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1 Introduction 

This document presents the scientific background for the MIKE 21 Wave Model FM. The 

objective is to provide the user with a detailed description of the governing equations, 

numerical discretization and solution methods. 

  

MIKE 21 Wave Model FM can be applied in the following areas: 

 

• Ports and terminals 

- Wave agitation caused by short and long waves 

- Input to dynamic ship mooring analysis (MIKE 21 MA) 

• Coastal areas 

- Non-linear wave transformation 

- Surf and swash zone hydrodynamics 

- Wave breaking and run-up 

- Coastal flooding 

 

• Coastal structures 

- Wave overtopping 

- Wave transmission (and reflection) through porous structures 

- Input to wave load calculation 

 

The model is based on the numerical solution of the two-dimensional Boussinesq-type 

equations of Madsen and Sørensen (1992). The equations provide excellent accuracy in 

shoaling as well as in linear dispersion for the ratio of the water depth to the deep water 

wave length, h/L0, as large as 0.5. The deep water wave length L0=gT2/(2π), where T is 

the wave period and g is the gravity. The spatial discretization of the governing equations 

in conserved form is performed using a cell-centered finite volume method. The time 

integration is performed using an explicit Runge-Kutta scheme. The interface convective 

fluxes are calculated using an approximate Riemann solver. This shock-capturing scheme 

enables robust and stable simulation of flows involving shocks or discontinuities such as 

bores and hydraulic jumps. This is essential for modelling of waves in the breaking zone 

or porous structures.  
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2 Governing equations 

The governing equations are solved in a Cartesian coordinate system. 

2.1 Governing equations in a Cartesian coordinate system 

2.1.1 Enhanced Boussinesq equations 

The two-dimensional enhanced Boussinesq equations are obtained by integrating the 

Navier–Stokes equations over the water depth and taking into account the effect that 

vertical accelerations have on the pressure distribution. For more details on the derivation 

of the two-dimensional enhanced Boussinesq equations see Madsen et al. (1991) and 

Madsen and Sørensen (1992). The two-dimensional enhanced Boussinesq equations in 

conservative form can be expressed as 

 
𝜕ℎ

𝜕𝑡
+
𝜕ℎ𝑢

𝜕𝑥
+
𝜕ℎ𝑣

𝜕𝑦
= 0 (2.1) 

 

𝜕ℎ𝑢

𝜕𝑡
+
𝜕ℎ𝑢2

𝜕𝑥
+
𝜕ℎ𝑢𝑣

𝜕𝑦
= 

                       −𝑔ℎ
𝜕𝜂

𝜕𝑥
−
𝜏𝑓𝑥

𝜌
− 𝐹𝑢 − 𝐹𝑣𝑥 +

𝜕ℎ𝑇𝑥𝑥
𝜕𝑥

+
𝜕ℎ𝑇𝑥𝑦

𝜕𝑦
−
𝜕𝑅𝑥𝑥
𝜕𝑥

−
𝜕𝑅𝑥𝑦

𝜕𝑦
+ 𝜓1  

(2.2) 

 

𝜕ℎ𝑣

𝜕𝑡
+
𝜕ℎ𝑣𝑢

𝜕𝑥
+
𝜕ℎ𝑣2

𝜕𝑦
= 

                       −𝑔ℎ
𝜕𝜂

𝜕𝑦
−
𝜏𝑓𝑦

𝜌
− 𝐹𝑣 − 𝐹𝑣𝑦 +

𝜕ℎ𝑇𝑥𝑦

𝜕𝑥
+
𝜕ℎ𝑇𝑦𝑦

𝜕𝑦
−
𝜕𝑅𝑥𝑦

𝜕𝑥
−
𝜕𝑅𝑦𝑦

𝜕𝑦
+ 𝜓2 

(2.3) 

  

Here 𝑡 is the time; 𝑥 and 𝑦 are the Cartesian coordinates; ℎ = 𝜂 + 𝑑 is the total water 

depth, where 𝜂 is the surface elevation and 𝑑 is the still water depth; 𝑢 and 𝑣 are the 

depth averaged velocity components in the 𝑥 and 𝑦 direction; 𝑔 is the gravitational 

acceleration; 𝜌 is the density of water. (𝜏𝑓𝑥 , 𝜏𝑓𝑦) are the 𝑥- and 𝑦-components of the 

stresses due to bottom friction (see section 4.2); 𝑭 = (𝐹𝑢, 𝐹𝑣) is the flow resistance due to 

porosity (see section 4.4); 𝑭𝑣 = (𝐹𝑣𝑥 , 𝐹𝑣𝑦)  is the drag force due to vegetation (see section 

4.3);  𝑅𝑥𝑥, 𝑅𝑥𝑦  𝑎𝑛𝑑 𝑅𝑦𝑦, are additional terms due to the inclusion of wave breaking (see 

section 4.5). The lateral stresses, 𝑇𝑥𝑥, 𝑇𝑥𝑦  𝑎𝑛𝑑 𝑇𝑦𝑦 , include viscous friction, turbulent 

friction and differential advection. They are estimated using an eddy viscosity formulation 

based on the depth averaged velocities 

 

𝑇𝑥𝑥 = 2𝜈
𝜕𝑢

𝜕𝑥
            𝑇𝑥𝑦 = 𝜈 (

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)            𝑇𝑦𝑦 = 2𝜈

𝜕𝑢

𝜕𝑦
 (2.4) 

 

where 𝜈 is the eddy viscosity. The Boussinesq terms (𝜓1, 𝜓2) are expressed as 

 

𝜓1 =  (𝐵 +
1

3
)𝑑2 (

𝜕3ℎ𝑢

𝜕𝑥2𝑡
+
𝜕3ℎ𝑣

𝜕𝑥𝑦𝑡
)+ 𝑑

𝜕𝑑

𝜕𝑥
(
1

3

𝜕2ℎ𝑢

𝜕𝑥𝑡
+
1

6

𝜕2ℎ𝑣

𝜕𝑦𝑡
)+

1

6
𝑑
𝜕𝑑

𝜕𝑦

𝜕2ℎ𝑣

𝜕𝑥𝑡
 

 

           +  𝐵𝑔𝑑3 (
𝜕3𝜂

𝜕𝑥3
+
𝜕3𝜂

𝜕𝑦𝑦𝑥
)+ 𝐵𝑔𝑑2

𝜕𝑑

𝜕𝑥
(2
𝜕2𝜂

𝜕𝑥2
+ 
𝜕2𝜂

𝜕𝑦2
)+ 𝐵𝑔𝑑2

𝜕𝑑

𝜕𝑦

𝜕2𝜂

𝜕𝑦𝑥
 

 

 

(2.5) 
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𝜓2 = (𝐵 +
1

3
)𝑑2 (

𝜕3ℎ𝑣

𝜕𝑦2𝑡
+
𝜕3ℎ𝑢

𝜕𝑦𝑥𝑡
) +𝑑

𝜕𝑑

𝜕𝑦
(
1

3

𝜕2ℎ𝑣

𝜕𝑦𝑡
+
1

6

𝜕2ℎ𝑢

𝜕𝑥𝑡
)+

1

6
𝑑
𝜕𝑑

𝜕𝑥

𝜕2ℎ𝑢

𝜕𝑦𝑡
 

 

           +  𝐵𝑔𝑑3 (
𝜕3𝜂

𝜕𝑦3
+
𝜕3𝜂

𝜕𝑥𝑥𝑦
) + 𝐵𝑔𝑑2

𝜕𝑑

𝜕𝑦
(2
𝜕2𝜂

𝜕𝑦2
+ 
𝜕2𝜂

𝜕𝑥2
)+ 𝐵𝑔𝑑2

𝜕𝑑

𝜕𝑥

𝜕2𝜂

𝜕𝑥𝑦
 

 

(2.6) 

To give a conservative formulation, the gravity surface terms are split into two terms (see 

Chippada (1998), Rogers (2001), Quecedo (2002), Liang or Borthwick (2009)) 

 

𝑔ℎ
𝜕𝜂

𝜕𝑥
=
1

2
𝑔
𝜕(ℎ2 − 𝑑2)

𝜕𝑥
− 𝑔𝜂

𝜕𝑑

𝜕𝑥
=
1

2
𝑔
𝜕(𝜂2+ 2𝜂𝑑)

𝜕𝑥
− 𝑔𝜂

𝜕𝑑

𝜕𝑥
 (2.7) 

 

𝑔ℎ
𝜕𝜂

𝜕𝑦
=
1

2
𝑔
𝜕(ℎ2 − 𝑑2)

𝜕𝑦
− 𝑔𝜂

𝜕𝑑

𝜕𝑦
=
1

2
𝑔
𝜕(𝜂2 + 2𝜂𝑑)

𝜕𝑦
− 𝑔𝜂

𝜕𝑑

𝜕𝑦
 (2.8) 

 

It is easily seen that if 𝜂 is constant, the two terms cancel exactly. In the discrete case, 

this is also true if the two derivatives are calculated using the same scheme. 

 

In matrix form the continuity equation and the momentum equations may be written 

 
𝜕ℎ

𝜕𝑡
+ ∇ ⋅ 𝑭𝑐 = 0 (2.9) 

 
𝜕𝑽

𝜕𝑡
+ ∇ ⋅ 𝑭𝑚 = 𝑺𝟎 + 𝑺𝒇 + 𝑺𝜼 +

𝜕𝚿

∂t
 (2.10) 

  

Here 𝑭𝑐 = (𝐹𝑥
𝑐 ,𝐹𝑦

𝑐)
𝑇
= (ℎ𝑢, ℎ𝑣)𝑇, 𝑽 = (ℎ𝑢, ℎ𝑣)𝑇 and 𝑭𝑚 = 𝑭𝑚𝑐 − 𝑭𝑚𝑑 = (𝑭𝑥

𝑚, 𝑭𝑦
𝑚)𝑇 .  

 

The flux components and the source terms can be written  

 

𝑭𝑥
𝑚𝑐 = (ℎ𝑢𝑢 +

1

2
𝑔(𝜂2 + 2𝜂𝑑)

ℎ𝑣𝑢

)     𝑭𝑦
𝑚𝑐 = (

ℎ𝑢𝑣

ℎ𝑣𝑣 +
1

2
𝑔(𝜂2 +2𝜂𝑑))  (2.11) 

 

𝑭𝑥
𝑚𝑑 =

(

 
2ℎ𝜈

𝜕𝑢

𝜕𝑥
− 𝑅𝑥𝑥

ℎ𝜈 (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) −𝑅𝑥𝑦

)

      𝑭𝑦
𝑚𝑑 =

(

 
 
ℎ𝜈 (

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)− 𝑅𝑥𝑦

2ℎ𝜈
𝜕𝑣

𝜕𝑦
− 𝑅𝑦𝑦

)

 
 
  (2.12) 

 

𝑺𝟎 =

(

 
𝑔𝜂
𝜕𝑑

𝜕𝑥

𝑔𝜂
𝜕𝑑

𝜕𝑦)

       𝑺𝒇 = (

−
𝜏𝑓𝑥

𝜌
− 𝐹𝑢 − 𝐹𝑣𝑥

−
𝜏𝑓𝑦
𝜌
− 𝐹𝑣 − 𝐹𝑣𝑦

) (2.13) 

 

𝑺𝜼 =

(

 
 
𝐵𝑔𝑑3 (

𝜕3𝜂

𝜕𝑥3
+
𝜕3𝜂

𝜕𝑦𝑦𝑥
)+ 𝐵𝑔𝑑2

𝜕𝑑

𝜕𝑥
(2
𝜕2𝜂

𝜕𝑥2
+ 
𝜕2𝜂

𝜕𝑦2
) + 𝐵𝑔𝑑2

𝜕𝑑

𝜕𝑦

𝜕2𝜂

𝜕𝑦𝑥

𝐵𝑔𝑑3 (
𝜕3𝜂

𝜕𝑦3
+
𝜕3𝜂

𝜕𝑥𝑥𝑦
)+ 𝐵𝑔𝑑2

𝜕𝑑

𝜕𝑦
(2
𝜕2𝜂

𝜕𝑦2
+ 
𝜕2𝜂

𝜕𝑥2
)+ 𝐵𝑔𝑑2

𝜕𝑑

𝜕𝑥

𝜕2𝜂

𝜕𝑥𝑦)

 
 

 (2.14) 

 

𝚿 =

(

 
 
(𝐵 +

1

3
)𝑑2 (

𝜕2ℎ𝑢

𝜕𝑥2
+
𝜕2ℎ𝑣

𝜕𝑥𝑦
)+ 𝑑

𝜕𝑑

𝜕𝑥
(
1

3

𝜕ℎ𝑢

𝜕𝑥
+
1

6

𝜕ℎ𝑣

𝜕𝑦
)+

1

6
𝑑
𝜕𝑑

𝜕𝑦

𝜕ℎ𝑣

𝜕𝑥

(𝐵 +
1

3
)𝑑2 (

𝜕2ℎ𝑣

𝜕𝑦2
+
𝜕2ℎ𝑢

𝜕𝑦𝑥
)+ 𝑑

𝜕𝑑

𝜕𝑦
(
1

3

𝜕ℎ𝑣

𝜕𝑦
+
1

6

𝜕ℎ𝑢

𝜕𝑥
)+

1

6
𝑑
𝜕𝑑

𝜕𝑥

𝜕ℎ𝑢

𝜕𝑦 )

 
 

 (2.15) 
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3 Numerical method 

The discretization in solution domain is performed using a cell-centered finite volume 

method (CCFV). The spatial domain is discretized by subdivision of the continuum into non-

overlapping control volumes and by evaluating the field equations in integral form on these 

cells. 

3.1 Mesh and discretization scheme 

3.1.1 Mesh 

The computational mesh is based on the unstructured meshes approach, which gives the 

maximum degree of flexibility. Control of node distribution allows for optimal usage of 

nodes and adaptation of mesh resolution to the relevant physical scales. The use of 

unstructured meshes also makes it possible to handle problems characterized by 

computational domains with complex boundaries. 

 

The elements in the mesh can be triangles, quadrilateral elements or a combination of 

these (see Figure 3.1). 

 

                 
 
Figure 3.1 Unstructured mesh with both triangular and quadrilateral elements. 

 

3.1.2 Discretization scheme 

The discrete solution for the water depth, ℎ, for the velocity components, 𝑢 and 𝑣, are 

defined at the centroid of the elements in the mesh. 

3.2 Finite volume method 

The matrix form of the governing equations presented in Chapter 2 can be written as 

 
𝜕𝑼

𝜕𝑡
+ ∇ ⋅ 𝑭(𝑼) = 𝑺 (3.1) 

 

Integrating Eq. 3.1 over the ith cell and using Gauss’s theorem to rewrite the flux integral 

gives 
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∫
𝜕𝑼

𝜕𝑡

⬚

𝐴𝑖

𝑑Ω +∫ (𝑭(𝑼) ∙ 𝒏)
⬚

Γ𝑖

𝑑s = ∫ 𝑺(𝑼)𝑑Ω
⬚

𝐴𝑖

 (3.2) 

 

where 𝐴 is the area of the ith cell, Ω is the integration variable defined on 𝐴𝑖, Γ𝑖 is the 

boundary of the ith cell and 𝑠 is the integration variable along the boundary. 𝒏 = (𝑛𝑥 , 𝑛𝑦)
𝑇 

is the unit outward normal vector along the boundary. Evaluating the area integrals by a 

one-point quadrature rule, the quadrature point being the centroid of the cell, and 

evaluating the boundary integral using a mid-point quadrature rule, Eq. 3.2 can be written 

 

𝜕𝑼𝑖
𝜕𝑡
+
1

𝐴𝑖
∑𝑭 ∙ 𝒏𝑖𝑗Δs𝑖𝑗

𝑁𝐹

𝑗

= 𝑺𝑖 (3.3) 

 

Here 𝑼𝑖 and 𝑺𝑖, respectively, are average values of 𝑼 and 𝑺 over the ith cell and stored at 

the cell centre. 𝑁𝐹 is the number of faces of the cell and the face 𝑖𝑗 is common to the cells 

associated with 𝑼𝑖 and 𝑼𝑗. Δs𝑖𝑗 is the length of the face 𝑖𝑗, and  𝒏𝑖𝑗 is the restriction of 𝒏 to 

the face 𝑖𝑗.  

3.3 Numerical solution of the flow equations 

3.3.1 Space discretization of the enhanced Boussinesq equations 

The space discretization is performed using the finite volume method as described in 

Section 3.2. The normal convective flux 𝑭𝑛(𝑼𝐿, 𝑼𝑅) = 𝑭(𝑼𝐿, 𝑼𝑅) ∙ 𝒏𝒊𝒋 across a face 𝑖𝑗 is 

determined using an approximate Riemann solver. The Riemann solver uses the variable 

𝑼 = (ℎ,ℎ𝑢, ℎ𝑣)𝑇 to the left and right of the face. The diffusive flux at the cell interfaces is 

approximated by a central scheme. The higher-order Boussinesq terms are approximated 

by successive application of the first-order derivative approximations used in the linear 

gradient-reconstruction technique, which is described in the following. 

Reconstruction of face values 

The variables, 𝑼𝐿 and 𝑼𝑅 , to the left and right of a face are reconstructed from the cell 

values, 𝑼𝑖 and 𝑼𝑗, in two steps. 

 

In the first step, the variables 𝑼𝑙 and  𝑼𝑟 are determined from element values. For a first 

order scheme, 𝑼𝑙 = 𝑼𝑖 and 𝑼𝑟 = 𝑼𝑗. Second-order spatial accuracy is achieved by 

employing a linear gradient-reconstruction technique for the primitive variables 𝜂, 𝑢 and 𝑣. 

The face value at the vertical faces for a variable 𝑞 in cell 𝑖 is obtained by 

 

𝑞𝑙 = 𝑞𝑖 + ∇𝑞𝑖 ∙ 𝒓𝑖𝑓 , 𝑞𝑟 = 𝑞𝑗 + ∇𝑞𝑗 ⋅ 𝒓𝑗𝑓 (3.4) 

 

where 𝒓𝑖𝑓 is the distance vector from the cell centre to the face and ∇𝑞𝑖 is the gradient 

vector. For estimation of the gradient vector, the Green-Gauss gradient approach is 

utilized. Here, the procedure proposed by Jawahar and Kamath (2000) is used. This 

procedure is based on a wide computational stencil to improve accuracy also for meshes 

with poor connectivity. The vertex (node) value is computed using the pseudo-Laplacian 

procedure proposed by Holmes and Connell (1989).   

 

For a second-order scheme, the water depth 𝑑 is also reconstructed at each side of the 

face using Eq. (3.4) and then the total water depths at the left and right of the face are 

defined as  
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ℎ𝑙 = max(0, 𝜂𝑙 + 𝑑𝑙) , ℎ𝑟 =  max(0,𝜂𝑟 + 𝑑𝑟) (3.5) 

 

 

In the second step, the variables 𝑼𝐿 and 𝑼𝑅  are determined from 𝑼𝑙 and 𝑼𝑟. The water 

depth is assigned the same value at both sides of the face, 𝑑𝑓 = 𝑑𝐿 = 𝑑𝑅 . Depending on 

the total water depth, two different techniques are used. As default, the average value of 

water depth is used 

 

𝑑𝑓 =
1

2
(𝑑𝑙 + 𝑑𝑟) (3.6) 

 

and the total water depths are defined by 

 

ℎ𝐿 = max(𝜂𝑙 + 𝑑𝑓 , 0) , ℎ𝑅 = max(𝜂𝑟 + 𝑑𝑓 , 0). (3.7) 

 

If the total water height on either side is smaller than the difference in water depth, that is, 

if ℎ𝑙 < |𝑑𝑟 − 𝑑𝑙| or ℎ𝑟 < |𝑑𝑟 − 𝑑𝑙|, the water depth is instead defined as in Chen & Noelle 

(2017) by 

 

𝑑𝑓 = −min(−min(𝑑𝑙 , 𝑑𝑟) ,min(𝜂𝑙, 𝜂𝑟)) (3.8) 

 

and the total water depths are defined by 

 

ℎ𝐿 = min(𝜂𝑙 + 𝑑𝑓 , ℎ𝑙) , ℎ𝑅 = min(𝜂𝑟 + 𝑑𝑓 , ℎ𝑟). (3.9) 

 

Finally, the fluxes at each side of the face are determined from the velocities 𝑢𝑙, 𝑣𝑙, 𝑢𝑟, 𝑣𝑟  
and the total water depths ℎ𝐿, ℎ𝑅.  

Riemann solver 

The normal convective flux 𝑭𝑛(𝑼)  at the faces can be written 

 

𝑭𝑛(𝑼) =

(

 
 

ℎ𝑢⊥

ℎ𝑢𝑢⊥ +
1

2
𝑔(𝜂2+ 2𝜂𝑑)𝑛𝑥

ℎ𝑣𝑢⊥ +
1

2
𝑔(𝜂2 +2𝜂𝑑)𝑛𝑦)

 
 

 (3.10) 

 

where 𝑼 = (ℎ, ℎ𝑢, ℎ𝑣)𝑇 is the solution vector, and 𝑢⊥ = 𝑢𝑛𝑥 + 𝑣𝑛𝑦 is the velocity 

perpendicular to the cell face. This flux is reconstructed at cell-interfaces using the HLLC 

scheme introduced by Toro et al. (1994) for solving the Euler equations. The shock-

capturing scheme enables robust and stable simulation of flows involving shocks or 

discontinuities such as bores and hydraulic jumps. The interface flux is computed as 

follows (see Toro (2001)) 

 

𝑭(𝑼𝐿, 𝑼𝑅) ∙ 𝒏 = {

𝑭𝐿                       𝑖𝑓 𝑆𝐿 ≥ 0

𝑭∗𝐿            𝑖𝑓 𝑆𝐿 < 0 ≤ 𝑆∗
𝑭∗𝑅           𝑖𝑓 𝑆∗ < 0 ≤ 𝑆𝑅
𝑭𝑅                      𝑖𝑓 𝑆𝑅 ≤ 0

 (3.11) 

 

where 𝑭𝐿 =  𝑭𝑛(𝑼𝐿) and 𝑭𝑅 =  𝑭𝑛(𝑼𝑅)  are calculated from Eq. (3.10), and the middle 

region fluxes,  𝑭∗𝐿  and  𝑭∗𝑅   are given by 

 

𝑭∗𝐿 = (

𝑒1
𝑒2𝑛𝑥 − 𝑢∥𝐿𝑒1𝑛𝑦
𝑒2𝑛𝑦 + 𝑢∥𝐿𝑒1𝑛𝑥

) (3.12) 
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𝑭∗𝑅 = (

𝑒1
𝑒2𝑛𝑥 − 𝑢∥𝑅𝑒1𝑛𝑦
𝑒2𝑛𝑦 + 𝑢∥𝑅𝑒1𝑛𝑥

) (3.13) 

 

Here 𝑢∥ = −𝑢𝑛𝑦 + 𝑣𝑛𝑥 is the velocity tangential to the cell face, and (𝑒1, 𝑒2) is the 

component of the normal flux which is calculated using the HLL solver proposed by 

Harten et al. (1983) 

 

𝑬 =
𝑆𝑅𝑬̂𝐿 − 𝑆𝐿𝑬̂𝑅 + 𝑓𝐻𝐿𝐿𝐶𝑆𝐿𝑆𝑅(𝑼̂𝑅 − 𝑼̂𝐿)

𝑆𝑅 − 𝑆𝐿
 (3.14) 

 

Here 𝑼̂ = (ℎ, ℎ𝑢⊥)
𝑇 and 𝑬̂ = (ℎ𝑢⊥, ℎ𝑢⊥𝑢⊥ +

1

2
𝑔(𝜂2+ 2𝜂𝑑) )

𝑇

. To be able to scale the 

damping introduced by the HLLC solver a scaling factor  𝑓𝐻𝐿𝐿𝐶  has been introduced, 

where the factor must be in the interval [0,1]. The scaling factor, 𝑓𝐻𝐿𝐿𝐶 = 1, corresponds to 

the standard HLLC solver. 

 

An appropriate method for approximating the wave speeds is essential for the efficiency 

of the HLLC solver. Different approximations can be found in the literature, e.g. 

Fraccarollo and Toro (1994). Here the approach used by Song et al. (2011) is used 

 

𝑆𝐿 = {
𝑢⊥𝑅 − 2√𝑔ℎ𝑅                                              ℎ𝐿 = 0

𝑚𝑖𝑛(𝑢⊥𝐿 −√𝑔ℎ𝐿, 𝑢⊥∗ −√𝑔ℎ∗)              ℎ𝐿 > 0
 (3.15) 

 

and 

 

𝑆𝑅 = {
𝑢⊥𝐿 + 2√𝑔ℎ𝐿                                              ℎ𝑅 = 0

𝑚𝑎𝑥(𝑢⊥𝑅 +√𝑔ℎ𝑅, 𝑢⊥∗ +√𝑔ℎ∗)            ℎ𝑅 > 0
 (3.16) 

 

where the Roe-averaged quantities  

 

𝑢⊥∗ =
𝑢⊥𝐿√ℎ𝐿 + 𝑢⊥𝑅√ℎ𝑅

√ℎ𝐿 +√ℎ𝑅
 (3.17) 

 

ℎ∗ =
1

2
(ℎ𝐿 +ℎ𝑅) (3.18) 

 

The wave speed 𝑆∗ is given by the  

 

𝑆∗ =
𝑆𝐿ℎ𝑅(𝑢⊥𝑅 − 𝑆𝑅) − 𝑆𝑅ℎ𝐿(𝑢⊥𝐿 − 𝑆𝐿)

ℎ𝑅(𝑢⊥𝑅 − 𝑆𝑅) − ℎ𝐿(𝑢⊥𝐿 − 𝑆𝐿)
 (3.19) 

 

 

3.3.2 Time integration of the enhanced Boussinesq equations  

The time integration of the enhanced Boussinesq equations is performed using an explicit 

scheme. Here a two-stage explicit second-order Runge-Kutta scheme (the midpoint 

method) are applied, and in each stage a fractional step approach is used. In the first step 

the water depth and the estimated depth integrated velocities is calculated using the 

shallow water equations and in the second step the depth integrated velocities is 

corrected taking into account the dispersion terms.  
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Stage 1: 

 

ℎ𝑛+1/2 − ℎ𝑛

Δ𝑡/2
=  −(

𝜕𝐹𝑥
𝑐

𝜕𝑥
+
𝜕𝐹𝑦

𝑐

𝜕𝑦
)

𝑛

 (3.20) 

 

𝑽∗ − 𝑽𝑛

Δ𝑡/2
= −(

𝜕𝑭𝑥
𝑚

𝜕𝑥
+
𝜕𝑭𝑦

𝑚

𝜕𝑦
)

𝑛

+ 𝑺0
𝑛 + 𝑺𝑓

∗ (3.21) 

 

𝑽𝑛+1/2 − 𝑽∗

Δ𝑡/2
=  𝑺𝜂

𝛼 +
𝚿𝑛+1/2 −𝚿𝑛

Δ𝑡/2
 (3.22) 

 

Stage 2: 

 

ℎ𝑛+1 −ℎ𝑛

Δ𝑡
=  −(

𝜕𝐹𝑥
𝑐

𝜕𝑥
+
𝜕𝐹𝑦

𝑐

𝜕𝑦
)

𝑛+1/2

 (3.23) 

 

𝑽∗∗ − 𝑽𝑛

Δ𝑡
=  − (

𝜕𝑭𝑥
𝑚

𝜕𝑥
+
𝜕𝑭𝑦

𝑚

𝜕𝑦
)

𝑛+1/2

+ 𝑺0
𝑛+1/2 + 𝑺𝑓

∗∗ (3.24) 

 
𝑽𝑛+1 − 𝑽∗∗

Δ𝑡
= 𝑺𝜂

𝛽 +
𝚿𝑛+1 −𝚿𝑛

Δ𝑡
 (3.25) 

  

where 𝑺𝜂
𝛼 is evaluated using the averaged surface elevation 

1

2
(𝜂𝑛+1/2 + 𝜂𝑛), and 𝑺𝜂

𝛽
 is 

evaluated similarly as 
1

2
(𝜂𝑛+1 + 𝜂𝑛). The special treatment of the friction source term is 

discussed in section 3.3.3. In the last step of each stage, i.e. Eq. (3.22) and (3.25), a 

linear system of equations has to be solved as, e.g., 𝚿𝑛+1 = 𝚿(𝑽𝑛+1 ). The resulting 

sparse linear systems are solved using a preconditioned iterative solver from the PETSc 

library, Balay (2017). More specifically, the iterative solver is a flexible Generalized 

Minimal Residual method (FGMRES). See Chapter 0 for further details on single- and 

multi-subdomain simulations. 

 

Due to the explicit scheme, the time step interval, ∆𝑡, is restricted by the Courant-

Friedrichs-Lewy (CFL) condition   

 

𝐶 = Δ𝑡
(√𝑔ℎ+ |𝑢|) + (√𝑔ℎ+ |𝑣|)

Δ𝑙
≤ 𝐶𝑚𝑎𝑥 (3.26) 

 

where 𝐶 is the Courant number and Δ𝑙 is a characteristic length. 𝐶𝑚𝑎𝑥 is the maximum 

Courant number and must be less than or equal to 1. A variable time step interval is used 

in the time integration of the enhanced Boussinesq equations and determined so that the 

Courant number is less than a maximum Courant number in all computational nodes. The 

characteristic length for a quadrilateral element, is determined as the area of the element 

divided by the longest edge length of the element. For a triangular element, the 

characteristic length is two times the area divided by the longest edge length. 

3.3.3 Friction source term discretization 

The contribution to the source term due to bed resistance and flow resistance can be 

written (see section 4.2, 4.3 and 4.4) 
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 𝑺𝑓 = −(
 
𝜏𝑓𝑥

𝜌
+ 𝐹𝑢 +𝐹𝑣𝑥

 
𝜏𝑓𝑦

𝜌
+ 𝐹𝑣 + 𝐹𝑣𝑥

) (3.27) 

 

A fully explicit treatment of the friction terms can cause instability for very shallow water. 

Hence, this term is treated fully implicit. For each element at each stage in the time 

integration procedure the water depth is updated and then the two momentum equations 

are solved using a Newton-Raphson method. The stopping criteria is that the 2-norm of 

the residual vector is less than 10−10. 

3.3.4 Flooding and drying 

The approach for treatment of the moving boundaries (flooding and drying fronts) problem 

is based on the work by Zhao et al. (1994) and Sleigh et al. (1998). When the depths are 

small the problem is reformulated, and only when the depths are very small the 

elements/cells are removed from the calculation. The reformulation is made by setting the 

momentum fluxes to zero and only taking the mass fluxes into consideration. 

 

The depth in each element is monitored and the elements are classified as dry, partially 

dry or wet. Also, the element faces are monitored to identify flooded element faces. 

 

• An element face is defined as flooded if the water depth at one side of a face is less 

than a tolerance depth, ℎ𝑑𝑟𝑦, and the water depth at the other side of the face is 

larger than a tolerance depth, ℎ𝑤𝑒𝑡  . 
• An element is dry if the water depth is less than a tolerance depth, ℎ𝑑𝑟𝑦 , and none of 

the element faces are flooded faces. The element is removed from the calculation. 

• An element is partially dry if the water depth is larger than ℎ𝑑𝑟𝑦  and less than a 

tolerance depth, ℎ𝑤𝑒𝑡, or when the depth is less than ℎ𝑑𝑟𝑦, and one of the element 

faces is a flooded face. The momentum fluxes are set to zero, and only the mass 

fluxes are calculated. 

• An element is wet if the water depth is bigger than ℎ𝑤𝑒𝑡 . Both the mass flux and the 

momentum flux are calculated. 

A non-physical flow across the face will be introduced for a flooded face when the surface 

elevation in the wet element on one side of the face is lower than the bed level in the 

partially wet element on the other side. To overcome this problem the face will be treated 

as a closed boundary (Section 3.3.7).  

 

In case the water depth becomes negative, the water depth is set to zero, and the water is 

subtracted from the adjacent elements to maintain mass balance. When this occur the 

water depth at the adjacent elements may become negative. Therefore, an iterative 

correction of the water depth is applied (max. 100 iterations). Normally only one or a few 

correction steps are needed. 

 

3.3.5 Sponge layer 

Sponge (or absorbing) layers can be used as efficient numerical wave absorbers in wave 

simulations. These could be set up along model boundaries to provide radiation boundary 

conditions, which absorb wave energy propagating out of the model area. 

 

The implemented method is based on the sponge layer technique introduced by Larsen 

and Dancy (1983). In the sponge layer the calculated surface elevation, 𝜂, and the 

velocities 𝑢, and 𝑣, are corrected at every time step as 
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𝜂 =
𝜂 − 𝜂𝑟𝑒𝑓

𝑐
+ 𝜂𝑟𝑒𝑓      𝑢 =

𝑢

𝑐
      𝑣 =

𝑣

𝑐
  (3.28) 

 

where 𝑐 is the sponge coefficient, and 𝜂𝑟𝑒𝑓 is the reference level. 

 

To minimize reflections, the values of the sponge layer coefficient, c, should be close to 

unity along the front edge of the sponge layer and should increase smoothly towards the 

closed/land boundary. When selecting the sponge layer coefficient, 𝑐, the following 

formula has been found to work well 

 

𝑐 = 𝑎𝑟
𝑠/∆𝑠
,   0 ≤ 𝑠 ≤ 𝑤 (3.29) 

 

where 𝑤 is the width of the sponge layer, and 𝑎 and 𝑟 are assigned constant values. s is 

the distance from the closed boundary, and 𝛥𝑠 is the characteristic size of the elements in 

the sponge layer area. Depending on ratio 𝑤/∆𝑠 you may use the values listed in Table 

3.1. 

 

 
Table 3.1 Recommended values for sponge layer coefficients 

 

w/Δs a r 

10 5 0.5 

20 7 0.7 

50 10 0.85 

100 10 0.92 

200 10 0.95 

3.3.6 Internal wave generation 

The relaxation zone technique is applied for wave generation and absorption. Here a 

relaxation function is applied to introduce the analytical solution for the incoming waves 

smoothly into the calculation domain. The analytical solution is the target solution and 

contains values from the chosen wave theory for the surface elevation, the velocities and 

the pressure. The relaxation zone is defined as the area to the right of the polyline when 

positioned at the starting point and looking forward along the line (see Figure 3.2). The 

target and the computed solution are weighted in the relaxation zone after each step in 

the time integration 

 

𝜃 = 𝛼𝜃𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 + (1 −𝛼)𝜃𝑇𝑎𝑟𝑔𝑒𝑡  (3.30) 
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Figure 3.2 The relaxation zone is the area to the right of the generation line when looking 

forward along the line from the starting point. The width of the ramp-up zone is 
specified by the width parameter. 

 

where 𝜃 represents the surface elevation, velocity component and non-hydrostatic 

pressure. For the surface elevation and velocities the ramp up factor, 𝛼, is given as 

 

𝛼 = 1 −
𝑒𝑥𝑝(𝑠𝑓)−1

exp(1)−1
   0 ≤ 𝑠 ≤ 1 

 

𝛼 = 0      𝑠 > 1 

(3.31) 

 

Here, 𝑠 is the distance from the polyline divided by the width of the ramp up zone, and 𝑓 is 

the ramp up factor. The value 𝑓 = 3.5 is applied. For the non-hydrostatic pressure, 𝑞, the 

target value is applied as a Dirichlet condition for 𝑠 > 1. Hence, here the ramp up factor is 

given by 

 

𝛼 = 1   0 ≤ 𝑠 ≤ 1 

    

𝛼 = 0      𝑠 > 1 

(3.32) 

 

For unidirectional regular waves Stokes theory (up to 5th order), Cnoidal theory and 

Boussinesq theory (up to 3rd order) can be applied. For irregular waves the single 

summation method is applied. Here a single direction is assigned to each discrete 

frequency. A range of standard formulations for the frequency spectrum and the 

directional distribution are applied. 
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3.3.7 Boundary conditions 

At the lateral closed (solid) boundaries a free-slip boundary condition is imposed for the 

velocities: The normal flux is zero, and the tangential stress is set to zero. The normal flux 

at a closed boundary is therefore given as 

 

𝑭𝑛(𝑼) =

(

 
 

0
1

2
𝑔(𝜂2 + 2𝜂𝑑)𝑛𝑥

1

2
𝑔(𝜂2+ 2𝜂𝑑)𝑛𝑦

)

 
 

 (3.33) 

 

Furthermore, the boundary conditions for higher-order surface elevation terms are defined 

as homogeneous gradients normal to the closed boundaries. 

 

3.4 Time stepping procedure 

The solution is determined at a sequence of discrete times 

 

𝑡𝑘 = 𝑡0 + 𝑘∆𝑡𝑜𝑣𝑒𝑟𝑎𝑙𝑙        𝑘 = 0,1, 2, 3… (3.33) 

 

where ∆𝑡𝑜𝑣𝑒𝑟𝑎𝑙𝑙  is the overall time step interval. The time steps for the hydrodynamic 

calculations are dynamic. 

 

At the actual time 𝑡 in the interval 𝑡𝑘−1 < 𝑡 ≤ 𝑡𝑘  the new time step interval is determined 

using the following procedure 

 

Δ𝑡∗ = 𝐶𝑚𝑎𝑥𝑚𝑖𝑛 (
∆𝑙

(√𝑔ℎ𝑖 + |𝑢𝑖|) + (√𝑔ℎ𝑖 + |𝑣𝑖|)
) (3.34) 

 

Δ𝑡∗∗ = 𝑚𝑖𝑛 (𝑚𝑎𝑥(Δ𝑡∗, ∆𝑡𝑚𝑖𝑛) , ∆𝑡𝑚𝑎𝑥) (3.35) 

 

Δ𝑡 =
𝑡𝑘 − 𝑡

𝑖𝑛𝑡 (
𝑡𝑘 − 𝑡
Δ𝑡∗∗ ) + 1

 (3.34) 

 

Here Δ𝑡𝑚𝑖𝑛 and Δ𝑡𝑚𝑎𝑥 are the minimum and maximum time steps, respectively, and 𝑖𝑛𝑡 is 

the whole number of (𝑡𝑘 − 𝑡)/Δ𝑡∗∗. This procedure secures that the time steps for the 

hydrodynamic calculations are synchronized at the overall discrete time steps. 
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4 Physics 

4.1 Eddy viscosity 

In some applications a constant eddy viscosity can be used for the horizontal eddy 

viscosity. Alternatively, Smagorinsky (1963) proposed to express sub-grid scale 

transports by an effective eddy viscosity related to a characteristic length scale. The 

subgrid scale eddy viscosity is given by 

 

𝜈 = 𝑐𝑠
2𝑙2√2(𝑆𝑥𝑥𝑆𝑥𝑥 + 2𝑆𝑥𝑦𝑆𝑥𝑦 + 𝑆𝑦𝑦𝑆𝑦𝑦) (4.1) 

 

where 𝑐𝑠 is a constant, 𝑙 is a characteristic length and the deformation rate is given by  

 

𝑆𝑥𝑥 =
𝜕𝑢

𝜕𝑥
     𝑆𝑥𝑦 =

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)     𝑆𝑦𝑦 =

𝜕𝑣

𝜕𝑦
 (4.2) 

 

For more details on this formulation, the reader is referred to Lilly (1966), Leonard (1974), 

Aupoix (1984), and Horiuti (1987). 

4.2 Bed resistance 

The stress due to friction at the bed, 𝝉𝑓 = (𝜏𝑓𝑥 , 𝜏𝑓𝑦) is determined by a quadratic friction 

law 

 
𝝉𝑓

𝜌
= 𝑐𝑓𝑏𝒖|𝒖| (4.3) 

 

where 𝑐𝑓𝑏  is the drag coefficient and 𝒖 = (𝑢, 𝑣) is the depth-averaged flow velocity. The 

drag coefficient is determined from the Chezy number, 𝐶, or the Manning number, 𝑀 

 

𝑐𝑓𝑏 =
𝑔

𝐶2
 (4.4) 

 

𝑐𝑓𝑏 =
𝑔

(𝑀ℎ1/6)2
 (4.5) 

 

4.3 Vegetation 

The vegetation structure is modelled as rigid or flexible stems with stem diameter, ds, or 

as flexible blades (leaves) with blade width, wb, and blade thickness, tb. The height of the 

vegetation is hv. 

 

The effect of the vegetation on the flow characteristics is modelled by inclusion of the 

following drag force in the depth integrated momentum equations 

 

𝑭𝑣 =
1

2
𝐶𝐷ℎ𝑣

∗𝑏𝒗𝑵𝒗𝒖𝑣|𝒖𝑣| (4.6) 

 

where CD is the drag coefficient, bv is the plant size, Nv is the vegetation density and uv is 

the apparent velocity vector in the vegetation region. ℎ𝑣
∗  is given as ℎ𝑣

∗ = 𝑚𝑖𝑛(ℎ𝑣 , ℎ),, 
where h is the water depth. The plant size is either the stem diameter or the blade width. 
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The vegetation density is the number of plants per unit area. Stone and Chen (2002) 

proposed the following expression for the apparent velocity 

 

𝒖𝑣 = (
ℎ𝑣
ℎ
)

𝑝

𝒖 (4.7) 

 

where u is the flow velocity vector and p=1/2. 

 

For rigid stems a layered approach can be used to take into account the vertical variation 

of the vegetation. The drag coefficient, CD,i, the stem diameter, ds,i, the  vegetation height, 

hv,i, and the vegetation density, Nv,i, are then specified for each vertical layer, i. The 

vegetation height is the distance from the bed to the top of the vegetation layer. The 

dissipation term due to vegetation is then determined as 

 

𝑭𝑣 = ( ∑
1

2

𝑛𝑙𝑎𝑦𝑒𝑟𝑠

𝑖=1

𝐶𝐷,𝑖𝑑𝑠,𝑖(ℎ𝑣,𝑖
∗ − ℎ𝑣,𝑖−1

∗ )𝑁𝑣,𝑖)𝒖𝑣|𝒖𝑣| (4.8) 

 

 

where hv,0 = 0. 

 

The reduction of the drag due to flexibility of the vegetation is taken into account using the 

approach by Luhar and Nepf (2011, 2013). They suggested the use of a deflected height, 

hd, and an effective length, le. The effective length is defined as the length of a rigid 

vertical plant that generates the same drag as the total length of a flexible plant. The 

deflected height and the effective length are given by 

 

ℎ𝑑
ℎ𝑣
= 1−

1 − 𝐶𝑎−1/4

1 + 𝐶𝑎−3/5(4 + 𝐵3/5) + 𝐶𝑎−2(8 + 𝐵2)
 (4.9) 

 

𝑙𝑒
ℎ𝑣
= 1 −

1 − 0.9𝐶𝑎−1/3

1 + 𝐶𝑎−3/2(8 + 𝐵3/2)
 (4.10) 

 

where Ca is the Cauchy number and B is the buoyancy parameter 

 

𝐶𝑎 =
𝜌𝐴|𝒖𝑣|

2

𝐸𝐼/ℎ𝑣2
       𝐵 =

(𝜌− 𝜌𝑣)𝑔𝑉𝑝
𝐸𝐼/ℎ𝑣2

 (4.11) 

 

Here g is the gravitational acceleration, ρ is the density of water, ρv is the density of the 

plant, E is the elastic modulus for the plant, A is the frontal area, Vp is the volume of the 

plant element and I is the second moment of the area. For a circular stem  

 

𝐴 = 𝑑𝑠ℎ𝑣            𝑉𝑝 = 𝑑𝑠
2ℎ𝑣/4             𝐼 = 𝜋𝑑𝑠

4/64           
(4.12) 

 

and for a blade 

 

𝐴 = 𝑤𝑏ℎ𝑣            𝑉𝑝 = 𝑤𝑏𝑡𝑏ℎ𝑣              𝐼 = 𝑤𝑏𝑡𝑏
3/12 (4.13) 

 

The flexibility is taken into account by using hd instead of hv in Eq. (4.6) and (4.7) and 

introducing a factor le/hd in Eq. (4.6). 
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4.4 Porosity 

For wave simulations, the governing equations have been modified to include porosity 

and the effects of non-Darcy flow through porous media. In this way, it is possible to 

model partial reflection, absorption and transmission of wave energy at porous structures 

such as rubble mound breakwaters. 

 

The main effects of porosity are introduced by additional laminar and turbulent friction 

terms for describing losses due to flow through a porous structure. In most practical cases 

the pore sizes are relatively large (typically 0.1m to 1.0m), and the turbulent losses will 

dominate. The laminar loss term has also been included to allow the simulation of small 

scale physical model tests. 

 

The flow resistance components 𝑭 = (𝑭𝑢, 𝑭𝑣)
𝑇 inside the porous structure are described 

by the linear and non-linear resistance forces expressed as 

 

𝑭 = 𝑎ℎ𝒖+ 𝑏|𝒖|ℎ𝒖 (4.14) 

 

where 𝑎 and 𝑏 are resistance coefficients accounting for the laminar and turbulent friction 

loss, respectively, 𝒖 = (𝑢, 𝑣) is the filter velocity vector, and the magnitude of the filter 

velocity is defined by |𝒖| = √𝑢2 + 𝑣2. 𝑎 and 𝑏 are determined by following the approach 

by Engelund (1954) 

 

𝑎 = 𝛼
(1 −𝑛)2

𝑛3
𝜗

𝐷50
2

 (4.15) 

 

𝑏 = 𝛽
(1 − 𝑛)

𝑛3
1

𝐷50
 (4.16) 

 

Where 𝑛 is the porosity, 𝛼 and 𝛽 are user specified coefficients, 𝜗 is the kinematic 

viscosity and 𝐷50 is the grain diameter of the porous materials. 𝐾𝐶 is the Keulegan-

Carpenter number defined as 

 

𝐾𝐶 =
𝑢𝑚𝑇

𝑛𝐷50
 (4.17) 

 

where 𝑢𝑚 is the maximum oscillating velocity, and 𝑇 is the period of the oscillation. 𝑢𝑚 is 

approximated by the magnitude of the filter velocity. 

 

In the momentum equations the time derivative terms are multiplied by a factor (1 + 𝐶𝑚) 
where 𝐶𝑚 is the added mass coefficient to take transient interaction between grains and 

water into account. van Gent (1995) gave 𝐶𝑚 as 

 

𝑐𝑚 =  𝛾
1 − 𝑛

𝑛
 (4.18) 

 

where 𝛾 is an empirical coefficient, which takes the value 0.34. 
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4.5 Wave breaking 

The momentum terms that account for the excess momentum originating from the non-

uniform velocity distribution due to the presence of a roller (see Figure 4.1) are defined as 

 

𝑅𝑥𝑥 =
𝛿

1 −
𝛿
ℎ

(𝑐𝑥 − 𝑢)
2 (4.19) 

 

𝑅𝑥𝑦 =
𝛿

1−
𝛿
ℎ

(𝑐𝑥 − 𝑢)(𝑐𝑦 − 𝑣) (4.20) 

 

𝑅𝑦𝑦 =
𝛿

1−
𝛿
ℎ

(𝑐𝑦 − 𝑣)
2
 (4.21) 

 

where 𝛿 = 𝛿(𝑥, 𝑦, 𝑡) is the thickness of the surface roller and (𝑐𝑥 , 𝑐𝑦) are components of 

the roller celerity. A detailed description of these quantities is given in Madsen et al. 

(1997) and Sørensen et al. (2004). 

 

 
Figure 4.1 Surface roller concept: cross section of a breaking wave and assumed vertical profile 

of the horizontal particle velocity components. 

 

The roller celerity (𝑐𝑥 , 𝑐𝑦) is an essential parameter in surface roller model used in MIKE 

21 Wave Model FM. A similar formulation as the one presented in Sørensen et al. (2004) 

is used and is based on the approximations 

 

(𝑐𝑥 , 𝑐𝑦) = (𝑐 cos𝜃, 𝑐 sin 𝜃)  (4.22) 

 

where 𝜃 is the roller direction, 𝑐 = 𝑓𝑣√𝑔ℎ is the approximated magnitude of the wave 

celerity and 𝑓𝑣 is the roller celerity factor. Using a roller celerity factor 𝑓𝑣 = 1.0, we obtain 

the celerity determined by shallow water theory. This is often a rather good approximation 

just outside the surf zone, while 𝑓𝑣 = 1.3 is more appropriate inside the surf zone 

according to the discussion in Madsen et al. (1997). The transition from 𝑓𝑣 = 1.0 to 𝑓𝑣 =
1.3 is modelled with an exponentially decaying time variation similar to the time variation 

of the slope of the breaking angle, which can be expressed analytically as 

 

tan𝜙(𝑡) =  tan𝜙0 + (tan𝜙𝐵 − tan𝜙0)exp(− ln(2)
𝑡 − 𝑡𝐵
𝑡1/2

) (4.23) 

 

where 𝜙𝐵  is the initial breaking angle, 𝜙0 is the final breaking angle, 𝑡𝐵 is the time instant 
of initialized wave breaking, and 𝑡1/2 is the time scale for the development of the roller. 
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The roller direction can be defined either as a predefined direction according to an 

expected mean direction of the roller, or computed interactively by 

 

(𝑐𝑥 , 𝑐𝑦) = −𝑠𝑖𝑔𝑛(𝑐, 𝜕𝜂/𝜕𝑡)
(𝜕𝜂/𝜕𝑥 , 𝜕𝜂/𝜕𝑦)

|∇𝜂|
  (4.24) 

 

where |∇𝜂| is the magnitude of the surface elevation gradient and 𝑠𝑖𝑔𝑛(𝑐, 𝜕𝜂/𝜕𝑡) returns 𝑐 
with the sign of the surface elevation time derivative. 
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5 Parallelization   

The MIKE 21 Wave Model FM is parallelized for shared-memory multiprocessor/multicore 

computers using OpenMP. This parallelization is performed by adding compiler directives 

to the code. To improve performance and to be able to perform simulations on large 

massively parallel distributed-memory computers and clusters, MIKE 21 Wave Model FM 

has also been parallelized using domain decomposition concept and Message Passing 

Interface (MPI). Given the number of processor cores allocated to a simulation, the 

computational mesh is partitioned into subdomains, and the workload associated with 

each domain is distributed between the allocated cores. The data exchange between 

domains is performed by message passing using the Intel MPI Library, which has multi 

fabric message passing capabilities. It allows the use of mixed communication between 

the domains. Thus, domains will exchange data via the fastest communication interface – 

in ranked order: shared memory, InfiniBand, Ethernet, etc.. The implementation uses a 

hybrid approach (OpenMP and MPI).  

5.1 The domain decomposition 

The domain partitioning is performed using the METIS graph partitioning library (Karypis 

and Kumar, (1998, 1999)). The computational mesh is converted into a graph, and then 

METIS uses a multi-level graph partitioning scheme to split the graph into subgraphs, 

representing the partitioned subdomains, which are distributed among the allocated 

cores. METIS computes a balanced partitioning that minimizes the connectivity of the 

subdomains and the difference in the number of elements in all subdomains. 

 

The chosen numerical scheme for the discretization in the spatial domain requires an 

overlapping domain decomposition. It is based on the halo-layer (“ghost”-cells) approach, 

where each subdomain contains elements from connected subdomains. This overlap is 

needed, because calculations require values from the connecting elements. Thus, 

calculations of some elements at the border between subdomains require values from the 

connected subdomains. 

 

5.2 Data exchange 

The data exchange between processes is based on the aforementioned halo-layer 

(“ghost”-cells) approach with overlapping elements. The extension of the halo-layer area 

depends on the numerical scheme used for the discretization in the spatial domain and 

which variables are chosen to be exchanged between subdomains. Here a two-element 

wide halo-layer is applied. The data exchanges are performed via asynchronous 

communication when possible, and synchronous communications are used in different 

parts of the system to ensure correct execution. The MIKE 21 Wave Model FM uses a 

dynamic time step in the time integration scheme. To ensure that the calculations are 

performed with the same time step in all subdomains, time step information is exchanged 

between processes and thereby synchronizing the processes of each time step. Several 

special features require additional data exchange. These special interest points cause 

synchronization of two or more subdomains during the data exchange. The case of input 

and output data exchange is mentioned in the next subsection. Finally, information is 

exchanged between subdomains in connection with error handling. When the system 

encounters an error in the model, the error is distributed to the other processes when the 

time step is finished and the simulation is stopped. 
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5.3 Input and output 

The input and output (I/O) is handled using a parallel I/O approach. The master process 

reads the global mesh information, performs the partitioning of the mesh and distributes 

the information about the individual subdomains to the slave processes. Each process 

then reads the additional input specifications using the generic specification file. The input 

data (porosity maps, sponge layer maps, etc.) are read by each process using the global 

data files. Since the individual processes perform I/O locally, the simulation data files 

must be accessible by each process. This access could be through a network-attached 

storage system or locally on each computer. The output data files from the simulations 

are written to private files for each subdomain. At the end of the simulation, the data files 

are merged to obtain data files containing global information. 
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