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prohibited without prior written consent of DHI A/S (hereinafter
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In no event shall DHI or its representatives (agents and suppliers)
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limitation of liability for consequential, special, indirect, incidental
damages and, accordingly, some portions of these limitations
may not apply.

Notwithstanding the above, DHI's total liability (whether in
contract, tort, including negligence, or otherwise) under or in
connection with the Agreement shall in aggregate during the term
not exceed the lesser of EUR 10.000 or the fees paid by
Licensee under the Agreement during the 12 months' period
previous to the event giving rise to a claim.

Licensee acknowledge that the liability limitations and exclusions
set out in the Agreement reflect the allocation of risk negotiated
and agreed by the parties and that DHI would not enter into the
Agreement without these limitations and exclusions on its liability.
These limitations and exclusions will apply notwithstanding any
failure of essential purpose of any limited remedy.
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1 Introduction

The present Scientific Documentation aims to give a description of the equations and
numerical formulation used in the Advection-Dispersion (AD) module of the MIKE 21 Flow
Model.

The equation for the Advection-Dispersion module is shown below. The numerical
schemes for the calculations are described in Chapter 2. The numerical algorithm and
solution technique applied in the model is described in the paper “An Explicit Scheme for
Advection-Dispersion Modelling in Two Dimensions” in Section 2.2. This is followed by a
discussion of Dispersion Coefficients, Chapter 3. The background for the Heat
Dissipation formula is described briefly in Chapter 4, and finally, the background for the
Flooding and Drying is described in Chapter 5.

The Advection-Dispersion module solves the so-called advection-dispersion equation for
dissolved or suspended substances. This is in fact the mass-conservation equation.
Discharge quantities and compound concentrations at source and sink points are
included together with a decay rate.

) B F) ) _o(, o o
a(hc)+&(uhc)+5(vhc)+E(whc)_&(h D, 8xj

(1.1)

0 0 oc
+—|h-py— |++—|h-D,— |-F-h-c+S
ay( Dyayj az( Dzazj

Symbol list
c compound concentration (arbitrary units)
u,v horizontal velocity components in the x,y directions (m/s)
w vertical velocity component in the z direction (m/s)
h water depth (m)
Dx,Dy,Dz dispersion coefficients in the x,y,z directions (m?/s)
F linear decay coefficient (sec™?)
S Qs,(Cs-C)
Qs source/sink discharge (m®s/m?)
Cs concentration of compound in the source/sink discharge.

Information on u, v, w and h at each time step is provided by the Hydrodynamic module.

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 1
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2 Numerical Schemes

2.1  General Description

The transport of the scalar quantities, salinity and temperature is handled by a general
advection-dispersion module. The general advection-dispersion equation reads,

@J’_%:i DIE +SS (21)
ot oxg  0X oX;

in which c is the scalar concentration variable, Dithe dispersion coefficients and SS a
source-sink term.

MIKE 21 utilises an explicit scheme (QUICKEST) for the advection-dispersion modelling.
The numerical algorithm and solution technique applied in the model is described in the
paper “An Explicit Scheme for Advection-Dispersion Modelling in Two Dimensions” in
Section 2.2

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 2
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2.2  An Explicit Scheme for Advection-Dispersion Modelling in Two
Dimensions

Computer Methods in Applied Mechanics and Engineering 88 (1991) 287-297
North-Holland

An explicit scheme for advection—diffusion
modelling in two dimensions

Lars Ekebjerg' and Peter Justesen'

Institute of Hydrodynamics and Hydraulic Engineering (ISVA), Technical University of Denmark,
DK-2800 Lyngby, Denmark

Received 6 November 1989
Revised manuscript received 8 June 1990

In this paper, an extension of the finite difference scheme QUICKEST for the advection—diffusion
equation from one dimension into two dimensions is given. Advection as well as diffusion are
formulated as transports leading to a very efficient scheme which lends itself to vectorization on
supercomputers. The practicability of the scheme is tested using the lid-driven cavity flow as a test case
and very good results are obtained.

1. Introduction

In recent years the third order finite difference scheme QUICKEST has appeared in various
papers dealing with turbulence modelling, environmental modelling and similar areas, where
the governing equation is the advection—diffusion equation. This is because the scheme in
many ways has very fine qualities. It avoids the wiggle instability problem associated with
central differencing of the advection terms, and at the same time it eliminates the numerical
damping often experienced with first order upwinding methods (see [1]).

The scheme itself is a Lax~Wendroff or Leith-like scheme in the sense that it cancels out
any truncation error terms due to time differencing up to a certain order by using the basic
equation itself. In the case of QUICKEST, truncation error terms up to third order are
cancelled, that is for both space and time derivatives. Readers interested in a more in-depth
account of the schemes are referred to [2, 3].

The QUICKEST scheme was originally developed in [2] only for the one-dimensional case
although giving some hints for the extension to higher dimensions. In papers where this
scheme has been used in higher dimensions, it is evident that the extension to e.g. two
dimensions by no means is as straight-forward as could be expected. None of the existing
references come out with a clear two-dimensional counterpart of the original scheme. Some
drop the diffusion part out of the equation (e.g. [4]) and others the cross-derivative terms [5].
Therefore the purpose of this note is to give a complete development of the 2D version of the
QUICKEST scheme.

! Present address: Computational Hydraulics Centre (CHC), Danish Hydraulic Institute (DHI), DK-2970
Hgrsholm.

0045-7825/91/$03.50 © 1991 — Elsevier Science Publishers B.V. (North-Holland)
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2. The scheme
Consider the two-dimensional advection—diffusion equation

ac ac ac d%c d%c
i u=4+v—=K —+K, — 1
ar Y ax TV gy * gx’ Ko 1)

where c is any scalar quantity transported by the steady velocity field («, v) and diffused by
the constant diffusion coefficients K, and K . The mesh on which the equivalent finite
difference equation is to be solved is depicted in Fig. 1.

From a Taylor series expansion of (1) around the point ( j, k) the following equivalent finite
difference equation is obtained:

c’;;l_c;l,k oy C’;+1.k—c?—1,k - C;’,k+1_c;'l,k—1
At jik 2Ax Jik 2Ay
¢t =2+ ¢ =2, +
=Kx jt+1l,k A)/‘,Zk j—1,k +Ky jk+1 A}j},; ik 1+TE, (2)
T Mg AP, A e Ay de o o
T2 76 o "6 a6 ay ’

HOT contains all fourth-order and higher truncation error terms, which in this development
are to be neglected.

The next step in the development is to eliminate the time derivatives in (3). This can be
done by differentiating (1) with respect to time:

T T
- . >
]
5 |
k > >
I 1+
| | Tx
Lol A ]
A (uv) Ty
k=1 /
Controt
volume
k-2 1 ! -
j-2 j-1 ) AX J+1
|

Fig. 1. Definition sketch.

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 4
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Po_ ade i, o
ar’ x’ dx dy y?
a’c a’c a’c a’c
—2uK, — — 20K, —— —2uK, —— — 20K, — (4)
ax~ dy ox dy ay
and ,
ac 3 9°¢C 2 ac 2 a’c 3 ac
By e S el e e R A ()
at 0 dx” dy dx dy ay

If a flow direction as indicated in Fig. 1 is assumed, the following upwinded expression can
be given for the third order derivatives:

ﬁ _ (C,'+1,k —2¢, t cj—l,k) - (C/,k - 2Cj—1,k + Cj—z,k)

) 6
Py AL (6)

a’c _ (Cj+1,k - 2C}',k + cj—l,k) - (Cj+1,k—1 - 2cj,k—1 + ci—l,k—l) 7
ax> dy Ax® Ay ’

and likewise for a’c/ay” and a’c/ox 9y”.
The last term to be put on difference form is 9°c/ax ay. This is done through

2 _ _
¢ Gk~ Cix T Ciao1 TGk

ax oy Ax Ay

+TE'. (8)

As can be seen, (8) is also upwinded. This upwinding implies that the indices have to be
adjusted according to the local flow direction.
The truncation error term in (8) is given by
Ax Ay 9

TE' = == +22
2 ax’ay 2 oaxoay’ ©)

and is modelled according to (7).
Finally, substituting (3)—(9) into (2) and defining the Courant numbers and dimensionless
diffusivities

At _ At .V _ At
Uk LeKga Govge DeKgse

we obtain after some rearrangement I
= {1-2(3CI+T)+ C,C, - 2(3C2+ ) - 3(4C, — 1C2 - C,I})
-3(4C,— 4C; - C,I,) ~2(3C,C, - §CIC, - ,T)
-2(3C,C, - 3C,C; - C.TI)}
+ot {-3C,+(3CI+ L)+ (3C, - iCP - C,.T)
+(3C,C, - 1CIC, - C, L)}

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 5
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(16, + (G + L)+ (3G, = 4C5 - G I3)
+(1C,C, ~ 1.0 - )
+ C;—l,k{%cx + (%Ci + I;) - Cxcy + 3(%Cx - %Ci - Cxl-:\:)
+(1C,C, — 1C3C, - L)+ 23C,C, - 3C,C; = C.I)}
+c {3C, - C.C,+(1C+ T) +3(:C, - £C, = 1)
+2(3C,C, - 1CiC, - C, ) + (3C,C, - $C.CT - 1)}
+ C;Lz,k{—(%cx - %Ci - CI)}
+ o {—(C, - $C; - G 1)}
+ Cr;—l,k—l{cxcy - (%Cxcy - %C)zccy - Cyl—;)
- (3C,C, - 3C,C) - CI)}
+ C';—l,k+1{—(%Cny - %Cxci - Cx‘r;f)}
+ c?*—l,k—l{_(%Cny - %Cicy - Cy‘l;)} . (10)

A computationally more convenient and efficient way of expressing the scheme, and more in
accordance with the original development, is by the use of transports. Here the scheme can be
written as

=t T G R = TG Y AT, G k) = T3 (G R} (11)
where the four transport terms are located as shown in Fig. 1. From the figure it is evident that

T.(j—1L,k)=T,(j,k), (12)

T, (j,k=1)=T,(j,k); (13)
implying that (11) can be written as

it =TI =1, k) = TL(j, )} +{T5(j, k=1) = T(J, b}, (14)

where

ny . . n n n n n _ n n
T:(j, k)= At 0pC T asC g gy + asC; 4 ]-;ccj+1,k + rxcj,k (15)
and

T;(j, k)= Blc:'l,kJrl + BZC?,k + B3C?,k—1 + B4C?+1,k + BSC’;‘E~1,k - ch?,ku + ch?,k . (16)
1

Using (12)—(16) in connection with (10) leads to a series of isolated equations from which «;
and B; can be determined. The o, are given by

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 6
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o =(1CI - 1C,+1+T)C,, (172)
a=(-3CI+1C,+§-1C,C,—3C+4C, 21, -2I))C, (170)
a=(-1+1iC+I)C,, a,=(-3C,+iC +T)C,, (17¢,d)
a;=(3C,C, +T,)C, . (17¢)

The corresponding expressions for B; can be found by permutation of the x, y subscripts in
(17). The positions of the weights for the determination of x- and y-transports are depicted in
Fig. 2(a, b). When u and/or v are negative, the positions of «; and B, are changed accordingly
such that the scheme is always upwinded. An example of the weight distribution for
(u<0,v>0) is given in Fig. 2(c, d) for the o, and B;, respectively. Note that the velocities
which are used in the Courant numbers should be centered on the cell face across which the
transport is to be determined.

It is important to notice that by using the concept of transports instead of the complete
expression (10) for the scheme, the computational labour is significantly reduced. Further-
more, the explicit nature of the scheme means that it lends itself to vectorization on a
supercomputer thus giving very fast execution times.

a
k+1 4 K+1 B
(k)
T A
| | | |
a3 0 4 oy Bs | B2 ! By
‘ | ™ ‘ | .'
| IR | !
i
Lol R P
k=1 AV) Qg k=1 A.'V) B3
j-1 j j+ j=1 j j+1
(a) (b)
k+1 Gl k+1 il
LT;‘(j.k)
1l R A
| | |
Ko a, a3 P LV Bz | B
17700,k | |
| I |
41 Ll
(U,N (u.v\
K-1 25 k-1 By
j * *+2 ) i1
{c) (d)

Fig. 2. Determination of x- and y-transports out of the cell (j, k). (a, b) T7(j, k) and T7(j, k) for (u>0, v >0);
(c,d) T;(j, k) and T5(j, k) for (u<0,v>0).

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 7
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Another advantage of this scheme is that solid boundaries are easy to handle because the
transport vanishes across the boundary.

3. Stability analysis

For an explicit finite difference scheme it is very important to investigate the stability
properties in order to assess its practical applicability. Thus a stability analysis in the Von
Neumann sense of the scheme has been carried out. The results for the highest resolvable
wave number from this analysis for various values of the Courant numbers and dimensionless
diffusion coefficients are shown in Fig. 3.

As can be seen from the figure, in the diffusionless case the stability is bounded by the
criterion of not letting the sum of the Courant numbers exceed unity. Further it is seen by
comparing Fig. 3(a) and Fig. 3(b) that the introduction of diffusion increases the region of
stability. The stable region will, however, diminish as the diffusion becomes dominant, cf. Fig.
3(c). In Fig. 3(d), the Courant numbers are fixed, and the dimensionless diffusivity is varied.

For a more detailed discussion of stability, the reader is referred to [2—4].

2.0 0 B S E 1 AN 00 AN LA S At A B

c, ]

2.0 AN Bt Sens B B S S B S S SN S R

2.0 LIt S S B [ S S B S B A R 2.0 LD S et Mt S Bt B S B U S B B B e e e

[
!
<
L n
L
é‘.l
L

N
[ N

1

o

1
Lo

IR A S

0.0
0.0 0.4 08 1.2 1.6 2.0 0.0 0.4

(c) (d)

B
B
.8 1.2 1.8

Fig. 3. Stability diagrams. Stable regions are shaded. (a) I, =1,=0; (b) I,=1,=0.1; (¢) I,=1I,=0.3; (d)
C.=C,=0.1.

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 8
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4. Test of the scheme

This section presents three test cases in order to illustrate the practicability of the scheme.
The two first cases are the conventional tests with convected and rotated cones and the third
case is a lid-driven cavity flow.

Convected cone

Five cases (T1-T5) of a cone which is convected in a uniform current field are presented.
Table 1 gives the Courant numbers and dimensionless diffusivities in the tests and also the
peak concentration and the change in total mass after a translation of 40 grid points relative to
the initial values. Figure 4 depicts contours of concentrations after 0, 20 and 40 grid points of
translation in four of the five tests.

From Table 1 it can be seen that the scheme possesses numerical diffusion giving a
reduction in the peak concentration when the Courant number is not unity. Further, the
scheme was unstable in T4 with Cr = 1.42 and I', = 0.0. By adding diffusion (I, =0.1)in 75 a
stable solution was obtained. This is in agreement with the stability analysis presented in
Section 3. It can be noted that the scheme gives a very small mass falsification.

Rotated cone

Two cases (R1 and R2) of a cone which is convected in a rotating current field are
presented. Table 2 gives the Courant numbers and dimensionless diffusivities in the tests and
also the peak concentration and total mass at four instants during the first revolution relative
to the initial values. Figure 5 depicts contours of concentrations after 0.25, 0.5, 0.75 and 1.0
revolution.

This test is more severe than the T-series since the transport now takes place at all angles to
the grid since the velocity field is non-uniform. Again the scheme is seen to perform quite

well.
Table 2
Rotated cone tests. ¢, is the peak concentration; »n is
the number of time steps. The Courant number is
based on the velocity at the cone centre
Case n /T c, A c; i (%)
Table 1 21— 0 0.0 1.000 0.0
Convected cone tests. ¢ is the peak concentration r=0.25 64 0.25 0.728 —0.02
Ld 128 0.5 0.634 -0.12
Case Cr I c, AX ¢, (%) 192 075  0.570 ~0.22
TT 05 00 0723 ~0.15 256 100 054 —026
T2 1.0 0.0 1.000 0.00 R2 0 0.0 1.000 0.0
T3 1.0 0.1 0.255 —0.56 Cr=0.5 32 0.25 0.752 -0.02
T4 1.42 0.0 unstable N/A? 64 0.5 0.665 -0.13
T5 1.42 0.1 0.308 -0.12 96 0.75 0.604 -0.23
: 128 1.00 0.559 —0.27

*N/A is ‘not available’.

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 9
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(a)

(b}

(c)

(d)

Fig. 4. Convected cone tests. The cones have been convected in a steady flow field according to Table 1. Initially
the peak concentrations were 1.0 and contours of concentration are given after 0, 20 and 40 grid points of
convection. Ac =0.05. (a) T1; (b) T2, (¢) T3; (d) T5.

Lid-driven cavity flow

In order to show the application of the scheme to a ‘real’ problem we have considered the
lid-driven cavity flow which is a standard bench mark test case. A steady recirculating flow in a
square cavity with length and height H is produced by moving the top lid at a constant speed
U, . The Navier-Stokes equations are written in two dimensions using the streamfunction
vorticity formulation. No-slip conditions are imposed on the walls.

The present scheme has been used to integrate the vorticity transport equation whereas a
standard successive overrelaxation (SOR) technique has been used to compute the new

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 10
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N N

N N\

(a) (b)

Fig. 5. Rotated cone tests. The cones have been convected in a rotating steady flow field according to Table 2.
Initially the peak concentrations were 1.0 and contours of concentration are given after 0.25, 0.5, 0.75 and 1.0
revolutions. Ac =0.05. (a) R1; (b) R2.

(a) (b)

. /N J

(c) (d)

Fig. 6. Lid-driven cavity flow, Re = 100. (a) Streamfunction by present method (SOR); (b) Streamfunction in [6];
() Vorticity by present method (QUICKEST); (d) Vorticity in [6]. Note that contours are only indicative since they
do not necessarily represent the same levels in the two sets of data.

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 11
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streamfunction field at each time step. The steady solution has been found by integration in
the time domain until the relative change in the solution was less than ~107".

Figure 6 depicts the computed streamfunction and vorticity distributions in the steady
solution for a Reynolds number Re = 100 where Re = U; H/v. 32 grid points were used in each
direction and 2000 time steps were completed with A¢=0.007H/U; to reach the steady
solution. The solution is compared with a similar solution obtained in [6] and an excellent
agreement is observed. Also for Re =400, the agreement is convincing, cf. Fig. 7. Again 32
grid points were used in each direction and 3000 time steps were completed with At =0.015H/
U, to reach the steady solution.

When the Reynolds number is increased to 400 the solution changes such that the centre of
the circulating eddy moves down towards the centre of the cavity. This can also be seen in Fig.
8 which depicts vertical profiles of the horizontal velocity in the centre of the cavity for both
Reynolds numbers and by the present method as well as from [6]. The two sets of data agree
very well and the Reynolds number effect is evident.

It is fully recognized that the present procedure does not necessarily represent the most
efficient way of obtaining the steady solution for the lid-driven cavity flow. The test case serves
as an example only.

e

(b)

C

N i
(c) (d)
Fig. 7. Lid-driven cavity flow, Re = 400.

(@)

o [N

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 12
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1.0 T T T T T T T 1.0 T T
L y/H i ] L y/H
0.8 - T 1 0.8
0.6 r 9 0.6 |
0.4 0.4
0.2 0.2
u/u i T U/uUL 7

O. — L L L 1 L L 1. 00 1 1 L Il 1 L 1 1

-1.0 -0.6 -0.2 0.2 0.6 1.0 -1.0 -0.6 -0.2 0.2 0.6 1.0

(a) (b)

Fig. 8. Lid-driven cavity flow. Comparison of vertical profiles of the horizontal velocity in the centre of the cavity
by the present method (——o——) and from [6] (e). (a) Re =100; (b) Re = 400.
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3 Dispersion Coefficients

3.1  General Description

Dispersion is commonly used as a general term to refer to the scattering of fluid particles
that depend both on random-type processes (diffusion) and on the effect of velocity
gradients (shear), as schematised in Table 3.1. The diffusive processes are never
resolved, which led to early attempts by Fick (1855) and Taylor (1921) to parameterise
the mass fluxes of solutes due to molecular and turbulent motions, respectively. They
assumed that the mass fluxes could be set to be proportional to the concentration
gradients, the constants of proportionality being called the molecular and turbulent
diffusion coefficients, respectively. Taylor (1953, 1954) extended this approximation to
shear flows, the combined effect of differential advection and diffusion being thus
represented by the so-called dispersion coefficients. Elder (1959) applied Taylor's
analysis to shallow water flows in order to describe the shear effects of the vertical
velocity gradients.

The concept of dispersion of mass of any substance in solution or suspension in a flow
can be extended to other properties of the flow. Resorting to Backmeteff's principle of
momentum transfer, it follows that the velocity fluctuations act as a mechanism of transfer
of momentum between adjacent scales of circulation, i.e. they provide for the dispersion
of momentum. The corresponding coefficients are the so-called viscosity coefficients.

Table 3.1 Transport of Fluid Particles

MAIN TRANSPORT PROCESSES

ADVECTION

Movement of fluid particles due to the resolved flow processes

DISPERSION SHEAR

Scattering of fluid particles due to non- Spatial velocity gradients
resolved flow processes

DIFFUSION

Molecular motion

Turbulence
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3.2  Dispersive Processes

3.2.1 General

The commonly recognised filtering procedures used in the development of the
momentum and transport-dispersion equations are:

Scale 1

Filter out the random molecular — molecular diffusion

motion — viscosity

Scale 2

Filter out the turbulent motion — turbulent diffusion

below a given scale — eddy-viscosity

Scale 3

Depth averaging to filter out the — dispersion

vertical velocity profile for — bed & surface shear stresses
2-D models — horizontal shear stresses

- shear viscosity

Scale 1, which corresponds to filtering out the random molecular motions, is the basis of
Newton's law of viscosity

ou

Ty = H E @3.1)

where viscosity p may be regarded as a measure of the resistance of the flow to
deformation imposed by tangential stresses t, which are generated by the transfer of
momentum due to velocity fluctuations normal to the corresponding surface. With respect
to the fluctuations due to molecular motions, their effect on the transfer of momentum is
independent of the flow conditions, thus the dynamic viscosity p is a characteristic of the
fluid. The corresponding dynamic equilibrium equations are the well-known Navier-Stokes
equations, where the influence of the non-resolved scales of random molecular motions
are accounted for by the following empirical terms (in the xi direction)

2 2 2
V{a ui+8 Ui+a Ui

o oy 622]i=1,2,3 (3.2)

v = p/p being the Kinematic viscosity (L2/ T).

The random molecular motions also induce the transfer of mass of any substance
dissolved or in suspension in the fluid, which according to Fick's law is given by
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oc
T=D"— 3.3
o (3.3)

where c represents the concentration of the constituent and Dm the molecular diffusion
coefficient. Applying a conservation principle to an arbitrary volume of control, an
empirical term similar to (3.2) will appear

n| 6°C, 6°C , &°C
D {8x2+6y2+622} (3.4)

3.2.2 Turbulence

Although molecular agitation is always present even for fluids at rest, under flow
conditions fluid particles experience additional random motions of much higher
magnitude, so that their paths are very irregular and sinuous. It is apparent when
observing recorded time series of instantaneous velocities u', that the flow is
characterised by an unsteady fluctuating velocity u' superimposed on a temporal steady
mean velocity u, such that

u' (x,t) =u(x,t) +u'(x,t) (3.5)
I _i t | _
u (X’t)_AT t_[T u' (x,t)dt =u(x,t) (3.6)
u'(x t):i j u(x,t)dt=0 3.7)
AT ’ '

t=AT

In these conditions it is possible to filter out the fluctuations under a selected time scale
AT, by integrating the Navier-Stokes equations over AT. As a result, the following new
terms will be obtained

() [ T
i i 3.8
Silllilarly for the conservation of pr()[)elly C, the result iS,
—_— [ o U‘C' ]
i 3.9
In the classical theory of turbulence the terms -Ia.lil Ujl, called Reynold's stresses, are

empirically correlated to the resolved scales through a new coefficient v', the "eddy
viscosity", such that

—pﬁzva% 3.10
=] an (3.10)
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which makes it possible to write the new terms in the following form
i VT % +i VT% +£ VT % (311)
OX ox | oy oy | oz 0z

It is apparent that vT is now dependent on the flow conditions. For the evaluation of v*
several models have been developed, each corresponding to a particular kind of
turbulence (e.g. isotropy). One of the formulations adopted by DHI is based on the so-
called Smagorinsky model of isotropic turbulence (1963), given by

vi=p P (xi)(S;S; ) (3.12)

where / (xi) is a characteristic mixing length and Sj the second order strain tensor. It is
obvious that considering v' constant, expression (3.11) reduces to the form of expression
(3.2) established for molecular motion (Boussinesq approximation).

In general it is difficult to determine v™ but as a reference, for uniform channel flow it is
often assumed to take a value given approximately by

1
T~—hu* 3.13
1% 10 (3.13)

where h is the water depth and u* the friction velocity.

Introducing the Reynold's analogy for turbulent flows, that expresses the principle that the
transfer processes of dissolved or suspended matter are equivalent to the transfer
processes of momentum, and consequently the turbulent diffusion coefficient DT will be
such that DTz vT, the new dispersive terms of the conversation equation becoming

ﬁ{ T@:|+i DT@ +ﬁ|:DT@:| (3.14)
oX ox | oy oy | oz 0z '

3.2.3 Shear flows

For many coastal engineering applications where the depth is much smaller than the
horizontal dimensions of the domain under study, two-dimensional models are usually
adequate to describe the main flow processes. Nevertheless the depth-integration will
imply the filtering of the vertical velocity profiles, which are responsible for additional
spreading in the direction of the flow. Flows with velocity gradients are often referred to
as "shear flows", and the associated spreading mechanism discussed by Taylor (1954) is
currently known as the "shear effect". Hence, to account for "shear flows" in a depth
integrated model (i.e. 2D), additional empirical terms have to be included.

The filtering procedure can now be based on the following relationships:

u=(U+U) (3.15)

U'=

o

£
jU’dz=O (3.16)
h

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 17



N iy 21\“
Dispersion Coefficients MI KE

Powered by DHI

-1 h 3
U_EI(U +U)dz=U (3.17)

where U represents the depth-integrated velocity and U' the deviation of the velocity
profile from the average velocity U, at a general depth z.

Introducing these relationships in the Reynolds equations (Navier-Stokes equations after
filtering out turbulence under a time scale AT), it is possible to demonstrate that the
convective terms will be given by

¢ ¢
2 j uudz+i I vudz=
oX %, oy 1,

d d 34 35 949
—~ (hUU)+ =(hVU) — | (u' *dz+ — [ (u'v' Y dz
S U V) ) dze [

The last two terms represent the overall transfer of momentum over the depth due to the
shear effect, and in an assumption similar to that applied to the turbulent transfer of
momentum, it is common to accept the following correlations with the resolved dependent
variables (depth-integrated):

oU

—I(U Ydz=-y5— ax (3.19)
and

lj'(U'\/ ) dz= s U (3.20)

= =_, .

h Yoy

The above assumptions and the Reynolds analogy make it possible to finally write the
new terms for the conservation of momentum and constituents in the following form

) { ou; } 0 U, a { U, }
Vi +—| yyh— vi (3.21)
OX OX oy oy az 0z
and
a{D h6U } i th% +£{D?h%} (3.22)
OX OX oy oy 0z 0z

where vi*= D#, with vi® and D# representing the horizontal shear stresses and dispersion
in depth-integrated shear flows (in the xi direction). The coefficient vi® will be called
hereafter the “shear viscosity”.

In the case of uniform channel flow (Abbott et al., 1976) the shear viscosity can be
estimated by

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 18



N iy 21\“‘
Dispersion Coefficients MI KE

oC -(OC’ )2
vi=pi=——_—-c.Uh (3:23)
with
T 3
. :[u dz (3.24)
uh
and
T 2
o' = _J;u i (3.25)
u’h

where C: is the non-dimensional Chézy number, U the depth-averaged velocity and h the
water depth.

For example, considering a 10 meter deep channel with a depth- averaged velocity of 1
m/s and a non-dimensional Chézy number of 18, the shear viscosity coefficient that
corresponds to an exponential velocity distribution along the vertical given by Kz%2is vS =
4 m?/s.

As expected, these results suggest that the intensity of transfer of momentum and
constituents is related to the magnitude of the scale considered, the molecular and
turbulent effects being in practice negligible in comparison to the shear effect (10 to 10
m?/s against 4 m?/s).

3.2.4 Subgrid scale processes

At this point it is convenient to emphasise that the concepts of viscosity and diffusion
have been brought about by the need to take into account non-resolved motions of the
fluid particles, i.e. diffusion and dispersion are the result of advective processes
associated with non-resolved scales. This concept is the one that really matters when the
filtering procedures are further extended to higher scales, as a consequence of the need
for horizontal and vertical spatial discretisation of the equations. It implies that additional
dispersion and viscosity will be required to account for higher order non-resolved scales
of motion, which magnitude will be dependent on the grid spacing used in the numerical
computations. Once again it is only natural to expect that by increasing the grid spacing,
the dispersive coefficients will also increase, with practice confirming that they can be
several orders of magnitude higher than e.g. the coefficients arising from depth-
integration. In the case of depth-integration where the grid spacing is similar to water
depth, Ax=h, the larger non-resolved scales of circulation will be related to the shear flow
and the extensive studies available on this subject provide very accurate first estimates
for the empirical coefficients, so long as the velocity profile is well defined, as will be
shown in Section 3.3.1.

One of the main difficulties found when estimating dispersion coefficients, so as to take
into account the horizontal spatial discretisations, is the characterisation of the new non-
resolved scales of motion, which can be greatly dependent on factors like local
bathymetric configurations, density gradients and wind friction and set-up. Although some
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general formulae can be used for guidance, the accuracy of the final values will always
be greatly dependent on calibration and on the experience of the modeller.

In conclusion, the fact that the numerical resolution of the primitive equations has to
resort to additional discretisations in space and time (generally, no analytical solutions
are available), makes it necessary to extend filtering to larger scales of motion which are
dependent on the model resolution, Ax and Az. Thus, following the previous
schematisation a fourth scale must be considered, such that

Scale 4
Averaging over the model — additional dispersion
resolution Ax, At — additional viscosity

In what follows the additional dispersion and viscosity will be referred to as Subgrid
Dispersion D® and Subgrid Viscosity v©.

3.3  Estimation of Coefficients in 2D Modelling

3.3.1 Basic formulations

The general advection-dispersion equation reads

oc  ouic_ 0 ac
—+—=—| D, +SS
o ox 6t[ "X, ] (3:26)

Where c is the concentration, Di the dispersion coefficient and SS a possible source term.

As a basis for the interpretation of dispersive coefficients in 2D, Elder's formulation will be
used. Consider the mass conservation equation for a dissolved constituent in an open
channel of infinite lateral extent, where the lateral and vertical velocity components are
zero and the horizontal diffusion can be neglected. Equation (3.27) can then be written

o (ue )—E[D ac} (327)
ot ox oz| oz '

Considering the vertical profile defined by equations (3.15) - (3.17) and taking into
account the flux continuity for incompressible fluids, equation (3.27) can be written

—(c+c:)+(u +U)—(C+C')——{ 6@3} (3.28)

Introducing now a non-inertial frame of reference moving at velocity U, C and C' will be
functions of x' =x - Ut and t' = t, which brings the previous equation to the following form

—(C+C')+U’—(C C')——{ a@i} (3.29)
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After a sufficiently long time, C and C' will become functions only of x' and t, respectively,
which make it possible to finally write

U’ oC _ a{Dlac

& liow (3.30)
ox'" oz oz

Proceeding by integrating the previous equation, one gets

C’:{.Z[DZ[IU dszz}Z}f (3.31)

Multiplying by U' and integrating again over the vertical, it yields
h z
—I(U’Cﬁd _[ .[ (J.U'dzjdz dz (3.32)
0 z

and it is now clear that the dispersion coefficient can be given by

Di:% Iu’“DZLIUUszZ}dZ (3.33)

Elder evaluated D3 using Von Karman'’s logarithmic profile for the velocity
u* z
U()=—] 1+In—
@)=— [ . } (3.34)

where u* is the shear velocity (1, /p)” and «(~ 0.41) the Von-Karman constant. The
shear stress distribution is considered to be linear

r=1,(1-2z/h) (3.35)
and the assumption is made that the turbulent transport of mass and momentum are
identical (Reynold's analogy). Noting also that the vertical turbulent momentum transfer is

given by

T=p Vz aU (3.36)
0z

it transpires that
T— T— Z
D:=v,=u zcz(l-ﬁ) (3.37)

Considering now the independent variable in equation (3.33) given by = z/h and taking
into account (3.34) and (3.37), Elder obtained
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¢
. J@+Ing)dg
D= e !(1""”5) ;!.ch(l—-g)dg dg (3.38)

Performing the integration, one gets

S — u* h —_ *
Dx_0'404_3_ Kegu*h (3.39)
K
with Ke = 5.9 and k = 0.41.

Expressions similar to Elder's have been proposed with a wide variety of coefficients, as

for example

Krenkel (1962) for open channel flow: 9.1u*h
Yotsukura & Fiering (1964) for smooth channels: 13 u*h
Thackston (1966) for natural streams: 7.25 (U/u*)¥* u* h

to mention but a few, as presented by Bansal (1971).

Jobson and Sayre (1970) have provided some evidence that the Reynolds analogy holds
(i.e. v/DT = 1). They also confirmed the parabolic distribution of v" and found that the
mean depth value was about

which justifies its being neglected in comparison to horizontal dispersion due to shear
flows.

In applications for natural streams, Fischer (1968) found that longitudinal dispersion
coefficients as predicted by Elder's formula were too small, values as much as 150 times
higher having been reported. Bowden (1964) pointed out that the effective coefficients of
horizontal dispersion are inversely proportional to the coefficient of vertical turbulent
diffusion, which is also apparent in Elder's development (3.33). The mixing produced
under a shearing current will thus be enhanced if some stability factors are present in the
vertical, their effects becoming important for local Richardson numbers of about 0.5 to 1.
According to Bowden the coefficient of vertical turbulent diffusion may then be reduced by
a factor of 10 or 20, with a corresponding increase in the horizontal dispersion
coefficients, to an order of 10° to 106 cm2/sec.

The conclusions of these authors clearly show that other mechanisms of spreading may
be dominant in comparison with shear effects. Fischer proposed that the main factor
contributing to longitudinal dispersion was transversal diffusion and not vertical diffusion,
i.e. the dominant mechanism of spreading should be associated with transversal
circulations (this analysis having been done for natural streams). Bowden recognised that
shear effects are likely to be most effective in estuaries and near the coastline, and that
the existence of large horizontal eddies may dominate among the dispersion processes.
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3.3.2 The evidence of experience
It is well demonstrated that dispersive effects due to physical processes at scales 1 and 2
are negligible in relation to those at scale 3. With respect to environmental flows, field
measurements and modelling results also show that in most situations Elder's coefficient
is several orders of magnitude too small as mentioned previously. This is illustrated in
Table 3.2, in which calibrated coefficients are compared with Elder's formula for 4
different applications with a two-dimensional circulation model (MIKE 21)

Table 3.2 Comparison between Elder's coefficient and calibrated coefficient
Case h u u* Ax At E. calib. | 6.hu*
m m/s m/s m S m?2s m?/s
A 8 0.7 0.05 50 30 2-5 24
B 20 1.0 0.1 500 300 40-50 12
C 30 0.5 0.03 6000 600 ~500 54
D 1000 0.1 0.003 30000 900 >6000 18

The magnitude of the calibrated coefficients can only be explained by considering
processes at Scale 4, that for values of Ax >> h usually dominate over processes in Scale
3.

Many modellers attempt to account for the filtered processes at Scale 4 by increasing the
coefficient Ke in Elder's formulation, which will only be acceptable as long as those
processes remain related to flow variations in the vertical. However, to represent subgrid
processes it is only natural to relate the effective coefficients of viscosity and dispersion
to the length scale Ax and to the time scale At. Hence the effective coefficients for
subgrid processes may be considered in the following possible forms:

A&7 (3.41)
1 At .
K, Ax U (3.42)
K, At u? (3.43)

In Table 3.3 the three different forms of the effective coefficient for Scale 4 have been
compared to calibrated results in five different situations.
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Table 3.3 Effective coefficients of scale 4
CASE h u Ax At Ecal. Ky Kz Ks
(m) (m/s) (m) (s) (m2/s)

A 8 07 50 30 1-5 0.06-0.01 0.14-0.03 0.34-0.07
B 20 1.0 500 300 40-50 0.06 0.10 0.17

c 30 05 6000 600 ~500 0.008 0.17 3.3

D 40 1.0 20 10 1-3 0.075-0.025 | 0.15-0.05 0.30-0.10
E 1000 0.1 30000 900 ~6000 0.006 2.0 667

The form K2Ax u appears to be promising since Kz is almost constant in the five different
cases.

It is important to emphasise that as equations (3.41) - (3.43) are not based on a defined
pattern of circulation, like Euler's formulation, the estimates can only be expected to be a
rough approximation to the true values. Furthermore, as will be analysed in the next
section, the values of the dispersive coefficients are dependent on the biggest non-
resolved circulations, and not directly on Ax or At. This is very important, and makes it
possible to justify that in situations where Ax>>h, the use of Elder's formulation may still
be valid although the associated dispersive processes will be irrelevant in comparison
with other effects. Nevertheless, the above formulae, when complemented with field
observations and experience obtained in similar situations, do provide valuable guidance
for the calibration of two-dimensional environmental models.

When Ax and h are of the same order of magnitude, the shear effects (processes at
Scale 3) will be the ones responsible for the transfer of momentum and constituents. In
practice, assuming that the friction velocity for coastal waters is about 6% of the mean
depth velocity, Elder's formula will give

vi=D;=5.9.-0.06U h=0.4U h (3.44)

Thus, for application in MIKE 21 when Ax = h the dispersive coefficients (shear viscosity
and dispersion) are taken as a first approximation as, to be

vi=Dy=1.0U h (3.45)
with the factor 1.0 possibly varying by one order of magnitude according to calibration.

It should be stressed that in the above discussion direction x was assumed to be aligned
with the flow direction, the coefficients thus obtained being representative of the
longitudinal dispersive processes. In the case of shear effects the transverse or lateral
processes are found to be approximately one order of magnitude smaller than the
longitudinal ones, as indicated by tests reported by Talbot & Talbot (1974). For an
arbitrary direction of the flow in a Cartesian coordinate system, cross terms would then be
present, complicating the definition of the coefficients. Calling D}, D} longitudinal and

lateral coefficients, a reasonable approach would be to project them on the x and y
directions and disregard cross derivative terms. This can be accomplished by taking the
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ellipse of semi-axes D}, D3 in which D; is aligned with the current vector (u,v), and
calculate D} and Dj accordingly, eventually obtaining

r o

1 2 . 2
1_ ( COSa'j +( sin aj .46
D |\ Dt Dt
1 o 2 2 T
1_ (smaj +( COSO{) 347)
Dy |\ Dt Dt
Where
a =arctan(v/u) (3.48)

However, for dispersive processes associated with the largest scales, as is the case in
subgrid flow circulations, the influence of flow direction is no longer relevant, which
means that isotropy can be usually assumed.

3.3.3 A general interpretation

Abbott et al. (1985) showed that it is possible to simulate realistically secondary large
scale circulations by using two-dimensional models. Madsen et al. (1988) continuing on
the same subject referred to the existence of two fundamental mechanisms for the
generation of circulations, where the resistance forces (bottom friction) are balanced by:

+  the momentum transfer resolved at the scale of the spatial discretisation adopted
(convective accelerations)

+  the momentum transfer non-resolved at the scale of the spatial discretisation
adopted, represented by horizontal shear stresses ("subgrid viscosity")

The first mechanism is dominant in many situations where the scales of flow circulation
and space discretisation Ax are much bigger than the depth of the flow, and the second
one is fundamental to describe secondary circulations when Ax < h. Nevertheless, for
some situations where Ax>>h it is found in practice that the second mechanism is still
necessary to describe the resolved scales of circulation. A possible explanation may be
found in the following heuristic hypothesis:

*  The transfer of momentum or constituents amongst resolved scales depends upon
the relative magnitude of the minimum resolved scale and the maximum non-
resolved scale. The transfer is only effective when these scales have the same order
of magnitude.

To analyse the consistency of this statement the following interpretations are made:

1.  When the structure of the flow is well defined by a logarithmic profile of velocities
and Ax is of the same order of magnitude of the depth h, the biggest non-resolved
scale is the velocity profile itself, Elder's formula being thus valid for the estimation of
the effective viscosity and dispersion coefficients. The second mechanism is
fundamental to describe flow circulation.
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2. When Ax>>h several situations may be found:

a.  The bottom is very regular and three-dimensional effects are negligible. In this
case the biggest non-resolved scale will still be related to the depth, thus being
much smaller than the minimum resolved scale. Consequently the transfer of
momentum due to the non-resolved scales (subgrid viscosity) is negligible.
Euler's formula is still valid but the model will not be sensitive to the values of
the viscosity coefficient. The circulation is only determined by the first
mechanism, i.e., by the dissipative terms, as the non-resolved scales only
contribute as energy absorbers.

b.  The bottom configurations and the existence of three-dimensional effects
originate circulations, the scales of which are of the same order of magnitude of
Ax, i.e., important in relation to the minimum resolved scales. In this case the
transfer of momentum due to the non-resolved scales becomes significant. This
can be easily illustrated by the experience of many authors, who for calibration
of regional models using large grid spacings (= 5000 m) employed dispersion
coefficients proportional to Ax or/and h. As an example one of the formulae
commonly used is given by E = K Ax¥At with 0.01 <K<0.06. For a regular mesh
with a 30,000 m grid spacing, a 15 min. time step and an average depth of
1000 m, we get 10,000<E<60,000 m?/s, i.e. 10 h <E< 60 h.

Schwiderski (1978), for his global oceanic tidal model used a dispersion
coefficient linearly proportional to the depth and -x, which gives values
consistent with the previous formula.

3. ltis logical to expect that by using the Prandtl model for the determination of the
dispersive coefficients, the mixing length will be related to the magnitude of the
maximum non-resolved scales. Using the Smagorinsky formulation and considering
the mixing length given by

¢ =C,AX (3.49)

Madsen et al. (1988) recommended values of Cs in the range (0.4 - 0.8). These values
are consistent with the hypothesis formulated before, i.e., the transfer processes of
momentum and constituents are only important when the non-resolved circulations are of
the same order of magnitude as Ax.
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4 Heat Dissipation

In the heat balance for a free surface the following items are included: net short-wave
radiation (from the sun), net long-wave radiation (e.g. from clouds), long-wave outgoing
radiation from the surface (Stefan-Bolzmanns law), evaporation and heat exchange to the
air as a function of the temperature difference between water and air (convection).

In connection with an artificially warmed aquatic area, the loss of heat will increase due to
long-wave radiation, evaporation and convection. This increase in heat loss is included as
a decay term in the calculation of the excess temperature field, F-T, where F is the heat
decay coefficient and T the excess temperature. The following simplified expression is
used for calculating the decay coefficient

if W > Wnmin:

F=0.2388/(p-C,-H)(4.6-0.09(T, +T)+4.06-W)

exp(0.033(T, +T))+0.2388 K, /(o-C, - H) (4.1)

if W<Wmin:

F=0.2388/(p-C,-H)| ((46-0.09(T, +T)+0.06-W,,,)
4.2)
W 2
exp(003(Tr +T))_ Kmin {ﬁj + Kmin + Kshift J

where
v density of water
Co specific heat
H water depth [m]
Tr reference temperature [°C]
T excess temperature [°C]
W wind speed [m/s]

¥.Cp gives the value 10° Cal/m? °C in the program.
Whnin, Kmin @and Kshitt are by default 0.0, but can be specified by an option file.

The above expression is not valid for water surfaces with high excess temperatures, e.g.
cooling water reservoirs.
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5 Flooding and Drying

If the AD module is applied together with flooding and drying, then concentrations must
be calculated every time a cell is flooded, and the mass of the AD compounds stored
every time a drying sets in.

The HD modelling concepts at flooding/drying are described in MIKE 21 HD Scientific
Background. The related AD modelling concepts at flooding/drying are described in the
following sections.

51 General

When performing an AD calculation while using the flooding and drying functionality it is
necessary to book-keep the mass of the AD component (or MIKE ECO Lab State
Variable or MT fraction) in order to obtain an AD mass balance — similar in concept to the
handling of water depths in the HD simulation in order to obtain a water volume/mass
balance.

The AD functionality utilises 2 arrays at runtime:

*  c¢(j,k) (data structure used to bookkeep of concentrations while cells are wet/flooded)

* ad_mass(j,k) (data structure used to bookkeep AD mass per area while cells are
dry)

While a cell is wet c(j,k) will be directly updated by the AD equations of motion.

While a cell is dry ad_mass(j,k) will be updated with respect to mass per area when
sources, models, rain with concentrations are added to cell (j,k) while it is dry. When HD
mass violations takes place out of known reasons (water depth below EPSF) then
ad_mass(j,k) will be updated accordingly and be subject to a corresponding mass per
area violation.

We store the latest known AD mass per area in cell (j,k). The mass per area is what
should be conservative during the simulation — normally we understand that the mass
should be conserved, but since the area of the MIKE 21 computational cells have a
uniform area equal to dx*dy, we might as well say that mass per area is what should be
conservative.

5.2  Flooding due to External Sources

Flooding of a grid cell may be due to accumulation of water from external sources (Rain,
Sources, External model contributions). In this case, if it takes N water increments
(generally the same as number of taken time steps) to flood an initially dry cell (j,k), then
the concentration of the AD component in cell (j,k) at the time of the flooding will be
modelled according to a weighted average:

Z:':lcn -Ah,
> A,

c(j,k)= (5.1)
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Where Ahn is the water increment and cn is the concentration in the external source.

The initial imaginary water with water depth EPSF in this concentration modelling is
ignored as we only take into account the concentration from the actual external

contributions: the fallen precipitation, the added water from sources or from coupled
models.

5.3 Flooding due to a High Water Level in Neighbour Cells

Flooding of a grid cell can also be due to a high water level in neighbour cells (water

chain expansion/chain flooding). In this case the calculation of the concentration depends
on the previous simulation steps.

5.3.1 Chain flooding for the first time

If a cell (j,k-1) — call it cell 1 - leads to a chain flooding of its neighbour cell (j,K) then the
concentration at cell (j,k) will be calculated as the average of the neighbour
concentrations in the neighbour wet cells. The general formula is highlighted below in
Figure 5.1. If all 4 neighbour cells are dry when the concentration in (j,k) is about to be
set, then we set c(j,k) = c(j,k-1) — e.g. we set the concentration in (j,k) to the original
concentration value in cell (j,k-1) — the cell that triggered that cell (j,k) got flooded.

Concentration handling:
JIF i {jk-1)=Dry => weight_1=0, conc_1=0
(ELSE: (jk-1)=Wet => weight_1=1, conc_1=c{jk-1)

_. IF :(j+1,k}=Dry => weight_2=0, conc_2=0
(ELSE: (j+1,k)=Wet => weight_2=1, conc_2 =c(j+1,k)

_. IF : (j,k+1)=Dry => weight_3=0, conc_3=0
_ELSE: (j,k+1)=Wet => weight_3=1, conc_3 =c(jk+1)

UIF :(F1,k)=Dry => weight_4=0, conc_4=0
_ELSE: (j-1k)=Wet => weight 4=1, conc_4=c(j-1k)

General formula when (j,k) is chain flooded:
k+1 3
.\ L, conci
_ clik}= Yi, weight_i
k 1 c(j.k) 2
A If all 4 neighbor points are dry:
k-1 l c(j,k)= c(j,k-1) — before cell 1 dried
-1 j j+1
Figure 5.1 lllustration of concentration handling in case of first-time chain flooding
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5.3.2 Chain flooding on previously wet cell

If a cell that was previously wet and later became dry is chain flooded again, the latest
updated values for ad_mass(j,k) and h_flood_dry(j,k) are used to derive the concentration
at flooding time:

ad _mass(j,k)
_ flood _dry(j,k)

c(j,k):h (5.2)
5.4  Drying

When drying of a cell (j,k) sets in, and then the mass per area of the AD component (or
MIKE ECO Lab State Variable or MT fraction) is stored as follows:

ad _mass(j,k)=c(j,k)-h_ flood _dry(j,k) (5.3)
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Shear stresses

Density

Dynamic Molecular Viscosity
Kinematic Molecular Viscosity
Kinematic Turbulent Viscosity
Kinematic Shear Viscosity
Molecular Diffusion

Turbulent Diffusion

Shear Diffusion - Dispersion
Euler's coefficient

Von Karman's constant
Instantaneous Velocity
Time-integrated Velocity
Velocity Fluctuation

Shear Velocity
Depth-integrated Velocity
Depth-integrated Velocity Fluctuation
Time-integrated Concentration
Fluctuation of Concentration
Depth-integrated Concentration
Depth-integrated Fluctuation of Concentration
Mixing Length

Angular Deformation Tensor
Flow Depth

Water Surface Position

Vertical Direction

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module

MIK@

Powered by DHI

31



_ 21\“
List of References MI KE

Powered by DHI

7 List of References

11 Abbott, M.B. et al. (1985): Modelling circulations in Depth-integrated flows. Part
1: The accumulation of the evidence J. Hyd. Res., Vol. 23, No. 4.

121 Bansal, M.K. (1971): Dispersion in natural streams. J. Hyd. Div., Proc. ASCE.
HY11, pp. 1867-1886.

13/ Bowden, K.F. (1965): Horizontal Mixing in the sea due to a shearing current. J.
Fluid Mech, Vol 21, Part 2, pp. 83-95.

141 Elder, J.W. (1959): The dispersion of a marked fluid in a turbulent shear flow. J.
Fluid Mech., 5, pp. 544-560.

5/ Fischer, H.B. et al. (1979): Mixing in Inland and Coastal Waters. Academic
Press.

16/ Jobson, H.E. and Sayre, W.W. (1970): J. Hyd. Div., Proc. ASCE, Vol. 96, pp.
703-724.

171 Justesen, P. (1990): System 3. A three-dimensional hydrodynamic model.

Turbulence modelling. Vol. 5. Danish Hydraulic Institute.

18/ Leslie, D.C (1982): Simulation methods for turbulent flows. In Numerical
Methods for Fluid Dynamics. Ed: Morton, K.W. and Baines, H.J., Academic
Press, pp 63-80.

19/ Leonard, A. (1974): Energy cascade in large-eddy simulations of turbulent fluid
flows. Adv. in Geophysics, A, 18, pp. 237-248.

110/ Madsen, P.A. et al. (1988): Subgrid modelling in depth integrated flows 21st. Int.
Conf. on Coastal Engineering, Malaga.

/11/ Schumann, V. (1975): Subgrid scale model for finite difference simulations of
turbulent flows in plane channels and annuli. J. Comput. Phys., Vol. 18, pp.
376-404.

112/ Schwiderski, E.W. (1981): Global Ocean Tides. NSWC TR81-122. Chief of
Naval Material, Department of the Navy, Washington, DC 20360.

113/ Smagorinsky, J. (1963): General Circulation experiments with the primitive
equations, 1, The basic experiment. Mon. Weather Rev., Vol. 91, pp. 90-164.

114/ Thackson, E.L. (1966): Longitudinal Mixing and Re-aeration in natural streams.
PhD Thesis, Vanderbilt University, Nashville, Tenesse.

115/ Talbot, J.W. and Talbot, G.A. (1974): Diffusion in shallow seas in English
coastal and estuarine waters. In Physical Processes Responsible for Dispersal
of Pollutants in the Sea. Ed. G. Kullenberg and Talbot, J.W. International
Council for Sea Exploration, pp. 93-110.

116/ Taylor, G.I. (1954): The dispersion of matter in turbulent flow through a pipe.
Proc. Royal Soc. London, Serv. 223-A, pp. 446-468.

117/ Vieira, J.R. (1992): On the general dispersive coefficients used in mathematical

models of flow circulation and transport. Coastal, Estuarial and Harbour
Engineer's Reference Book. In press.

© DHI A/S- MIKE 21 Flow Model - Advection-Dispersion Module 32



	1 Introduction
	Symbol list

	2  Numerical Schemes
	2.1 General Description
	2.2 An Explicit Scheme for Advection-Dispersion Modelling in Two Dimensions

	3 Dispersion Coefficients
	3.1 General Description
	3.2 Dispersive Processes
	3.2.1 General
	3.2.2 Turbulence
	3.2.3 Shear flows
	3.2.4 Subgrid scale processes

	3.3 Estimation of Coefficients in 2D Modelling
	3.3.1 Basic formulations
	3.3.2 The evidence of experience
	3.3.3 A general interpretation


	4  Heat Dissipation
	5  Flooding and Drying
	5.1 General
	5.2 Flooding due to External Sources
	5.3 Flooding due to a High Water Level in Neighbour Cells
	5.3.1 Chain flooding for the first time
	5.3.2 Chain flooding on previously wet cell

	5.4 Drying

	6  List of Symbols
	7  List of References

