.67) 

 

To limit the eddy viscosity in regions with nearly-potential flow and stabilize the model, 

Larsen and Fuhrman (2018) introduced an additional limiter for 𝜔 on top of the limiter 

already present in the 𝑘-𝜔 model from Wilcox (2008). The limited versions of 𝜔 are 

defined as 

 

𝜔̂ = max [𝜔, 𝜆1√
𝑝0 − 𝑝𝑏
𝛽𝑘

 ] (2.68) 

 

𝜔̃ = max [𝜔̂, 𝜆2
𝛽𝜔
𝛽𝑘𝛼

𝑝0
𝑝Ω
𝜔] (2.69) 

 

The values of the limiter coefficients are 𝜆1 = 0.875 and 𝜆2 = 0.05 and 𝑝Ω was defined in 

eq. (2.51).  

 

The system contains several empirically determined closure coefficients which have the 

following values, 

 

𝜎𝑘
ℎ = 𝜎𝑘

𝑣 =
5

3
 , 𝜎𝜔

ℎ = 𝜎𝜔
𝑣 = 2 , 𝜎𝑑𝑜 =

1

8
  (2.70) 

 

𝛼 = 0.52 , 𝜎𝑡 = 0.7 (2.71) 

 
𝛽𝑘 = 0.09 , 𝛽𝜔 = 𝛽0𝑓𝛽 , 𝛽0 = 0.0708 (2.72) 

 

𝑓𝛽 =
1 + 85𝜒𝜔
1 + 100𝜒𝜔

 , 𝜒𝜔 = |
∑ ∑ ∑ Ω𝑖𝑗Ω𝑗𝑘𝑆𝑘𝑖

3
𝑘=1

3
𝑗=1

3
𝑖=1

(𝛽𝑘𝜔)
3

| (2.73) 

 
These values are from Larsen and Fuhrmann (2018), except 𝑓𝛽 which is from Wilcox 

(2008). Larsen and Fuhrman (2018) use 𝑓𝛽 = 1, consistent with two-dimensional flow. 

Note that 𝛽𝑘 corresponds to 𝑐𝜇 in the 𝑘-𝜀 model. The mean strain rate tensor 𝑆𝑖𝑗 and the 

rotation tensor Ω𝑖𝑗 were defined in eq. (2.40) and (2.52).  
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In matrix form, the transport equations for 𝑘 and 𝜔 may be written as 

 
𝜕𝑼

𝜕𝑡
+ ∇ ⋅ 𝑭 − 𝑮 = 𝑺 (2.74) 

 
where  𝑼 = (𝑘, 𝜔)𝑇 and 𝑭 = 𝑭𝒄 − 𝑭𝒅 = (𝑭𝑥, 𝑭𝑦, 𝑭𝑧)

𝑇. The flux components 𝑭, the cross-

diffusion 𝑮 and the source terms 𝑺 can be written 

 

𝑭𝑥
𝑐 = (

𝑢𝑘
𝑢𝜔
) , 𝑭𝑦

𝑐 = (
𝑣𝑘
𝑣𝜔
) , 𝑭𝑧

𝑐 = (
𝑤𝑘
𝑤𝜔

) (2.75) 

 

𝑭𝑥
𝑑 =

(

 
 

𝜈𝑡0
ℎ

𝜎𝑘
ℎ

𝜕𝑘

𝜕𝑥

𝜈𝑡0
ℎ

𝜎𝜔
ℎ

𝜕𝜔

𝜕𝑥)

 
 
, 𝑭𝑦

𝑑 =

(

 
 

𝜈𝑡0
ℎ

𝜎𝑘
ℎ

𝜕𝑘

𝜕𝑦

𝜈𝑡0
ℎ

𝜎𝜔
ℎ

𝜕𝜔

𝜕𝑦)

 
 
,      𝑭𝑧

𝑑 =

(

 
 

𝜈𝑡0
𝑣

𝜎𝑘
𝑣

𝜕𝑘

𝜕𝑧

𝜈𝑡0
𝑣

𝜎𝜔
𝑣

𝜕𝜔

𝜕𝑧)

 
 

 (2.76) 

 

𝑮 = (

0
𝜎𝑑
𝜔
max [0,

𝜕𝑘

𝜕𝑥

𝜕𝜔

𝜕𝑥
+
𝜕𝑘

𝜕𝑦

𝜕𝜔

𝜕𝑦
+
𝜕𝑘

𝜕𝑧

𝜕𝜔

𝜕𝑧
 ]
) (2.77) 

 

 

𝑺 = (
𝑃𝑘 + 𝐵𝑘 − 𝛽𝑘𝜔𝑘

𝑃𝜔 − 𝛽𝜔𝜔
2 ) (2.78) 

 

Boundary conditions at the surface and the seabed 

At boundaries where there is a friction, the boundary conditions for 𝑘, 𝜀 and 𝜔 can be 

modelled with wall functions, Wilcox (1998), 

 

𝑘 =
1

√𝛽𝑘
𝑈𝜏
2 , 𝜀 =

𝑈𝜏
3

𝜅Δ𝑦
 , 𝜔 =

𝑈𝜏

√𝛽𝑘𝜅Δ𝑦
 (2.79) 

 

Here, 𝑈𝜏 is the friction velocity associated with the boundary and Δ𝑦 is the distance from 

the boundary to the point where the conditions are employed. Furthermore, 𝜅 = 0.41  is 

the von Kármán constant. 

 

At the seabed, 𝑧 = −𝑑, if there is a bed resistance, the boundary conditions are the wall 

functions in eq. (2.79) where Δ𝑦 = Δ𝑧𝑏 is the distance to the bottom and 𝑈𝜏 = 𝑈𝜏𝑏 is the 

friction velocity associated with the bottom stress, see section 4.2. 

 

At the surface, 𝑧 = 𝜂, if there is a friction, 𝑈𝜏𝑠 > 0, the boundary conditions are the wall 

functions in eq. (2.79) where Δ𝑦 = Δ𝑧𝑠 is the distance to the surface and 𝑈𝜏 = 𝑈𝜏𝑠 is the 

friction velocity associated with the surface stress, see section 4.5 and 4.6. If there is no 

surface friction, the boundary conditions are 

 

at 𝑧 =  𝜂 

 

𝜕𝑘

𝜕𝑧
= 0, 𝜀 =

(𝑘√𝑐𝜇)
3/2

𝛼𝑠𝜅ℎ
, 𝜔 =

√𝑘

𝛼𝑠𝛽𝑘
1 4⁄ 𝜅ℎ

     for     𝑈𝜏𝑠 = 0 (2.80) 

 

where 𝛼𝑠 = 0.07 is an empirical constant. 
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2.1.5 Transport equation for a scalar quantity 

The conservation equation for a scalar quantity is given by 

 
𝜕𝐶

𝜕𝑡
+
𝜕𝑢𝐶

𝜕𝑥
+
𝜕𝑣𝐶

𝜕𝑦
+
𝜕𝑤𝐶

𝜕𝑧
= 𝐹𝐶 +

𝜕

𝜕𝑧
(𝐷𝑐

𝑣
𝜕𝐶

𝜕𝑧
) − 𝑘𝑝C (2.81) 

 
where 𝐶 is the concentration of the scalar quantity, 𝑘𝑝 is the linear decay rate of the scalar 

quantity and 𝐷𝑐
𝑣 is the vertical turbulent (eddy) diffusion coefficient. 𝐹𝑐 is the horizontal 

diffusion terms defined by 

 

𝐹𝑐 =
𝜕

𝜕𝑥
(𝐷𝑐

ℎ
𝜕𝐶

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷𝑐

ℎ
𝜕𝐶

𝜕𝑦
) (2.82) 

 

where 𝐷𝑐
ℎ is the horizontal turbulent (eddy) diffusion coefficient. The horizontal and vertical 

diffusion coefficients can be a constant value or determined as the scaled eddy viscosity. 

 

The surface and bottom boundary conditions for 𝐶 are 

 

at 𝑧 =  𝜂 

 
∂𝐶

∂𝑧
= 0 (2.83) 

 

at 𝑧 =  −𝑑 

 
∂𝐶

∂𝑧
= 0 (2.84) 

 

In matrix form the transport equations for 𝐶 may be written 

 
𝜕𝑼

𝜕𝑡
+ ∇ ⋅ 𝑭 = 𝑺 (2.85) 

 
Where 𝑼 = (𝑐) and 𝑭 = 𝑭𝒄 − 𝑭𝒅 = (𝑭𝑥, 𝑭𝑦, 𝑭𝑧)

𝑇. The flux components and the source 

terms can be written 

 
𝑭𝑥
𝑐 = (𝑢𝑐)     𝑭𝑦

𝑐 = (𝑣𝑐)      𝑭𝑧
𝑐 = (𝑤𝑐) (2.86) 

 

𝑭𝑥
𝑑 = (𝐷𝑐

ℎ
𝜕𝐶

𝜕𝑥
)     𝑭𝑦

𝑑 = (𝐷𝑐
ℎ
𝜕𝐶

𝜕𝑦
)      𝑭𝑧

𝑑 = (𝐷𝑐
𝑣
𝜕𝐶

𝜕𝑧
) (2.87) 

 

𝑺 = −(𝑘𝑝𝐶) (2.88) 

2.2 Governing equations in a sigma coordinate system 

The equations are solved using a vertical -transformation 

 

𝑡′ = 𝑡, 𝑥´ = 𝑥, 𝑦´ =  𝑦, 𝜎 =
𝑧 + 𝑑

ℎ
   (2.89) 

 

where 𝜎 varies between 0 at the bottom and 1 at the surface. The chain rule is applied to 

obtain partial derivatives of the function 𝑓 =  𝑓(𝑡, 𝑥, 𝑦, 𝑧)  
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𝜕𝑓

𝜕𝑡
=
𝜕𝑓

𝜕𝑡′
+
𝜕𝑓

𝜕𝜎

𝜕𝜎

𝜕𝑡
 (2.90) 

 
𝜕𝑓

𝜕𝑥
=
𝜕𝑓

𝜕𝑥′
+
𝜕𝑓

𝜕𝜎

𝜕𝜎

𝜕𝑥
 (2.91) 

 
𝜕𝑓

𝜕𝑦
=
𝜕𝑓

𝜕𝑦′
+
𝜕𝑓

𝜕𝜎

𝜕𝜎

𝜕𝑦
 (2.92) 

 
𝜕𝑓

𝜕𝑧
=
𝜕𝑓

𝜕𝜎

𝜕𝜎

𝜕𝑧
 (2.93) 

 

where the partial derivatives of 𝜎 are given by 

 

𝐴𝑡 =
𝜕𝜎

𝜕𝑡
= −

1

ℎ
Ψ𝑡, Ψ𝑡 = 𝜎

𝜕ℎ

𝜕𝑡
 (2.94) 

 

𝐴𝑥 =
𝜕𝜎

𝜕𝑥
= −

1

ℎ
Ψ𝑥, Ψ𝑥 = 𝜎

𝜕ℎ

𝜕𝑥
−
𝜕𝑑

𝜕𝑥
 (2.95) 

 

𝐴𝑦 =
𝜕𝜎

𝜕𝑦
= −

1

ℎ
Ψ𝑦, Ψ𝑦 = 𝜎

𝜕ℎ

𝜕𝑦
−
𝜕𝑑

𝜕𝑦
 (2.96) 

 

𝐴𝑧 =
𝜕𝜎

𝜕𝑧
=
1

ℎ
 (2.97) 

 

2.2.1 Navier-Stokes equations 

In the sigma coordinate system, the governing equations are given as  

 
𝜕ℎ

𝜕𝑡′
+
𝜕ℎ𝑢

𝜕𝑥′
+
𝜕ℎ𝑣

𝜕𝑦′
+
𝜕ℎ𝜔

𝜕𝜎
= 0 (2.98) 

 

 
𝜕ℎ𝑢

𝜕𝑡′
+
𝜕ℎ𝑢2

𝜕𝑥′
+
𝜕ℎ𝑣𝑢

𝜕𝑦′
+
𝜕ℎ𝜔𝑢

𝜕𝜎
= 

 

        𝑓ℎ𝑣 −
ℎ

𝜌0
(
𝜕𝑞

𝜕𝑥′
+
𝜕𝑞

𝜕𝜎

𝜕𝜎

𝜕𝑥
) − 𝑔ℎ

𝜕𝜂

𝜕𝑥′
+ ℎ𝐹𝑢 − ℎ𝐹𝑣𝑥 +

𝜕

𝜕𝜎
(
𝜈𝑡
𝑣

ℎ

𝜕𝑢

𝜕𝜎
) 

(2.99) 

 

 
𝜕ℎ𝑣

𝜕𝑡′
+
𝜕ℎ𝑢𝑣

𝜕𝑥′
+
𝜕ℎ𝑣2

𝜕𝑦′
+
𝜕ℎ𝜔𝑣

𝜕𝜎
= 

 

        −𝑓ℎ𝑢 −
ℎ

𝜌0
(
𝜕𝑞

𝜕𝑦′
+
𝜕𝑞

𝜕𝜎

𝜕𝜎

𝜕𝑦
) − 𝑔ℎ

𝜕𝜂

𝜕𝑦′
+ ℎ𝐹𝑣 − ℎ𝐹𝑣𝑦 +

𝜕

𝜕𝜎
(
𝜈𝑡
𝑣

ℎ

𝜕𝑣

𝜕𝜎
) 

(2.100) 

 

 
𝜕ℎ𝑤

𝜕𝑡′
+
𝜕ℎ𝑢𝑤

𝜕𝑥′
+
𝜕ℎ𝑣𝑤

𝜕𝑦′
+
𝜕ℎ𝜔𝑤

𝜕𝜎
= −

1

𝜌0

𝜕𝑞

𝜕𝜎
+ ℎ𝐹𝑤 − ℎ𝐹𝑣𝑧 +

𝜕

𝜕𝜎
(
𝜈𝑡
𝑣

ℎ

𝜕𝑤

𝜕𝜎
) 

 

(2.101) 

The modified vertical velocity, 𝜔, in the sigma coordinate system is given by 
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𝜔 =
1

ℎ
(𝑤 + 𝑢

𝜕𝑑

𝜕𝑥
+ 𝑣

𝜕𝑑

𝜕𝑦
− 𝜎 (

𝜕ℎ

𝜕𝑡
+ 𝑢

𝜕ℎ

𝜕𝑥
+ 𝑣

𝜕ℎ

𝜕𝑦
)) (2.102) 

 

The modified vertical velocity is the velocity across a level of constant 𝜎. The horizontal 

diffusion terms are approximated by 

 

ℎ𝐹𝑢 ≈
𝜕

𝜕𝑥
(2ℎ𝜈𝑡

ℎ
𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(ℎ𝜈𝑡

ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)) (2.103) 

 

ℎ𝐹𝑣 ≈
𝜕

𝜕𝑥
(ℎ𝜈𝑡

ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)) +

𝜕

𝜕𝑦
(2ℎ𝜈𝑡

ℎ
𝜕𝑣

𝜕𝑦
) (2.104) 

 

ℎ𝐹𝑤 ≈
𝜕

𝜕𝑥
(ℎ𝜈𝑡

ℎ
𝜕𝑤

𝜕𝑥
) +

𝜕

𝜕𝑦
(ℎ𝜈𝑡

ℎ
𝜕𝑤

𝜕𝑦
) (2.105) 

 

The surface and bottom boundary conditions for 𝑢, 𝑣 and 𝜔 are 

 

at 𝑧 =  𝜂 

 

𝜔 = 0, (
𝜕𝑢

𝜕𝜎
,
𝜕𝑣

𝜕𝜎
) =

h

𝜌0𝜈𝑡
𝑣 (𝜏𝑠𝑥, 𝜏𝑠𝑦) (2.106) 

 

at 𝑧 =  −𝑑 

 

𝜔 = 0, (
𝜕𝑢

𝜕𝜎
,
𝜕𝑣

𝜕𝜎
) =

h

𝜌0𝜈𝑡
𝑣 (𝜏𝑏𝑥, 𝜏𝑏𝑦) (2.107) 

 

The depth-averaged continuity equation becomes 

 
𝜕ℎ

𝜕𝑡′
+
𝜕ℎ𝑢̅

𝜕𝑥′
+
𝜕ℎ𝑣̅

𝜕𝑦′
= 0 (2.108) 

 

where 𝑢̅ and 𝑣̅ are the depth–averaged velocities  

 

𝑢̅ = ∫ 𝑢𝑑𝜎
1

0

,     𝑣̅ = ∫ 𝑣𝑑𝜎
1

0

= 0 (2.109) 

 

In matrix form the continuity equations and the momentum equations may be written 

 
𝜕ℎ

𝜕𝑡′
+ ∇ ⋅ 𝑭𝑐 = 0 (2.110) 

 
𝜕𝑼

𝜕𝑡′
+ ∇ ⋅ 𝑭𝑚 = 𝑺ℎ + 𝑺𝑞 (2.111) 

 

where  𝑭𝑐 = (𝐹𝑥
𝑐 , 𝐹𝑦

𝑐)
𝑇
= (ℎ𝑢̅, ℎ𝑣̅)𝑇 , 𝑼 = (ℎ𝑢, ℎ𝑣, ℎ𝑤)𝑇 and 𝑭𝑚 = 𝑭𝑚𝑐 − 𝑭𝑚𝑑 =

(𝑭𝑥
𝑚, 𝑭𝑦

𝑚,  𝑭𝜎
𝑚)𝑇 .  

 

The flux components and the source terms can be written 
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𝑭𝑥
𝑚𝑐 = (

ℎ𝑢𝑢 +
1

2
𝑔(𝜂2 + 2𝜂𝑑)

ℎ𝑢𝑣
ℎ𝑢𝑤

)  𝑭𝑦
𝑚𝑐 = (

ℎ𝑢𝑣

ℎ𝑣𝑣 +
1

2
𝑔(𝜂2 + 2𝜂𝑑)

ℎ𝑣𝑤

)  𝑭𝜎
𝑚𝑐 = (

ℎ𝑢𝜔
ℎ𝑣𝜔
ℎ𝑤𝜔

) (2.112) 

 

𝑭𝑥
𝑚𝑑 =

(

 
 
 
 

2ℎ𝜈𝑡
ℎ
𝜕𝑢

𝜕𝑥

ℎ𝜈𝑡
ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

ℎ𝜈𝑡
ℎ
𝜕𝑤

𝜕𝑥 )

 
 
 
 

     𝑭𝑦
𝑚𝑑 =

(

 
 
 
 
ℎ𝜈𝑡

ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

2ℎ𝜈𝑡
ℎ
𝜕𝑣

𝜕𝑦

ℎ𝜈𝑡
ℎ
𝜕𝑤

𝜕𝑦 )

 
 
 
 

     𝑭𝜎
𝑚𝑑 =

(

 
 
 

𝜈𝑡
𝑣

ℎ

𝜕𝑢

𝜕𝜎
𝜈𝑡
𝑣

ℎ

𝜕𝑣

𝜕𝜎
𝜈𝑡
𝑣

ℎ

𝜕𝑤

𝜕𝜎)

 
 
 

 (2.113) 

 

𝑺ℎ =

(

  
 
𝑔𝜂

𝜕𝑑

𝜕𝑥′
+ 𝑓ℎ𝑣 −

1

𝜌0

∂𝑝𝐴
∂𝑥

−
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑥

𝜂

𝑧

− ℎ𝐹𝑣𝑥

𝑔𝜂
𝜕𝑑

𝜕𝑦′
− 𝑓ℎ𝑢 −

1

𝜌0

𝜕𝑝𝐴
𝜕𝑦

−
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑦

𝜂

𝑧

− ℎ𝐹𝑣𝑦

−ℎ𝐹𝑣𝑧 )

  
 
     𝑺𝑞 = −

1

𝜌0

(

 
 
 
 
ℎ (

𝜕𝑞

𝜕𝑥′
+
𝜕𝑞

𝜕𝜎

𝜕𝜎

𝜕𝑥
)

ℎ (
𝜕𝑞

𝜕𝑦′
+
𝜕𝑞

𝜕𝜎

𝜕𝜎

𝜕𝑦
)

𝜕𝑞

𝜕𝜎 )

 
 
 
 

 (2.114) 

 

To give a conservative formulation, the gravity surface terms are split into two terms (see 

Chippada (1998), Rogers (2001), Quecedo (2002), Liang or Borthwick (2009)) 

 

𝑔ℎ
𝜕𝜂

𝜕𝑥′
=
1

2
𝑔
𝜕(ℎ2 − 𝑑2)

𝜕𝑥′
− 𝑔𝜂

𝜕𝑑

𝜕𝑥′
=
1

2
𝑔
𝜕(𝜂2 + 2𝜂𝑑)

𝜕𝑥′
− 𝑔𝜂

𝜕𝑑

𝜕𝑥′
 (2.115) 

 

𝑔ℎ
𝜕𝜂

𝜕𝑦′
=
1

2
𝑔
𝜕(ℎ2 − 𝑑2)

𝜕𝑦′
− 𝑔𝜂

𝜕𝑑

𝜕𝑦′
=
1

2
𝑔
𝜕(𝜂2 + 2𝜂𝑑)

𝜕𝑦′
− 𝑔𝜂

𝜕𝑑

𝜕𝑦′
 (2.116) 

 

It is easily seen that if 𝜂 is constant, the two terms cancel exactly. In the discrete case, 

this is also true if the two derivatives are calculated using the same scheme. 

2.2.2 Shallow water equations 

In matrix form the continuity equations and the momentum equations may be written 

 
𝜕ℎ

𝜕𝑡′
+ ∇ ⋅ 𝑭𝑐 = 0 (2.117) 

 
𝜕𝑼

𝜕𝑡′
+ ∇ ⋅ 𝑭𝑚 = 𝑺ℎ + 𝑺𝑞 (2.118) 

 

where  𝑭𝑐 = (𝐹𝑥
𝑐 , 𝐹𝑦

𝑐)
𝑇
= (ℎ𝑢̅, ℎ𝑣̅)𝑇 , 𝑼 = (ℎ𝑢, ℎ𝑣)𝑇 and 𝑭𝑚 = 𝑭𝑚𝑐 − 𝑭𝑚𝑑 =

(𝑭𝑥
𝑚, 𝑭𝑦

𝑚,  𝑭𝜎
𝑚)𝑇 .  

 

The flux components and the source terms can be written 
 

𝑭𝑥
𝑚𝑐 = (ℎ𝑢𝑢 +

1

2
𝑔(𝜂2 + 2𝜂𝑑)

ℎ𝑢𝑣

)  𝑭𝑦
𝑚𝑐 = (

ℎ𝑢𝑣

ℎ𝑣𝑣 +
1

2
𝑔(𝜂2 + 2𝜂𝑑))  𝑭𝜎

𝑚𝑐 = (
ℎ𝑢𝜔
ℎ𝑣𝜔

) (2.119) 

 

𝑭𝑥
𝑚𝑑 =

(

 
2ℎ𝜈𝑡

ℎ
𝜕𝑢

𝜕𝑥

ℎ𝜈𝑡
ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
)

      𝑭𝑦
𝑚𝑑 =

(

 
 
ℎ𝜈𝑡

ℎ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

2ℎ𝜈𝑡
ℎ
𝜕𝑣

𝜕𝑦 )

 
 
     𝑭𝜎

𝑚𝑑 = (

𝜈𝑡
𝑣

ℎ

𝜕𝑢

𝜕𝜎
𝜈𝑡
𝑣

ℎ

𝜕𝑣

𝜕𝜎

) (2.120) 
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𝑺ℎ =

(

 
 
𝑔𝜂

𝜕𝑑

𝜕𝑥′
+ 𝑓ℎ𝑣 −

ℎ

𝜌0

𝜕𝑝𝐴
𝜕𝑥

−
ℎ𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑥

𝜂

𝑧

− ℎ𝐹𝑣𝑥

𝑔𝜂
𝜕𝑑

𝜕𝑦′
− 𝑓ℎ𝑢 −

ℎ

𝜌0

∂pA
∂y

−
ℎ𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑦

𝜂

𝑧

− ℎ𝐹𝑣𝑦
)

 
 
      (2.121) 

 

2.2.3 Transport equations for temperature and salinity 

In the sigma coordinate system, the transport equations for the temperature and the 

salinity are given as  

 
𝜕ℎ𝑇

𝜕𝑡′
+
𝜕ℎ𝑢𝑇

𝜕𝑥′
+
𝜕ℎ𝑣𝑘

𝜕𝑦′
+
𝜕ℎ𝜔𝑇

𝜕𝜎
= ℎ𝐹𝑡 +

𝜕

𝜕𝜎
(𝐷𝑡𝑠

𝑣
𝜕𝑇

𝜕𝑧
) + hĤ (2.122) 

 
𝜕ℎ𝑆

𝜕𝑡′
+
𝜕ℎ𝑢𝑆

𝜕𝑥′
+
𝜕ℎ𝑣𝑆

𝜕𝑦′
+
𝜕ℎ𝜔𝑆

𝜕𝜎
= ℎ𝐹𝑠 +

𝜕

𝜕𝜎
(𝐷𝑡𝑠

𝑣
𝜕𝑆

𝜕𝑧
) (2.123) 

 

The horizontal diffusion terms are defined as 

 

ℎ𝐹𝑡 =
𝜕

𝜕𝑥′
(ℎ𝐷𝑡𝑠

ℎ
𝜕𝑇

𝜕𝑥
) −

𝜕

𝜕𝜎
(Ψ𝑥𝐷𝑡𝑠

ℎ
𝜕𝑇

𝜕𝑥
 ) +

𝜕

𝜕𝑦′
(ℎ𝐷𝑡𝑠

ℎ
𝜕𝑇

𝜕𝑦
) −

𝜕

𝜕𝜎
(Ψ𝑦𝐷𝑡𝑠

ℎ
𝜕𝑇

𝜕𝑦
 ) (2.124) 

 

ℎ𝐹𝑠 =
𝜕

𝜕𝑥′
(ℎ𝐷𝑡𝑠

ℎ
𝜕𝑆

𝜕𝑥
) −

𝜕

𝜕𝜎
(Ψ𝑥𝐷𝑡𝑠

ℎ
𝜕𝑆

𝜕𝑥
 ) +

𝜕

𝜕𝑦′
(ℎ𝐷𝑡𝑠

ℎ
𝜕𝑆

𝜕𝑦
) −

𝜕

𝜕𝜎
(Ψ𝑦𝐷𝑡𝑠

ℎ
𝜕𝑆

𝜕𝑦
 ) (2.125) 

 

In matrix form the transport equations for 𝑇 and 𝑆 may be written 

 
𝜕𝑼

𝜕𝑡′
+ ∇ ⋅ 𝑭 = 𝑺 (2.126) 

 
where  𝑼 = (h𝑇, ℎ𝑆)𝑇 and 𝑭 = 𝑭𝑐 − 𝑭𝑑 = (𝑭𝑥, 𝑭𝑦, 𝑭𝜎)

𝑇. The flux components and the 

source terms can be written 

 

𝑭𝑥
𝑐 = (

ℎ𝑢𝑇
ℎ𝑢𝑆

),     𝑭𝑦
𝑐 = (

ℎ𝑣𝑇
ℎ𝑣𝑆

),      𝑭𝜎
𝑐 = (

ℎ𝜔𝑇
ℎ𝜔𝑆

) (2.127) 

 

𝑭𝑥
𝑑 = (

ℎ𝐷𝑡𝑠
ℎ
𝜕𝑇

𝜕𝑥

ℎ𝐷𝑡𝑠
ℎ
𝜕𝑆

𝜕𝑥

),     𝑭𝑦
𝑑 =

(

 
 
ℎ𝐷𝑡𝑠

ℎ
𝜕𝑇

𝜕𝑦

ℎ𝐷𝑡𝑠
ℎ
𝜕𝑆

𝜕𝑦)

 
 
,      𝑭𝜎

𝑑 =

(

 
 
𝐷𝑡𝑠
𝑣
𝜕𝑇

𝜕𝑧
− Ψ𝑥𝐷𝑡𝑠

ℎ
𝜕𝑇

𝜕𝑥
− Ψ𝑦𝐷𝑡𝑠

ℎ
𝜕𝑇

𝜕𝑦

𝐷𝑡𝑠
𝑣
𝜕𝑆

𝜕𝑧
− Ψ𝑥𝐷𝑡𝑠

ℎ
𝜕𝑆

𝜕𝑥
− Ψ𝑦𝐷𝑡𝑠

ℎ
𝜕𝑆

𝜕𝑦)

 
 

 (2.128) 

 

𝑺 = (ℎ𝐻̂
0
) (2.129) 

 

 

 

 



 MIKE 3 Flow Model FM 

18 Hydrodynamic and Transport Module - © DHI A/S 

2.2.4 Turbulence model 

The k-epsilon model 

In the sigma coordinate system, the transport equations for the 𝑘-𝜀 model are given as  

 
𝜕ℎ𝑘

𝜕𝑡′
+
𝜕ℎ𝑢𝑘

𝜕𝑥′
+
𝜕ℎ𝑣𝑘

𝜕𝑦′
+
𝜕ℎ𝜔𝑘

𝜕𝜎
= ℎ𝐹𝑘 +

𝜕

𝜕𝜎
(𝐷𝑘

𝑣
𝜕𝑘

𝜕𝑧
) + ℎ(𝑃𝑘 + 𝐵𝑘 − 𝜀) (2.130) 

 
𝜕ℎ𝜀

𝜕𝑡′
+
𝜕ℎ𝑢𝜀

𝜕𝑥′
+
𝜕ℎ𝑣𝜀

𝜕𝑦′
+
𝜕ℎ𝜔𝜀

𝜕𝜎
= ℎ𝐹𝜀 +

𝜕

𝜕𝜎
(𝐷𝜀

𝑣
𝜕𝜀

𝜕𝑧
) + ℎ (𝑃𝜀 + 𝐵𝜀 − 𝑐2𝜀

𝜀2

𝑘
) (2.131) 

 

where 𝐷𝑘
𝑣 = 𝜈𝑡0

𝑣 𝜎𝑘
𝑣⁄  and 𝐷𝜀

𝑣 = 𝜈𝑡0
𝑣 𝜎𝜀

𝑣⁄  are the vertical diffusion coefficients. Denoting the 

horizontal diffusion coefficients with 𝐷𝑘
ℎ = 𝜈𝑡0

ℎ 𝜎𝑘
ℎ⁄  and 𝐷𝜀

ℎ = 𝜈𝑡0
ℎ 𝜎𝜀

ℎ⁄ , the horizontal 

diffusion terms are defined as 

 

ℎ𝐹𝑘 =
𝜕

𝜕𝑥′
(ℎ𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑥
) −

𝜕

𝜕𝜎
(Ψ𝑥𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑥
 ) +

𝜕

𝜕𝑦′
(ℎ𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑦
) −

𝜕

𝜕𝜎
(Ψ𝑦𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑦
 ) (2.132) 

 

ℎ𝐹𝜀 =
𝜕

𝜕𝑥′
(ℎ𝐷𝜀

ℎ
𝜕𝜀

𝜕𝑥
 ) −

𝜕

𝜕𝜎
(Ψ𝑥𝐷𝜀

ℎ
𝜕𝜀

𝜕𝑥
 ) +

𝜕

𝜕𝑦′
(ℎ𝐷𝜀

ℎ
𝜕𝜀

𝜕𝑦
) −

𝜕

𝜕𝜎
(Ψ𝑦𝐷𝜀

ℎ
𝜕𝜀

𝜕𝑦
 ) (2.133) 

 

In matrix form, the transport equations for 𝑘 and 𝜀 may be written 

 
𝜕𝑼

𝜕𝑡′
+ ∇ ⋅ 𝑭 = 𝑺 (2.134) 

 
where  𝑼 = (ℎ𝑘, ℎ𝜀)𝑇 and 𝑭 = 𝑭𝑐 − 𝑭𝑑 = (𝑭𝑥, 𝑭𝑦, 𝑭𝜎)

𝑇. The flux components and the 

source terms can be written 

 

𝑭𝑥
𝑐 = (

ℎ𝑢𝑘
ℎ𝑢𝜀

),     𝑭𝑦
𝑐 = (

ℎ𝑣𝑘
ℎ𝑣𝜀

),      𝑭𝜎
𝑐 = (

ℎ𝜔𝑘
ℎ𝜔𝜀

) (2.135) 

 

𝑭𝑥
𝑑 = (

ℎ𝐷𝑘
ℎ
𝜕𝑘

𝜕𝑥

ℎ𝐷𝜀
ℎ
𝜕𝜀

𝜕𝑥

),      𝑭𝑦
𝑑 =

(

 
 
ℎ𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑦

ℎ𝐷𝜀
ℎ
𝜕𝜀

𝜕𝑦)

 
 
,      𝑭𝜎

𝑑 =

(

 
 
𝐷𝑘
𝑣
𝜕𝑘

𝜕𝑧
− Ψ𝑥𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑥
− Ψ𝑦𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑦

𝐷𝜀
𝑣
𝜕𝜀

𝜕𝑧
− Ψ𝑥𝐷𝜀

ℎ
𝜕𝜀

𝜕𝑥
− Ψ𝑦𝐷𝜀

ℎ
𝜕𝜀

𝜕𝑦)

 
 

 (2.136) 

 

𝑺 = (

ℎ(𝑃𝑘 + 𝐵𝑘 − 𝜀)

ℎ (𝑃𝜀 + 𝐵𝜀 − 𝑐2𝜀
𝜀2

𝑘
)
)       (2.137) 

 

The k-omega model 

In this section, the modified vertical velocity in the sigma coordinate system is called 𝑤𝑠 
(instead of 𝜔). This is to distinguish it from the specific dissipation rate, 𝜔, of turbulent 

kinetic energy which was introduced in section 2.1.4. In the sigma coordinate system, the 

transport equations for the 𝑘-𝜔 model are given as  

 
𝜕ℎ𝑘

𝜕𝑡′
+
𝜕ℎ𝑢𝑘

𝜕𝑥′
+
𝜕ℎ𝑣𝑘

𝜕𝑦′
+
𝜕ℎ𝑤𝑠𝑘

𝜕𝜎
= ℎ𝐹𝑘 +

𝜕

𝜕𝜎
(𝐷𝑘

𝑣
𝜕𝑘

𝜕𝑧
) + ℎ(𝑃𝑘 + 𝐵𝑘 − 𝛽𝑘𝜔𝑘) (2.138) 
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𝜕ℎ𝜔

𝜕𝑡′
+
𝜕ℎ𝑢𝜔

𝜕𝑥′
+
𝜕ℎ𝑣𝜔

𝜕𝑦′
+
𝜕ℎ𝑤𝑠𝜔

𝜕𝜎
= ℎ𝐹𝜔 +

𝜕

𝜕𝜎
(𝐷𝜔

𝑣
𝜕𝜔

𝜕𝑧
) + ℎ𝐹𝜔𝑐 + ℎ(𝑃𝜔 − 𝛽𝜔𝜔

2) (2.139) 

 

where 𝐷𝑘
𝑣 = 𝜈𝑡0

𝑣 𝜎𝑘
𝑣⁄  and 𝐷𝜔

𝑣 = 𝜈𝑡0
𝑣 𝜎𝜔

𝑣⁄  are the vertical diffusion coefficients. Denoting the 

horizontal diffusion coefficients with 𝐷𝑘
ℎ = 𝜈𝑡0

ℎ 𝜎𝑘
ℎ⁄  and 𝐷𝜔

ℎ = 𝜈𝑡0
ℎ 𝜎𝜔

ℎ⁄ , the horizontal 

diffusion terms are defined as 

 

ℎ𝐹𝑘 =
𝜕

𝜕𝑥′
(ℎ𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑥
) −

𝜕

𝜕𝜎
(Ψ𝑥𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑥
 ) +

𝜕

𝜕𝑦′
(ℎ𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑦
) −

𝜕

𝜕𝜎
(Ψ𝑦𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑦
 ) (2.140) 

 

ℎ𝐹𝜔 =
𝜕

𝜕𝑥′
(ℎ𝐷𝜔

ℎ
𝜕𝜔

𝜕𝑥
) −

𝜕

𝜕𝜎
(Ψ𝑥𝐷𝜔

ℎ
𝜕𝜔

𝜕𝑥
 ) +

𝜕

𝜕𝑦′
(ℎ𝐷𝜔

ℎ
𝜕𝜔

𝜕𝑦
) −

𝜕

𝜕𝜎
(Ψ𝑦𝐷𝜔

ℎ
𝜕𝜔

𝜕𝑦
 ) (2.141) 

 

In matrix form, the transport equations for 𝑘 and 𝜔 may be written 

 
𝜕𝑼

𝜕𝑡′
+ ∇ ⋅ 𝑭 − 𝑮 = 𝑺 (2.142) 

 
where  𝑼 = (ℎ𝑘, ℎ𝜔)𝑇 and 𝑭 = 𝑭𝑐 − 𝑭𝑑 = (𝑭𝑥, 𝑭𝑦, 𝑭𝜎)

𝑇. The flux components 𝑭, the cross-

diffusion 𝑮 and the source terms 𝑺 can be written 

 

𝑭𝑥
𝑐 = (

ℎ𝑢𝑘
ℎ𝑢𝜔

),     𝑭𝑦
𝑐 = (

ℎ𝑣𝑘
ℎ𝑣𝜔

),      𝑭𝜎
𝑐 = (

ℎ𝑤𝑠𝑘
ℎ𝑤𝑠𝜔

) (2.143) 

 

𝑭𝑥
𝑑 = (

ℎ𝐷𝑘
ℎ
𝜕𝑘

𝜕𝑥

ℎ𝐷𝜔
ℎ
𝜕𝜔

𝜕𝑥

),     𝑭𝑦
𝑑 =

(

 
 
ℎ𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑦

ℎ𝐷𝜔
ℎ
𝜕𝜔

𝜕𝑦)

 
 
,    𝑭𝜎

𝑑 =

(

 
 
𝐷𝑘
𝑣
𝜕𝑘

𝜕𝑧
− Ψ𝑥𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑥
− Ψ𝑦𝐷𝑘

ℎ
𝜕𝑘

𝜕𝑦

𝐷𝜔
𝑣
𝜕𝜔

𝜕𝑧
− Ψ𝑥𝐷𝜔

ℎ
𝜕𝜔

𝜕𝑥
− Ψ𝑦𝐷𝜔

ℎ
𝜕𝜔

𝜕𝑦)

 
 

 (2.144) 

 

𝑮 = (
0

ℎ𝐹𝜔𝑐
)       (2.145) 

 

𝑺 = (
ℎ(𝑃𝑘 + 𝐵𝑘 − 𝜀)

ℎ(𝑃𝜔 − 𝛽𝜔𝜔
2)
)       (2.146) 

 

2.2.5 Transport equation for a scalar quantity 

In the sigma coordinate system, the transport equation for a scalar quantity is given as 

  
𝜕ℎ𝐶

𝜕𝑡′
+
𝜕ℎ𝑢𝐶

𝜕𝑥′
+
𝜕ℎ𝑣𝐶

𝜕𝑦′
+
𝜕ℎ𝜔𝐶

𝜕𝜎
= ℎ𝐹𝑐 +

𝜕

𝜕𝜎
(𝐷𝑐

𝑣
𝜕𝐶

𝜕𝑧
) − h𝑘𝑝𝐶 (2.147) 

 

The horizontal diffusion term is defined as 

 

ℎ𝐹𝑐 =
𝜕

𝜕𝑥′
(ℎ𝐷𝑐

ℎ
𝜕𝐶

𝜕𝑥
) −

𝜕

𝜕𝜎
(Ψ𝑥𝐷𝑐

ℎ
𝜕𝐶

𝜕𝑥
 ) +

𝜕

𝜕𝑦′
(ℎ𝐷𝑐

ℎ
𝜕𝐶

𝜕𝑦
) −

𝜕

𝜕𝜎
(Ψ𝑦𝐷𝑐

ℎ
𝜕𝐶

𝜕𝑦
 ) (2.148) 

 

In matrix form the transport equation for 𝐶 may be written 

 
𝜕𝑼

𝜕𝑡′
+ ∇ ⋅ 𝑭 = 𝑺 (2.149) 
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where 𝑼 = (ℎ𝑐) and 𝑭 = 𝑭𝑐 − 𝑭𝑑 = (𝑭𝑥, 𝑭𝑦, 𝑭𝜎)
𝑇. The flux components and the source 

term can be written 

 
𝑭𝑥
𝑐 = (ℎ𝑢𝐶),     𝑭𝑦

𝑐 = (ℎ𝑣𝐶),      𝑭𝜎
𝑐 = (ℎ𝜔𝐶) (2.150) 

 

𝑭𝑥
𝑑 = (ℎ𝐷𝑐

ℎ
𝜕𝐶

𝜕𝑥
),     𝑭𝑦

𝑑 = (ℎ𝐷𝑐
ℎ
𝜕𝐶

𝜕𝑦
),      𝑭𝜎

𝑑 = (𝐷𝑐
𝑣
𝜕𝐶

𝜕𝑧
− Ψ𝑥𝐷𝑐

ℎ
𝜕𝐶

𝜕𝑥
− Ψ𝑦𝐷𝑐

ℎ
𝜕𝐶

𝜕𝑦
) (2.151) 

 

𝑺 = −(ℎ𝑘𝑝𝐶) (2.152) 
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3 Numerical method 

The discretization in solution domain is performed using a cell-centered finite volume 

method (CCFV). The spatial domain is discretized by subdivision of the continuum into non-

overlapping control volumes and by evaluating the field equations in integral form on these 

cells. 

3.1 Mesh and discretization scheme 

3.1.1 Mesh 

The computational mesh is based on the unstructured meshes approach, which gives the 

maximum degree of flexibility. Control of node distribution allows for optimal usage of 

nodes and adaptation of mesh resolution to the relevant physical scales. The use of 

unstructured meshes also makes it possible to handle problems characterized by 

computational domains with complex boundaries. 

 

The 3D mesh is a layered mesh. In the horizontal domain an unstructured mesh is used 

while in the vertical domain a structured mesh is used (see Figure 3.1). The elements are 

prisms with either a 3-sided or 4-sided polygonal base. Hence, the horizontal faces are 

either triangles or quadrilateral elements. The elements are perfectly vertical, and all 

layers have identical horizontal topology. 

 

 
 
Figure 3.1 Principle of meshing 

 

For the vertical discretization both a standard sigma discretization and a combined 

sigma/z-level discretization can be used. For the hybrid sigma/z-level discretization, 

sigma coordinates are used from the free surface to a specified depth, 𝑧0, and z-level 

coordinates are used below. The different types of vertical discretization are illustrated in 

Figure 3.2. At least one sigma layer is needed using the sigma/z-level discretization to 

allow changes in the surface elevation. 

Sigma 

In the sigma domain a constant number of layers, 𝑁𝜎,, is used, and the height of each 

sigma layer is a fixed fraction of the total depth of the sigma domain, ℎ𝜎, where ℎ𝜎 = 𝜂 −
max (𝑧𝑏, 𝑧𝜎). The discretization in the sigma domain is given by a number of discrete σ-

levels {𝜎𝑖,   𝑖 = 1, (𝑁𝜎 + 1)}. Here 𝜎 varies from 𝜎1 = 0 at the bottom interface of the 

lowest sigma layer to  𝜎𝑁𝜎+1 = 1 at the free surface. 
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Variable sigma coordinates can be obtained using a discrete formulation of the general 

vertical coordinate (s-coordinate) system proposed by Song and Haidvogel (1994). First 

an equidistant discretization in an s-coordinate system (-1≤ s ≤0) is defined 

 

𝑠𝑖 = −
𝑁𝜎 + 1 − 𝑖

𝑁𝜎
            𝑖 = 1, (𝑁𝜎 + 1) (3.1) 

 

 

 

 
 

 
 
Figure 3.2 Illustrations of the different vertical grids. Upper: sigma mesh, Lower: combined 

sigma/z-level mesh with simple bathymetry adjustment. The red line shows the 
interface between the z-level domain and the sigma-level domain 

 

The discrete sigma coordinates can then be determined by 

 

𝜎𝑖 = 1 + 𝜎𝑐𝑠𝑖 + (1 − 𝜎𝑐)𝑐(𝑠𝑖)            𝑖 = 1, (𝑁𝜎 + 1) (3.2) 

 

where 

 

𝑐(𝑠) = (1 − 𝑏)
sinh(𝜃𝑠)

sinh(𝜃)
+ 𝑏

tanh(𝜃 (𝑠 +
1
2)
) − tanh (

𝜃
2
)

2tanh (
𝜃
2
)

 (3.3) 

 

Here 𝜎𝑐    is a weighting factor between the equidistant distribution and the stretch 

distribution, θ is the surface control parameter, and b is the bottom control parameter. The 
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range for the weighting factor is 0 < 𝜎𝑐 ≤ 1 where the value 1 corresponds to equidistant 

distribution, and 0 corresponds to stretched distribution. A small value of 𝜎𝑐 can result in 

linear instability. The range of the surface control parameter is 0 < 𝜃 < 20, and the range 

of the bottom control parameter is 0 ≤ 𝑏 ≤ 1. If 𝜃 ≪ 1 and 𝑏 = 0, an equidistant vertical 

resolution is obtained. By increasing the value of 𝜃, the highest resolution is achieved 

near the surface. If 𝜃 > 0 and 𝑏 = 1, a high resolution is obtained both near the surface 

and near the bottom. 

 

Examples of a mesh using variable vertical discretization are shown in Figure 3.3 and 

Figure 3.4. 

 

 
 
Figure 3.3 Example of vertical distribution using layer thickness distribution. Number of layers: 

10, thickness of layers 1 to 10: .025, 0.075, 0.1, 0.01, 0.02, 0.02, 0.1, 0.1, 0.075, 
0.025  

 

 
 
Figure 3.4 Example of vertical distribution using variable distribution. Number of layers: 10, σc = 

0.1, θ = 5, b = 1  

Combined sigma/z-level 

In the z-level domain the discretization is given by a number of discrete z-levels 
{𝑧𝑖,   𝑖 = 1, (𝑁𝑧 + 1)}, where 𝑁𝑧 is the number of layers in the z-level domain. 𝑧1 is the 

minimum z-level, and 𝑧𝑁𝑧+1 is the maximum z-level, which is equal to the sigma depth, 

𝑧𝜎. The corresponding layer thickness is given by 

 

Δ𝑧𝑖 = 𝑧𝑖+1 − 𝑧𝑖            𝑖 = 1, 𝑁𝑧 (3.4) 
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The discretization is illustrated in Figure 3.5 and Figure 3.6. 

 
Using standard z-level discretization the bottom depth is rounded to the nearest z-level. 

Hence, for a cell in the horizontal mesh with the cell-averaged depth, 𝑧𝑏, each cell in the 

corresponding column in the z-domain is only included if the following criterion is satisfied  

 

𝑧𝑖+1 − 𝑧𝑏 ≥
1

2
(𝑧𝑖+1 − 𝑧𝑖)            𝑖 = 1, 𝑁𝑧 (3.5) 

 

The cell-averaged depth, 𝑧𝑏, is calculated as the mean value of the depth at the vertices 

of each cell in the horizontal mesh. To take into account the correct depth for the case 

where the bottom depth is below the minimum z-level (𝑧1 > 𝑧𝑏) a bottom fitted approach is 

used. Here, a correction factor, 𝑓1, for the layer thickness in the bottom cell is introduced. 

The correction factor is used in the calculation of the volume and vertical face integrals. 

The correction factor for the bottom cell is calculated by 

 

𝑓1 =
(𝑧2 − 𝑧𝑏)

∆𝑧1
 (3.6) 

 

The corrected layer thickness is given by ∆𝑧1
∗ = 𝑓1∆𝑧1. The simple bathymetry adjustment 

approach is illustrated in Figure 3.5. 

 
For a more accurate representation of the bottom depth an advanced bathymetry 

adjustment approach can be used. For a cell in the horizontal mesh with the cell-averaged 

depth, 𝑧𝑏, each cell in the corresponding column in the z-domain is included if the 

following criterion is satisfied 

 

𝑧𝑖+1 > 𝑧𝑏           𝑖 = 1, 𝑁𝑧 (3.7) 

 

A correction factor, 𝑓𝑖, is introduced for the layer thickness for these cells 

 

𝑓𝑖 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (
(𝑧𝑖+1 − 𝑧𝑏)

∆𝑧𝑖
,
𝑧𝑚𝑖𝑛
∆𝑧𝑖

) , 1)             𝑖 = 2, 𝑁𝑧
 

 

 

𝑓𝑖 = 𝑚𝑎𝑥 (
(𝑧𝑖+1 − 𝑧𝑏)

∆𝑧𝑖
,
𝑧𝑚𝑖𝑛
∆𝑧𝑖

)                               𝑖 = 1
 

 

(3.8) 

 

A minimum layer thickness, ∆𝑧𝑚𝑖𝑛, is introduced to avoid very small values of the 

correction factor. The correction factor is used in the calculation of the volume and vertical 
face integrals. The corrected layer thicknesses are given by {∆𝑧𝑖

∗ = 𝑓𝑖∆𝑧𝑖 , 𝑖 = 1, 𝑁𝑧}.  The 

advanced bathymetry adjustment approach is illustrated in Figure 3.6.  
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Figure 3.5 Simple bathymetry adjustment approach 

 

 
 
Figure 3.6 Advanced bathymetry adjustment approach 

 

3.1.2 Discretization scheme 

The discrete solution for the water depth, h, is defined at the centroid of the elements of 

the 2D horizontal mesh. The discrete solutions for the velocity components, 𝑢, 𝑣 and 𝑤 

and the transport variables, 𝑇, 𝑆, 𝑘, 𝜀 and 𝐶, are defined at the centroid of the elements in 

the 3D mesh. The non-hydrostatic pressure, 𝑞, is positioned in the centroid of the 

horizontal cell faces as shown in Figure 3.7. The location of the discrete non-hydrostatic 

pressure secures an exact representation of the surface boundary condition. The modified 

vertical velocity, 𝜔, is also positioned in the centroid of the horizontal cell faces. The 

coordinates of the centroids are the averages of the coordinates of the cells vertices. 
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Figure 3.7 Vertical variable arrangement around layer 𝑘. Velocity components, 𝑢, 𝑣 and 𝑤, are 

located in cell centers; non-hydrostatic pressure, 𝑞, is located in cell interfaces 

3.2 Finite volume method 

The matrix form of the governing equations presented in Chapter 2 can be written as 

 
𝜕𝑼

𝜕𝑡
+ ∇ ⋅ 𝑭(𝑼) = 𝑺 (3.9) 

 

Integrating Eq. (3.9) over the ith cell and using Gauss’s theorem to rewrite the flux integral 

gives 

 

∫
𝜕𝑼

𝜕𝑡

⬚

𝑉𝑖

𝑑Ω +∫ (𝑭(𝑼) ∙ 𝒏)
⬚

Γ𝑖

𝑑Γ = ∫ 𝑺(𝑼)𝑑Ω
⬚

𝑉𝑖

 (3.10) 

 

where 𝑉𝑖 is the volume of the ith cell, Ω is the integration variable defined on 𝑉𝑖, Γ𝑖 is the 

boundary of the ith cell and Γ is the integration variable along the boundary. 𝒏 =
(𝑛𝑥, 𝑛𝑦, 𝑛𝑧)

𝑇 is the unit outward normal vector along the boundary. Evaluating the volume 

integrals by a one-point quadrature rule, the quadrature point being the centroid of the 

cell, and evaluating the boundary integral using a mid-point quadrature rule, Eq. (3.10) 

can be written 

 

𝜕𝑼𝑖
𝜕𝑡

+
1

𝑉𝑖
∑𝑭 ∙ 𝒏𝑖𝑗ΔΓ𝑖𝑗

𝑁𝐹

𝑗

= 𝑺𝑖 (3.11) 

 

Here 𝑼𝑖 and 𝑺𝑖, respectively, are average values of 𝑼 and 𝑺 over the ith cell and stored at 

the cell centre. 𝑁𝐹 is the number of faces of the cell and the face 𝑖𝑗 is common to the cells 
associated with 𝑼𝑖 and 𝑼𝑗. ΔΓ𝑖𝑗 is the area of the face 𝑖𝑗, and  𝒏𝑖𝑗 is the restriction of 𝒏 to 

the face 𝑖𝑗. 

3.3 Numerical solution of the flow equations 

3.3.1 Space discretization of the Navier-Stokes equations 

The space discretization is performed using the finite volume method as described in 

Section 3.2. In this section, the focus is on the discretization for the equations in the 

sigma coordinate system.  
The normal convective flux 𝑭𝑛(𝑼𝐿, 𝑼𝑅) = 𝑭(𝑼𝐿, 𝑼𝑅) ∙ 𝒏𝒊𝒋 across a vertical face 𝑖𝑗 is 

determined using an approximate Riemann solver. The Riemann solver uses the variable 
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𝑼 = (ℎ, ℎ𝑢, ℎ𝑣, ℎ𝑤)𝑇 to the left and right of the face. The convective flux at the horizontal 

faces is calculated using a second-order upwinding scheme. The diffusive flux at the cell 

interfaces is approximated by a central scheme. The vertical discretization of the 

convective and diffusive terms results in a linear five-diagonal system which has to be 

solved for each column of the discrete momentum equation. 

Reconstruction of face values 

The variables, 𝑼𝐿 and 𝑼𝑅, to the left and right of a face are reconstructed from the cell 
values, 𝑼𝑖 and 𝑼𝑗, in two steps. 

 

In the first step, the variables 𝑼𝑙 and  𝑼𝑟 are determined from element values. For a first 
order scheme, 𝑼𝑙 = 𝑼𝑖 and 𝑼𝑟 = 𝑼𝑗. Second-order spatial accuracy is achieved by 

employing a linear gradient-reconstruction technique for the primitive variables 𝜂, 𝑢, 𝑣 and 

𝑤. The face value at the vertical faces for a variable 𝑞 in cell 𝑖 is obtained by 

 
𝑞𝑙 = 𝑞𝑖 + ∇𝑞𝑖 ∙ 𝒓𝑖𝑓 , 𝑞𝑟 = 𝑞𝑗 + ∇𝑞𝑗 ⋅ 𝒓𝑗𝑓 (3.12) 

 
where 𝒓𝑖𝑓 is the distance vector from the cell centre to the face and ∇𝑞𝑖 is the gradient 

vector. For estimation of the gradient vector, the Green-Gauss gradient approach is 

utilized. Here, the procedure proposed by Jawahar and Kamath (2000) is used. This 

procedure is based on a wide computational stencil to improve accuracy also for meshes 

with poor connectivity. The vertex (node) value is computed using the pseudo-Laplacian 

procedure proposed by Holmes and Connell (1989).  

 

For a second-order scheme, the water depth 𝑑 is also reconstructed at each side of the 

face using eq. (3.12) and then the total water depths at the left and right of the face are 

defined as  

 

ℎ𝑙 = max(0, 𝜂𝑙 + 𝑑𝑙) , ℎ𝑟 = max(0, 𝜂𝑟 + 𝑑𝑟) (3.13) 

 

 

In the second step, the variables 𝑼𝐿 and 𝑼𝑅 are determined from 𝑼𝑙 and 𝑼𝑟. The water 
depth is assigned the same value at both sides of the face, 𝑑𝑓 = 𝑑𝐿 = 𝑑𝑅. Depending on 

the total water depth, two different techniques are used. As default, the average value of 

water depth is used 

 

𝑑𝑓 =
1

2
(𝑑𝑙 + 𝑑𝑟) (3.14) 

 

and the total water depths are defined by 

 

ℎ𝐿 = max(𝜂𝑙 + 𝑑𝑓, 0) , ℎ𝑅 = max(𝜂𝑟 + 𝑑𝑓, 0). (3.15) 

 

If the total water height on either side is smaller than the difference in water depth, that is, 

if ℎ𝑙 < |𝑑𝑟 − 𝑑𝑙| or ℎ𝑟 < |𝑑𝑟 − 𝑑𝑙|, the water depth is instead defined as in Chen & Noelle 

(2017) by 

 
𝑑𝑓 = −min(−min(𝑑𝑙 , 𝑑𝑟) ,min(𝜂𝑙 , 𝜂𝑟)) (3.16) 

 

and the total water depths are defined by 

 

ℎ𝐿 = min(𝜂𝑙 + 𝑑𝑓, ℎ𝑙) , ℎ𝑅 = min(𝜂𝑟 + 𝑑𝑓, ℎ𝑟). (3.17) 
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Finally, the fluxes at each side of the face are determined from the velocities 𝑢𝑙, 𝑣𝑙, 𝑤𝑙, 𝑢𝑟, 
𝑣𝑟, 𝑤𝑟 and the total water depths ℎ𝐿, ℎ𝑅. 

 

Riemann solver 

The normal convective flux 𝑭𝑛(𝑼) = (𝑓1, 𝑓2, 𝑓3, 𝑓4) at the vertical faces in the sigma 

domain can be written 

 

𝑭𝑛(𝑼) =

(

 
 
 

ℎ𝑢⊥

ℎ𝑢𝑢⊥ +
1

2
𝑔(𝜂2 + 2𝜂𝑑)𝑛𝑥

ℎ𝑣𝑢⊥ +
1

2
𝑔(𝜂2 + 2𝜂𝑑)𝑛𝑦

ℎ𝑤𝑢⊥ )

 
 
 

 (3.18) 

 
where 𝑼 = (ℎ, ℎ𝑢, ℎ𝑣, ℎ𝑤)𝑇 is the solution vector, and 𝑢⊥ = 𝑢𝑛𝑥 + 𝑣𝑛𝑦 is the velocity 

perpendicular to the cell face. Here 𝑓1 is the contribution to the continuity equation, and 

𝑓2, 𝑓3 and  𝑓4 are the contributions to the three momentum equations. This flux is 

reconstructed at cell-interfaces using the HLLC scheme introduced by Toro et al. (1994) 

for solving the Euler equations. The shock-capturing scheme enables robust and stable 

simulation of flows involving shocks or discontinuities such as bores and hydraulic jumps. 

The interface flux is computed as follows (see Toro (2001)) 

 

𝑭(𝑼𝐿, 𝑼𝑅) ∙ 𝒏 = {

𝑭𝐿                       𝑖𝑓 𝑆𝐿 ≥ 0
𝑭∗𝐿            𝑖𝑓 𝑆𝐿 < 0 ≤ 𝑆∗
𝑭∗𝑅           𝑖𝑓 𝑆∗ < 0 ≤ 𝑆𝑅
𝑭𝑅                      𝑖𝑓 𝑆𝑅 ≤ 0

 (3.19) 

 

where 𝑭𝐿 = 𝑭𝑛(𝑼𝐿) and 𝑭𝑅 = 𝑭𝑛(𝑼𝑅)  are calculated from Eq. (3.18), and the middle 

region fluxes,  𝑭∗𝐿  and  𝑭∗𝑅  are given by 

 

𝑭∗𝐿 = (

𝑒1
𝑒2𝑛𝑥 − 𝑢∥𝐿𝑒1𝑛𝑦
𝑒2𝑛𝑦 + 𝑢∥𝐿𝑒1𝑛𝑥

𝑒3

) (3.20) 

 

𝑭∗𝑅 = (

𝑒1
𝑒2𝑛𝑥 − 𝑢∥𝑅𝑒1𝑛𝑦
𝑒2𝑛𝑦 + 𝑢∥𝑅𝑒1𝑛𝑥

𝑒3

) (3.21) 

 
Here 𝑢∥ = −𝑢𝑛𝑦 + 𝑣𝑛𝑥 is the velocity tangential to the cell face, and (𝑒1, 𝑒2, 𝑒3) is the 

component of the normal flux which is calculated using the HLL solver proposed by 

Harten et al. (1983) 

 

𝑬 =
𝑆𝑅𝑬̂𝐿 − 𝑆𝐿𝑬̂𝑅 + 𝑓𝐻𝐿𝐿𝐶𝑆𝐿𝑆𝑅(𝑼̂𝑅 − 𝑼̂𝐿)

𝑆𝑅 − 𝑆𝐿
 (3.22) 

 

Here 𝑼̂ = (ℎ, ℎ𝑢⊥, ℎ𝜔)
𝑇 and 𝑬̂ = (ℎ𝑢⊥, ℎ𝑢⊥𝑢⊥ +

1

2
𝑔(𝜂2 + 2𝜂𝑑), ℎ𝜔)

𝑇

. To be able to scale 

the damping introduced by the HLLC solver a scaling factor  𝑓𝐻𝐿𝐿𝐶 has been introduced, 

where the factor must be in the interval [0,1]. The scaling factor, 𝑓𝐻𝐿𝐿𝐶 = 1, corresponds to 

the standard HLLC solver. 
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An appropriate method for approximating the wave speeds is essential for the efficiency 

of the HLLC solver. Different approximations can be found in the literature, e.g. 

Fraccarollo and Toro (1994). Here the approach used by Song et al. (2011) is used 

 

𝑆𝐿 = {
𝑢⊥𝑅 − 2√𝑔ℎ𝑅                                               ℎ𝐿 = 0

𝑚𝑖𝑛(𝑢⊥𝐿 −√𝑔ℎ𝐿, 𝑢⊥∗ −√𝑔ℎ∗)              ℎ𝐿 > 0
 (3.23) 

 

and 

 

𝑆𝑅 = {
𝑢⊥𝐿 + 2√𝑔ℎ𝐿                                              ℎ𝑅 = 0

𝑚𝑎𝑥(𝑢⊥𝑅 +√𝑔ℎ𝑅, 𝑢⊥∗ +√𝑔ℎ∗)            ℎ𝑅 > 0
 (3.24) 

 

where the Roe-averaged quantities  

 

𝑢⊥∗ =
𝑢⊥𝐿√ℎ𝐿 + 𝑢⊥𝑅√ℎ𝑅

√ℎ𝐿 +√ℎ𝑅
 (3.25) 

 

ℎ∗ =
1

2
(ℎ𝐿 + ℎ𝑅) (3.26) 

 

The wave speed 𝑆∗ is given by the  

 

𝑆∗ =
𝑆𝐿ℎ𝑅(𝑢⊥𝑅 − 𝑆𝑅) − 𝑆𝑅ℎ𝐿(𝑢⊥𝐿 − 𝑆𝐿)

ℎ𝑅(𝑢⊥𝑅 − 𝑆𝑅) − ℎ𝐿(𝑢⊥𝐿 − 𝑆𝐿)
 (3.27) 

 

3.3.2 Space discretization of the shallow water equations 

The space discretization is performed using the finite volume method as described in 

Section 3.2. In this section, the focus is on the discretization for the equations in the 

sigma coordinate system. 

 
The normal convective flux 𝑭𝑛(𝑼𝐿, 𝑼𝑅) = 𝑭(𝑼𝐿, 𝑼𝑅) ∙ 𝒏𝒊𝒋 across a face 𝑖𝑗 is determined 

using an approximate Riemann solver. The Riemann solver uses the variable 𝑼 =
(ℎ, ℎ𝑢, ℎ𝑣)𝑇 to the left and right of the face. The convective flux at the horizontal faces is 

calculated using a first-order upwinding scheme. The diffusive flux at the cell interfaces is 

approximated by a central scheme. The vertical discretization of the convective and 

diffusive terms results in a linear three-diagonal system, which has to be solved for each 

column of the discrete momentum equation. 

 

The reconstruction of the variables, 𝑼𝐿 and 𝑼𝑅, to the left and right of a vertical follows the 

same approach as for the Navier-Stokes equations. To avoid numerical oscillations a 

second order TVD slope limiter (Van Leer limiter, see Hirch, 1990 and Darwish, 2003) is 

used for the second-order reconstruction of variables. 

  

The normal convective flux 𝑭𝑛(𝑼𝐿, 𝑼𝑅) across vertical faces is calculated using the HLLC 

approximate Riemann solver. The HLLC scheme for the shallow water equations is the 

same as the HLLC scheme for the Navier-Stokes equations except it does not have a 

fourth component of the flux that corresponds to the vertical momemtum equation.  
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3.3.3 Time integration of the Navier-Stokes equations 

The time integration of the Navier-Stokes equations is performed using a semi-implicit 

scheme. The vertical convective and diffusive terms are discretized using an implicit 

scheme to remove the stability limitations associated with the vertical resolution. Here a 

second order implicit trapezoidal method is used (see Lambert (1973) and Hirsch (1990)). 

The remaining terms are discretized using a two-stage explicit second-order Runge-Kutta 

scheme (the midpoint method). The non-hydrostatic pressure is treated by a fractional 

step approach developed by Chorin (1968) called the projection method which is based 

on the Helmholtz-Hodge decomposition. In the sigma coordinate system, the integration 

procedure is 

 

Stage 1: 

 

ℎ𝑛+1/2 − ℎ𝑛

Δ𝑡/2
= −(

𝜕𝐹𝑥
𝑐

𝜕𝑥′
+
𝜕𝐹𝑦

𝑐

𝜕𝑦′
)

𝑛

 (3.28) 

 

𝑼∗ − 𝑼𝑛

Δ𝑡/2
=  −(

𝜕𝑭𝑥
𝑚

𝜕𝑥′
+
𝜕𝑭𝑦

𝑚

𝜕𝑦′
)

𝑛

−
1

2
((
𝜕𝑭𝜎

𝑚

𝜕𝜎
)
∗

+ (
𝜕𝑭𝜎

𝑚

𝜕𝜎
)
𝑛

) + 𝑺ℎ
𝑛 + 𝑺𝑞

𝑛 (3.29) 

 

𝑼𝑛+1/2 −𝑼⋆

Δ𝑡/2
= 𝑺𝑞

∗  (3.30) 

 

Stage 2: 

 

ℎ𝑛+1 − ℎ𝑛

Δ𝑡
= −(

𝜕𝐹𝑥
𝑐

𝜕𝑥′
+
𝜕𝐹𝑦

𝑐

𝜕𝑦′
)

𝑛+1/2

 (3.31) 

 

𝑼∗ − 𝑼𝑛

Δ𝑡
=  −(

𝜕𝑭𝑥
𝑚

𝜕𝑥′
+
𝜕𝑭𝑦

𝑚

𝜕𝑦′
)

𝑛+1/2

−
1

2
((
𝜕𝑭𝜎

𝑚

𝜕𝑧
)
∗

+ (
𝜕𝑭𝜎

𝑚

𝜕𝑧
)
𝑛

) + 𝑺ℎ
𝑛 + 𝑺𝑞

𝑛 (3.32) 

 
𝑼𝑛+1 − 𝑼⋆

Δ𝑡
= 𝑺𝑞

∗  (3.33) 

 
Calculating  𝑺𝑞

∗  requires knowledge of the non-hydrostatic pressure, 𝑞. The pressure is 

calculated solving a Poisson equation. The modified vertical velocity is calculated after the 

update of the water depth from Eq. (2.102).  

 

Due to the explicit scheme, the time step interval, ∆𝑡, is restricted by the Courant-

Friedrichs-Lewy (CFL) condition   

 

𝐶 = Δ𝑡
(√𝑔ℎ + |𝑢|) + (√𝑔ℎ + |𝑣|)

Δ𝑙
≤ 𝐶𝑚𝑎𝑥 (3.34) 

 

where 𝐶 is the Courant number and Δ𝑙 is a characteristic length. 𝐶𝑚𝑎𝑥 is the maximum 

Courant number and must be less than or equal to 1. A variable time step interval is used 

in the time integration of the Navier-Stokes equations and determined so that the Courant 

number is less than a maximum Courant number in all computational nodes. The 

characteristic length for a prism, where the horizontal face is a quadrilateral element, is 

determined as the area of the element divided by the longest edge length of the element. 

If the horizontal face is a triangular element, the characteristic length is two times the area 

divided by the longest edge length. 
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3.3.4 Poisson equation 

The Poisson equation is derived by differentiating the three components of the vector Eq. 

(3.30) and (3.33) by 𝑥′, 𝑦′ and 𝜎 and substituting the resulting expressions back into the 

continuity equation  

 
𝜕𝑢

𝜕𝑥′
+
𝜕𝑢

𝜕𝜎

𝜕𝜎

𝜕𝑥
+
𝜕𝑣

𝜕𝑦′
+
𝜕𝑣

𝜕𝜎

𝜕𝜎

𝜕𝑦
+
1

ℎ

𝜕𝑤

𝜕𝜎
= 0 (3.35) 

 

The resulting Poisson equation in sigma coordinates reads 

 
𝜕2𝑞

𝜕𝑥′2
+
𝜕2𝑞

𝜕𝑦′2
+  (𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2)
𝜕2𝑞

𝜕𝜎2
+  2𝐴𝑥

𝜕2𝑞

𝜕𝑥′𝜕𝜎
+ 2𝐴𝑦

𝜕2𝑞

𝜕𝑦′𝜕𝜎
+ 

         (
𝜕𝐴𝑥
𝜕𝑥′

+
𝜕𝐴𝑦
𝜕𝑦′

)  
𝜕𝑞

𝜕𝜎
=
𝜌0
Δ𝑡∗

(
𝜕𝑢⋆

𝜕𝑥′
+  
𝜕𝑣⋆

𝜕𝑦′
 +  𝐴𝑥

𝜕𝑢⋆

𝜕𝜎
 +  𝐴𝑦

𝜕𝑣⋆

𝜕𝜎
+ 𝐴𝑧

𝜕𝑤⋆

𝜕𝜎
) 

(3.36) 

 

In the first stage Δ𝑡∗ = Δ𝑡/2, and in the second stage Δ𝑡∗ = Δ𝑡. The Poisson equation in 

Cartesian coordinate reads 
 
𝜕2𝑞

𝜕𝑥2
+
𝜕2𝑞

𝜕𝑦2
+
𝜕2𝑞

𝜕𝑧2
=
𝜌0
Δ𝑡∗

(
𝜕𝑢⋆

𝜕𝑥
+  
𝜕𝑣⋆

𝜕𝑦
 +  

𝜕𝑤⋆

𝜕𝑧
) (3.37) 

 
The surface and bottom boundary conditions for the non-hydrostatic pressure, 𝑞, in the 

sigma coordinate system are  

 

at 𝑧 =  𝜂 

 
𝑞 = 0 (3.38) 

 

𝑎𝑡 𝑧 =  −𝑑 

 
𝜕𝑞

𝜕𝜎
= 0 (3.39) 

 

For applications where the still water depth, 𝑑, is changing in time the following bottom 

boundary condition is used  

 
𝜕𝑞

𝜕𝜎
= 𝜌0ℎ

𝜕2𝑑

𝜕𝑡2
 (3.40) 

 

In a Cartesian coordinate system, the boundary condition at the bottom is 

 
𝜕𝑞

𝜕𝑧
= 0 (3.41) 

 

Discretization of the Poisson pressure equation is performed by integrating over the 

individual control volumes. The procedure results in a large sparse linear system that 

needs to be solved in each of the two stages in the time integration procedure. This 

sparse linear system of equations is solved using an iterative solver from the PETSc 

library, Balay (2017). More specifically, the iterative solver is the restarted Generalized 

Minimal Residual method (GMRES), which for single-subdomain simulations is 

preconditioned with a two-level incomplete LU factorization, ILU(2). For multi-subdomain 

simulations the Block Jacobi preconditioner is used, where each block is solved with 

ILU(2). Each block coincides with the division of variables over the processors. See 

Chapter 6 for further details on single- and multi-subdomain simulations. 



 MIKE 3 Flow Model FM 

32 Hydrodynamic and Transport Module - © DHI A/S 

3.3.5 Time integration of the shallow water equations  

The time integration of the shallow water equations is performed using a semi-implicit 

scheme. The vertical convective and diffusive terms are discretized using an implicit 

scheme to remove the stability limitations associated with the vertical resolution. Here a 

second order implicit trapezoidal method is used (see Lambert (1973) and Hirsch (1990)). 

The remaining terms are discretized using either a first-order explicit Euler scheme or a 

two-stage explicit second-order Runge-Kutta scheme (the midpoint method). In the sigma 

coordinate system, the integration procedure for the explicit Euler scheme is 

 

ℎ𝑛+1 − ℎ𝑛

Δ𝑡
= −(

𝜕𝐹𝑥
𝑐

𝜕𝑥′
+
𝜕𝐹𝑦

𝑐

𝜕𝑦′
)

𝑛

 (3.42) 

 

𝑼𝑛+1 − 𝑼𝑛

Δ𝑡
=  −(

𝜕𝑭𝑥
𝑚

𝜕𝑥′
+
𝜕𝑭𝑦

𝑚

𝜕𝑦′
)

𝑛

−
1

2
((
𝜕𝑭𝑧

𝑚

𝜕𝜎
)
𝑛+1

+ (
𝜕𝑭𝑧

𝑚

𝜕𝜎
)
𝑛

) + 𝑺ℎ
𝑛 + 𝑺𝑞

𝑛 (3.43) 

 

 

The integration procedure for the two-stage explicit Runge-Kutta scheme is 

 

Stage 1: 

 

ℎ𝑛+1/2 − ℎ𝑛

Δ𝑡/2
= −(

𝜕𝐹𝑥
𝑐

𝜕𝑥′
+
𝜕𝐹𝑦

𝑐

𝜕𝑦′
)

𝑛

 (3.44) 

 

𝑼𝑛+1/2 −𝑼𝑛

Δ𝑡/2
=  −(

𝜕𝑭𝑥
𝑚

𝜕𝑥′
+
𝜕𝑭𝑦

𝑚

𝜕𝑦′
)

𝑛

−
1

2
((
𝜕𝑭𝑧

𝑚

𝜕𝜎
)
𝑛+1/2

+ (
𝜕𝑭𝑧

𝑚

𝜕𝜎
)
𝑛

) + 𝑺ℎ
𝑛 + 𝑺𝑞

𝑛 (3.45) 

 

Stage 2: 

 

ℎ𝑛+1 − ℎ𝑛

Δ𝑡
= −(

𝜕𝐹𝑥
𝑐

𝜕𝑥′
+
𝜕𝐹𝑦

𝑐

𝜕𝑦′
)

𝑛+1/2

 (3.46) 

 

𝑼𝑛+1 − 𝑼𝑛

Δ𝑡
=  −(

𝜕𝑭𝑥
𝑚

𝜕𝑥′
+
𝜕𝑭𝑦

𝑚

𝜕𝑦′
)

𝑛+1/2

−
1

2
((
𝜕𝑭𝑧

𝑚

𝜕𝑧
)
𝑛+1

+ (
𝜕𝑭𝑧

𝑚

𝜕𝑧
)
𝑛

) + 𝑺ℎ
𝑛 + 𝑺𝑞

𝑛 (3.47) 

 

3.3.1 Explicit filtering 

The collocated grid discretization in combination with unstructured triangular meshes is 

known to produce checkerboard oscillations in the horizontal velocity field, when the 

higher-order scheme is applied in space. A number of methods has been proposed to 

solve this problem (see Wolfram and Fringer (2013), Zhang et al. (2014). Here, a filtering 

procedure is applied.  

 

An explicit filtering of the horizontal velocity field is performed using the following simple 

approach 

 

𝑢𝑖 = (1 − 𝑓)𝑢𝑖 + 𝑓𝑢̅𝑖 
𝑣𝑖 = (1 − 𝑓)𝑣𝑖 + 𝑓𝑣̅𝑖 

(3.48) 

 

where (𝑢𝑖 , 𝑣𝑖) is the horizontal velocity components in element 𝑖, (𝑢̅𝑖 , 𝑣̅𝑖) is the mean 

velocity components calculated as an area-weighted mean value of the discrete velocity 
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components in element 𝑖 and the neighboring elements.  𝑓 is a filter factor. A typical value 

of the filter factor is in the range from 0.001 to 0.02. The filtering is performed at each 

stage in the time integration. 

3.3.2 Flooding and drying 

The approach for treatment of the moving boundaries (flooding and drying fronts) problem 

is based on the work by Zhao et al. (1994) and Sleigh et al. (1998). When the depths are 

small the problem is reformulated, and only when the depths are very small the 

elements/cells are removed from the calculation. The reformulation is made by setting the 

momentum fluxes to zero and only taking the mass fluxes into consideration. 

 

The depth in each element is monitored and the elements are classified as dry, partially 

dry or wet. Also, the element faces are monitored to identify flooded element faces. 

 

• An element face is defined as flooded if the water depth at one side of a face is less 
than a tolerance depth, ℎ𝑑𝑟𝑦, and the water depth at the other side of the face is 

larger than a tolerance depth, ℎ𝑤𝑒𝑡 . 

• An element is dry if the water depth is less than a tolerance depth, ℎ𝑑𝑟𝑦, and none of 

the element faces are flooded faces. The element is removed from the calculation. 
• An element is partially dry if the water depth is larger than ℎ𝑑𝑟𝑦 and less than a 

tolerance depth, ℎ𝑤𝑒𝑡, or when the depth is less than ℎ𝑑𝑟𝑦, and one of the element 

faces is a flooded face. The momentum fluxes are set to zero, and only the mass 

fluxes are calculated. 

• An element is wet if the water depth is bigger than ℎ𝑤𝑒𝑡. Both the mass flux and the 

momentum flux are calculated. 

A non-physical flow across the face will be introduced for a flooded face when the surface 

elevation in the wet element on one side of the face is lower than the bed level in the 

partially wet element on the other side. To overcome this problem the face will be treated 

as a closed boundary (Section 3.3.3).  

 

In case the water depth becomes negative, the water depth is set to zero, and the water is 

subtracted from the adjacent elements to maintain mass balance. When this occurs the 

water depth at the adjacent elements may become negative. Therefore, an iterative 

correction of the water depth is applied (max. 100 iterations). Normally only one or a few 

correction steps are needed. 

3.3.3 Boundary conditions 

At the lateral closed (solid) boundaries, either a condition of zero velocity or a condition of 

zero normal velocity is imposed. A condition of zero velocity, 𝑢 = 𝑣 = 𝑤 = 0, is also called 

a no-slip condition. For a condition with zero normal velocity, 𝑢⊥ = 0, the normal flux 

vector is 

 

𝑭𝑛(𝑼) =

(

  
 

0
1

2
𝑔(𝜂2 + 2𝜂𝑑)𝑛𝑥

1

2
𝑔(𝜂2 + 2𝜂𝑑)𝑛𝑦

0 )

  
 
, 𝑭𝑛(𝑼) =

(

 
 

0
1

2
𝑔(𝜂2 + 2𝜂𝑑)𝑛𝑥

1

2
𝑔(𝜂2 + 2𝜂𝑑)𝑛𝑦)

 
 

 (3.49) 

 

for the Navier-stokes equations and the shallow water equations, respectively. For the 

zero normal velocity condition, a wall friction can be applied, see section 4.3. If the normal 
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velocity is zero and there is no wall friction, the tangential stress is set to zero and this 

boundary condition is sometimes called a full-slip condition. 

 

 At the lateral open boundaries, a number of different boundary conditions can be applied.   

 

The level boundary condition is imposed using a strong approach based on the 

characteristic theory (see e.g. Sleigh et al., 1998). 

 

The discharge boundary condition is imposed using both a strong approach based on the 

characteristic theory (see e.g. Sleigh et al., 1998) and a weak formulation using ghost cell 

technique. For the ghost cell technique the primitive variables in the ghost cell are 

specified. The water level is evaluated based on the value of the adjacent interior cell, and 

the velocities are evaluated based on the boundary information. For a discharge 

boundary, the transverse velocity is set to zero for inflow and passively advected for 

outflow. The boundary flux is then calculated using an approximate Riemann solver. Note 

that using the weak formulation for a discharge boundary the effective discharge over the 

boundary may deviate from the specified discharge.  

 

The free outflow boundary condition is also imposed using a weak approach. The 

primitive variables in the ghost cell are evaluated based on the value of the adjacent 

interior cell. A simple Neumann condition is applied where the gradient of the water level 

and velocities are zero. 

 

The flux, velocity and Flather boundary conditions are all imposed using a weak 

approach. The Flather (1976) condition is one of the most efficient open boundary 

conditions. It is very efficient in connection with downscaling coarse model simulations to 

local areas (see Oddo and Pinardi (2007)). The instabilities, which are often observed 

when imposing stratified density at a water level boundary, can be avoided using Flather 

conditions. 

 

At lateral closed boundaries and open boundaries the normal pressure gradient is zero. 

3.4 Numerical solution of the transport equations 

3.4.1 Spatial discretization 

Using the first-order scheme for the spatial discretization the normal flux due to the 

convective terms at the (vertical) faces is calculated using simple upwinding. It is 

calculated as the mass flux times the concentration at the element in the upwind direction. 

The numerical damping using the first order scheme is quite high. The advantage is that 

there is no overshooting or undershooting, which for some applications is very important. 

Using the second-order scheme for the spatial discretization a higher-order upwind 

scheme is applied. The concentration at the (vertical) faces is determined using a linear 

gradient reconstruction technique based on the concentration and the gradient of the 

concentration at the element in the upwind direction. The gradient is determined using a 

wide computational stencil (see section 3.3.1). To provide stability and minimize 

oscillatory effects, the gradient limiter proposed by Barth and Jespersen (1989) is applied 

to limit the horizontal gradients. This approach significantly reduces the numerical 

damping compared to the first-order scheme. 

 

When the explicit time integration approach is used for the vertical convective terms, the 

calculation of the normal flux due to the convective terms at the horizontal faces is 

performed using a 3rd order ENO procedure (Shu, 1997). When the implicit time 
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integration approach is used for the vertical convective terms the normal flux is calculated 

using a first-order upwinding scheme. 

3.4.2 Time integration 

The time integration is performed using either a first order explicit Euler method or a 

second-order explicit Runge-Kutta scheme (the midpoint method). However, to overcome 

the severe time step restriction due to small vertical grid spacing, the vertical convective 

and diffusive terms are treated implicitly. The vertical diffusion term is treated using a 

second order implicit trapezoidal method. The vertical convective term is treated either 

using the explicit method or an implicit Euler method, and the same method is used for all 

discrete equations in a column of the 3D mesh. The explicit method is used when the 

following criteria are satisfied 

 

Sigma domain 

 
𝜔𝑖∆𝑡

∆𝜎𝑖
<
1

2
 (3.50) 

 

z-level domain 

 
𝑤𝑖∆𝑡

∆𝑧𝑖
<
1

2
 (3.51) 

 

for all elements in the column. Here 𝜔𝑖 is the modified vertical velocity and Δ𝜎𝑖 the vertical 

grid spacing in the sigma domain. 𝑤𝑖 is the vertical velocity and Δz𝑖 the vertical grid 

spacing in the z-level domain. Finally, Δ𝑡 is the discrete time step interval. For details of 

the time integration methods, see Lambert (1973) and Hirsch (1990).  

 

Due to the explicit scheme, the time step interval, ∆𝑡, is restricted by the Courant-

Friedrichs-Lewy (CFL) condition   

 

𝐶 = Δ𝑡
|𝑢| + |𝑣|

Δ𝑙
≤ 𝐶𝑚𝑎𝑥 (3.52) 

 

where 𝐶 is the Courant number and Δ𝑙 is a characteristic length. 𝐶𝑚𝑎𝑥 is the maximum 

Courant number and must be less than or equal to 1. A variable time step interval is used 

in the time integration of the transport equations for temperature and salinity and the 

transport equation for a scalar quantity and determined so that the Courant number is less 

than a maximum Courant number in all computational nodes. The characteristic length for 

a prism, where the horizontal face is a quadrilateral element, is determined as the area of 

the element divided by the longest edge length of the element. If the horizontal face is a 

triangular element, the characteristic length is two times the area divided by the longest 

edge length. The transport equations for the turbulence model are solved using the same 

time step as used for solving the flow equations. 

3.4.3 Boundary conditions 

For lateral closed (solid) boundaries the normal convective flux is zero, and the normal 

gradient of the transport variables is zero. 

 

For lateral open boundaries either a specified value or a zero gradient can be given. For 

specified values, the boundary conditions are imposed by applying the specified 

concentrations for calculation of the boundary flux. For a zero gradient condition, the 
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concentration at the boundary is assumed to be identical to the concentration at the 

adjacent interior cell. 

 

Solving the transport equations for the turbulence model, the lateral closed boundary 

conditions depend on the boundary conditions for the flow equations. In case of no-slip 

condition or in case of zero normal velocity where wall friction is applied, a Dirichlet 

boundary condition is applied. The values in the elements at the wall are calculated using 

the wall functions in eq. (2.79) . In this case, Δ𝑦 = Δ𝑦𝑤 is the distance to the wall from the 

center of the elements and 𝑈𝜏 = 𝑈𝜏𝑤 is the friction velocity associated with the wall stress, 

see section 4.3. In case of zero normal velocity without wall friction, the normal convective 

flux is zero, and the normal gradient of the transport variables is zero. 

 

3.5 Time stepping procedure 

The solution is determined at a sequence of discrete times 

 

𝑡𝑘 = 𝑡0 + 𝑘∆𝑡𝑜𝑣𝑒𝑟𝑎𝑙𝑙       𝑘 = 0, 1, 2, 3… (3.53) 

 

where ∆𝑡𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is the overall time step interval. The time steps for the hydrodynamic (flow) 

calculations and the advection-dispersion (transport) calculations are dynamic. The time 

step procedure is illustrated in Figure 3.8. 

 

For the advection-dispersion (AD) calculations the new time step interval, ∆𝑡𝐴𝐷, is deter-

mined using the following procedure 

 

∆𝑡𝐴𝐷
∗ = 𝐶𝑚𝑎𝑥𝑚𝑖𝑛 (

∆𝑙

(√𝑔ℎ𝑖 + |𝑢𝑖|) + (√𝑔ℎ𝑖 + |𝑣𝑖|)
) (3.54) 

 

∆𝑡𝐴𝐷
∗∗ = 𝑚𝑖𝑛 (𝑚𝑎𝑥(∆𝑡𝐴𝐷

∗ , ∆𝑡𝐴𝐷,𝑚𝑖𝑛) , ∆𝑡𝐴𝐷,𝑚𝑎𝑥) (3.55) 

 

∆𝑡𝐴𝐷 =
𝑡𝑘 − 𝑡𝐴𝐷

𝑖𝑛𝑡 (
(𝑡𝑘 − 𝑡𝐴𝐷)
∆𝑡𝐴𝐷

∗∗ ) + 1
 

(3.56) 

 

Here 𝑡𝐴𝐷 is the actual time for the advection-dispersion calculations, where 𝑡𝑘−1 < 𝑡𝐴𝐷 ≤
𝑡𝑘. Δ𝑡𝐴𝐷,𝑚𝑖𝑛 and Δ𝑡𝐴𝐷,𝑚𝑎𝑥 are the minimum and maximum time step intervals, respectively, 

and 𝑖𝑛𝑡 is the whole number of (𝑡𝑘 − 𝑡𝐴𝐷)/∆𝑡𝐴𝐷
∗∗ . This procedure secures that the time 

steps for the advection-dispersion calculations are synchronized at the overall discrete 

time steps. 

 

For the hydrodynamic (HD) calculations the new time step interval, ∆𝑡𝐻𝐷, is determined 

using the following procedure 

 

∆𝑡𝐻𝐷
∗ = 𝐶𝑚𝑎𝑥𝑚𝑖𝑛 (

∆𝑙

|𝑢𝑖| + |𝑣𝑖|
) (3.57) 

 

∆𝑡𝐻𝐷
∗∗ = 𝑚𝑖𝑛 (𝑚𝑎𝑥(∆𝑡𝐻𝐷

∗ , ∆𝑡𝐻𝐷,𝑚𝑖𝑛) , ∆𝑡𝐻𝐷,𝑚𝑎𝑥) (3.58) 

 

∆𝑡𝐻𝐷 =
(𝑡𝐴𝐷 + ∆𝑡𝐴𝐷) − 𝑡𝐻𝐷

𝑖𝑛𝑡 (
((𝑡𝐴𝐷 + ∆𝑡𝐴𝐷) − 𝑡𝐻𝐷)

∆𝑡𝐻𝐷
∗∗ ) + 1

 
(3.59) 
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Here 𝑡𝐻𝐷 the is actual time for the hydrodynamic calculations, where 𝑡𝐴𝐷 < 𝑡𝐻𝐷 ≤ 𝑡𝐴𝐷 +
∆𝑡𝐴𝐷. Δ𝑡𝐻𝐷,𝑚𝑖𝑛 and Δ𝑡𝐻𝐷,𝑚𝑎𝑥 are the minimum and maximum time step intervals, 

respectively. This procedure secures that the time steps for the hydrodynamic calculations 

are synchronized at the advection-dispersion time steps. 

 

 

 
Figure 3.8 Time stepping procedure 
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4 Physics 

4.1 Eddy viscosity 

Both the vertical and horizontal eddy viscosity can be derived solving a turbulence closure 

model (see section 2.1.4). In that case the eddy viscosity is calculated using eq. (2.34) or 

(2.59). In some applications, a constant eddy viscosity can be used for the horizontal 

eddy viscosity. Alternatively, Smagorinsky (1963) proposed to express sub-grid scale 

transports by an effective eddy viscosity related to a characteristic length scale. The sub-

grid scale eddy viscosity is given by 

 

𝜈𝑡
ℎ = 𝑐𝑠

2𝑙2√2(𝑆𝑥𝑥𝑆𝑥𝑥 + 2𝑆𝑥𝑦𝑆𝑥𝑦 + 𝑆𝑦𝑦𝑆𝑦𝑦) (4.1) 

 

where 𝑐𝑠 is a constant, 𝑙 is a characteristic length and the deformation rate is given by  

 

𝑆𝑥𝑥 =
𝜕𝑢

𝜕𝑥
     𝑆𝑥𝑦 =

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)     𝑆𝑦𝑦 =

𝜕𝑣

𝜕𝑦
 (4.2) 

 

For more details on this formulation, the reader is referred to Lilly (1967), Leonard (1974), 

Aupoix (1984), and Horiuti (1987). 

 

The vertical eddy viscosity derived from the log-law can also in some cases be applied. 

Here the eddy viscosity is calculated by 

 

𝜈𝑡
𝑣 = 𝑈𝜏ℎ (𝑐1

𝑧 + 𝑑

ℎ
+ 𝑐2 (

𝑧 + 𝑑

ℎ
)
2

) (4.3) 

 

where 𝑈𝜏 = max(𝑈𝜏𝑠, 𝑈𝜏𝑏) and 𝑐1 and 𝑐2 are two constants. 𝑈𝜏𝑠 and  𝑈𝜏𝑏 are the friction 

velocities associated with the surface and bottom stresses, 𝑐1 = 0.41 and  𝑐2 = −0.41  

give the standard parabolic profile.  

 

In applications with stratification, the effects of buoyancy can be included explicitly. This is 

done through the introduction of a Richardson number dependent damping of the eddy 

viscosity coefficient, when a stable stratification occurs. The damping is a generalization 

of the Munk-Anderson formulation (Munk and Anderson, 1948) 

 

𝜈𝑡
𝑣 = (𝜈∗)𝑡

𝑣(1 + 𝑎𝑅𝑖)−𝑏 (4.4) 

 

where (𝜈∗)𝑡
𝑣 is the undamped eddy viscosity and 𝑅𝑖 is the local gradient Richardson 

number 

 

𝑅𝑖 = −
𝑔

𝜌0

𝜕𝜌

𝜕𝑧
((
𝜕𝑢

𝜕𝑧
)
2

+ (
𝜕𝑣

𝜕𝑧
)
2

)

−1

 (4.5) 

 

and 𝑎 = 10 and 𝑏 = 0.5 are empirical constants.  

4.2 Bed resistance 

The bottom stress, 𝝉𝑏 = (𝜏𝑏𝑥, 𝜏𝑏𝑦) is determined by a quadratic friction law 

 
𝝉𝑏 = 𝜌0𝑐𝑓𝒖𝑏|𝒖𝑏| (4.6) 
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where 𝑐𝑓 is the drag coefficient, and, 𝒖𝑏 the flow velocity tangential to the seabed at a 

distance Δ𝑧𝑏 above the bed. For the shallow water equations, the normal velocity at the 

bed is assumed to be zero. The drag coefficient is determined by assuming a logarithmic 

profile between the seabed and a point Δ𝑧𝑏 above the seabed 

 

𝑐𝑓 =
1

(
1
𝜅
ln (max (

∆𝑧𝑏
𝑧0

, 2)))

2 
(4.7) 

 

where 𝜅 = 0.41 is the von Kármán constant, and 𝑧0 is the bed roughness length scale. 

When the boundary surface is rough, 𝑧0 depends on the roughness height, 𝑘𝑠, through  

 

𝑧0 = 𝑚𝑘𝑠 (4.8) 

 

where 𝑚 is approximately 1/30. 

 

The friction velocity associated with the bottom stress is given by 

 

𝑈𝜏𝑏 = √𝑐𝑓|𝒖𝑏|
2 (4.9) 

 

The increase in bed resistance felt by the current due to the presence of the waves can 

be taken into account by calculating a Manning number, 𝑀, given the grain diameter and 

the relative density of the bed material. Here the model for the wave boundary layer in 

combined wave-current motion proposed by Fredsøe (1994) is applied. For a detailed 

description of the wave induced bed resistance see also Jones et. al (2014). The 

roughness height can then be estimated using the following expression 

 

𝑘𝑠 = (
25.4

𝑀
)
6

 (4.10) 

 

A semi-implicit discretization is used to get a stable solution for small water depths, which 

for element 𝑖 reads 

 

First stage: 

 

𝝉𝑏𝑖
𝑛+1/2

𝜌0
= 𝑐𝑓

𝑛|𝒖𝑖
𝑛|𝒖𝑖

∗ (4.11) 

 

Second stage: 

 

𝝉𝑏𝑖
𝑛+1

𝜌0
= 𝑐𝑓

𝑛|𝒖𝑖
𝑛+1/2

|𝒖𝑖
∗ (4.12) 

 

Here the ∗ indicates the provisional value of the velocity. 

4.3 Wall friction 

For closed lateral boundary with zero normal velocity and wall friction, the stress 𝝉𝑤 

tangential to the wall is determined by a quadratic friction law 

 
𝝉𝑤 = 𝜌0𝑐𝑓𝒖𝑤𝑎𝑙𝑙|𝒖𝑤𝑎𝑙𝑙| (4.13) 
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Here, 𝑐𝑓 is the drag coefficient and 𝒖𝑤𝑎𝑙𝑙 is the velocity tangential to the wall at a distance 

∆𝑦𝑤 to the wall; 𝒖𝑤𝑎𝑙𝑙 and ∆𝑦𝑤 are evaluated at the cell center. The drag coefficient is 

given by 

 

𝑐𝑓 =
1

(
1
𝜅
ln (max (

∆𝑦𝑤
𝑦0

, 2)))

2 
(4.14) 

 

where 𝜅 = 0.41 is the von Kármán constant and 𝑦0 is the wall roughness length scale 

given by  

 

𝑦0 = 𝑚𝑘𝑠 (4.15) 

 

The parameter 𝑘𝑠 is a wall roughness height and 𝑚 ≈ 1 30⁄ . Furthermore, the friction 

velocity 𝑈𝜏𝑤 at the wall is determined as follows (Fuhrman et. al. (2014)). 

 

𝑈𝜏𝑤 = √𝑐𝑓|𝒖𝑤𝑎𝑙𝑙|
2 (4.16) 

 

For a closed lateral boundary with zero velocity (i.e., a no-slip condition), the friction 

velocity can be determined using the law of the wall (Bredberg (2008), Wilcox (1998)) 

 
|𝒖𝑤𝑎𝑙𝑙|

𝑈𝜏𝑤
=
1

𝜅
ln (

𝑈𝜏𝑤Δ𝑦𝑤
𝜈

) + 𝐵 (4.17) 

 

Here, 𝜈 is the kinematic viscosity of water and 𝐵 = 5.1 is an empirically determined 

constant. Eq. (4.17) is solved iteratively to find 𝑈𝜏𝑤, the friction velocity at the wall, and 

this value can be used in the boundary conditions of the turbulence models described in 

section 2.1.4.  

 

4.4 Vegetation 

The vegetation structure is modelled as rigid or flexible stems with stem diameter, ds, or 

as flexible blades (leaves) with blade width, wb, and blade thickness, tb. The height of the 

vegetation is hv. 

 

The effect of the vegetation on the flow characteristics is modelled by inclusion of the 

following drag force in the momentum equations 

 

𝑭𝑣 =
1

2
𝐶𝐷𝜆𝒖|𝒖| (4.18) 

 

where CD is the drag coefficient, λ is the frontal area per volume and u is the flow velocity 

vector. Here λ= bvNv, where bv is the plant size, and Nv is the vegetation density. The 

plant size is either the stem diameter or the blade width. The vegetation density is the 

number of plants per unit area. For the Naier-Stokes equations the force in the vertical 

direction can be neglected when the vegetation structure is vertical stem or blades. 

 

For rigid stems a layered approach can be used to take into account the vertical variation 

of the vegetation.  The drag coefficient, CD,i, the stem diameter, ds,i, the  vegetation 

height, hv,i, and the vegetation density, Nv,i, is then specified for each vertical layer, i. The 

vegetation height is the distance from the bed to the top of the vegetation layer. 
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The reduction of the drag due to flexibility of the vegetation is taken into account using the 

approach by Luhar and Nepf (2011, 2013). They suggested the use of a deflected height, 

hd, and an effective length, le. The effective length is defined as the length of a rigid 

vertical plant that generates the same drag as the total length of a flexible plant. The 

deflected height and the effective length are given by 

 

ℎ𝑑
ℎ𝑣
= 1 −

1 − 𝐶𝑎−1/4

1 + 𝐶𝑎−3/5(4 + 𝐵3/5) + 𝐶𝑎−2(8 + 𝐵2)
 (4.19) 

 

𝑙𝑒
ℎ𝑣
= 1 −

1 − 0.9𝐶𝑎−1/3

1 + 𝐶𝑎−3/2(8 + 𝐵3/2)
 (4.20) 

 

where Ca is the Cauchy number and B is the buoyancy parameter 

 

𝐶𝑎 =
𝜌𝐴|𝒖𝑣|

2

𝐸𝐼/ℎ𝑣
2
       𝐵 =

(𝜌 − 𝜌𝑣)𝑔𝑉𝑝
𝐸𝐼/ℎ𝑣

2
 (4.21) 

 

Here g is the gravitational acceleration, ρ is the density of water, ρv is the density of the 

plant, E is the elastic modulus for the plant, A is the frontal area, Vp is the volume of the 

plant element and I is the second moment of the area. For a circular stem  

 
𝐴 = 𝑑𝑠ℎ𝑣           𝑉𝑝 = 𝑑𝑠

2ℎ𝑣/4             𝐼 = 𝜋𝑑𝑠
4/64           

(4.22) 

 

and for a blade 

 

𝐴 = 𝑤𝑏ℎ𝑣           𝑉𝑝 = 𝑤𝑏𝑡𝑏ℎ𝑣             𝐼 = 𝑤𝑏𝑡𝑏
3/12 (4.23) 

 

The flexibility is taken into account by introducing a factor le/hd in Eq. (4.18). 

 

For the turbulence model the production term due to vegetation is given by 

 

𝑃𝑣 =
1

2
𝐶𝐷𝜆|𝒖|

3 (4.24) 

 

Following Lopez and Garcia (1998) the weighting coefficient using the k-ε model is set to 
𝑐𝑓𝑘 = 1 and 𝑐𝑓𝜀 = 𝑐2𝜀/𝑐1𝜀. With the default values for 𝑐1𝜀 and 𝑐2𝜀 then 𝑐𝑓𝜀 = 1.33. Using the 

k-ω model the default values for both 𝑐𝑓𝑘 and 𝑐𝑓𝜀 are set to 1.   

4.5 Wind forcing 

In areas not covered by ice the surface stress, 𝝉𝑠 = (𝜏𝑠𝑥, 𝜏𝑠𝑦), is determined by the winds 

above the surface. The stress is given by the following empirical relation 

 

𝝉𝑠 = 𝜌𝑎𝑐𝑑𝒖𝑤|𝒖𝑤| (4.25) 

  

where 𝜌𝑎 is the density of air, 𝑐𝑑 is the drag coefficient of air, and 𝒖𝑤 = (𝑢𝑤 , 𝑣𝑤)  is the 

wind speed 10 m above the sea surface. The friction velocity associated with the surface 

stress is given by 

 

𝑈𝜏𝑠 = √
𝜌𝑎𝑐𝑑|𝒖𝑤|

2

𝜌0
 (4.26) 
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The drag coefficient can either be a constant value or depend on the wind speed. The 

empirical formula proposed by Wu (1980, 1994) is used for the parameterization of the 

drag coefficient 

 

𝑐𝑑 = {

𝑐𝑎                                           𝑊10 < 𝑊𝑎

𝑐𝑎 +
𝑐𝑏 − 𝑐𝑎
𝑊𝑏 −𝑊𝑎

(𝑊10 −𝑊𝑎)        𝑊𝑎 ≤ 𝑊10 < 𝑊𝑏

𝑐𝑏                                          𝑊10 ≥ 𝑊𝑏

 (4.27) 

 

where 𝑐𝑎, 𝑐𝑏, 𝑊𝑎 and 𝑊𝑏 are empirical factors and 𝑊10 is the wind velocity 10 m above the 

sea surface. The default values for the empirical factors are 𝑐𝑎 = 1.255 ⋅ 10
−3, 𝑐𝑏 = 2.425 ⋅

10−3, 𝑊𝑎 = 7𝑚/𝑠 and 𝑊𝑏 = 25𝑚/𝑠. These give generally good results for open sea 

applications. Field measurements of the drag coefficient collected over lakes indicate that 

the drag coefficient is larger than open ocean data. For a detailed description of the drag 

coefficient see Geernaert and Plant (1990). 

4.6 Ice coverage 

It is possible to take into account the effects of ice coverage on the flow field.  

 

In areas where the sea is covered by ice the wind stress is excluded. Instead, the surface 
stress is caused by the ice roughness. The surface stress, 𝝉𝑠 = (𝜏𝑠𝑥, 𝜏𝑠𝑦), is determined by 

a quadratic friction law 

 
𝝉𝑠 = 𝜌0𝑐𝑓𝒖𝑠|𝒖𝑠| (4.28) 

 
where 𝑐𝑓 is the drag coefficient and 𝒖𝑠 = (𝑢𝑠, 𝑣𝑠) is the flow velocity at a distance Δ𝑧𝑠 

below the surface. The drag coefficient is determined by assuming a logarithmic profile 

between the surface and a point Δ𝑧𝑠 below the surface 

 

𝑐𝑓 =
1

(
1
𝜅
ln (max (

∆𝑧𝑠
𝑧0
, 2)))

2 
(4.29) 

 

where 𝜅 = 0.41 is the von Kármán constant, and 𝑧0 is the ice roughness length scale. 

When the boundary surface is rough, 𝑧0, depends on the ice roughness height, 𝑘𝑠, 
through  

 

𝑧0 = 𝑚𝑘𝑠 (4.30) 

 

where 𝑚 is approximately 1/30. 

 

The friction velocity associated with the surface stress is given by 

 

𝑈𝜏𝑠 = √𝑐𝑓|𝒖𝑠|
2 (4.31) 

 

A semi-implicit discretization is used to get a stable solution for small water depths, which 

for element 𝑖 reads 

 

First stage: 
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𝝉𝑠𝑖
𝑛+1/2

𝜌0
= 𝑐𝑓

𝑛|𝒖𝑖
𝑛|𝒖𝑖

∗ (4.32) 

 

Second stage: 

 

𝝉𝑠𝑖
𝑛+1

𝜌0
= 𝑐𝑓

𝑛|𝒖𝑖
𝑛+1/2

|𝒖𝑖
∗ (4.33) 

 

If ice thickness is specified, the water level is suppressed by 𝜌𝑖𝑐𝑒/𝜌𝑤𝑎𝑡𝑒𝑟 of the ice 

thickness, where 𝜌𝑖𝑐𝑒 = 971 𝑘𝑔/𝑚
3 and 𝜌𝑤𝑎𝑡𝑒𝑟 is the actual density of the water.  

4.7 Tidal potential 

The tidal potential is a force, generated by the variations in gravity due to the relative 

motion of the earth, the moon and the sun that act throughout the computational domain. 

The forcing is expanded in frequency space and the potential considered as the sum of a 

number of terms each representing different tidal constituents. The forcing is implemented 

as a so-called equilibrium tide, which can be seen as the elevation that theoretically would 

occur, provided the earth was covered with water. The forcing enters the momentum 

equations as an additional term representing the gradient of the equilibrium tidal 

elevations, such that the elevation  can be seen as the sum of the actual elevation and 

the equilibrium tidal potential. 

 

𝜂 = 𝜂𝑎𝑐𝑡𝑢𝑎𝑙 + 𝜂𝑇 (4.34) 

 

The equilibrium tidal potential T is given as 

 

𝜂𝑇 =∑𝑒𝑖𝐻𝑖𝑓𝑖𝐿𝑖𝑐𝑜𝑠 (2𝜋
𝑡

𝑇𝑖
+ 𝑏𝑖 + 𝑖0𝑥)

⬚

𝑖

 (4.35) 

 

where T is the equilibrium tidal potential, 𝑖 refers to constituent number (note that the 

constituents here are numbered sequentially), 𝑒𝑖 is a correction for earth tides based on 

Love numbers, 𝐻𝑖, is the amplitude, 𝑓𝑖, is a nodal factor, 𝐿𝑖, is given below, 𝑡 is time, 𝑇𝑖, is 

the period of the constituent, 𝑏𝑖, is the phase and 𝑥 is the longitude of the actual position. 

 

The phase 𝑏 is based on the motion of the moon and the sun relative to the earth and can 

be given by 

 

𝑏𝑖 = (𝑖1 − 𝑖0)𝑠 + (𝑖2 − 𝑖0)ℎ + 𝑖3𝑝 + 𝑖4𝑁 + 𝑖5𝑝𝑠 + 𝑢𝑖𝑠𝑖𝑛(𝑁) (4.36) 

 

where 𝑖0 is the species, 𝑖1 to 𝑖5 are Doodson numbers, 𝑢 is a nodal modulation factor (see 

Table 4.2) and the astronomical arguments 𝑠, ℎ, 𝑝, 𝑁 and 𝑃𝑠 are given in Table 4.1. 

 

 
Table 4.1 Astronomical arguments (Pugh, 1987) 

 

Mean longitude of the moon 𝑠 277.02+481267.89T+0.0011T2 

Mean longitude of the sun ℎ 280.19+36000.77T+0.0003T2 

Longitude of lunar perigee 𝑝 334.39+4069.04T-0.0103T2 

Longitude of lunar ascending node 𝑁 259.16-1934.14T+0.0021T2 

Longitude of perihelion 𝑝𝑠 281.22+1.72T+0.0005T2 
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In Table 4.1 the time, 𝑇,  is in Julian century from January 1 1900 UTC, thus 𝑇 =
(365(𝑦 − 1900) + (𝑑 − 1) + 𝑖)/36525 and 𝑖 = 𝑖𝑛𝑡(𝑦 − 1901)/4), 𝑦 is year and 𝑑 is day 

number 

  

𝐿 depends on species number 𝑖0 and latitude 𝜙 as 

 

 𝑖0 = 0:  𝐿 = 3𝑠𝑖𝑛
2(𝜙) − 1 

 𝑖0 = 1:  𝐿 = sin (2𝜙)  
 𝑖0 = 2:  𝐿 = 𝑐𝑜𝑠

2(𝜙)  
 

The nodal factor 𝑓𝑖 represents modulations to the harmonic analysis and can for some 

constituents be given as shown in Table 4.2. 

 
Table 4.2  Nodal modulation terms (Pugh, 1987) 

 

Symbol 𝑓𝑖  𝑢𝑖  

Mm 1.000 - 0.130 cos(N) 0 

Mf 1.043 + 0.414 cos(N) -23.7 sin(N) 

Q1, O1 1.009 + 0.187 cos(N) 10.8 sin(N) 

K1 1.006 + 0.115 cos(N) -8.9 sin(N) 

2N2, 2, 2, N2, M2 1.000 - 0.037 cos(N) -2.1 sin(N) 

K2 1.024 + 0.286 cos(N) -17.7 sin(N) 

4.8 Precipitation and evaporation 

In applications where the rainfall is important for the flow, the precipitation rate, 𝑃̂, can be 

specified. When heat exchange from the atmosphere is included, the evaporation rate is 

defined as 

 

𝐸̂ = {

𝑞𝑣
𝜌0𝑙𝑣

                     𝑞𝑣 > 0

0                           𝑞𝑣 ≤ 0
 

(4.37) 

 

 

where 𝑞𝑣 is the latent heat flux (see section 4.12.1) and 𝑙𝑣 is the latent heat of 

vaporization of water. 

 

Precipitation and evaporation are implemented as a simple source (see section 4.11) in 

all surface elements in the computational domain. The discharge in element 𝑖 is calculated 

as 

 

𝑄𝑖 = 𝐴𝑖(𝑃̂ − 𝐸̂) (4.38) 

 

where 𝐴𝑖 is the horizontal area of the element. 

 

For the transport equations for temperature and salinity the water precipitated and 

evaporated is assumed to be fresh water at the ambient water temperature (the 

temperature in element 𝑖). For the transport equations for a scalar quantity the 

concentration is assumed to be the ambient concentration. For precipitation it is also 

possible to specify the temperature and the concentration of the water flowing into the 
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computation domain. Precipitation and evaporation are not included in the transport 

equation for the 𝑘-𝜀 model. 

 

4.9 Infiltration 

The effect of infiltration at the surface zone may be important in cases of flooding 

scenarios on otherwise dry land. It is possible to account for this in one of two ways: by 

net infiltration rates or by constant infiltration with capacity. 

 

Infiltration is implemented as a simple source (see section 4.11) in all bottom elements in 

the computational domain. The discharge in element 𝑖 is calculated as 

 

𝑄𝑖 = −𝐴𝑖𝑄𝑛𝑒𝑡 (4.39) 

 

where 𝐴𝑖 is the horizontal area of the element and 𝑄𝑛𝑒𝑡 is the net infiltration rate. 

 

For the transport equations for temperature and salinity the water infiltration is assumed to 

be fresh water at the ambient water temperature (the temperature in element 𝑖). For the 

transport equations for a scalar quantity the concentration is be assumed to the ambient 

concentration. For positive discharge it is also possible to specify the temperature and the 

concentration of the water flowing into the computation domain. Precipitation and 

evaporation are not included in the transport equation for the 𝑘-𝜀 model. 

4.9.1 Net infiltration rates 

The net infiltration rate is defined directly. When using net infiltration rate an unsaturated 

zone is never specified and thus has no capacity limits, so the specified infiltration rates 

will always be fully effectuated if there is enough water available in the element. 

4.9.2 Constant infiltration with capacity 

Constant infiltration with capacity describes the infiltration from the free surface zone to 

the unsaturated zone and from the unsaturated zone to the saturated zone by a simplified 

model (se Figure 4.1). The model assumes the following: 

 

• The unsaturated zone is modelled as an infiltration zone with constant porosity over 

the full depth of the zone. 

• The flow between the free surface zone and the infiltration zone is based on a 

constant flow rate, 𝑄𝑖.  

• The flow between the saturated and unsaturated zone is modelled as a leakage 

having a constant flow rate, 𝑄𝑙. 

The simplified model described above is solved through a one-dimensional continuity 

equation for the unsaturated zone. Feedback from the infiltration and leakage to the two-

dimensional horizontal hydrodynamic calculations is based solely on changes to the depth 

of the free surface zone – the water depth.  
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Figure 4.1 Illustration of infiltration process 

 

4.10 Wave Radiation 

The radiation stress is the depth-integrated excess momentum flux due to the breaking of 

the short period waves. The radiation stresses act as driving forces for the mean flow and 

can be used to calculate wave setup and wave induced currents. For 3D simulations a 

simple approach is used. Here a uniform variation is used for the vertical variation in 

radiation stress. 

 

𝐹𝑥 =
1

𝜌0ℎ
(
𝜕𝑆𝑥𝑥
𝜕𝑥

+
𝜕𝑆𝑥𝑦
𝜕𝑦

)         𝐹𝑦 =
1

𝜌0ℎ
(
𝜕𝑆𝑥𝑦
𝜕𝑥

+
𝜕𝑆𝑦𝑦
𝜕𝑦

)            𝐹𝑧 = 0 (4.40) 

  

where 𝑆𝑥𝑥, 𝑆𝑥𝑦, and 𝑆𝑦𝑦 are components of the second order radiation stress tensor.  

4.11 Sources 

There are four types of sources 

 

• Simple source 

• Standard source 

• Connected source 

• Jet source 

 

For a simple source the discharge, 𝑄, is specified. If the source is located in element 𝑖 
with the volume 𝑉𝑖 the following source term is added to the discrete continuity equation 

 

𝑆𝑖 =
𝑄

𝑉𝑖
 (4.41) 

 

A source where the discharge is negative is also called a sink. For a simple source the 

mass enters the flow without momentum. The mass will therefore have to be accelerated, 

and this may cause a drop in the local velocity. For a standard source a source of 

momentum is also included. The following terms are added to the discrete momentum 

equations 

 

𝐹𝑥,𝑖 = 𝑢𝑠
𝑄

𝑉𝑖
                    𝐹𝑦,𝑖 = 𝑣𝑠

𝑄

𝑉𝑖
                      𝐹𝑧,𝑖 = 𝑤𝑠

𝑄

𝑉𝑖
 (4.42) 
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where  𝑢𝑠 and 𝑣𝑠 are the source velocities. The contribution to the momentum equation is 

only taken into account when the magnitude of the source is positive (water is discharge 

into the ambient). A connected source is a standard source where the magnitude of the 

discharge is obtained as the magnitude of the discharge specified for source which the 

source is connected to, but with opposite sign. The jet source is described in the next 

section.  

 

For the transport equations a source term is also added to the discrete equation. The 

source term is 𝑆𝑖 times a value for the transported variable. This can be a specified value 

or the value in the element where the source is located plus an excess value. Sources are 

not included in the transport equation for the 𝑘-𝜀 model. 

4.11.1 Jet sources 

The simulation of jets/plumes is based on dynamic coupling of a nearfield integrated jet 

solution and the farfield hydrodynamic flow model (MIKE 3 Flow Model FM). 

 
Nearfield calculation 

 

The nearfield solution is based on the integral jet model equations described by Jirka 

(2004). It determines the steady state solution of the jet/plume by solving conservation 

equations for flux and momentum, salinity and temperature (if included) under the given 

ambient conditions.  

 

The velocity profile and distribution of state parameters and scalar mass is assumed to 

follow the Gaussian formulation. The jet model employs an entrainment closure approach 

that distinguishes between the separate contributions of transverse shear and of 

azimuthal shear mechanisms. It further contains a quadratic law turbulent drag force 

mechanism, 𝐹𝐷, as suggested by a number of recent detailed experimental investigations 

on the dynamics of transverse jets into crossflow. The conservation principles for volume 

(continuity), momentum components in the global directions, state parameters and scalar 

mass, follow Jirka (2004), lead to the following equations 

 
𝑑𝑄

𝑑𝑠
= 𝐸 (4.43) 

 
𝑑𝑀𝑥

𝑑𝑠
= 𝐸𝑢𝑎 + 𝐹𝐷√1 − 𝑐𝑜𝑠

2𝜃𝑐𝑜𝑠2𝜎 (4.44) 

 
𝑑𝑀𝑦

𝑑𝑠
= −𝐹𝐷

𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝜎𝑐𝑜𝑠𝜎

√1 − 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜎
 (4.45) 

 
𝑑𝑀𝑧

𝑑𝑠
= 𝜋𝜆2𝑏2𝑔𝑐

′ − 𝐹𝐷
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜎

√1 − 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜎
 (4.46) 
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Figure 4.2 Nearfield jet integral model definition sketch 

 

where 𝑠 is the axial distance along the jet trajectory and 𝐸 is the rate of entrainment, and 

𝑏 is the characteristic width of the jet, which is defined as the jet radius, where the jet 

excess velocity is 𝑒−1 = 37%. 𝜃 is the horizontal direction angle and 𝜎 is the vertical 

direction angle (relative to horizontal, with 90 degree indicating flow toward the surface). 𝜆 

is an empirical constant which has the value 1.2. The centerline density is contained in 

the definition of centerline buoyancy 𝑔𝑐
′  and is calculated by the UNESCO equation of 

state, as function of salinity, 𝑠, and temperature, 𝑇 

 
𝜌𝐽𝑒𝑡 = 𝜌𝑈𝑁𝐸𝑆𝐶𝑂(𝑇, 𝑠) (4.47) 

 

If sediments are present inside the jet, and their dynamics are included in the calculations, 

then the jet density will be corrected for the presence of sediments. This can be activated 

by defining the source in Mud Transport (MT) module and activating the MT-HD feedback.  

 
𝜌𝐽𝑒𝑡 = (1 − 𝐶𝑠𝑒𝑑)𝜌𝐽𝑒𝑡 + 𝐶𝑠𝑒𝑑𝜌𝑠𝑒𝑑 (4.48) 

 

𝐶𝑠𝑒𝑑 is the volumetric sediment concentration derived from the sediment concentration 

provided by the user for the Jet source in MT module, and 𝜌𝑠𝑒𝑑 is the sediment density 

provided by the user for the MT-HD feedback in MT module. The buoyant acceleration is 
then defined as below, where 𝜌𝑎 is the ambient density, and 𝜌𝑟𝑒𝑓 is the reference density 

calculated by the reference salinity and temperatures provided by the user in HD module. 

 

𝑔𝑐
′ =

𝜌𝐽𝑒𝑡 − 𝜌𝑎
𝜌𝑟𝑒𝑓

𝑔 (4.49) 

 

The two important physical processes influencing the jet trajectory and dilution rates are 

the entrainment rate, 𝐸, and the ambient drag force, 𝐹𝐷. The entrainment rate is 

calculated as being proportional to the streamwise contribution of the jet centerline 

velocity, 𝑢𝑐, plus the azimuthal contribution from the transverse component of the ambient 

velocity (𝑢𝑎√1 − 𝑐𝑜𝑠
2𝜃𝑐𝑜𝑠2𝜎). 

 

𝐸 = 2𝜋𝑏𝑢𝑐 (𝛼1 + 𝛼2
𝑠𝑖𝑛𝜃

𝐹𝑙
2 + 𝛼3

𝑢𝑎𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜎

𝑢𝑐 + 𝑢𝑎
)

+ 2𝜋𝑏𝑢𝑎√1 − 𝑐𝑜𝑠
2𝜃𝑐𝑜𝑠2𝜎𝛼4|𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜎| 

 

(4.50) 
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𝐹𝑙 is the local densimetric Froude number, and is defined as:  

 

𝐹𝑙 =
𝑢𝑐

√𝑔𝑐
′𝑏

 (4.51) 

 

The first term in the streamwise part of the entrainment function represents the “pure jet” 

effects, the second term adds the effect of “pure plume” and the third term is for “pure 

wake”. The four coefficients defining the entrainment rate are given the empirical values 

suggested by Jirka (2004) 

 

𝛼1 = 0.055   ,   𝛼2 = 0.6   ,   𝛼3 = 0.055   ,   𝛼4 = 0.5 

 
(4.52) 

Deflection of the jet is a consequence of the pressure drag exerted on it by the cross flow, 

𝐹𝐷, and of the entrainment by the jet of laterally moving fluid from the crossflow, 𝐸𝑢𝑎.  
The drag force is parametrized as a quadratic law force mechanism (Jirka, 2004) 

 

𝐹𝐷 =
1

2
𝐶𝐷2√2𝑏𝑢𝑎

2(1 − 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜎) (4.53) 

 

The jet diameter is calculated as 2√2𝑏 and 𝐶𝐷 is the drag coefficient as function of 

velocity ratio between jet and the ambient, following Chan et al. (1976). 

Calculations of the jet trajectory are discretized based on the incremental distance along 

the jet trajectory (𝑑𝑠). Following a recommendation from Lee and Cheung (1990), the 

spatial discretization of jet trajectory is calculated as below 

 

∆𝑠 = ∆𝑡(𝑢𝑐 + 𝑢𝑎𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜎) 
 

(4.54) 

where 

 

∆𝑡 =  
0.1𝐷

𝑢𝑐
 

 

However, the value of Δ𝑡 is set to have cut-off values of 0.001 seconds and 1.0 seconds. 

𝐷 is the initial jet diameter. 

 

This jet (nearfield) model calculates the jet trajectory and dilution until it reaches the end 

of nearfield region. This is done at each hydrodynamic time step in the farfield flow model. 

Although the hydrodynamic time steps can be much smaller than the time it takes for the 

trajectory to reach the end of nearfield region, it is assumed that the temporal variations in 

the background flow (ambient) are slower than the time it takes for the jet to go from 

discharge point to the point of farfield release.  

 
End of nearfield region 

 

In general, where the jet loses its driving characteristics over the ambient flow 

(momentum and buoyancy), it has reached the end of its nearfield region and its volume 

and scalar mass can be transferred and dispersed by the ambient flow into the farfield 

region. This can happen under different circumstances: 

 

• Jet in cross-flow: The jet momentum M is combination of its initial momentum at the 

diffuser, buoyancy and the ambient flow induced (co- or opposing) momentum Ma.  It 

loses its driving characteristics over the ambient flow when the excess momentum 

becomes small, and close to the ambient flow momentum. This can be considered as 

the end of the nearfield region and the release into the farfield model by following the 
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condition: M−Ma < εMa, where epsilon ε is left as a user-defined/calibration 

parameter, with default value of 1%. 

 

 
 

Figure 4.3 Illustration of the jet velocity field and the contribution from the ambient flow 
(Modified image from Jirka, 2004) 

 

• Jet in stagnant environment: Under stagnant conditions, the contribution from the 

ambient currents to the jet momentum is zero, and the nearfield region can extend 

until the point where the jet loses its own momentum due to dilution and buoyancy. 

Considering the modeling/numerical limitations, a minimum value for the jet excess 

velocity can be defined (gamma, γ) to mark the end of nearfield region and the 

release into farfield model. The default value for gamma is set to 1 cm/s. 

• Jet in stratified stagnant environment: Non-horizontal jets (positively buoyant jets 

pointed downward or negatively buoyant jets pointed upward) in stagnant 

stratification create a complex situation. Depending on the stratification gradient and 

the jet initial momentum, the jet can either be trapped in a layer where its density 

equals the ambient density, or it overshoots and experiences a reversed buoyancy. 

In latter case, the jet experiences a lateral collapse in form of an internal density 

current formation in opposite direction and it ends up trapped in a terminal density 

level. These complex processes are not included in the integral jet model formulation 

and – in the absence of an adequate transition cut-off – it predicts (unrealistically) an 

infinite number of oscillations about the terminal level. Therefore, the second 

buoyancy reversal in the jet calculations is considered as the end of nearfield 

calculations and the release into the farfield model. 

• Jet in strong opposing flow: Jet integral models cannot be expected to hold for 

flow situations in which boundary layer behavior is no longer maintained. The 

boundary layer approximation implies a pressure within the jet equal to that in the 

outside ambient. This is violated whenever the jet exhibits strong curvature such as 

going into strong opposing ambient current. Therefore, the jet nearfield solution stops 

and releases into farfield model as soon as it experiences a strong opposing flow. 

The other criterion that ends the nearfield calculations is when the jet reaches the bottom, 

surface or a lateral boundary. The dynamics of the jet approaching a solid boundary or 

water surface are not yet included in the nearfield calculations of the jet source. Among 

the impacts are variations in entrainment rates at the vicinity of the boundary. The 

nearfield calculations continue un-influenced until the jet reaches the boundary, and there 

it releases into the farfield model. Finally, the nearfield calculations are also stopped if the 

trajectory of the jet exceeds a maximum travel distance. The travel distance is here 
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defined as the distance in horizontal plane from the initial jet/plume position to the end 

position. 

 
Nearfield-farfield model coupling 

 

The coupling between the nearfield and farfield model concerns both the determination of 

ambient conditions as an input for the nearfield jet model, and the release of jet discharge 

into the farfield flow model at the end of the nearfield region.  

 

The ambient flow conditions can be determined either as the local flow conditions at the 

jet location or as the upstream ambient flow conditions. The upstream option can be used 

to avoid unrealistic feedback between the jet solution and the ambient flow in cases with 

dominant advection effects on the released material from the ambient flow. For the 

upstream ambient flow condition, the conditions are obtained at a point defined by 

distance from the jet location in the upstream flow direction. The distance is the maximum 

of the characteristic length determined from the mesh and a user-specified minimum 

upstream distance. The characteristic length is here determined as 2.3 times the square 

root of the local element area at the initial release point.  

 

At the end of nearfield region (determined by any of conditions described in previous 

section), the final jet discharge (which is diluted) is released into the farfield flow model by 

introducing a source at the final position of the trajectory. The increased jet discharge and 

(consequently) its dilution at the release point is a result of entrainment along its 

trajectory. Conservation of mass and volume in the farfield flow model then requires 

removing this excess mass and volume that have been inserted at the release point. This 

has been done by introducing entrainment sinks along the centerline of the jet trajectory 

(see Figure 4.4). This method follows the Distributed Entrainment Sink Approach (DESA) 

proposed by Choi and Lee (2007).  

 

For each section in the jet calculation the entrainment of water (the volume flux) is cal-

culated and is then introduced as a sink in the corresponding element in the far field 

model. If advection-dispersion calculation of temperature and salinity, passive 

substances, for cohesive or non-cohesive sediment transport or for ecological modelling 

(MIKE ECO Lab) is included in the simulation the tracer mass flux for the sinks is 

computed as the volume flux times the local solute concentration. The discharge of water 

at the final position of the jet is determined as the sum of the total entrained amount of 

ambient water and the specified effluent discharge. The tracer mass flux at the release 

point is determined as the sum of the entrainment tracer fluxes and the effluent discharge 

times the effluent tracer concentration. This approach for representing the jet/plume in the 

far field model secures conservation of water and tracer mass. A distribution of the 

released material in the far field model at the final position of the jet is applied to get the 

right dilution in the far field model. Here a Gaussian distribution is used covering a circular 

plane corresponding to the final jet radius and perpendicular to the jet trajectory at the 

final position of the jet. The number of sources depend on the mesh resolution in the 

farfield model. If the jet reaches the surface/bottom level, a uniform distribution is applied 

covering a circular area over the bed/surface corresponding to the final jet radius. 

 

At the release point a forcing (momentum flux) is added to the momentum equation, in the 

direction of jet release into the ambient domain, calculated as 

 
𝐹𝑥 = 𝑀cos 𝜃 cos𝜎      𝐹𝑦 = 𝑀 cos 𝜃 sin 𝜎      𝐹𝑧 = 𝑀 sin𝜃 (4.55) 

 

where 𝑀 = √𝑀𝑥𝑀𝑥 +𝑀𝑦𝑀𝑦 +𝑀𝑧𝑀𝑧. 



Physics  

 53 

 
 
Figure 4.4 Illustration of positioning of entrainment sinks along the trajectory in a 3D domain, 

and the distributed source points at the release location 

 

Correspondingly, at each sink point, a forcing (momentum flux), calculated as the product 

of sink rate, 𝑞𝑠𝑖𝑛𝑘, and the ambient flow velocity, (𝑢𝑎, 𝑣𝑎, 𝑤𝑎) , is added to the momentum 

balance with an opposing direction 

 (4.56) 

𝑚𝑥 = −𝑄𝑠𝑖𝑛𝑘𝑢𝑎 𝑚𝑦 = −𝑄𝑠𝑖𝑛𝑘𝑣𝑎 𝑚𝑧 = −𝑄𝑠𝑖𝑛𝑘𝑤𝑎 

 

4.12 Heat exchange 

The heat exchange with the atmosphere is calculated on basis of the four physical 

processes 

 

• Latent heat flux (or the heat loss due to vaporisation) 

• Sensible heat flux (or the heat flux due to convection) 

• Net short wave radiation 

• Net long wave radiation 

 

Latent and sensible heat fluxes and long wave radiation are assumed to occur at the 
water surface. A part of the net short wave radiation, 𝑞𝑠𝑟,𝑛𝑒𝑡, is absorbed at the surface 

and a part is absorbed in the water column. The short wave penetration in the water 

column depends on the visibility. The distribution of the net short wave radiation is 

approximated using Beer’s law. The fraction of the short wave radiation that is absorbed 
near the surface is 𝛽𝑞𝑠𝑟,𝑛𝑒𝑡 and the remaining part (1 − 𝛽)𝑞𝑠𝑟,𝑛𝑒𝑡 is absorbed in the water 

column. The attenuation of the light intensity is described through the modified Beer's law 

as 

 

𝐼(𝑑) = 𝐼0𝑒
−𝜆𝑑 (4.57) 

 

where 𝐼(𝑑) is the intensity at depth 𝑑 below the surface, 𝐼0 is the intensity just below the 

water surface and 𝜆 is the light extinction coefficient. Typical values for 𝛽 and 𝜆 are 0.2-

0.6 and 0.5-1.4 m-1, respectively. 𝛽 and 𝜆 are user-specified constants. The default values 

are 𝛽 = 0.3 and 𝜆 = 1.0𝑚−1. Hence the surface net heat flux is given by 
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𝑄 = 𝑞𝑣 + 𝑞𝑐 + 𝛽𝑞𝑠𝑟,𝑛𝑒𝑡 + 𝑞𝑙𝑟,𝑛𝑒𝑡 (4.58) 

 

The calculation of the latent heat flux, 𝑞𝑣, sensible heat flux, 𝑞𝑐,, net short wave radiation, 
𝑞𝑠𝑟,𝑛𝑒𝑡, and net long wave radiation, 𝑞𝑙𝑟,𝑛𝑒𝑡, as described in the following sections. The 

absorption of heat in the water column is given by, 𝐻, is given by 

 

𝐻 =
𝜕

𝜕𝑧
(
𝑞𝑠𝑟,𝑛𝑒𝑡(1 − 𝛽)𝑒

−𝜆(𝜂−𝑧)

(1 − 𝑒−𝜆ℎ)
) =

𝑞𝑠𝑟,𝑛𝑒𝑡(1 − 𝛽)𝜆𝑒
−𝜆(𝜂−𝑧)

(1 − 𝑒−𝜆ℎ)
 (4.59) 

 

where h is the total water depth. 

 

In areas covered by ice the heat exchange with the atmosphere is excluded. 

 

The heat in the water can also interact with the ground due to ground heat conduction. 

 

4.12.1 Vaporisation 

Dalton’s law yields the following relationship for the vaporative heat loss (or latent flux), 

see Sahlberg, 1984 

 

𝑞𝑣 = 𝐿𝐶𝑒(𝑎1 + 𝑏1𝑊2𝑚)(𝑄𝑤𝑎𝑡𝑒𝑟 − 𝑄𝑎𝑖𝑟) (4.60) 

 

where 𝐿 = 2.5 ∙ 106 𝐽/𝑘𝑔 is the latent heat vaporisation (in the literature                           

𝐿 = 2.5 ∙ 106 − 2300𝑇𝑤𝑎𝑡𝑒𝑟 is commonly used, where 𝑇𝑤𝑎𝑡𝑒𝑟 is the temperature of the 

water); 𝐶𝑒 = 1.32 ∙ 10
−3 is the moisture transfer coefficient (or Dalton number); 𝑊2𝑚 is the 

wind speed 2 m above the sea surface; 𝑄𝑤𝑎𝑡𝑒𝑟 is the water vapour density close to the 

surface; 𝑄𝑎𝑖𝑟 is the water vapour density in the atmosphere; 𝑎1 and 𝑏1 are user specified 

constants. The default values are 𝑎1 = 0.5 and 𝑏1 = 0.9. 

 

Measurements of 𝑄𝑤𝑎𝑡𝑒𝑟 and 𝑄𝑎𝑖𝑟 are not directly available but the vapour density can be 

related to the vapour pressure as 

 

𝑄𝑖 =
0.2167

𝑇𝑖 + 𝑇𝑘
𝑒𝑖 (4.61) 

 

in which subscript 𝑖 refers to both water and air. The vapour pressure close to the 

sea, 𝑒𝑤𝑎𝑡𝑒𝑟, can be expressed in terms of the water temperature assuming that the air 

close to the surface is saturated and has the same temperature as the water 

 

𝑒𝑤𝑎𝑡𝑒𝑟 = 6.11exp (𝑘 (
1

𝑇𝑘
−

1

𝑇𝑤𝑎𝑡𝑒𝑟 + 𝑇𝑘
)) (4.62) 

 

where 𝑘 = 5418°𝐾 and 𝑇𝑘 = 273.15°𝐾 is the temperature at 0°𝐶. Similarly the vapour 

pressure of the air, 𝑒𝑎𝑖𝑟, can be expressed in terms of the air temperature and the relative 

humidity, 𝑅 

 

𝑒𝑎𝑖𝑟 = 𝑅 ∙ 6.11exp (𝑘 (
1

𝑇𝑘
−

1

𝑇𝑎𝑖𝑟 + 𝑇𝑘
)) (4.63) 

 

Replacing 𝑄𝑤𝑎𝑡𝑒𝑟 and 𝑄𝑎𝑖𝑟 with these expressions the latent heat can be written as 
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𝑞𝑣 = −𝑃𝑣(𝑎1 + 𝑏1𝑊2𝑚)

(

 
 
exp (𝑘 (

1
𝑇𝑘
−

1
𝑇𝑤𝑎𝑡𝑒𝑟 + 𝑇𝑘

))

𝑇𝑤𝑎𝑡𝑒𝑟 + 𝑇𝑘

−

R ∙ exp (𝑘 (
1
𝑇𝑘
−

1
𝑇𝑎𝑖𝑟 + 𝑇𝑘

))

𝑇𝑎𝑖𝑟 + 𝑇𝑘

)

 
 

 

(4.64) 

 

where all constants have been included in a new latent constant 𝑃𝑣 = 4370𝐽°𝐾/𝑚
3. During 

cooling of the surface the latent heat loss has a major effect with typical values up to 100 

𝑊/𝑚2. 

 

The wind speed, 𝑊2, 2 m above the sea surface is calculated from the wind speed, 𝑊10, 

10 m above the sea surface. Assuming a logarithmic profile the wind speed, 𝑢(𝑧) at a 

distance 𝑧 above the sea surface is given by 

 

𝑢(𝑧) =
𝑢∗
𝜅
𝑙𝑜𝑔 (

𝑧

𝑧0
) (4.65) 

 

where 𝑢∗ is the wind friction velocity, 𝑧0 is the sea roughness and 𝜅 = 0.4 is von Karman's 

constant. 𝑢∗and 𝑧0 are given by 

 

 

𝑧0 = 𝑧𝐶ℎ𝑎𝑟𝑛𝑜𝑐𝑘
𝑢∗
𝑔

 (4.66) 

 

𝑢∗ =
𝜅𝑢(𝑧)

𝑙𝑜𝑔 (
𝑧
𝑧0
)
 (4.67) 

 

where 𝑧𝐶ℎ𝑎𝑟𝑛𝑜𝑐𝑘 is the Charnock parameter. The default value is 𝑧𝐶ℎ𝑎𝑟𝑛𝑜𝑐𝑘 = 0.014. The 

wind speed, 𝑊2, is then calculated from the wind speed, 𝑊10, by first solving Eq. (4.65) 

and Eq. (4.66) iteratively for 𝑧0 with 𝑧 = 10𝑚 and 𝑢(𝑧) = 𝑊10. Then 𝑊2 is given by 

 

𝑊2 = 𝑊10

𝑙𝑜𝑔 (
2
𝑧0
)

𝑙𝑜𝑔 (
10
𝑧0
)
                𝑊10 > 0.5𝑚/𝑠 

 

𝑊2 = 𝑊10                                   𝑊10 ≤ 0.5𝑚/𝑠 

(4.68) 

 

The heat loss due to vaporization occurs both by wind driven forced convection and by 

free convection. The effect of free convection is taken into account by the parameter 𝑎1 in 

Eq. (4.60). The free convection is also taken into account by introducing a critical wind 

speed 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 so that the wind speed used in Eq. (4.67) is obtained as 𝑊10 =
max (𝑊10,𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙). The default value for the critical wind speed is 2 m/s. 

4.12.2 Convection 

The sensible heat flux, 𝑞𝑐, measured in 𝑊/𝑚2 (or the heat flux due to convection) 

depends on the type of boundary layer between the sea surface and the atmosphere. 

Generally, this boundary layer is turbulent implying the following relationship 
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𝑞𝑐 = {
𝜌𝑎𝑖𝑟𝑐𝑎𝑖𝑟𝑐ℎ𝑒𝑎𝑡𝑖𝑛𝑔𝑊10(𝑇𝑎𝑖𝑟 − 𝑇𝑤𝑎𝑡𝑒𝑟) 𝑇𝑎𝑖𝑟 ≥ 𝑇𝑤𝑎𝑡𝑒𝑟
𝜌𝑎𝑖𝑟𝑐𝑎𝑖𝑟𝑐𝑐𝑜𝑜𝑙𝑖𝑛𝑔𝑊10(𝑇𝑎𝑖𝑟 − 𝑇𝑤𝑎𝑡𝑒𝑟) 𝑇𝑎𝑖𝑟 < 𝑇𝑤𝑎𝑡𝑒𝑟

 (4.69) 

 

where 𝜌𝑎𝑖𝑟 is the air density 1.225 𝑘𝑔/𝑚3; 𝑐𝑎𝑖𝑟 = 1007 𝐽/(𝑘𝑔 ⋅ °𝐾) is the specific heat of 
air; 𝑐ℎ𝑒𝑎𝑡𝑖𝑛𝑔 = 0.0011 and 𝑐𝑐𝑜𝑜𝑙𝑖𝑛𝑔 = 0.0011, respectively, is the sensible transfer 

coefficient (or Stanton number) for heating and cooling (see Kantha and Clayson, 2000); 

𝑊10 is the wind speed 10 𝑚 above the sea surface; 𝑇𝑤𝑎𝑡𝑒𝑟 is the temperature at the sea 

surface; 𝑇𝑎𝑖𝑟 is the temperature of the air. 

 

The convective heat flux typically varies between 0 and 100 𝑊/𝑚2. 

 

The heat loss due to convection occurs both by wind driven forced convection and by free 

convection. The free convection is taken into account by introducing a critical wind speed 

𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 so that the wind speed used in Eq. (4.68) is obtained as 𝑊10 =
max (𝑊10,𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙). The default value for the critical wind speed is 2 𝑚/𝑠. 

4.12.3 Short wave radiation 

Radiation from the sun consists of electromagnetic waves with wave lengths varying from 

1,000 to 30,000 Å. Most of this is absorbed in the ozone layer, leaving only a fraction of 

the energy to reach the surface of the Earth. Furthermore, the spectrum changes when 

sunrays pass through the atmosphere. Most of the infrared and ultraviolet compound is 

absorbed such that the solar radiation on the Earth mainly consists of light with wave 

lengths between 4,000 and 9,000 Å. This radiation is normally termed short wave 

radiation. The intensity depends on the distance to the sun, declination angle and latitude, 

extraterrestrial radiation and the cloudiness and amount of water vapour in the 

atmosphere (see Iqbal, 1983). 

 

The eccentricity in the solar orbit, 𝐸0, is given by  

 

𝐸0 = (
𝑟0
𝑟
)
2

= 1.000110 + 0.034221 cos(Γ) + 0.001280 sin(Γ)

+ 0.000719 cos(2Γ) + 0.000077 sin(2Γ) 
(4.70) 

 

where 𝑟0 is the mean distance to the sun, 𝑟 is the actual distance and the day angle Γ is 

defined by 

 

Γ =
2𝜋(𝑑𝑛 − 1)

356
 (4.71) 

 

and 𝑑𝑛 is the Julian day of the year. 

 

The daily rotation of the Earth around the polar axes contributes to changes in the solar 

radiation. The seasonal radiation is governed by the declination angle, 𝛿, measured in rad 

which can be expressed by 

 

𝛿 = 0.006918 − 0.399912 cos(Γ) + 0.07257 sin(Γ) − 0.006758 cos(2Γ)
+ 0.000907 sin(2Γ) − 0.002697 cos(3Γ) + 0.00148 sin(3Γ) 

(4.72) 

 

The day length, 𝑛𝑑, varies with 𝛿. For a given latitude, 𝜙, (positive on the northern 

hemisphere) the day length is given by 

 

𝑛𝑑 =
24

𝜋
arccos(−tan(𝜙)tan(𝛿)) (4.73) 
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and the sunrise angle, 𝜔𝑠𝑟, and the sunset angle 𝜔𝑠𝑠 are 

 

𝜔𝑠𝑟 = arccos(−tan(𝜙)tan(𝛿))    𝑎𝑛𝑑    𝜔𝑠𝑠 = −𝜔𝑠𝑠 (4.74) 

 

The intensity of short wave radiation on the surface parallel to the surface of the Earth 

changes with the angle of incidence. The highest intensity is in zenith and the lowest 

during sunrise and sunset. Integrated over one day the extraterrestrial intensity, 𝐻0, 
measured in 𝑀𝐽/𝑚2/𝑑𝑎𝑦 in short wave radiation on the surface can be derived as 

 

𝐻0 =
24

𝜋
𝑞𝑠𝑐𝐸0cos(𝜙)cos(𝛿)(sin(𝜔𝑠𝑟) − 𝜔𝑠𝑟cos(𝜔𝑠𝑟)) (4.75) 

 

where 𝑞𝑠𝑐 = 4.9212 𝑀𝐽/𝑚
2/ℎ is the solar constant. 

 

For determination of daily radiation under cloudy skies, 𝐻, measured in 𝑀𝐽/𝑚2/𝑑𝑎𝑦, the 

following relation is used 

 
𝐻

𝐻0
= 𝑎2 + 𝑏2

𝑛

𝑛𝑑
 (4.76) 

 

in which 𝑛 is the number of sunshine hours and 𝑛𝑑 is the maximum number of sunshine 

hours. 𝑎2 and 𝑏2 are user specified constants. The default values are 𝑎2 = 0.295 and 𝑏2 =
0.371. The user-specified clearness coefficient corresponds to 𝑛/𝑛𝑑. Thus the solar 

radiation, 𝑞𝑠, measured in 𝑊/𝑚2 can be expressed as 

 

𝑞𝑠 = (
𝐻

𝐻0
) 𝑞0(𝑎3 + 𝑏3cos(𝜔𝑖))

106

3600
 (4.77) 

 

where  

 

𝑎3 = 0.4090 + 0.5016 sin (𝜔𝑠𝑟 −
𝜋

3
) (4.78) 

 

 

𝑏3 = 0.6609 + 0.4767 sin (𝜔𝑠𝑟 −
𝜋

3
) (4.79) 

 

The extraterrestrial intensity, 𝑞0 (𝑀𝐽/𝑚
2/ℎ) and the hour angle 𝜔𝑖 is given by 

 

𝑞0 = 𝑞𝑠𝑐𝐸0 (sin(𝜙)sin(𝛿) +
24

𝜋
cos(𝜙)cos(𝛿)cos(𝜔𝑖)) (4.80) 

 

𝜔𝑖 =
𝜋

12
(12 + Δ𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 +

4

60
(𝐿𝑆 − 𝐿𝐸) −

𝐸𝑡
60
− 𝑡𝑙𝑜𝑐𝑎𝑙) (4.81) 

 
Δ𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 is the displacement hours due to summer time and the time meridian 𝐿𝑆 is 

the standard longitude for the time zone. Δ𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 and 𝐿𝑆 are user specified 

constants. The default values are Δ𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 0 ℎ and 𝐿𝑆 = 0 𝑑𝑒𝑔. 𝐿𝐸 is the local 

longitude in degrees. 𝐸𝑡 (𝑠) is the discrepancy in time due to solar orbit and is varying 

during the year. It is given by 

 

𝐸𝑡 = (0.000075 + 0.001868 cos(Γ) − 0.032077 sin(Γ) − 0.014615 cos(2Γ)

− 0.04089 sin(2Γ)) ⋅ 229.18 
(4.82) 

 

Finally, 𝑡𝑙𝑜𝑐𝑎𝑙 is the local time in hours. 
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Solar radiation that impinges on the sea surface does not all penetrate the water surface. 

Parts are reflected back and are lost unless they are backscattered from the surrounding 

atmosphere. This reflection of solar energy is termed the albedo. The amount of energy, 

which is lost due to albedo, depends on the angle of incidence and angle of refraction. For 

a smooth sea the reflection can be expressed as 

 

𝛼 =
1

2
(
sin2(𝑖 − 𝑟)

sin2(𝑖 + 𝑟)
+
tan2(𝑖 − 𝑟)

tan2(𝑖 + 𝑟)
) (4.83) 

 

Where 𝑖 is the angle of incidence, 𝑟 the refraction angle and 𝛼 the reflection coefficient, 

which typically varies from 5 to 40 %. 𝛼 can be approximated using 

 

𝛼 =

{
 
 

 
 
𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒

5
0.48                            𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 < 5

30 − 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒

25
(0.48 − 0.05) 5 ≤ 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 ≤ 30

0.05                                            𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 > 30

 (4.84) 

 

where the altitude in degrees is given by 

 

𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 = 90 − (
180

𝜋
arccos(sin(𝛿)sin(𝜙) + cos(𝛿)cos(𝜙)cos(𝜔𝑖))) (4.85) 

 
Thus the net short wave radiation, 𝑞𝑠𝑡,𝑛𝑒𝑡 (𝑊/𝑚

2), can possibly be expressed as 

 
𝑞𝑠𝑟,𝑛𝑒𝑡 = (1 − 𝛼)𝑞𝑠 (4.86) 

 
The net short wave radiation, 𝑞𝑠𝑟,𝑛𝑒𝑡, can be calculated using empirical formulae as 

described above. Alternatively, the net short wave radiation can be calculated using Eq. 

(4.86), where the solar radiation, 𝑞𝑠, is specified by the user or the net short wave 
radiation, 𝑞𝑠𝑟,𝑛𝑒𝑡, can be given by the user. 

4.12.4 Long wave radiation 

A body or a surface emits electromagnetic energy at all wavelengths of the spectrum. The 

long wave radiation consists of waves with wavelengths between 9,000 and 25,000 Å. The 

radiation in this interval is termed infrared radiation and is emitted from the atmosphere 

and the sea surface. The long wave emittance from the surface to the atmosphere minus 

the long wave radiation from the atmosphere to the sea surface is called the net long 

wave radiation and is dependent on the cloudiness, the air temperature, the vapour 
pressure in the air and the relative humidity. The net outgoing long wave radiation, 𝑞𝑙𝑟,𝑛𝑒𝑡, 

measured in 𝑊/𝑚2 is given by Brunt’s equation (See Lind and Falkenmark, 1972) 

 

𝑞𝑙𝑟,𝑛𝑒𝑡 = −𝜎𝑠𝑏(𝑇𝑎𝑖𝑟 + 𝑇𝑘)
4(𝑎 − 𝑏√𝑒𝑑) (𝑐 + 𝑑

𝑛

𝑛𝑑
) (4.87) 

 

where 𝑒𝑑 is the vapour pressure at dew point temperature measured in 𝑚𝑏; 𝑛 is the 

number of sunshine hours, 𝑛𝑑 is the maximum number of sunshine hours; 𝜎𝑠𝑏 = 5.6697 ⋅
10−8 𝑊/(𝑚2 ⋅ °𝐾4) is Stefan Boltzman's constant; 𝑇𝑎𝑖𝑟  (°𝐶) is the air temperature. The 

coefficients 𝑎, 𝑏, 𝑐 and 𝑑 are given as 

 

𝑎 = 0.56     𝑏 = 0.077 𝑚𝑏−
1
2     𝑐 = 0.1     𝑑 = 0.9 (4.88) 
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The vapour pressure is determined as 

 

𝑒𝑑 = 10 ⋅ 𝑅 𝑒𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 (4.89) 

 

where 𝑅 is the relative humidity and the saturated vapour pressure, 𝑒𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑, measured 

in 𝑘𝑃𝑎 with 100 % relative humidity in the interval from −51 to 52 °𝐶 can be estimated by 

 

𝑒𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 = 3.38639
⋅ ((7.38 ⋅ 10−3 ⋅ 𝑇𝑎𝑖𝑟 + 0.8072)

8 − 1.9 ⋅ 10−5|1.8 ⋅ 𝑇𝑎𝑖𝑟 + 48|
+ 1.316 ⋅ 10−3) 

(4.90) 

 
The net long wave radiation, 𝑞𝑙𝑟,𝑛𝑒𝑡, can be calculated using empirical formulae as 

described above. Alternatively, the net long wave radiation can be calculated as 

 
𝑞𝑙𝑟,𝑛𝑒𝑡 = 𝑞𝑎𝑟,𝑛𝑒𝑡 − 𝑞𝑏𝑟 (4.91) 

 
where the net incident atmospheric radiation, 𝑞𝑎𝑟,𝑛𝑒𝑡, is specified by the user and the back 

radiation, 𝑞𝑏𝑟, is given by  

 

𝑞𝑏𝑟 = (1 − 𝑟)𝜀𝜎𝑠𝑏𝑇𝑘
4 (4.92) 

 

where 𝑟 = 0.03 is the reflection coefficient and 𝜀 = 0.985 is the emissivity factor of the 

atmosphere. The net long wave radiation can also be specified by the user. 

 

4.12.5 Ground heat 

The heat conduction at the bed is a function of the difference between the temperature at 

the bed and at an equilibrium ground temperature which will be some distance below the 
bed. The heat flux, 𝑞𝑔 , through the bed is given by 

 

𝑞𝑑 = 𝐾𝑔
(𝑇𝑔 − 𝑇𝑤)

∆𝑧𝑔
∆𝑧 (4.93) 

 

where 𝐾𝑔 (Watt/m/°C ) is the thermal conductivity of the bed material (etc. soil, sand or 

rock),  𝑇𝑔 is the ground equilibrium temperature, 𝑇𝑤  is the water temperature at the 

bed/water interface and ∆𝑧𝑔 is distance from the bed/ground level to the level where the 

equilibrium ground temperature is specified. 
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Structures  

 61 

5 Structures 

The horizontal dimension of structures is usually much smaller than the element (cell) 

sizes used in the computational grid. Therefore, the effect of structures is modeled by a 

subgrid technique. Six types of structures are included in the model 

 

• Weirs 

• Culverts 

• Dikes 

• Gates 

• Piers 

• Turbines 

 

In addition, a composite structure can be used. A composite structure is a combination of 

a number of weirs and culverts. 

 

Weirs, culverts, dikes and gates are defined as line sections. The location in the domain 

of a line section is given by a number of geo-referenced points which together make up a 

polyline. This is illustrated in Figure 5.1. The polyline defines the width of the cross 

section perpendicular to the flow direction. A minimum of two points is required. The 

polyline is composed of a sequence of line segments. The line segments are straight lines 

between two successive points. The polyline (line section) in the numerical calculations is 

defined as a section of element faces. The face is included in the section when the line 

between the two element centers of the faces crosses one of the line segments. If two 

faces in a triangular element are part of the same face section, the face section is 

corrected so that these two faces are excluded from the face section and instead the third 

face in the triangle is applied. The left and right side of the of the line section is defined by 

positioning at the start point and looking forward along the line section. 

 

Piers and turbines are defined as points in the domain 

 

       
   
Figure 5.1 The location of a line section.  

5.1 Weirs 

A weir is defined as a cross (line) section where the total discharge across the cross 

section is calculated using empirical formulas and distributed along the cross section. In 

the numerical calculations the cross section is defined as a section of element faces 
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which is treated as an internal discharge boundary (weak formulation). However, the flux 

contribution to the continuity equation is corrected to secure mass conservation. 

 

The total discharge is calculated based on the mean water level in the real wet elements 

to the left and right of the section of faces. The mean level is calculated using the length 

of the element faces as the weighting factor. Real wet elements are elements where the 

water depth is larger than the wetting depth. The upstream water level is then the highest 

of the two water levels and the downstream water level the smallest. The distribution of 

the calculated total discharge along the section faces can be specified in two ways 

 

• Uniform 

• Non-uniform 

 

The discharge is in both cases distributed to the faces for which the element to the left 

and right of the face are both a wet element and else the discharge is distributed to the 

faces for which the upstream elements are wet elements. When non-uniform distribution 

is applied the discharge will be distributed as it would have been in a uniform flow field 

with the Manning resistance law applied, i.e. relative to ℎ5/3, where ℎ is the total water 

depth. This distribution is, in most cases, a good approximation. This does not apply if 

there are very large variations over the bathymetry or the geometry. A uniform distribution 

is applied for the vertical distribution. 

 

When the difference between the upstream and downstream water level for a weir is 

small the corresponding gradient of the discharge with respect to the water levels is large. 

This in turn may result in a very rapid flow response to minor changes in the water level 

upstream and downstream. As a way of controlling this effect an Alpha zero value has 

been introduced. The Alpha zero value defines the water level difference below which the 

discharge gradients are suppressed. The default setting is 0.01 meter.  

 

For weirs a valve regulation is applied. Four different valve regulation types are available 

 

• None. No valve regulation applies (flow is not regulated). 

• Only Negative Flow. Only flow in negative flow direction is allowed. Valve 

regulation does not allow flow in positive flow direction and the flow through the 

structure will be zero in this case. 

• Only Positive Flow. Only flow in positive flow direction is allowed. Valve regulation 

does not allow flow in negative flow direction and the flow through the structure 

will be zero in this case. 

• No Flow. No flow is allowed in the structure. Valve regulation closes completely 

the structure. 

 

The flow direction is positive when the flow occurs from the right of the line structure to 

the left (see Figure 5.1) 

 

Three formulas are available for calculation of the discharge through a weir 

 

• Broad Crested Weir formula 

• Weir formula 1 

• Weir formula 2 (Honma formula) 

 
  
Broad Crested Weir 

 

For a broad crested weir the shape of the "hole" is described through a level/width table 

(see Figure 5.2 and Figure 5.3). Levels are defined relative to the datum (starting from the 

crest or sill level and up). A datum value for the weir may be used to shift the levels by a 
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constant amount. This is typically used if the weir geometry has been surveyed with 

respect to a local benchmark. 

 

 
 
Figure 5.2 Setup definitions of contracted weir. 

 

 
 
Figure 5.3 Definition sketch for broad crested weir geometry.  

 

The standard formulations for flow over a broad crested weir are established on the basis 

of the weir geometry and the specified head loss and calibration coefficients. These 

formulations assume a hydrostatic pressure distribution on the weir crests. Different 

algorithms are used for drowned flow and free overflow, with an automatic switching 

between the two. 

 

The energy loss over a weir is given by 

 

𝑞 = 𝜁𝑡
𝑉𝑠
2𝑔

 (5.1) 

 

where 𝜁𝑡 is the total head loss coefficient and 𝑉𝑠 is the mean cross sectional velocity at the 

structure. The total head loss coefficient, 𝜁𝑡, is composed of entrance, 𝜁1, and exit, 𝜁2, loss 

coefficients. The coefficients are generally related to the input parameters for inflow, 𝜁𝑖𝑛, 

and outflow, 𝜁𝑜𝑢𝑡, and the changes in velocity, 𝑉, and area, 𝐴  

 

𝜁𝑡 = 𝜁1 + 𝜁2 = 𝜁𝑖𝑛 (
𝑉1
𝑉𝑠
) + 𝜁𝑜𝑢𝑡 (

𝐴𝑠
𝐴2
)
2

 (5.2) 

 

where suffix '1' and '2' represents velocity and area on inflow and outflow side of the 

structure respectively, and 's' represents the velocity and area in the structure itself. 

However, in the present implementation, upstream and downstream cross sections are 

not extracted and accordingly, tabulated relations on cross section areas as function of 



 MIKE 3 Flow Model FM 

64 Hydrodynamic and Transport Module - © DHI A/S 

water levels are not known. Instead, upstream and downstream areas are set to a large 

number resulting in a full loss contribution from the head loss factors defined 

 

𝜁𝑡 = 𝜁1 + 𝜁2 = 𝜁𝑖𝑛 + 𝜁𝑜𝑢𝑡 (5.3) 

 

Care must be taken when selecting loss coefficients, particularly in situations where both 

subcritical and supercritical flow conditions occur. When flow conditions change from 

subcritical to supercritical (or the Froude number, FR, becomes greater than 1), the loss 

coefficients 𝜁𝑖𝑛 and 𝜁𝑜𝑢𝑡  are modified: 

 

 

• If FR > 1 for upstream conditions, then 𝜁𝑖𝑛 = 𝜁𝑖𝑛/2 

• If FR > 1 for downstream conditions, then 𝜁𝑜𝑢𝑡 = 𝜁𝑜𝑢𝑡/2 

 

The critical flows are multiplied by the critical flow correction factor, 𝛼𝑐, specified as the 

free overflow head loss factor. Typically, a value of 1.0 is used. 

 
Weir formula 1 

 

For the Weir formula 1 description the parameters are given by Figure 5.4. The width is 

perpendicular to the flow direction. Typically, the invert level coincides with the overall 

datum. Weir formula 1 is based on a standard weir expression, reduced according to the 

Villemonte formula 

 

𝑞 = 𝐶(𝜂𝑈𝑆 − 𝑧𝑊)
𝑘 (1 −

𝜂𝐷𝑆 − 𝑧𝑊
𝜂𝑈𝑆 − 𝑧𝑊

)
−0.385

𝑊 (5.4) 

 

where 𝑞 is the discharge through the structure, 𝑊 is the width, 𝐶 is the weir coefficient, 𝑘 

is the weir exponential coefficient, 𝜂𝑈𝑆 is the upstream water level, 𝜂𝐷𝑆 is the downstream 

water level and 𝑧𝑤 is the weir level (see Figure 5.4). The invert level is the lowest point in 

the inlet or outlet section respectively. 

 

 
Figure 5.4 Definition sketch for weir flow.  

 

 
Weir formula 2 

 

For the Weir formula 2 the geometry is given by a crest level and a width. The crest level 

is taken with respect to the global datum. The width is perpendicular to the flow direction. 

Weir formula 2 is the Honma formula 
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𝑞 =

{
 
 

 
 𝐶1(𝜂𝑈𝑆 − 𝑧𝑊)√𝜂𝑈𝑆 − 𝑧𝑤 𝑊                   

(𝜂𝐷𝑆 − 𝑧𝑊)

𝜂𝑈𝑆
<
2

3

𝐶2(𝜂𝐷𝑆 − 𝑧𝑊)√𝜂𝑈𝑆 − 𝜂𝐷𝑆𝑊                    
(𝜂𝐷𝑆 − 𝑧𝑊)

𝜂𝑈𝑆
≥
2

3

 (5.5) 

 

where 𝑞 is the discharge through the structure, 𝑊 is the width, 𝐶1 and 𝐶2 = 1.5√3𝐶1 are 

the two weir coefficients, 𝜂𝑈𝑆 is the upstream water level, 𝜂𝐷𝑆 is the downstream water 

level and 𝑧𝑊 is the weir level (see Figure 5.4). 

5.2 Culverts 

A culvert can be modelled either as a short or a long culvert. 

 

A short culvert is defined as a cross (line) section where the total discharge across the 

cross section is calculated using empirical formulas and distributed along the cross 

section. In the numerical calculations the cross section is defined as a section of element 

faces which is treated as an internal discharge boundary (weak formulation).  However, 

the flux contribution to the continuity equation is corrected to secure mass conservation.  

 

A long culvert is defined by a longitudinal line as shown in Figure 5.5 where the inlet and 

outlet location are defined as two extent lines at the ends of the transversal line. The 

polyline (line section) in the numerical calculations for each of the two extent lines is 

defined as a section of element faces. A long culvert is treated as two connected area 

sources where the total discharge is calculated using empirical formulas. For each of the 

two extent lines, the area is determined at the area of the elements to the right of the 

section of element faces. At the outlet location it is possible to take into account the 

contribution to the momentum equation. This contribution is estimated as the discharge 

multiplied by a velocity. Here the magnitude of the velocity is calculated as the discharge 

divided by the local total water depth. The direction used for the two extent lines is the 

direction of the first and last segment of the longitudinal polyline. If the longitudinal 

polyline only contains one segment (two points), the direction is determined as the 

direction perpendicular to the line given by the first and last point of the extent line. 

 

For a short culvert the total discharge is calculated based on the mean water level in the 

real wet elements to the left and right of the section of faces. For a long culvert the total 

discharge calculated based on the mean water level in the real wet elements to the right 

of the section of faces for the two extent lines. The mean level is calculated using the 

length of the element faces as the weighting factor. Real wet elements are elements 

where the water depth is larger than the wetting depth. The upstream water level is then 

the highest of the two water levels and the downstream water level the smallest. 

 

The distribution of the calculated total discharge along the section faces can be specified 

in two ways 

 

• Uniform 

• Non-uniform 

 

For a short culvert the discharge is in both cases distributed to the faces for which the 

element to the left and right of the face are both a wet element and else the discharge is 

distributed to the faces for which the upstream elements are wet elements. When non-

uniform distribution is applied the discharge will be distributed as it would have been in a 

uniform flow field with the Manning resistance law applied, i.e. relative to ℎ5/3, where ℎ is 

the total water depth. For a long culvert the discharge is in both cases distributed to the 

faces for which the element to the right of the extent line is a wet element. If no elements 
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are wet the discharge is distributed uniformly to all faces in the section. When non-uniform 

distribution is applied the same approach as for short culverts is used. The non-uniform 

distribution is, in most cases, a good approximation. This does not apply if there are very 

large variations over the bathymetry or the geometry. A uniform distribution is applied for 

the vertical distribution. 

 

     

 
 
Figure 5.5 Setup definitions for a long culvert. 

 

When the difference between the upstream and downstream water level for both a short 

and long culvert is small the corresponding gradient of the discharge with respect to the 

water levels is large. This in turn may result in a very rapid flow response to minor 

changes in the water level upstream and downstream. As a way of controlling this effect 

an Alpha zero value has been introduced. The Alpha zero value defines the water level 

difference below which the discharge gradients are suppressed. The default setting is 

0.01 meter.  

 

For both short and long culverts a valve regulation is applied. Four different valve 

regulation types are available 

 

• None. No valve regulation applies (flow is not regulated). 

• Only Negative Flow. Only flow in negative flow direction is allowed. Valve 

regulation does not allow flow in positive flow direction and the flow through the 

structure will be zero in this case. 

• Only Positive Flow. Only flow in positive flow direction is allowed. Valve regulation 

does not allow flow in negative flow direction and the flow through the structure 

will be zero in this case. 

• No Flow. No flow is allowed in the structure. Valve regulation closes completely 

the structure. 

 

For a short culvert the flow direction is positive when the flow occurs from the right of the 

line structure to the left (see Figure 5.1). For a long culvert the flow direction is positive 

when flow is from the start line to the end line (Figure 5.5). 

 

The culvert geometry defines the geometrical shape of the active flow area of 

the culvert, see Figure 5.6. The cross sectional geometry of a culvert can be specified as 
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• Rectangular. The width and height specify the geometry. 

• Circular. The geometry is specified by the diameter. 

• Irregular Level-Width Table. The geometry is specified using a level/width table. 

The Level/Width table defines the culvert shape as a set of corresponding levels 

and flow widths (see Figure 5.7). 

 

A culvert structure can be modelled as either an open section or a closed section. If set to 

open the culvert will never run full or partially full, therefore only those flow conditions 

which represent a free water surface are modelled. When the water level is higher than 

the soffit the hydraulic parameters are calculated based on a section extended vertically 

upwards with a width equal to that at the soffit. For example, in the case of a rectangular 

section the height value is essentially redundant as the cross-section will be modeled as 

an open section of constant width. A circular culvert is always a treated as a closed 

section. 

 

 
 
Figure 5.6 Setup definitions of culverts.  

 

 
Figure 5.7 Definition sketch for irregular culvert geometry.  
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The total head loss, Δ𝐻𝑙𝑜𝑠𝑠 through a culvert is given by 

 

Δ𝐻𝑙𝑜𝑠𝑠 =
𝑞2

2𝑔
(
𝜁1
𝐴𝑠1
2
+
𝜁𝑓 + 𝜁𝑏

𝐴𝑠𝐴
2

+
𝜁2
𝐴𝑠2
2
) (5.6) 

 
where 𝐴𝑆1, 𝐴𝑆𝐴 and 𝐴𝑆2 are the mean cross section areas along the length of the culvert 

and 𝑞 is the discharge, 𝜁1  is the entrance or contraction loss coefficient, 𝜁2  is the outlet or 
expansion loss coefficient, 𝜁𝑓  is the friction loss and 𝜁𝑏 is the bend loss coefficient. 𝜁1 and 

𝜁2 are calculated by 

 

𝜁1 = 𝜁𝑖𝑛 (1 −
𝐴𝑠
𝐴1
) (5.7) 

 

𝜁2 = 𝜁𝑜𝑢𝑡 (1 −
𝐴𝑠
𝐴2
)
2

 (5.8) 

  

The upstream and downstream cross section areas, 𝐴1 and 𝐴2 are not processed and 

extracted in the present implementation and hence, defined as an infinite value. 

Contraction and expansion losses are therefore assumed to be applied in full using the 

defined inflow and outflow loss coefficients, 𝜁𝑖𝑛 and 𝜁𝑜𝑢𝑡. The friction loss coefficient is 

calculated using the Manning formula 

 

𝜁𝑓 =
2𝑔𝐿𝑛2

𝑅4/3
 (5.9) 

 

where 𝐿 is the culvert length, 𝑛 is Manning's coefficient and 𝑅 is the mean hydraulic radius 

along the culvert. The Manning's 𝑛-value depends on the interior surface of the culvert. 

Table values can be found in literature. For example, a concrete culvert 𝑛 would typically 

range from 0.011 to 0.017. 

 

The bend loss coefficient, 𝜁𝑏, is provided for situations where head losses other than from 

the above occur, for example bends, damaged culverts, trapped debris. For straight 

culverts in good condition a value of zero would apply. The critical flows (and orifice flows 

for culverts as well) are multiplied by the critical flow correction factor, 𝛼𝑐, specified as the 

free overflow head loss factor. Typically, a value of 1.0 is used. 

5.3 Composite structures 

A composite structure is a combination of a number of weirs and short culverts (see 

Figure 5.8). A composite structure is defined as a cross section where total discharge 

across the cross section is calculated using empirical formulas for weirs and culverts and 

distributed along the cross section. In the numerical calculations the cross section is 

defined as a section of element faces which is treated as an internal discharge boundary 

(weak formulation). However, the flux contribution to the continuity equation is corrected 

to secure mass conservation. The approach for calculating the mean water level and for 

distribution of the total discharge are the same as the approach used for weirs and 

culverts. 

 

The total discharge across the combined structures is calculated by iteration until a stable 

flow is achieved. During the iteration, the energy headloss of the structures is modified; 

thus, only structures that apply an energy description are modified in the iteration 
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process. These include culverts and broad Crested Weirs. If none of these structures are 

present in a composite structure, then no iterations are performed. 

 

A set of structures forming a composite structure are recognized from the location 

definitions. Locations must be completely identical for all the structures forming the 

composite structure. That is, the table of coordinates defining the structure locations must 

be exactly identical (number of coordinates and coordinate values) for all structures 

defined. 

 

 
 
Figure 5.8 Setup definitions of a composite structure. Here the structure consists of one weir 

with a constant crest level 𝐿1 and three short culverts (a circular, a rectangular and a 
irregular). 

5.4 Dikes 

A dike is defined as a cross section and in the numerical calculations the cross section is 

defined as a section of element faces which is treated as an internal discharge boundary 

(weak formulation). However, the flux contribution to the continuity equation is corrected 

to secure mass conservation. The discharge across each face in the section is calculated 

using an empirical formula or specified as input.  A uniform distribution is applied for the 

vertical distribution. 

 

When the empirical formulation is used the discharge, 𝑞, over an element face with the 

length (width), Δ𝑙, is calculated based on the water level in the elements to the left and 

right of the face. The upstream water level is then the highest of the two water levels and 

the downstream water level the smallest. A standard weir expression, reduced according 

to the Villemonte formula, is applied 

 

𝑞 = 𝐶(𝜂𝑈𝑆 − 𝑧𝑊)
𝑘 (1 −

𝜂𝐷𝑆 − 𝑧𝑊
𝜂𝑈𝑆 − 𝑧𝑊

)
−0.385

Δ𝑙 (5.10) 

 

where 𝐶 is the weir coefficient, 𝑘 is the weir exponential coefficient, 𝜂𝑈𝑆 is the upstream 

water level, 𝜂𝐷𝑆 is the downstream water level and 𝑧𝑊 is the weir level taken with respect 

to the global datum (see Figure 5.9). The value of the weir exponent is 1.5 and the default 

value of the weir coefficient is 1.838. 
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Figure 5.9 Definition sketch for dike flow.  

5.5 Gates 

A gate is defined as a cross section and in the numerical calculations the cross section is 

defined as a section of element faces. At an element face with the length, 𝛥𝑙, the normal 

flux is calculated as the sum of the normal flux for a solid wall, where the length is 

determined as (1 − 𝑐)𝛥𝑙, and the normal flux for a standard wet face, where the length is 

𝑐Δ𝑙. Here, 𝑐 is a weighting factor with a value between 0 and 1, where 0 corresponds to a 

closed gate and 1 corresponds to an open gate.  

 

If the gate is defined as the full water column, 𝑐 is equal to the user-defined gate control 
factor, 𝑐𝑖𝑛𝑝𝑢𝑡. If the gate geometry is defined as a subset of the water column the vertical 

location of the gate is defined by the top level, 𝑧𝑡𝑜𝑝, and bottom level of the gate, 𝑧𝑏𝑜𝑡𝑡𝑜𝑚, 

(see Figure 5.7). In this case c is calculated as  

 
𝑐 = 𝑓𝑐𝑖𝑛𝑝𝑢𝑡 + (1 − 𝑓) (5.11) 

 

where 𝑓 is the fraction of the element face, which is blocked by the gate.  

 

 

    
Figure 5.10 Definition sketch for gate flow.  

5.6 Piers 

The effect of piers is modelled as sub-grid structures by an additional volume force to the 

momentum equation in the column of cells where the pier is located. A simple drag-law is 

used to capture the increasing resistance imposed by the piers as the flow speed 

increases. 

 

The effective current induced drag force, 𝐹𝐷, is determined from 
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𝐹𝐷 =
1

2
𝜌0𝛾𝐶𝐷𝐴𝑒𝑉

2 (5.12) 

 

where 𝛾 is the streamline factor, 𝐶𝐷 is the drag coefficient, 𝐴𝑒 is the effective area of the 

pier exposed to current and 𝑉 is the current speed. The sign of 𝐹𝐷 is such that a positive 

force acts against the current direction. The streamline factor is a factor that is multiplied 

on the total drag force to take into account the increased flow velocity due to the blocking 

of piers. The velocity is the velocity in the cell, where the pier is located. 

 

A pier is defined as a number of pier segments, which are vertical sections with different 

geometrical layout (see Figure 5.11 and Figure 5.12).  The geometrical layout can be 

 

•  Circular 

•  Rectangular 

•  Elliptical 

 

 
 
Figure 5.11 Pier with 3 sections with heights ℎ𝑝1, ℎ𝑝2 and ℎ𝑝3. 

 

 
 
Figure 5.12 Definition of pier angles. 𝑤 is the width of the pier section, 𝐿 is the length of the pier 

section, 𝛼 is the angle between projection north and the alignment. 

5.7 Turbines 

The effect of tidal turbines is modelled as sub-grid structures by an additional volume 

force to the momentum equation in the column of cells where the turbine is located. A 

simple drag-law is used to capture the increasing resistance imposed by the turbine 

blades as the flow speed increases. Turbines are assumed always to have their axis 

aligned with the flow direction. 
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The effect to the flow due to the turbines is modeled by calculating the current induced 

drag and lift force on each individual layer (see Figure 5.13). The effective drag force, 𝐹𝐷, 

and lift force, 𝐹𝐿, are determined from 

 

𝐹𝐷 =
1

2
𝜌0𝛼𝐶𝐷𝐴𝑒𝑉

2 (5.13) 

 

𝐹𝐿 =
1

2
𝜌0𝛼𝐶𝐿𝐴𝑒𝑉

2 (5.14) 

 

where 𝛼 is a correction factor, 𝐶𝐷is the drag coefficient, 𝐶𝐿 is the lift coefficient, 𝐴𝑒 is the 

effective area of the turbine exposed to current and 𝑉 is the upstream current speed. For 

three-dimensional calculations the current speed used to determine the force is the 

average current speed over the water column covered by the turbine and the shear stress 

is equally distributed over water column covered by the turbine. 

 

When no current correction is applied the upstream current velocity is approximated by 

the local velocity, 𝑉𝑙𝑜𝑐𝑎𝑙. The local velocity is the velocity in the cell, where the turbine is 

located. When current correction is included the upstream current speed is approximated 

by 

 

𝑉0 =
2

1 + √1 − 𝛾
𝑉𝑙𝑜𝑐𝑎𝑙 (5.15) 

 

where 𝛾 = 𝛼𝐶𝐷𝐴𝑒/(ℎΔ𝑠). Here ℎ is the water depth and ∆𝑠 is grid distance. When the drag 

coefficient is specified as a function of the upstream current speed the corrected current 

speed is determined by iteration. The grid distance is determined as the width 

perpendicular to the flow direction of the element, where the turbine is located. For more 

detail see (Kramer et al. (2014)). 

 

       

 
    
Figure 5.13 Definition of turbine angles. 𝑑 is the diameter of the turbine, 𝜃𝑓𝑙𝑜𝑤 is the current 

direction, 𝜃𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 is the angle between projection north and the alignment and 𝜃 is 

the angle between alignment and flow. 
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6 Parallelization   

The MIKE 3 Flow Model FM utilizes the following parallelization techniques in a hybrid 

manner 

 

• OpenMP computing approach 

• MPI computing approach 

• GPU computing approach 

 

The MIKE 3 Flow Model FM is parallelized for shared-memory multiprocessor/multicore 

computers using OpenMP. This parallelization is performed by adding compiler directives 

to the code.  

 

To improve performance and to be able to perform simulations on large massively parallel 

distributed-memory computers and clusters, MIKE 3 Flow Model FM has also been 

parallelized using the domain decomposition concept and Message Passing Interface 

(MPI). Given the number of processor cores allocated to a simulation, the computational 

mesh is partitioned into subdomains, and the workload associated with each domain is 

distributed between the allocated cores. The data exchange between domains is 

performed by message passing using the Intel MPI Library, which has multi fabric 

message passing capabilities. It allows the use of mixed communication between the 

domains. Thus, domains will exchange data via the fastest communication interface – in 

ranked order: shared memory, InfiniBand, Ethernet, etc..  

 

The GPU computing approach uses the computers graphics card to perform the 

computational intensive calculations. This approach is based on CUDATM by NVIDIA and 

can be executed on NVIDIA graphic cards with Compute Capability 3.0 or higher. Only 

the computational intensive part of the calculations solving the flow equations and 

transport equations (temperature and salinity, turbulence and transport of a scalar 

quantity) are performed on the GPU. The additional calculations (e.g. input and output 

handling) are for each sub-domain performed on the CPU and these calculations are 

parallelized based on the OpenMP computing approach The GPU acceleration is only 

possible when the shallow water equations are used. 

6.1 The domain decomposition 

The domain partitioning is performed using the METIS graph partitioning library (Karypis 

and Kumar, (1998, 1999)). The computational mesh is converted into a graph, and then 

METIS uses a multi-level graph partitioning scheme to split the graph into subgraphs, 

representing the partitioned subdomains, which are distributed among the allocated 

cores. METIS computes a balanced partitioning that minimizes the connectivity of the 

subdomains. This partitioning is performed based on the 2D (horizontal) mesh. Using a 

2D mesh to partition a 3D domain can cause unbalanced partitioning. When combined 

sigma/z-level discretization is used in 3D flow calculations, the number of vertical 

elements can vary significantly across the domain. This difference in the number of 

vertical elements can lead to an unbalanced partitioning. To get a balanced partitioning 

for a 3D mesh, weights corresponding to the actual number of vertical elements 

associated to each vertex of the graph are used. The partitioning is then made so that the 

sum of vertex-weights is the same for all subdomains. Hence, with both 2D and 3D 

meshes, the partitioning strategy ensures that the difference in the number of elements in 

all subdomains is minimized. 

 

The chosen numerical scheme for the discretization in the spatial domain requires an 

overlapping domain decomposition. It is based on the halo-layer (“ghost”-cells) approach, 
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where each subdomain contains elements from connected subdomains. This overlap is 

needed, because calculations require values from the connecting elements. Thus, 

calculations of some elements at the border between subdomains require values from the 

connected subdomains. 

6.2 Data exchange 

The data exchange between processes is based on the aforementioned halo-layer 

(“ghost”-cells) approach with overlapping elements. The extension of the halo-layer area 

depends on the numerical scheme used for the discretization in the spatial domain and 

which variables are chosen to be exchanged between subdomains. Here a two-element 

wide halo-layer is applied. The data exchanges are performed via asynchronous 

communication when possible, and synchronous communications are used in different 

parts of the system to ensure correct execution. The MIKE 3 Flow Model FM uses a 

dynamic time step in the time integration scheme. To ensure that the calculations are 

performed with the same time step in all subdomains, time step information is exchanged 

between processes and thereby synchronizing the processes of each time step. Several 

special features require additional data exchange. These special interest points cause 

synchronization of two or more subdomains during the data exchange. The case of input 

and output data exchange is mentioned in the next subsection. Finally, information is 

exchanged between subdomains in connection with error handling. When the system 

encounters an error in the model, the error is distributed to the other processes when the 

time step is finished and the simulation is stopped. 

6.3 Input and output 

The input and output (I/O) is handled using a parallel I/O approach. The master process 

reads the global mesh information, performs the partitioning of the mesh and distributes 

the information about the individual subdomains to the slave processes. Each process 

then reads the additional input specifications using the generic specification file. The input 

data (wind maps, initial condition maps, etc.) are read by each process using the global 

data files. Since the individual processes perform I/O locally, the simulation data files 

must be accessible by each process. This access could be through a network-attached 

storage system or locally on each computer. The output data files from the simulations 

are written to private files for each subdomain. At the end of the simulation, the data files 

are merged to obtain data files containing global information.  
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 A-1 

A Governing equations in spherical coordinates 

In spherical coordinates the independent variables in the horizontal domain are the 

longitude, 𝜆 , and the latitude, 𝜙. The horizontal velocity field (𝑢,𝑣) is defined by 

 

𝑢 = 𝑅𝑐𝑜𝑠𝜙
𝑑𝜆

𝑑𝑡
         𝑣 = 𝑅

𝑑𝜙

𝑑𝑡
 (A1.1) 

 

where 𝑅 is the radius of the earth. 

A.1 Governing equations in spherical coordinate system and z-coordinates 

A.1.1 Flow equations 

The Navier-Stokes equations are given as  

 
1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢

𝜕𝜆
+
𝜕𝑣𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤

𝜕𝑧
= 0 (A1.2) 

 
𝜕𝑢

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢2

𝜕𝜆
+
𝜕𝑣𝑢𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤𝑢

𝜕𝑧
= 

 

        (𝑓 +
𝑢

𝑅
𝑡𝑎𝑛𝜙)𝑣 −

1

𝑅𝑐𝑜𝑠𝜙
(
1

𝜌0

𝜕𝑞

𝜕𝜆
+ 𝑔

𝜕𝜂

𝜕𝜆
+
1

𝜌0

∂𝑝𝐴
∂𝜆

+
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝜆

𝜂

𝑧

) + 𝐹𝑢

+
𝜕

𝜕𝑧
(𝜈𝑡

𝑣
𝜕𝑢

𝜕𝑧
) 

(A1.3) 

 
𝜕𝑣

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢𝑣

𝜕𝜆
+
𝜕𝑣2𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤𝑣

𝜕𝑧
= 

 

        − (𝑓 +
𝑢

𝑅
𝑡𝑎𝑛𝜙)𝑢 −

1

𝑅𝑐𝑜𝑠𝜙
(
1

𝜌0

𝜕𝑞

𝜕𝜙
+ 𝑔

𝜕𝜂

𝜕𝜙
+
1

𝜌0

∂𝑝𝐴
∂𝜙

+
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝜙

𝜂

𝑧

) + 𝐹𝑣

+
𝜕

𝜕𝑧
(𝜈𝑡

𝑣
𝜕𝑣

𝜕𝑧
) 

(A1.4) 

 
𝜕𝑤

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢𝑤

𝜕𝜆
+
𝜕𝑣𝑤𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤2

𝜕𝑧
= −

1

𝜌0

𝜕𝑞

𝜕𝑧
+ 𝐹𝑤 +

𝜕

𝜕𝑧
(𝜈𝑡

𝑣
𝜕𝑤

𝜕𝑧
) (A1.5) 

 
The shallow water equations are given as  

 
1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢

𝜕𝜆
+
𝜕𝑣𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤

𝜕𝑧
= 0 (A1.6) 

 
𝜕𝑢

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢2

𝜕𝜆
+
𝜕𝑣𝑢𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤𝑢

𝜕𝑧
= 

 

        (𝑓 +
𝑢

𝑅
𝑡𝑎𝑛𝜙)𝑣 −

1

𝑅𝑐𝑜𝑠𝜙
(𝑔

𝜕𝜂

𝜕𝜆
+
1

𝜌0

∂𝑝𝐴
∂𝜆

+
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝜆

𝜂

𝑧

) + 𝐹𝑢 +
𝜕

𝜕𝑧
(𝜈𝑡

𝑣
𝜕𝑢

𝜕𝑧
) 

(A1.7) 
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𝜕𝑣

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢𝑣

𝜕𝜆
+
𝜕𝑣2𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤𝑣

𝜕𝑧
= 

 

        − (𝑓 +
𝑢

𝑅
𝑡𝑎𝑛𝜙)𝑢 −

1

𝑅𝑐𝑜𝑠𝜙
(𝑔

𝜕𝜂

𝜕𝜙
+
1

𝜌0

∂𝑝𝐴
∂𝜙

+
𝑔

𝜌0
∫

𝜕𝜌

𝜕𝜙

𝜂

𝑧

) + 𝐹𝑣 +
𝜕

𝜕𝑧
(𝜈𝑡

𝑣
𝜕𝑣

𝜕𝑧
) 

(A1.8) 

A.1.2 Transport equations 

The transport equation for temperature and salinity are given as 

 
𝜕𝑇

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢𝑇

𝜕𝜆
+
𝜕𝑣𝑇𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤𝑇

𝜕𝑧
= 𝐹𝑡 +

𝜕

𝜕𝑧
(𝐷𝑡𝑠

𝑣
𝜕𝑇

𝜕𝑧
) + 𝐻̂ (A1.9) 

 
𝜕𝑠

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢𝑆

𝜕𝜆
+
𝜕𝑣𝑆𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤𝑆

𝜕𝑧
= 𝐹𝑠 +

𝜕

𝜕𝑧
(𝐷𝑡𝑠

𝑣
𝜕𝑆

𝜕𝑧
) (A1.10) 

 

The transport equations for the 𝑘-𝜀 model are given as 

 
𝜕𝑘

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢𝑘

𝜕𝜆
+
𝜕𝑣𝑘𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤𝑘

𝜕𝑧
= 𝐹𝑘 +

𝜕

𝜕𝑧
(
𝜈𝑡0
𝑣

𝜎𝑘
𝑣

𝜕𝑘

𝜕𝑧
) + 𝑃𝑘 + 𝐵𝑘 − 𝜖 (A1.11) 

 
𝜕𝜀

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢𝜀

𝜕𝜆
+
𝜕𝑣𝜀𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤𝜀

𝜕𝑧
= 𝐹𝜀 +

𝜕

𝜕𝑧
(
𝜈𝑡0
𝑣

𝜎𝜀
𝑣

𝜕𝜀

𝜕𝑧
) + 𝑃𝜀 + 𝐵𝜀 − 𝑐2𝜀

𝜀2

𝑘
 (A1.12) 

 

The transport equations for the 𝑘-𝜔 model are given as 

 
𝜕𝑘

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢𝑘

𝜕𝜆
+
𝜕𝑣𝑘𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤𝑘

𝜕𝑧
= 𝐹𝑘 +

𝜕

𝜕𝑧
(
𝜈𝑡0
𝑣

𝜎𝑘
𝑣

𝜕𝑘

𝜕𝑧
) + 𝑃𝑘 + 𝐵𝑘 − 𝛽𝑘𝜔𝑘 (A1.13) 

 
𝜕𝜔

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢𝜔

𝜕𝜆
+
𝜕𝑣𝜔𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤𝜔

𝜕𝑧
= 𝐹𝜔 +

𝜕

𝜕𝑧
(
𝜈𝑡0
𝑣

𝜎𝜔
𝑣

𝜕𝜔

𝜕𝑧
) + 𝐹𝜔𝑐 + 𝑃𝜔 − 𝛽𝜔𝜔

2 (A1.14) 

 

The transport equation for a scalar quantity is given as 

 
𝜕𝑐

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕𝑢𝑐

𝜕𝜆
+
𝜕𝑣𝑐𝑐𝑜𝑠𝜙

𝜕𝜙
) +

𝜕𝑤𝑐

𝜕𝑧
= 𝐹𝑐 +

𝜕

𝜕𝑧
(𝐷𝑐

𝑣
𝜕𝑐

𝜕𝑧
) − 𝑘𝑝C (A1.15) 

A.2 Governing equations in spherical coordinate system and sigma 
coordinates 

A.2.1 Flow equations 

The Navier-Stokes equations are given as  

 
𝜕ℎ

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢

𝜕𝜆′
+
𝜕ℎ𝑣𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕𝜔

𝜕𝜎
= 0 (A1.16) 
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𝜕ℎ𝑢

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢2

𝜕𝜆′
+
𝜕ℎ𝑣𝑢𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕ℎ𝜔𝑢

𝜕𝜎
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(𝑓 +
𝑢

𝑅
𝑡𝑎𝑛𝜙)ℎ𝑣 −
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ℎ

𝜌0
(
𝜕𝑞

𝜕𝜆
+ 
𝜕𝑞

𝜕𝜎

𝜕𝜎

𝜕𝜆
) + 𝑔ℎ

𝜕𝜂

𝜕𝜆
+
ℎ

𝜌0

∂𝑝𝐴
∂𝜆

+
ℎ𝑔

𝜌0
∫

𝜕𝜌

𝜕𝜆

𝜂

𝑧
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+ ℎ𝐹𝑢 +
𝜕

𝜕𝜎
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𝜈𝑡
𝑣

ℎ

𝜕𝑢

𝜕𝜎
) 

(A1.17) 
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𝜕𝑡′
+
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𝑅𝑐𝑜𝑠𝜙
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𝜕ℎ𝑢𝑣

𝜕𝜆′
+
𝜕ℎ𝑣2𝑐𝑜𝑠𝜙

𝜕𝜙′
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𝜕ℎ𝜔𝑣

𝜕𝜎
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−(𝑓 +
𝑢

𝑅
𝑡𝑎𝑛𝜙)ℎ𝑢 −

1

𝑅
(
ℎ

𝜌0
(
𝜕𝑞

𝜕𝜙
+
𝜕𝑞

𝜕𝜎

𝜕𝜎

𝜕𝜙
) + 𝑔ℎ

𝜕𝜂

𝜕𝜙
+
ℎ

𝜌0

∂𝑝𝐴
∂𝜙

+
ℎ𝑔

𝜌0
∫

𝜕𝜌

𝜕𝜙

𝜂

𝑧

) + ℎ𝐹𝑣

+
𝜕

𝜕𝜎
(
𝜈𝑡
𝑣

ℎ

𝜕𝑣

𝜕𝜎
) 

(A1.18) 

 
𝜕ℎ𝑤

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢𝑤

𝜕𝜆′
+
𝜕ℎ𝑣𝑤𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕ℎ𝜔𝑤

𝜕𝜎
= 

 

−
1

𝜌0

𝜕𝑞

𝜕𝜎
+ ℎ𝐹𝑤 +

𝜕

𝜕𝜎
(
𝜈𝑡
𝑣

ℎ

𝜕𝑤

𝜕𝜎
) 

(A1.19) 

 

The shallow water equations are given as  

 
𝜕ℎ

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢

𝜕𝜆′
+
𝜕ℎ𝑣𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕𝜔

𝜕𝜎
= 0 (A1.20) 

 
𝜕ℎ𝑢

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢2

𝜕𝜆′
+
𝜕ℎ𝑣𝑢𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕ℎ𝜔𝑢

𝜕𝜎
= 

 

(𝑓 +
𝑢

𝑅
𝑡𝑎𝑛𝜙)ℎ𝑣 −

1

𝑅𝑐𝑜𝑠𝜙
(𝑔ℎ

𝜕𝜂

𝜕𝜆
+
ℎ

𝜌0

∂𝑝𝐴
∂𝜆

+
ℎ𝑔

𝜌0
∫

𝜕𝜌

𝜕𝜆

𝜂

𝑧

) + ℎ𝐹𝑢 +
𝜕

𝜕𝜎
(
𝜈𝑡
𝑣

ℎ

𝜕𝑢

𝜕𝜎
) 

(A1.21) 

 
𝜕ℎ𝑣

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢𝑣

𝜕𝜆′
+
𝜕ℎ𝑣2𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕ℎ𝜔𝑣

𝜕𝜎
= 

 

−(𝑓 +
𝑢

𝑅
𝑡𝑎𝑛𝜙)ℎ𝑢 −

1

𝑅
(𝑔ℎ

𝜕𝜂

𝜕𝜙
+
ℎ

𝜌0

∂𝑝𝐴
∂𝜙

+
ℎ𝑔

𝜌0
∫

𝜕𝜌

𝜕𝜙

𝜂

𝑧

) + ℎ𝐹𝑣 +
𝜕

𝜕𝜎
(
𝜈𝑡
𝑣

ℎ

𝜕𝑣

𝜕𝜎
) 

(A1.22) 

 

The modified vertical velocity, 𝜔, is given by 

 

𝜔 =
1

ℎ
(𝑤 +

𝑢

𝑅𝑐𝑜𝑠𝜙

𝜕𝑑

𝜕𝜆
+
𝑣

𝑅

𝜕𝑑

𝜕𝜙
− 𝜎 (

𝜕ℎ

𝜕𝑡
+

𝑢

𝑅𝑐𝑜𝑠𝜙

𝜕ℎ

𝜕𝜆
+
𝑣

𝑅

𝜕ℎ

𝜕𝜙
)) (A1.23) 

 

A.2.2 Transport equations 

The transport equation for a temperature and salinity are given as 

 
𝜕ℎ𝑇

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢𝑇

𝜕𝜆′
+
𝜕ℎ𝑣𝑇𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕ℎ𝜔𝑇

𝜕𝜎
= ℎ𝐹𝑡 +

𝜕

𝜕𝜎
(
𝐷𝑡𝑠
𝑣

ℎ

𝜕𝑇

𝜕𝜎
) + ℎ𝐻̂ (A1.24) 
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𝜕ℎ𝑆

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢𝑆

𝜕𝜆′
+
𝜕ℎ𝑣𝑆𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕ℎ𝜔𝑆

𝜕𝜎
= ℎ𝐹𝑠 +

𝜕

𝜕𝜎
(
𝐷𝑡𝑠
𝑣

ℎ

𝜕𝑆

𝜕𝜎
) (A1.25) 

 

The transport equations for the 𝑘-𝜀 model are given as  

 
𝜕ℎ𝑘

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢𝑘

𝜕𝜆′
+
𝜕ℎ𝑣𝑘𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕ℎ𝜔𝑘

𝜕𝜎
 

 

= ℎ𝐹𝑘 +
𝜕

𝜕𝜎
(
𝜈𝑡0
𝑣

ℎ𝜎𝑘
𝑣

𝜕𝑘

𝜕𝜎
) + ℎ(𝑃𝑘 + 𝐵𝑘 − 𝜖) 

(A1.26) 

 
𝜕ℎ𝜀

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢𝜀

𝜕𝜆′
+
𝜕ℎ𝑣𝜀𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕ℎ𝜔𝜀

𝜕𝜎
 

 

= ℎ𝐹𝜀 +
𝜕

𝜕𝜎
(
𝜈𝑡0
𝑣

ℎ𝜎𝜀
𝑣

𝜕𝜀

𝜕𝜎
) + ℎ (𝑃𝜀 + 𝐵𝜀 − 𝑐2𝜀

𝜀2

𝑘
) 

(A1.27) 

 

The transport equations for the 𝑘-𝜔 model are given as 

 
𝜕ℎ𝑘

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢𝑘

𝜕𝜆′
+
𝜕ℎ𝑣𝑘𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕ℎ𝑤𝑠𝑘

𝜕𝜎
 

 

= ℎ𝐹𝑘 +
𝜕

𝜕𝜎
(
𝜈𝑡0
𝑣

ℎ𝜎𝑘
𝑣

𝜕𝑘

𝜕𝜎
) + ℎ(𝑃𝑘 + 𝐵𝑘 − 𝛽𝑘𝜔𝑘) 

(A1.28) 

 
𝜕ℎ𝜔

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢𝜔

𝜕𝜆′
+
𝜕ℎ𝑣𝜔𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕ℎ𝑤𝑠𝜔

𝜕𝜎
 

 

= ℎ𝐹𝜔 +
𝜕

𝜕𝜎
(
𝜈𝑡0
𝑣

ℎ𝜎𝜔
𝑣

𝜕𝜔

𝜕𝜎
) + ℎ𝐹𝜔𝑐 + ℎ (𝑃𝜔 − 𝛽𝜔𝜔

2) 

(A1.29) 

 

Note that in eqs. (A1.28)-(A1.29), the modified vertical velocity in the sigma coordinate 

system is called 𝑤𝑠 (instead of 𝜔). This is to distinguish it from the specific dissipation 

rate, 𝜔, of turbulent kinetic energy which was introduced in section 2.1.4. 

 

The transport equation for a scalar quantity is given as 

 
𝜕ℎ𝑐

𝜕𝑡′
+

1

𝑅𝑐𝑜𝑠𝜙
(
𝜕ℎ𝑢𝑐

𝜕𝜆′
+
𝜕ℎ𝑣𝑐𝑐𝑜𝑠𝜙

𝜕𝜙′
) +

𝜕ℎ𝜔𝑐

𝜕𝜎
= ℎ𝐹𝑐 +

𝜕

𝜕𝜎
(
𝐷𝑐
𝑣

ℎ

𝜕𝑐

𝜕𝜎
) − ℎ𝑘𝑝C (A1.30) 
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