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PLEASE NOTE

COPYRIGHT This document refers to proprietary computer software which is pro-
tected by copyright. All rights are reserved. Copying or other repro-
duction of this manual or the related programs is prohibited without 
prior written consent of DHI A/S (hereinafter referred to as “DHI”). 
For details please refer to your 'DHI Software Licence Agreement'.

LIMITED LIABILITY The liability of DHI is limited as specified in your DHI Software 
Licence Agreement:

In no event shall DHI or its representatives (agents and suppliers) 
be liable for any damages whatsoever including, without limitation, 
special, indirect, incidental or consequential damages or damages 
for loss of business profits or savings, business interruption, loss of 
business information or other pecuniary loss arising in connection 
with the Agreement, e.g. out of Licensee's use of or the inability to 
use the Software, even if DHI has been advised of the possibility of 
such damages. 

This limitation shall apply to claims of personal injury to the extent 
permitted by law. Some jurisdictions do not allow the exclusion or 
limitation of liability for consequential, special, indirect, incidental 
damages and, accordingly, some portions of these limitations may 
not apply. 

Notwithstanding the above, DHI's total liability (whether in contract, 
tort, including negligence, or otherwise) under or in connection with 
the Agreement shall in aggregate during the term not exceed the 
lesser of EUR 10.000 or the fees paid by Licensee under the Agree-
ment during the 12 months' period previous to the event giving rise 
to a claim.

Licensee acknowledge that the liability limitations and exclusions 
set out in the Agreement reflect the allocation of risk negotiated and 
agreed by the parties and that DHI would not enter into the Agree-
ment without these limitations and exclusions on its liability. These 
limitations and exclusions will apply notwithstanding any failure of 
essential purpose of any limited remedy.
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1 A General Description

The MOUSE Pipe Flow Model is a computational tool for simulations of 
unsteady flows in pipe networks with alternating free surface and pressurised 
flow conditions. The computation is based on an implicit, finite difference 
numerical solution of basic 1-D, free surface flow equations (Saint Venant). 
The implemented algorithm provides efficient and accurate solutions in multi-
ply connected branched and looped pipe networks. 

The computational scheme is applicable to vertically homogeneous flow con-
ditions which occur in pipes ranging from small-profile collectors for detailed 
urban drainage, to low-lying, often pressurised sewer mains, affected by the 
varying water level at the outlet. Hydrodynamics of prismatic open channels 
can also be simulated.

Both sub-critical and supercritical flows are treated by means of the same 
numerical scheme that adapts according to the local flow conditions. Natu-
rally, flow features such as backwater effects and surcharges are precisely 
simulated. 

Pressurised flow computations are facilitated through implementation of a 
narrow 'slot', as a vertical extension of a closed pipe cross section. Free sur-
face and pressurised flows are thus described within the same basic algo-
rithm, which ensures a smooth and stable transition between the two flow 
types.

The complete non-linear flow equations can be solved for user-specified or 
automatically supplied boundary conditions. In addition to this fully dynamic 
description, simplified flow descriptions are available.

Within the Pipe Flow Model, advanced computational formulations enable 
description of a variety of pipe network elements, system operation features 
and flow phenomena, e.g.:

 flexible cross-section database, including standard shapes;

 circular manholes;

 detention basins;

 overflow weirs;

 pump operation;

 passive and active flow regulation;

 constant or time variable outlet water level;

 constant or time variable inflows into the sewer network;

 head losses at manholes and basins;

 depth-variable friction coefficients.
11



A General Description
The features implemented in conceptualisation of the physical system and 
the flow process enable realistic and reliable simulations of the performance 
of both existing sewer systems and those under design.
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The Model Elements - Inventory
2 Modelling the Physical System

2.1 The Model Elements - Inventory

Elements available for definition of a numerical model in MOUSE are:

1. Links 

 pipes - standard and arbitrary cross-sections,

 open channels - arbitrary cross-sections.

2. Nodes 

 manholes,

 basins (structures),

 storage nodes,

 outlets.

3. Functions, for description of certain physical components of sewer sys-
tems, including:

 overflow weirs,

 orifices,

 pumps,

 non-return valves,

 flow regulators.

4. Controllable structures, for the simulation of reactive or time dependent 
operation real-time control, including:

 rectangular underflow gate with movable blade,

 rectangular overflow weir with changeable crest elevation.

Principles underlying the concept of controllable structures are described in 
the "MIKE URBAN Collection System User Guide".

2.2 Links

2.2.1 General Description

Links in MOUSE Pipe Flow Model are defined as one-dimensional water con-
duits, connecting two nodes in the model. The link definition allows that the 
dependent flow variables (e.g. water levels and discharges) can be uniquely 
described as functions of time and space.
13



Modelling the Physical System
A link is featured by constant cross-section geometry, constant bottom slope 
and constant friction properties along the entire length. A straight layout is 
assumed.

MOUSE supports two classes of links:

 closed conduit links (pipes),

 open channel links.

Closed conduits under certain hydraulic conditions may become pressurised. 
In such a case, the confinement of the flow fundamentally changes the envi-
ronment in which the flow process takes place, but the MOUSE Pipe Flow 
Model continues to perform the computations using the same flow description 
as for open channel flow. This is possible, because MOUSE furnishes actu-
ally closed conduits (pipes) with a fictitious slot (Preissmann slot) on the top 
of the cross section, thus replacing a pipe with an open channel, featuring a 
cross section shaped to approximate the hydraulic behaviour of a pressurised 
pipe.

2.2.2 Specification of a Link

Specification of a Link requires specification of the associated nodes (see 
paragraph 2.3 Nodes (p. 19)), the link material, longitudinal parameters and 
the cross-section definition (shape and size).

Link Material

The parameter which characterises the link material is the link friction, 
expressed as Manning's number (M or n = 1/M). The link can be defined as 
14 MIKE URBAN - © DHI A/S



Links
constituted of one of 8 predefined material types. Table 2.1 lists the available 
link materials with MOUSE default values for Manning's number.

Fig 0.0.1

The default values can be edited by the user. The modified default values are 
associated with the current project only; i.e. will affect any simulation carried 
out with the MOUSE project file. Also, the default Manning number for any 
individual link can be overwritten by a user-specified, link-specific value.

Longitudinal Profile

A link is longitudinally defined by bottom elevations of the upstream and 
downstream end. By default, link bottom elevations are assumed to be equal 
to the adjacent node's bottom elevations. The default setting can be over-
ruled by specification of the actual link end elevations, but not below the node 
bottom.

Normally, length of a link is calculated on the basis of the nodes co-ordinates. 
The length computation will take into account if the link between the nodes is 
not straight. Optionally, for links connected to circular manholes, it is possible 
to calculate the length from the manhole perimeter.

In cases where actual link length significantly deviates from the calculated 
value, a user-specified length can be supplied instead.

Longitudinal slope of a link is assumed constant. It is calculated using link 
end elevations and the link length.

Table 2.1 Manning’s Numbers - MOUSE Default Values

MOUSE 
Code

Material
Mouse

M
Default Value

N=1/M

1 Smooth Concrete 85 0.0118

2 Normal Concrete 75 0.0133

3 Rough Concrete 68 0.0147

4 Plastic 80 0.0125

5 Iron 70 0.0143

6 Ceramics 70 0.0143

7 Stone 80 0.0125

8 Other 50 0.0200
15



Modelling the Physical System
Specification of a node as "upstream" or "downstream" has, in principle, only 
a declarative meaning and does not affect the computations. An exception is 
if the functions located in the link (see sections 2.4.2 Orifice Function (p. 30), 
2.4.3 Pump Function (p. 44) and 2.4.4 Flow Regulation (p. 45)) are present in 
the model. In the flow regulation (restriction), only positive flow is affected by 
the regulation. Similarly, the non-return valve function allows only positive 
flow. 

By convention, positive flow values represent the flow in the direction from 
"upstream" to  "downstream" node.

Link Cross-Sections

As a built-in feature, MOUSE supports four different pipe cross-section types. 
Any other "non-standard" pipe, tunnel or open channel can be described 
through the Cross-section database facility (by specifying the geometric 
shape of the cross section or a table of geometrical parameters.

MOUSE includes the following standard pipes:

1. Circular pipe,

2. Rectangular pipe (B H),

3. O-shaped pipe (H/B = 1.125/1),

4. Egg-shaped pipe (H/B = 1.5/1),

Figure 2.1 MOUSE egg-shaped cross-sections. Note the difference in selection of 
the characteristic dimension D. 

Any of the four "standard" pipe cross sections is fully defined by specifying 
the pipe type, and characteristic dimension(s). While for the circular and rec-
tangular shape, this is straightforward, attention should be paid for the defini-
tion of the egg-shaped cross sections. For the O-shaped pipe the dimension 
to be specified is the width (D, [m]), and for the Egg-shaped pipe the dimen-
sion to be specified is the cross-section height. 
16 MIKE URBAN - © DHI A/S



Links
The non-standard link cross-sections can be specified and maintained 
through the Cross-section Editor. Cross-sections are distinguished as 
"opened" and "closed", i.e. open channels on the one side, and pipes and 
tunnels on the other.

The data required for description of a non-standard cross-section can be 
entered in a raw form, either in a X-Z or in Height-Width format (please refer 
to the user guide), which gives six options in total.

Figure 2.2 X-Z types of cross-sections
17



Modelling the Physical System
Figure 2.3 H-W types of Cross-sections

The raw geometrical data are then automatically processed, in order to cre-
ate tables with parameters suitable for flow computations. Such a table con-
tains 50 data sets, covering the range from the lowest to the highest point 
specified, in equal increments.

The parameters in the table are:

W = surface width, [m]
L = height (relative depth), [m]
A = cross-section area, [m2]
R = A/P = hydraulic radius, [m]

In case of a closed link, MOUSE automatically provides an appropriate slot 
for pressurised flow computations, see section 3.3 Modelling The Pressurised 
Flow (p. 54). 

Intermediate values are linearly interpolated.

The first set of values is associated with depth equal to zero (y = 0), and the 
last set with the maximum specified value (relative to the bottom).

For open channels, MOUSE will compute the flow as long as the water level 
is below the lower end of the cross-section. If this level is exceeded, the com-
putation will be stopped unless extrapolation of cross-section is specified in 
the DHIAPP.INI file. For closed conduits, MOUSE allows an unlimited raise of 
pressure; i.e. Preissmann slot is extended indefinitely in the height. 

Processed data for a cross section is specified as a table with depth (Y), 
width (B), area (A) and hydraulic radius (R). Conveyance is computed auto-
matically by MOUSE as C = AR2/3.
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Nodes
The processed cross-section data table for an open cross-section should 
cover the whole range of the expected oscillation of the water surface. If the 
water surface exceeds the maximum specified elevation in the table, the 
computation is stopped. 

For closed cross-sections, the processed data table has to cover the entire 
range from the bottom to the top of the cross-section. MOUSE adds the Pre-
issmann slot (see ref. /4/) automatically.

To ensure the computational stability, the cross-section conveyance should 
be maintained monotonously increasing (or at least constant) with increase of 
water level. This is normally not the case with closed conduits, where the 
value of conveyance drops in the region near the top of the section. For such 
cases, when raw data are input, MOUSE adjusts the hydraulic radius so that 
the limiting conveyance for the cross-section corresponds to the actual con-
veyance value for the full profile. When closed cross-section data are input in 
the processed form, attention should be paid in the upper region of the pro-
file, so that decreasing conveyance is avoided.

2.3 Nodes

2.3.1 General Description

Points associated with link ends and junctions are called nodes. Each link is 
actually defined with exactly two nodes. Depending on the position in a net-
work layout, a node is associated with one or more links. In the later case, a 
node is called a junction. An arbitrary number of links can be attached to a 
junction, thus allowing construction of arbitrary network layouts.

2.3.2 Types and Definition of Nodes

Every node in a network is defined by its identification (max. 25 characters) 
and its x and y co-ordinates, [m]. Exception is storage nodes, which do not 
require co-ordinates. Further, according to the type of node, an appropriate 
set of parameters is required.

Circular Manholes

Circular manhole is a vertical cylinder, defined by the following parameters:

Hbott = bottom elevation, [m]
Htop = surface elevation, [m]
Dm = diameter, [m]
K = outlet shape, types 1-9

Definition of the outlet shape is connected with calculation of head losses in 
nodes (see section7.2 Head Losses in Manholes and Structures - Introduc-
tion (p. 88)).
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Figure 2.4 MOUSE manhole

Flow conditions in a manhole are an important element of the overall flow 
description. The following parameters are calculated:

Hm=water level in a manhole, [m]

vm= velocity, calculated per default as:

 (2.1)

i.e. uniform velocity distribution is assumed.

The flow area calculated as above gives a very conservatively low estimate of 
the velocity head and hence a conservative energy loss in the manhole, 
causing higher water levels in the manholes than observed in reality.

An alternative formula for a more realistic calculation of the flow area in man-
holes is also available – however only for “flow-through” manholes with one 
inlet pipe and one outlet pipe. The alternative formulation is based on the 
assumption that the inflow behaves like a submerged jet, which entrains 
water from the ambient fluid and increases the discharge through the man-
hole. The angle of entrainment is approximately 6.8. The cross-section area 
of the jet thus depends on the distance from the inlet.

As a generalisation, it is assumed that the effective flow area in the manhole 
equals the cross-section area of the jet at the outlet. This is valid in the case 
of no change in direction from inlet to outlet. It is calculated as:

(2.2)

where Din is the diameter of the inlet pipe. 

vm
Q

Hm Hbott–  Dm
--------------------------------------------=

Aflow Ajet=

4
--- Din

2
1 2

Dm

Din
-------- 6.8

360
--------- 2 
 tan + 

 
2

 =
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So far, the alternative formula is only applicable in MOUSE for manholes with 
one inlet and one outlet. However, the implementation includes the possibility 
for a change in elevation and a change in flow direction from inlet to outlet. 

Figure 2.5 Manhole with one inlet, one outlet and a change in flow direction.

In the case of a change in flow direction the effect of the jet at the outlet will 
gradually diminish with increasing angle. The effective flow area is therefore 
linearly interpolated between the full cross-section area of the manhole, Am, 
and the area of the jet, Ajet, as the angle increases.

The distance, a, from the point where the jet intercepts the manhole to the 
centreline of the inlet, see Figure 2.5, is conservatively calculated as half the 
diameter of the inlet, Din, thus neglecting the entrainment angle of 6.8

(2.3)

The distance, b, from the point where the side of the outlet enters the man-
hole to the centreline of the inlet is approximated with

(2.4)

where is the angle between the centrelines of the inlet/outlet and Dout is the 
diameter of the outlet pipe.

In the case of a change in elevation the effective flow area is diminished with 
a factor, drop_factor, which is equal to 1 when the inlet flows directly into the 
outlet and 0 when there is no interception between the incoming jet (calcu-
lated conservatively without the entrainment angle) and the outlet. In between 
these two conditions the drop factor is interpolated linearly.  

a
Din

2
--------=

b
Dm

2
-------- 

360
--------- 2 
  Dout

2
-----------–tan=
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The effective flow area is then interpolated as:

(2.5)

For a straight inlet/outlet with no change in elevation the formula gives that 
the effective flow area equals the jet area. 

If the jet area is affected by the bottom level of the manhole the jet area is 
reduced correspondingly.

If the effective flow area is greater than the full cross-section area of the man-
hole, Am, then the full cross-section area will be used. 

The manhole volume contributes to the overall system volume and is 
included in the computations.

If the water level exceeds the ground elevation Htop, then surface flooding 
occurs, consequently followed by appropriate treatment by the model (see 
section 8.1 Surface Flooding (p. 101))

Structures (basins)

This type of nodes is associated with arbitrarily shaped structures of signifi-
cant volume - non-circular manholes, tanks, reservoirs, basins and natural 
ponds.

Structure geometry is defined by a table of data sets (min two) related to 
monotonously increasing elevations, containing the following:

H =elevation, [m]

Ac =cross section area (used in calculation of the flow velocity in the
structure, assuming uniform velocity distribution), [m2]

As =water surface area (used for calculation of volume), [m2]

K =outlet shape, types 1-9

The first set of values corresponds to the structure bottom. The last set corre-
sponds to the surface level. Intermediate values are linearly interpolated. The 
H-column can start at any value, e.g. 0.0 for interpretation of H as depth in 
the basin. The MOUSE Engine will associate the first H-value to the bottom 
level of the node.

Definition of the outlet shape is connected with calculation of head losses in 
nodes (see section 7.2 Head Losses in Manholes and Structures - Introduc-
tion (p. 88)).

Aflow Ajet 1 b
a
---– 

  drop_factor 1 drop_factor 1 b
a
---– 

 – 
  Am+ =
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A structure volume contributes to the overall system volume and is included 
in the computations.

If the water level raises above the highest elevation value in the table describ-
ing the structure geometry, the program extends the basin geometry, follow-
ing the principle as described in section 8.1 Surface Flooding (p. 101).

An example of a definition of a basin is given in Figure 2.6.

Figure 2.6 Definition of a basin – an example

Storage Nodes

Purpose of storage nodes is a controlled simulation of the surface flooding, 
i.e. controlled return of the water into the sewer system.
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Storage nodes are fully defined with the identification string alone. The only 
other parameter associated with a storage node is the content of water (the 
capacity is not limited) currently stored in the storage node. Water enters a 
storage node from any manhole or structure, either through a weir, gate/ori-
fice or a pump. A storage node may be emptied by an emptying function.

Outlets

Outlets are nodes specified at locations where the modelled system interacts 
with receiving waters. External water volume is assumed so large that the 
outlet water level is not affected by the outflow from the sewer system. As 
such, outlets are appropriate for simulation of the sewer flow recipients (river, 
lake, and sea).

An outlet can behave as an inlet, which depends on the flow conditions in the 
link, attached to the outlet and the water level specified at the outlet. This 
means that the flow in both directions can occur. 

Outlets are defined with the following parameters:

Hbott = outlet bottom elevation, [m]
Hout = water surface elevation at outlet, [m]

Water surface elevation Hout can be specified as constant or as time depend-
ent (see section 6 Boundary Conditions (p. 79)).

Depending on the specified outlet water level, the model applies the following 
elevation of the water surface H in the link adjacent to the outlet:

(2.6)

where:

yc = critical depth, [m]
yn = normal depth, [m]

In the later case, the outlet is considered to be a free outlet, meaning that the 
outlet water level does not influence the flow in the adjacent link.

Otherwise, the model applies the specified water level, with the correspond-
ing backwater effect and a possibility for reverse flow.

h

Hout for Hout Hbott min yc yn +

else

Hbott min yc yn +





=
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2.4 Functions

Functions are used for the calculation of the flow between two nodes or in 
specified links according to the functional relation and the hydraulic condi-
tions at relevant points in the system.

There can be more functions defined simultaneously between two nodes of 
the network. One or more functions can be defined in a link between the two 
nodes.

2.4.1 Overflow weirs

The overflow structures are normally found in sewer systems with purpose to 
lessen the hydraulic load in the pipe system during extreme flow conditions 
by allowing a part of the flow to be spilled to a recipient. Also, overflow struc-
tures can be used for internal distribution of the flow within the pipe system.

According to hydraulic conditions, two different types of overflow are possi-
ble:

 free overflow

 submerged overflow

The free overflow is the more frequent of the two types and the present con-
ceptualisation is therefore concentrated on this phenomenon. The computa-
tion of the submerged overflow is based on the same concept as the free 
overflow and therefore inherently yields approximate results. 

The following description covers weirs where it is acceptable to assume a 
constant water depth at the weir crest.

MOUSE also supports a weir where this assumption is not acceptable. This 
type of weir is called a “long” weir, please refer to the section concerning this 
type of element.

Definition of an Overflow Weir – General

Overflow weirs (structures) can be specified in nodes defined either as man-
holes or as structures, but not at an outlet. A weir is topologically fully defined 
with two node identifiers, defining the upstream node ('FROM') and down-
stream node ('TO').

The definition of the upstream and downstream nodes does not restrict direc-
tion of the flow because the weir function allows the flow in both directions, 
depending on the current hydraulic conditions. Practically, this means that if 
the water level in the downstream node is higher than the water level in the 
upstream node, then the water flows 'backwards', i.e. the computed flow 
rates are given a negative sign.
25



Modelling the Physical System
If an overflow structure discharges out of the contemplated pipe system then 
the downstream node identifier is left unspecified (empty).

The relation between the water level in the structure or manhole and the 
released discharge can be defined as a specific Q/H relation, or the built-in 
overflow formula can be used. In the later case, the discharge is calculated 
on the basis of a given structure geometry (crest elevation, structure width, 
orientation relative to the flow, crest type). It is important that the width of the 
overflow is realistic compared to the physical dimensions of the manhole or 
structure. E.g., an overflow width of 10 m in a manhole having a diameter of 2 
m will inevitably cause numerical problems when the overflow is in function.

Q/H Relation

The user-defined Q/H relation consists of at least 2 pairs of tabulated values 
for water level above the weir crest, H [m], and corresponding discharge, Q 
[m3/s]. Intermediate values are linearly interpolated.

The Q/H table has to fulfil certain conditions:

 the first H-value has to be the overflow (weir crest) elevation;

 the H-values have to be given in a monotonously increasing order;

 the largest H-value given in the table shall not be less than the largest H-
value to be computed. The model does not extrapolate beyond the tabu-
lated values.

Built in Overflow Formula

MOUSE provides two different methods for the computation of the free over-
flow:

 Flow computation based on the energy loss coefficient and weir orienta-
tion. This is applied if the field for the discharge coefficient on the 
weir dialog is left empty.

 Flow computation based on a standard rectangular overflow weir formula 
with user-specified discharge coefficient. This is applied if a discharge 
coefficient is specified.

Energy Loss Coefficient
In case of a free overflow, the water depth above the weir crest will be equal 
to the critical water depth. Certain energy loss occurs, with a magnitude 
depending on the structural configuration. The overflow situation is schema-
tised in Figure 2.7.
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Figure 2.7 Free Overflow

In the critical flow section the Froude's number Fr  equals to 1, and the critical 
flow condition can be written as:

(2.7)

where:

v = mean flow velocity, [ms-1]

yc = critical depth, [m]

g = 9.81 [ms-2]

Conservation of energy between the upstream and critical cross section 
yields with:

(2.8)

with:

(2.9)

where:

E= energy level at the section just upstream the structure, [m]
E=entrance energy loss, [m]
Kc= energy loss coefficient

Fr
v

gyc

------------- 1==

E yc
v2

2g
------ E+ +=

E Kc
v2

2g
------=
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Based on the energy conservation and critical flow principles, discharge over 
a plane overflow having a structure width B [m], is calculated for a weir 
orthogonal to the flow axis (90o), as:

(2.10)

and for a 'side' overflow weir (0o):

(2.11)

where:

H = water depth above the weir crest level, [m]

Kc = energy loss coefficient associated with the outlet head-loss,
specified for the weir node (see sections 
7.2 Head Losses in Manholes and Structures - Introduction 

(p. 88)
to 7.5 Selecting an Appropriate Local Head-loss Computation 

(p. 93)). 

This actually corresponds to the standard overflow formula for a rectangular 
notch:

(2.12)

where Cd is a discharge coefficient, expressed for an orthogonal weir as:

(2.13)

and for a 'side' overflow weir:

(2.14)

Where Kc is the head loss coefficient applied for the upstream manhole. E.g., 
this method if used with Kc = 0.5 (sharp-edged outlet), is equivalent to a 
standard weir formula with Cd = 0.7589 and Cd = 0.4582 for orthogonal and 
for side weir, respectively. Please note that the crest type - sharp or broad 
crested has no influence on the calculations.

Qweir B g
2

2 Kc+
--------------- H 
 

3
2
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 =
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 

3
2
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 =

Qweir
2
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2 Kc+ 3 2
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The side overflow yields a smaller discharge for the same overflow level, 
because in this case the kinetic energy of the approaching flow is excluded 
from the computations.

User-Specified Discharge Coefficient
If the method with default energy loss coefficient is not applicable for a par-
ticular weir, the standard overflow formula Equation (2.12) is applied with a 
user-specified "level" discharge coefficient CH = 2/3Cd, which gives:

(2.15)

This implies that the head-loss coefficient specified for the weir node and the 
weir orientation are ignored in the weir computation. 

Submerged Overflow

The model calculates the flow rate for the submerged overflow using the 
same critical depth formulation in the case of a submerged overflow. In this 
situation, the head that is driving the flow is expressed as the difference 
between the upstream and downstream water surface elevations.

Figure 2.8 Principle of submerged overflow.

The submerged weir flow is then (with user-specified "level" discharge coeffi-
cient) approximated as:

(2.16)

or with energy loss coefficient, for orthogonal overflow weir:

(2.17)
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and for a 'side' overflow weir (0o):

(2.18)

2.4.2 Orifice Function

Orifice is an opening of any shape, allowing water passage between other-
wise separated parts of the network. Usually, an orifice represents a flow 
restriction.

Like an overflow weir, orifice is defined in MOUSE as a function between two 
nodes.

MOUSE supports the computation of flows through orifices of any shape, in 
all possible flow regimes. Further, a rectangular orifice with moveable top is 
used for the simulation of controllable rectangular sluice gates.

Orifice functions can be specified in nodes defined either as manholes or as 
structures, but not at an outlet. An orifice is topologically fully defined with two 
node identifiers, defining the orifice upstream node ('FROM') and the orifice 
downstream node ('TO').

Basic Geometrical Assumptions

Bottom is considered horizontal, both in the sections upstream and down-
stream from the orifice. 

The upstream overflow crest height w1 is calculated as the distance between 
the orifice invert level and the bottom level of the upstream node. Similarly, 
the overflow crest height from downstream, w2 is given as the distance 
between the orifice sill level and the bottom level of the downstream node. 

Other parameters are described in the following text or illustrated on draw-
ings.

Approximation of Arbitrary Geometrical Shapes

An orifice opening is defined as a closed polygon through the MOUSE cross-
section editor. Any form of convex and concave shapes is allowed, as long as 
there are no intersected arcs (see Figure 2.9).

Qweir B g
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Figure 2.9 Examples of an "illegal" (left) and correct definition of an orifice polygon.

For the computational purpose, a polygon is cut into a number of narrow rec-
tangles ('slices') which approximate the shape of an orifice (see Figure 2.10). 

Figure 2.10 Illustration of a general shape orifice.

For the given upstream and downstream water levels, flow through the orifice 
is computed as an integral of the flows through individual slices, with the total 
flow corrected for lateral contraction.

Orifice Flow Regimes

Basically, there are four different types of flow regimes through an orifice (i.e. 
for individual slice) for the approaching flow in sub-critical regime. These are 
classified as: 

 Free overflow, 

 Submerged overflow, 
31



Modelling the Physical System
 Free underflow, and 

 Submerged underflow. 

A definition sketch of the four types of flow regimes is shown on Figure 2.11.

Further, the theory distinguishes different forms of overflow jets, depending 
on the geometrical and hydraulic relations. In the current implementation, 
equations for the ventilated jet for the free overflow and the momentum equa-
tion for the filled jet (with a simplified correction for the downstream pressure) 
for the submerged case have been adopted. These types are the most com-
mon. 

The solution for the approaching flow in super-critical regime has not been 
implemented. 

Figure 2.11 Flow regimes through an orifice. 

Free Overflow

This flow regime is identified when the downstream water level has no influ-
ence on the discharge over the weir. The water surface is free, and the solu-
tion is therefore a pure free-overflow weir solution.

The weir is considered to be ventilated and sharp-crested. The discharge 
over a unit width of a weir for a given water level is given by: 

(2.19)q CH H 2gH=
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q = the discharge pr. m of the weir (m2/s).
H = upstream water level above the crest (m).
CH = the "level" discharge coefficient for the sharp-crested weir,

 obtained as CH  = 2/3Cd (see section 2.4.1 Overflow weirs 
(p. 25)).

The coefficient CH is given in Table 2.2 for different values of the weir height 
divided by the water level above the crest (w1/H).

In the interval from w1/H = 0.05 to 0.1 the coefficient CH is interpolated line-
arly between 0.761 and 0.757. In the interval from w1/H = 0.1 to 0.2 the coef-
ficient is interpolated linearly between 0.757 and 0.673.

Ignoring the energy loss from the upstream section to the weir section, the 
energy equation reads:

(2.20)

where:

y = the distance from the sill level to the surface at the weir crest
(m),

  the Coriolis factor;
v = the vertical contraction coefficient;
E = the energy level (m).

The depth at the weir crest is considered to be critical, i.e. y = yC = 2/3E. This 
assumption is very rough, because the streamlines are curved. As a conse-
quence, the depth over the crest will be less than the critical depth.  In the 
context of the present implementation, curvature of the streamlines is 
ignored, since the expression is only used to evaluate the effect the velocity 

Table 2.2 Variation of CH for different values of w1/H

CH Value of w1/H

> 0.2

0.673 0.2

0.757 0.1

0.761 0.05

<0.05

0.407 0,0533
w1 H
----------------+

0.707 1
w1

H
------+ 

 
1,5

E H q2

2g H w1+ 2
------------------------------- y q2

2g vy 2
------------------------+=+=
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term have on the coefficient CH. The effect of curved streamlines is indeed 
incorporated in the coefficients CH and CE.

By inserting y = 2/3E on the right hand side of Equation (2.20), the following 
relation is obtained:

(2.21)

where:

CE the energy discharge coefficient for the sharp-crested weir.

Since the discharge q can be expressed either via the water level above the 
crest upstream of the weir, or the energy level at the upstream section, the 
following relation between the level discharge coefficient and the energy dis-
charge coefficient can be derived:

 (2.22)

As it can be seen from the relation above, the coefficient CH takes several 
effects into account. One effect is the change of the velocity term in the 
energy equation (v2/2g). For large values of w1 is the upstream energy level E 
approximately equal to the depth over the crest H and CE is equal CH. For 
smaller values of w1, the upstream velocity term becomes more important 
and CE and CH will deviate from each other. The other effects are the curved 
streamlines, the change in the Coriolis coefficient (), the vertical contraction 
coefficient (v), the surface tension and the friction. The latter effects influ-
ence both CE and CH. 

By moving from a (q,H) relation to a (q,E) relation, the variation in the dis-
charge coefficient should be expected to be smaller.

The energy level is given as:

(2.23)

where:

1 Coefficient of the relation between energy and water level.

E
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By combining Equations (2.23) with (2.22), 1can be expressed as:

(2.24)

and the coefficient CE can be expressed as:

(2.25)

The table below shows the relation between CH, CE, 1 and q (for H = 1) for 
different values of w1/H, showing indeed that the coefficient CE shows less 
variation than the values for CH.

Starting with values for H and w1 given, the energy level can be derived by 
iteration. The iteration implemented in the program is based on a Newton-
Raphson technique. 

The discharge over the weir can then be determined by inserting the energy 
level into equation (2.21).

Submerged Overflow

The submerged overflow is identified when the downstream water level influ-
ences the discharge over the weir, and water surface is free (i.e. the upper of 
the gate is not in contact with the water surface, as can be seen in 
Figure 2.11). The submerged overflow case will be applied, when the w0/H 
1.0 and H/H 1/3, where wo is the height of the orifice and H is the water 
depth above the sill level.

The submerged overflow case is illustrated in Figure 2.12, also giving the 
meaning of the geometrical parameters used in the sequel.

Table 2.3 Relations between CH, CE, , q, E for different values of w1/H

w1/H CH CE  Q for H=1 E 1.71E3/2

 0.407 0.407 1.00 1.81 1.000 1.71

1 0.460 0.426 1.053 2.04 1.053 1.84

0.1 0.757 0.423 1.474 3.35 1.474 3.05

0.05 0.761 0.404 1.525 3.37 1.525 3.22

0 0.707 0.385 1.500 3.13 1.500 3.15

1 1 CH
2 1

1
w1

H
------ 
 +

---------------------

 
 
 
 
 2
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CH
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Figure 2.12 Definition fo submerged overflow

Since the energy loss from section 1 to 2 is much smaller than the energy 
loss from 2 to 3, the energy loss is neglected (i.e. E1 = E2). The energy equa-
tion now reads:

(2.26)

The momentum equation from section 2 to 3 can be written as:

(2.27)

where the shear stress on the bottom between section 2 and 3 is neglected. 
The contracted overflow area can be expressed by applying the vertical con-
traction coefficient given as y = v (y2-w2).

There are two unknowns in these two equations. By rearranging the equa-
tions and substituting the q (actually q2/2g) from one of the equations into 
another, the remaining unknown in the obtained equation is y2.
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The equation can be transformed into a 4th degree polynomial, of a general 
form:

(2.28)

The polynomial is solved iteratively, applying the Newton-Raphson principle. 
The initial value of y2 applied in the iterations is y2 = y1-w1+w2- (1/2)H. 

The iterative process terminates when y2 converges within the specified 
threshold, or if the number of iterations exceeds the specified number. If the 
convergence is achieved, the discharge can then be derived from equation 
(2.26).

The value of y2 is rejected, if the maximum number of iterations is exceeded 
or in the following cases:

 If y2 gives a negative argument to the square-root for the discharge, 

 If y2 > y1-w1+w2 or y2 < w2. 

The equations applied above have some shortcomings. At first, the effect of 
the curved streamlines is not taken into account properly, in contrast to the 
free overflow case (which is derived from empirical expressions). The curved 
streamlines will in this case give a different pressure distribution over the 
crest deviating from the hydrostatic pressure and the pressure will be smaller. 
The curved streamlines will become less and less important, the smaller the 
values of H/H are. Secondly, the contraction coefficient has a significant 
effect on the discharge, e.g. this approach is very sensitive to the choice of 
the vertical contraction coefficient. 

The submerged overflow solution must be compatible with the free overflow 
at the transition between the two flow regimes. In other words, introducing the 
submerged solution at H/H = 1/3 requires that the submerged discharge for 
this water level difference is equal to the free flow discharge. This is not 
achievable in all cases and sometimes another pragmatic solution must be 
adopted for the transitional regime. 

Following the approximate rule as for the flow over a broad-crested weir, a 
flow reduction is introduced as soon as the difference between upstream and 
downstream water level is less than one third of the upstream water level. 
The remaining submerged discharge is proportional to the square root of the 
difference in upstream and downstream water levels above the weir crest. 
The free flow is taken from the “sharp-crested” case, as described above.

The flow in the submerged flow can be approximated as:

(2.29)
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where:

H the water level difference between the upstream and down-
stream section,

qf the free flow at the level where H= 1/3.

The implemented algorithm includes a combination of the parabolic and the 
momentum solution. The parabolic solution is applied, if the combined energy 
and momentum equation does not give applicable solutions for the given 
H/H (i.e. if y2 is rejected). The discharge is solved for decreasing values of 
H/H and for each value of H/H < 1/3 is the combined energy and momen-
tum equation evaluated. As soon as the combined energy and momentum 
equation begin to give applicable solutions, a swap from the approximate par-
abolic solution to the combined energy and momentum solution is performed. 
The contraction coefficient will in this case be based on the criteria, that the 
discharge applying the combined momentum and energy solution is the same 
as from the parabolic solution, at the point of intersection. 

Free Underflow

The underflow is free, if the issuing jet of the supercritical flow is open to the 
atmosphere and is not overlaid or submerged by tail water. Following an 
approach similar to the one developed in the section related to free overflow, 
the discharge through the opening (e.g. gate) can be expressed as:

(2.30)

where:

q the specific discharge, 
E1 the energy level upstream of the opening, 
wo the gate opening, 
CE the discharge coefficient with respect to the energy level. 

The energy level at the upstream side can be expressed as:

(2.31)

where: 

H the upstream water level measured from the crest of the weir, 
q the discharge, 
w1 is the weir height at the upstream side.

q CEwo 2gE1=

E H q2

2g H w1+ 2
------------------------------- 2H=+=
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Usually, discharge is given as a function of the upstream water depth above 
the crest, rather than by energy level:

(2.32)

with:

(2.33)

where Cc is a constant representing the contraction coefficient of the jet.

Substitution of equation (2.33) into equation (2.32) leads to the expression:

(2.34)

Further, the relationship between CE and CH may be derived as:

(2.35)

From above equations, the underflow discharge can be computed. However, 
it should be noted that the compatibility of discharge values at the transition 
from the free overflow equation to the free underflow equation must be 
secured. Theoretically, this transition should take place at the moment where 
the upstream water level touches the top of the gate. This point is difficult to 
define as the water level is drawn down towards the contracted section. 
Another complication is the fact that the underflow equation is accurate only 
for upstream depths considerably exceeding the depth of the gate opening.

For this reason, the transition is simply assumed to take place at an upstream 
water level equal to the top of the gate, while the difference between overflow 
and underflow equations is fully corrected in the underflow computation at 
that level. This requires a correction in the free underflow equation, through 
the use of a correction coefficient. 
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Modelling the Physical System
For increasing upstream water levels, this correction coefficient is gradually 
reduced as follows:

(2.36)

where:

(2.37)

with E and CE taken at the top of the gate level. For increasing upstream lev-
els the discharge coefficient approaches the constant value Cc, usually taken 
as 0.608.

The free flow equations require a further correction based on the pressure 
distribution at the outflow side.

There are two extreme cases, the jet can either emanate surrounded by free 
atmosphere (like an orifice), or it can have full contact with the bottom on the 
downstream side (the vertical sluice gate). 

In the first case the pressure over the height of the jet is approximately 
atmospheric. In the other case the pressure follows a hydrostatic distribution. 
The real situation usually is somewhere in between these two extreme cases, 
and the flow through the gate is corrected for the influence from the pressure 
on the downstream side.

The underflow equation has been derived on the basis of experiments where 
the downstream bottom level is the same as the sill level of gates (w2 = 0). 
This implies a hydrostatic pressure distribution in the contracted flow section. 
With positive values for w2 (drop structure), however, these pressures drop to 
lower values, with nearly atmospheric pressure over the height of the jet. In 
this case the discharge will be higher due to the lower counter pressure. 
Comparison of the orifice flow equation and the underflow equation reveals 
that this difference may be up to 9 %. The same reasoning applies, to some 
extent, for the case of overflow, where the discharge equation for the case of 
a free overfall (w1 = 0) is also based on hydrostatic pressure distribution 
assumption. 

To cover most cases in a reasonable way, therefore, the free flow discharges 
are increased by 5 % for the case where the downstream water level is found 
below the crest level of the gate. For the range of downstream water levels 
between the crest level and the upstream level, the correction applied is 
reduced quadratically as the downstream water level is increasing. The quad-
ratic reduction follows from the quadratic relation between the integrated 
hydrostatic pressure force and the water depth. Although the matrix of free 
flow discharges is set up for the complete range of downstream water levels 

Cnew Cc  Cc CE– –=

 Cc
qoverflow

w0 2gE  
-------------------------------–
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up to the level which equals the upstream level, it should be realised, that 
some of these corrected discharges are overwritten by new values for the 
submerged flow case.

Submerged Underflow

The submerged underflow is identified when the upstream water level is 
above the gate level and the downstream water level influences the dis-
charge through the gate. The threshold for swapping from free underflow to 
submerged underflow is, for the simplification purpose, defined at H/H = 1/3. 
This ensures that the same criterion is applied both in the overflow and 
underflow cases and a consistency of the solution is maintained when w0/H 
approaches unity.

A definition sketch of the submerged underflow is shown in Figure 2.13.

Figure 2.13 Definition of submerged underflow.

A combined energy and momentum formulation is applied (the same principle 
as for the submerged overflow). If the energy loss from section 1 to 2 is 
ignored, the energy equation reads:

(2.38)y1 w1
q2

y1
22g

-------------- y2 w2
q2

y22g
------------+–=+–
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The momentum equation from section 2 to 3 can be written as:

(2.39)

where the shear stress on the bottom from section 2 and 3 is neglected. The 
contracted overflow area can then be expressed by applying the vertical con-
traction coefficient given as y = v w0. 

By rearranging the two equations and eliminating one of the two unknowns (q 
and y2), the combined equation reads:

(2.40)

Introducing the constants C1=(1/(vw0)-1/y3) and C2=(1/y1
2-1/(vw0) 2), the 

equation can be reduced to a second degree polynomial in the form:

(2.41)

Introducing:

A = (1/4)C2,     B = C1,      C = C1(w1-w2-y1) - (1/4)C2y3
2    (2.42)

it can be shown that the only realistic solution for the second-degree polyno-
mial, is the negative one. So, y2 can be expressed as:

(2.43)

and the discharge can then be derived from equation (2.38).

The solution is sensible to the selection of the vertical contraction coefficient. 
The contraction coefficient must be determined, so that smooth transition 
between free and submerged underflow is maintained. 

For a certain range of contraction coefficient values, only imaginary solutions 
to the Equation (2.43) exist. In such cases, i.e. as long as the combined 
energy and momentum equation fail to deliver reasonable results, the para-
bolic solution is applied, similarly as for the transition between free and sub-
merged overflow. 
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Practical Computational Aspects

Computation of the flows through an orifice is based on a pre-processed 4-D 
table, containing the flows through a vertical slice of unit width, computed as 
a function of four dimensionless parameters: w0/H, w1/H, w2/H and H/H, and 
using the equations described in previous paragraphs.  The 'unit' flows are 
computed at discrete points determined by the following set of the dimension-
less parameter values:

w0/H = {0.00, 0.05, 0.10, 0.30, 0.50, 0.80, 1.00}
w1/H = {0.00, 0.05, 0.10, 0.30, 1.00, 5.00, 100.00}
w2/H = {0.00, 0.05, 0.10, 0.30, 1.00, 5.00, 100.00}
H/H ={0.00, 0.01, 0.04, 0.09, 0.16, 0.25, 0.36, 0.49, 0.64, 0.70, 0.80,

0.85, 0.90, 0.95, 1.00}

This table is stored in a binary file MOUSE650.ORI and is supplied as a part 
of MOUSE installation.

At the simulation start, MOUSE generates a structure-specific 3-D table for 
each orifice, where actual flows to be applied in the computation are stored. 
This table, of the size 28 x 28 x 10 contains discharges for all the combina-
tions of 28 upstream and downstream water levels, covering the full range of 
possible water levels. When the algorithm is used for a gate, the third dimen-
sion is used for 10 different gate openings.

A non-equidistant scaling (approximating logarithmic scaling) is applied for 
the water levels, while the scaling of the gate position is linear.

During the pre-processing, the following operations are executed:

 Grids for the full range of upstream and downstream water levels are 
generated. The grid spacing depends on the local geometrical parame-
ters.

 Discharge from the dimensionless 4D-table, for the given upstream and 
downstream water level and, if relevant gate position, are read and inter-
polated.

 The 'unit' discharges are scaled, by multiplying the discharge by the 
upstream depth above the crest (i.e. slice bottom) to the power of 1.5  
(H1.5).

 The discharge is corrected (reduced) for the effect of lateral contraction.

 The discharge for entire orifice is summed up.

The actual flow through an orifice in a given hydraulic situation is obtained 
during the simulation, by interpolating the flow derivatives with respect to h1, 
h2 and w0 in the 3-D table, and inserting these directly into the MOUSE pipe 
flow algorithm. By these means, accuracy and stability of the computation is 
preserved, even with very rapid water level changes and fast movement of 
the gate.
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2.4.3 Pump Function

Pump functions can be specified in nodes defined either as manholes or as 
structures, but not at an outlet. A pump is topologically fully defined with two 
node identifiers, defining the pump-sump basin node ('FROM') and the down-
stream (recipient) node ('TO').

If the pump discharges out system then the downstream node identifier ('TO’) 
is left unspecified (empty).

The pump operation is specified by defining the range of operation: 'start 
level' Hstart, [m], and 'stop level' Hstop, [m], and one of the two available rela-
tions in a form of tabulated pairs of values: (1) H [m] and Qpump [m3/s], or (2) 
H [m] and Qpump [m3/s]. The Qpump/H table consists of min two data sets, 
there is no upper limit. Intermediate values are linearly interpolated. Variables 
H, Hstart and Hstop denote water level in a pump sump basin (pump wet well 
node).

Relation 1 correlates water level in the pump-sump basin and the pump dis-
charge:

(2.44)

Relation 2 defines the pump performance as a function of the water level dif-
ference between the two nodes:

(2.45)

A number of pumps with different operation strategies can be simultaneously 
defined between the two nodes.

As the pump performance can be quite significant even during the start-up, it 
has been necessary to dampen the pump dynamics in order to sustain the 
numerical stability. The dampening is obtained by centring the pump rate 
backwards in time so that the pump performance does not instantaneously 
reach the full capacity but instead the pump discharge is gradually increased 
over some time steps.

Qpump
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If pumps are present in the model set-up it might be necessary to introduce 
relatively small time steps (5 - 10 sec.). 

2.4.4 Flow Regulation

In computational terms the flow regulation differ fundamentally from the weir, 
orifice and pump function by the fact that the control is simulated within the 
pipe connecting two nodes and NOT by replacing the pipe with a functional 
relation. This means that the conduit connecting the two 
specified nodes is treated by the algorithm as a normal link. The flow is con-
trolled by setting the general equation coefficients at the control location (first 
upstream Q-point in the pipe).

The control function is specified as a function of water level in a control node 
A. The control is applied only within the specified range of water levels, and if 
the water level is outside the specified range, an unregulated flow applies. 
Therefore, it is important that the specified range covers all expected water 
levels at point A. Otherwise, a sharp transition between the Q defined by the 
control function, and 'natural'  (unregulated) discharge would occur at the 
range bounds causing numerical instabilities.

The following expression determines the flow:

(2.46)

where:

Qreg = applied (regulated) discharge, [m3s-1]
Q(HA) = discharge defined by the regulation function, [m3s-1]
Qnat = "natural" (unregulated) discharge, obtained as an explicit

estimate, based on the known water levels in the previ-
ous time step on each side of the regulation point, [m3/s]

HA = water level at the control point A, [m]
Hmin,Hmax = water levels at the control point A defining the range in

which the regulation is to be applied, [m].

2.4.5 Non-return Valve

The function for simulation of non-return valves is included into the model 
structure identically as the flow regulation function.

Qreg

min Q HA  Qnat     for Hmin HA Hmax 

else

Qnat





=
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The flow is applied according to the following:

(2.47)

where:

Q = calculated discharge, [m3s-1]
Qreg = applied discharge, [m3s-1]
Hup, Hdown = water levels at the computational points upstream and

downstream, respectively, [m].

2.4.6 Combined Regulation (non-return valve + regulation)

A combination of the two previous functions results with:

(2.48)

where:

Qreg = applied discharge, [m3s-1]
Q(HA) = discharge defined by the regulation function, [m3s1]
Qnat = "natural" discharge, obtained as an explicate estimate,

based on the known water levels in the previous time
step on each side of the regulationpoint,[m3s1]

HA = water level at the control point A, [m]
Hmin,Hmax = water levels at the control point A defining the range in

which the regulation is to be applied, [m]
Hup,Hdown = water levels at the computational points upstream and

downstream, respectively.

2.4.7 Long Weirs

A long weir is an element, which is able to simulate variations in the water 
depth above the weir crestalong the weir itself.

The long weir must be defined as a link between two channels of the “natural 
channel” type. The weir is topographically defined by the two links defining 
the upstream link (“Source channel”) and the downstream link (“Destination 
channel”). The “Location” field is the upstream node of the source channel 
and the “To” field is the upstream node of the destination channel.

Qreg

Q    for    Hup Hdown

else
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Discharge over the weir is calculated at each h-point in the upstream/down-
stream channel. Thus an internal weir, linking two branches require that the 
number of computational points in the two branches is the same.

The weirs must always link two open channels.

Description of the Flow - the Long Weir

For free flow conditions the weir discharge per length of weir will be calcu-
lated as:

(2.49)

where 

H = the water level above the weir crest, 
Cd = the weir coefficient
g = the gravity constant

For submerged weir the flow conditions are defined as 

(2.50)

where

H = the different between upstream and downstream water levels
h = the upstream depth over crest level
hd = height of the weir. 

The Saint Venant Equations are solved for conservation of mass and conser-
vation of momentum. The equations are rewritten and solved for q and h 
points.

Conservation of mass (h-point):

(2.51)

Conservation of momentum (q-points):

(2.52)
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where

Q = the flow
A = the flow cross section
y = the depth of water
If = the friction slope
I0 = the bottom slope of the canal

Taking into account the continuous discharge over the weir, Equation (2.52) is 
modified to  

(2.53)

In branches with long weirs the pair of equations (2.52) and (2.53) is solved.

The implementation of long weirs will include the possibility of specifying a 
variation of the weirs crest along the weir, for example a sloping weir crest. 
For this type of weirs, MIKE URBAN will divide the weir into a series of 
smaller sections (equal to the number of computational points) and apply an 
average crest level in each of these sections.

2.4.8 Valves

Implementation in MIKE URBAN

It is possible to define a valve between any internal nodes, but not at an out-
let. The valve will be topologically fully defined with two node identifiers, 
defining the upstream node ('FROM') and downstream node ('TO').

The definition of the upstream and downstream nodes does not restrict the 
direction of the flow because the valve function allows the flow in both direc-
tions, depending on the current hydraulic conditions. Practically, this means 
that if the pressure level in the downstream node is higher than the pressure 
level in the upstream node, then the water flows 'backwards', i.e. the com-
puted flow rates are given a negative sign. All valves can be defined either to 
be non return valves, meaning that only flow in the positive direction is 
allowed, or non restricted valves allowing flow in both directions. 

The valve will apply the flow equation(2.54)

(2.54)

where 

Q
x
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------- qs=+
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g = the gravity constant 
k = the flow factor which depends on the opening of the valve. 
A = full open flow area of the valve
H = the energy drop over the valve.

An assumption for this equation is that the valve is located in a pipe which is 
running under pressure. However, should the system run under non-pressur-
ized flow conditions the flow area A in equation (2.54) of the valve is reduced 
by a linear reduction for non pressurized flow conditions:

(2.55)

where

d = the depth of the flow depth
df = the pressurized flow depth

This means that the velocity head upstream and downstream of the valve is 
equal and equation (1) can be rewritten to 

(2.56)

where

h = the drop in pressure over the valve.

MIKE URBAN supports full RTC control features of the new valve, which 
means that it will be possible to define control algorithm for the opening of 
valve.
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Saint Venant Equations – General
3 Description of Unsteady Flow in Links

3.1 Saint Venant Equations – General

Computations of the unsteady flow in the links MOUSE Pipe Flow Model, 
applied with the dynamic wave description, performs by solving the vertically 
integrated equations of conservation of continuity and momentum (the 'Saint 
Venant' equations), based on the following assumptions:

 the water is incompressible and homogeneous, i.e. negligible variation in 
density;

 the bottom-slope is small, thus the cosine of the angle it makes with the 
horizontal may be taken as 1;

 the wavelengths are large compared to the water depth. This ensures 
that the flow everywhere can be regarded as having a direction parallel 
to the bottom, i.e. vertical acceleration can be neglected and a hydro-
static pressure variation along the vertical can be assumed;

 the flow is sub-critical (Super-critical flow is also modelled in MOUSE, 
but using more restrictive conditions).

The general form of the equations takes the form as follows:

Conservation of Mass ('continuity equation')

(3.1)

Conservation of Momentum ('momentum equation')

(3.2)

where:

Q = discharge, [m3s-1]
A = flow area, [m2]
y = flow depth, [m]
g = acceleration of gravity, [ms-2]
x = distance in the flow direction, [m]
t = time, [s]
 = velocity distribution coefficient
I0 = bottom slope
If = friction slope
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x
------- A

t
------- 0=+

Q
t

-------
 Q2

A
------- 

 

x
-------------------- gA

y
x
------ gAIf gAI0=+ + +
51



Description of Unsteady Flow in Links
The derivation of these equations is described in a number of textbooks and 
scientific papers.

The general flow equations are non-linear, hyperbolic partial differential equa-
tions. The equations determine the flow condition (variation in water depth 
and flow rate) in a pipe or channel when they are solved with respect to 
proper initial and boundary conditions. Analytical solutions are only possible 
in special cases with a rather limited number of applications, therefore the 
general equations have to be solved numerically.

3.2 Implementation of the Saint Venant Equations in MOUSE

The Saint Venant equations can be rewritten as follows:

(3.3)

and

(3.4)

with the same nomenclature as for Equations (3.1) and (3.2). The sketch of 
the system being described by the equations is presented in Figure 3.1.

Figure 3.1 Sketch of the pipe section.
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Implementation of the Saint Venant Equations in MOUSE
The equations above are valid for free surface flow only. They can, however, 
be generalised to include flow in full pipes (pressurised flow) as discussed in 
section 3.3 Modelling The Pressurised Flow (p. 54).

The continuity equation expresses that the volume of water, Q, which is 
added in pipe section of length x, is balanced by an increase in cross-sec-
tional area A (storage).

The first two terms on the left side of the momentum equation represent the 
inertia forces (local and convective acceleration), while the third term repre-
sents pressure forces. The two terms on the right hand side of the equation 
represent gravity and friction forces, respectively. 

The velocity distribution coefficient accounts for an uneven velocity distribu-
tion across a section and corresponding difference in the actual momentum, 
compared to those obtained with an average velocity. It is defined as:

(3.5)

Assuming that the bottom slope Io is small (~ 0), then Io can be expressed 
as a function of the water depth and water surface gradient, i.e.:

(3.6)

It is thus possible to use the height, h, above a certain reference level, as the 
dependent variable instead of the water depth, y. The equation of momentum 
can hence be written as:

(3.7)

Pressure and gravity forces can be expressed in one term only as:

(3.8)

The friction slope If is equal to the slope of the energy grade line and is intro-
duced into the equation using the Manning's formulation (for more details see 
section 4 Numerical Solution of the Flow Equations in MOUSE Link Networks 
(p. 63)).
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3.3 Modelling The Pressurised Flow

The full flow capacity of a closed conduit (pipe) can be defined as a discharge 
at which the flow depth is equal to the conduit height. Any further increase of 
discharge fundamentally changes the conditions of flow, i.e. basic assump-
tions for the derivation of the Saint Venant equations are not valid. Namely, 
the flow changes from the free surface flow to the pressurised flow.

However, it is possible to generalise the equations for free surface flow, so 
that the pressurised flow in closed conduits is covered. This is done by intro-
ducing a fictitious slot in the top of the conduit, see Figure 3.2.

The idea of introducing a fictitious slot was first presented by Preissmann and 
Cunge, 1961, and has since been used by Cunge and Wegner, 1964 (see ref. 
/4/).

The derivation can be obtained from the continuity equation which can be 
written as:

(3.9)

assuming the density of water  constant over the cross section.

 Q 
x

----------------dxdt
 A 
t

---------------dxdt=–
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Modelling The Pressurised Flow
Figure 3.2 Pipe with a fictitious slot

By partial differentiation is found:

(3.10)

For a circular pipe, it can be shown that the density of the water can be 
approximated as:

(3.11)

where:

o = the density of water for a free surface flow [kgm-3]
ao = the speed of sound in water [ms-1]
y = the water depth [m]
D = the pipe diameter [m].

Q
x
-------

Q

---- 

x
------ A

t
-------

A

---- 

t
------ 0=+ + +

 0 1 g y D– 

a0
2

---------------------+
 
 
 



55



Description of Unsteady Flow in Links
Furthermore, it can be shown that the cross-sectional area in the case of the 
excess pressure g(y-D) approximately equals to:

(3.12)

where:

Ao=the area without excess pressure and ar is given as:

(3.13)

with:

Er = the Young`s modulus of elasticity, [Nm-2]
e = the pipe wall thickness, [m].

The ar has the dimension [ms-1] and is in the order of 1400 [ms-1] for most 
concrete pipes.

Combining these equations yields:

(3.14)

where:

(3.15)

represents the speed of sound in water considering the compressibility of 
water and the deformation of the pipe wall.

Equation (3.10) can now be written as:

(3.16)

The analogy with the continuity equation can thus be maintained in case that 
the fictitious slot width bslot is specified as:

(3.17)

A A0 1 g y D– 

ar
2

---------------------+
 
 
 



ar
Er e
0 D
--------------=

A
t
-------

A

---- 

t
------ g A

y
t
------ 1

ar
2

----- 1

a0
2

-----+
 
 
 

=+
gA0

a2
---------- y

t
------=

a
a0

1a0
2 ar

2
----------------------=

Q
x
-------

Q

---- 

x
------

gA0

a2
---------- y

t
------++ 0=

bslot g
A0

a2
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a is in the order of 1000 [ms-1] for most pipes.

In order to obtain a smooth transition between the free surface flow computa-
tions and pressurised flow computations, it is required to apply a "soft" transi-
tion between the actual pipe geometry and the fictitious slot. Such a "smooth" 
transition has been designed based on a series of tests with various slot con-
figurations. The slot configuration thus obtained ensures stable computations 
without affecting the accuracy significantly. The applied slot width is larger 
than the theoretical value. The default relation between relative depth and the 
slot width as implemented in MOUSE is given in Table 3.1.

The default slot width can be modified for individual links through the *.ADP 
file.

3.4 Kinematic Wave Approximation

3.4.1 General

The flow conditions in steep, partly full pipelines are mainly established by the 
balance between gravity forces and friction forces. Consequently, the inertia 
and pressure terms in the momentum equation are less dominant. Accelera-
tions are comparably small and the flow is almost uniform, so that the kine-
matic wave approximation is a reasonable approach. 

The momentum equation reduces to:

(3.18)

i.e. the friction slope is equal to the bottom slope (uniform flow conditions). In 
MOUSE, the Manning's formula for uniform flow is used and the momentum 
equation reads:

(3.19)

The kinematic wave is independent of the downstream conditions, meaning 
that disturbances only propagate downstream. The kinematic wave descrip-

Table 3.1 Relation between relative depth and slot width

y/D Bslot/D(D=1m)

0.98
1.00
1.10
1.20
1.50

>1.50

0.36
0.19

0.0166
0.0151
0.0105
0.0100

gAIf gAI0=

Q MAR2 3 I0
1 2

=
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Description of Unsteady Flow in Links
tion can therefore only be applied in cases when the flow is independent of 
the downstream conditions which is the case in supercritical flow (Froude's 
number Fr > 1).

The analysis of the characteristics of the kinematic wave approximation 
reveals that a solution obtained for partly filled pipes is physically unrealistic, 
as the characteristic wave speed Q/A increases with increasing depth in a 
circular pipe filled for less than 60% and decreases with increasing depth 
when the pipe is filled for more than 60%. This points that an uncritical use of 
the kinematic wave approach can lead to incorrect results, caused by an 
unrealistic deformation of the propagating wave.

The kinematic wave is by nature undamped. The flow rate and the water 
depth will therefore remain unchanged for an observer moving downstream 
with the velocity Q/A.

Generally, it is not realistic to neglect pressure and inertia terms in the 
momentum equation in most real flow situations. Therefore, the kinematic 
wave approximation has to be used with care.

3.4.2 Implementation

The computations of the kinematic wave approximation in MOUSE are facili-
tated with the so-called 'degree-of-filling' function.

The 'filling' function can be determined from the Manning's formula assuming 
uniform flow conditions, i.e. If = I0:

(3.20)

where suffix 'full' indicates values corresponding to a filled pipe and y/D indi-
cates the degree of filling.

This theoretically determined "filling" function has an over-capacity at y/D > 
0.9.

The "filling" function applied in MOUSE does not include this over-capacity 
but follows the Manning function up to a value of y/D = 0.8, see Figure 3.3.

According to the kinematic wave theory, Q/Qfull will not increase further after 
the pipe runs full, as the pressure grade line is assumed to remain parallel to 
the pipeline. In reality, however, pressurised flow often gives rise to an 
increased pressure gradient and thus an increased flow rate. The 
kinematic wave theory is therefore not suitable for computations of pressur-
ised flow without special adaptations. 

F
y
D
---- 
  Q

Qfull

----------- MAR2 3

MfullAfullRfull
2 3

----------------------------------------= =
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Kinematic Wave Approximation
Figure 3.3 The "Degree-of-Filling" function applied in MOUSE

In order to make an approach to pressurised flow, the following assumption 
has been made: An increase in pressure gradient gives rise to an increased 
flow rate according to:

(3.21)

lr is the remaining part of the pipe length.

This correction corresponds to an empirical deviation from the kinematic 
wave theory, so that the pressure grade line is no longer parallel to the pipe 
slope. 10% of the excess pressure is now used to increase the pressure gra-
dient, see Figure 3.4.

Q
Qfull

----------- 0.1 y D–
lr I0
------------- 1+=
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Figure 3.4 The assumption that 10% of the excess pressure is used to increase 
the pressure gradient

3.5 Diffusive Wave

It was mentioned above that numerical errors in connection with the numeri-
cal solution of the kinematic wave equations produce a diffusive (dampened) 
wave motion. If the pressure term is included in the equation of momentum 
then a damping term will automatically be included in the equations (the cor-
rect solution is a dampened wave motion). 

The momentum equation for diffusive wave approximation reads:

(3.22)

By retaining the pressure term (h/x) in the computation, it is possible to 
implement the downstream boundary conditions and thus consider backwater 
effects. The diffusive wave approximation is therefore from a theoretical and 
practical point of view a better approach than the kinematic wave approxima-
tion.

The computational basis for the diffusive wave approximation is in principle 
identical to the one applied for the dynamic wave approximation for Froude 
number Fr > 1 (supercritical flow). Further more, for stability reasons a mov-
ing average in time is applied to the slope of the water surface h/x in order 
to dampen the short periodic fluctuations. This means that only relatively 
steady backwater phenomena (compared to the time step) are resolved.

3.6 Dynamic Wave Approximation

3.6.1 General

The general flow equations form the best theoretical foundation for a flow 
model because the full equation of momentum makes it possible to describe 

gAy
x
------ gAOf gAI0=+
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Flow Description in Links - Summary
all forces affecting the flow conditions. However, larger computational load in 
comparison with the kinematic and diffusive wave approximations involves 
correspondingly larger CPU time for the same analysis. Additionally, difficul-
ties are present when simulating the supercritical flow conditions.

3.6.2 Supercritical flow simulations with dynamic wave approximation

The full Saint Venant equations (3.1 and 3.2) are applicable in the dynamic 
wave approximation only for sub-critical flow conditions, i.e. for Froude num-
ber Fr < 1. In supercritical flow conditions, the equations are reduced to the 
diffusive wave approximation. In the sub-critical regime, the contribution of 
the inertia terms (Q/t and is gradually

taken out by a reduction factor, according to Figure 3.5.

Figure 3.5 Gradual reduction of momentum terms during transition to 
supercritical flow

Similarly, the differential equation is gradually centred upstream (as the influ-
ence of the upstream conditions increases) according to the same function.

3.7 Flow Description in Links - Summary

3.7.1 Inventory

The MOUSE Pipe Flow Model provides a choice between 3 different 
levels of flow description approximations:

1. Dynamic wave approach, which uses the full momentum equation, 
including acceleration forces, thus allowing correct simulation of fast 
transients and backwater profiles. The dynamic flow description should 
be used where the change in inertia of the water body over time and 
space is of importance. This is the case when the bed slope is small and 
bed resistance forces are relatively small.

2. Diffusive wave approach, which only models the bed friction, gravity 
force, and the hydrostatic gradient terms in the momentum equation. 

 Q2 A 
x

---------------------------
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This allows the user to take downstream boundary conditions into 
account, and thus simulate backwater effects. The diffusive wave 
description ignores the inertia terms and is therefore suitable for backwa-
ter analyses in cases where the link bed and wall resistance forces dom-
inate, and for slowly propagating waves where the change in inertia is 
negligible.

3. Kinematic wave approach, where the flow is calculated on the assump-
tion of a balance between the friction and gravity forces. This means that 
the kinematic wave approach cannot simulate backwater effects. Thus 
this description is appropriate for steep pipes without backwater effects.

3.7.2 Which Flow Description

Depending on the type of problem, the most appropriate description can be 
selected. All three approaches simulate branched as well as looped net-
works.

The dynamic wave description is recommended to be used in all cases 
except where it can be shown that either the diffusive or kinematic descrip-
tions are adequate.

The diffusive and kinematic wave approximations are simplifications of the 
full dynamic descriptions. They are implemented to offer improved computa-
tional efficiency, but should only be used when the omitted terms have insig-
nificant influence. When there is any doubt it is better to use the full dynamic 
description or trials should be undertaken to establish the difference between 
the alternative methods, and advice sought from experienced persons. It is 
very important to have a solid understanding of the influence of the different 
terms.

None of the three wave descriptions includes detailed hydraulic descriptions 
of hydraulic jumps. However, the chosen formulations ensure a correct 
description upstream and downstream of the jump.
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General
4 Numerical Solution of the Flow Equations in MOUSE 
Link Networks

4.1 General

The implemented algorithm solves the flow equations by an implicit finite dif-
ference method. Setting the numerical scheme into the frame of the Double-
Sweep algorithm ensures preservation of the mass continuity and compatibil-
ity of energy levels in the network nodes.

The solution method is the same for each model level (kinematic, diffusive, 
and dynamic).

4.2 Computational Grid

The transformation of Equations (3.1) and (3.2) to a set of implicit finite differ-
ence equations is performed on a computational grid consisting of alternating 
Q- and h-points ("staggered" grid), i.e. points where the discharge Q and 
water level h, respectively, are computed at each time step (see Figure 4.1). 
The computational grid is generated automatically by the model, or with user 
specified number of grid points. 

The computational grid for a conduit contains an odd number N of Q and h 
points, with h points at both ends. The minimum number of computational 
points N in a conduit is 3, i.e. two h points and one Q point in between. The 
points are all equally spaced, with a distance x equal to:

(4.1)

where l is the conduit length.

On the basis of the input data and the specified time step the model automat-
ically generates a complete computational grid, based on the velocity condi-
tion (see section 4.5 Stability Criteria (p. 70)). The velocity used in the 
calculation is a full-flow velocity, obtained from the Manning formulation 
assuming completely filled conduit.

If the velocity condition can not be satisfied for the specified simulation time 
step, which often happens with short and steep pipes, then the model issues 
a warning, with proposal for a shorter time step, required for the condition to 
be satisfied.

The grid generated by the model can be altered individually for each conduit, 
i.e. can be made more dense or sparse, according to the needs of the current 
application (see documentation on *.ADP file).

x l
N 1–
-------------=
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Numerical Solution of the Flow Equations in MOUSE Link Networks
Figure 4.1 A section of the network with Computational Grid.

4.3 Numerical Scheme

The implemented numerical scheme is a 6-point Abbott-scheme (see ref. /2/). 
The scheme for the method is shown in Figure 4.2.

Figure 4.2 Centred 6-point Abbott scheme

The flow equations are approximated by finite differences.

4.3.1 Continuity Equation

In the continuity equation the storage width, bs, is introduced as:

 (4.2)

giving

(4.3)

A
t
------- bs

h
t
------=

Q
x
------- bs

h
t
------+ 0=
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Numerical Scheme
As only Q has a derivative with respect to x, the equation can be centred at 
an h-point (see Figure 4.3).

Figure 4.3 Centring of the continuity equation in the Abbott scheme (a generalised 
scheme). Note that in MOUSE xj and xj+1 are always equal

The individual derivative terms in Equation (4.3) are expressed by finite differ-
ence approximations at the time level, n+½, as follows:

(4.4)

(4.5)

bs is approximated by:

(4.6)

where:

A0,j = the surface area between grid points j-1 and j
A0,j+1 = the surface area between grid points j and j+1
xj = distance between points j-1 and j+1

Q
x
-------

Qj 1+
n 1+ Qj 1+

n+ 
2

-------------------------------------
Qj 1–

n 1+ Qj 1–
n+ 

2
-------------------------------------–

2xj

---------------------------------------------------------------------------------

h
t
------

hj
n 1+ hj

n
–

t
--------------------------

bs
Ao j Ao j 1++

2xj

--------------------------------=
65
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Substituting for the finite difference approximations in Equation (4.3) and 
rearranging gives a formulation of the following form:

(4.7)

where , and are functions of bs and  and, moreover, depend on Q and h 
at time level n and Q on time level n+½.

4.3.2 Momentum equation

The momentum equation is centred at Q-points as illustrated in Figure 4.4.

The derivatives of Equation (3.7) are expressed as finite difference approxi-
mations in the following way:

(4.8)

(4.9)

(4.10)

Figure 4.4 Centring of the momentum equation in the Abbott scheme

jQj 1–
n 1+ jhj

n 1+ jQj 1+
n 1+ j=+ +

Q
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For the quadratic term in Equation (4.9), a special formulation is used to 
ensure the correct sign for this term when the flow direction is changing dur-
ing a time step:

(4.11)

where

(4.12)

As standard, f is set to 1.0.

With all the derivatives substituted by finite difference approximations and 
appropriately rearranged, the momentum equation can be written in the fol-
lowing form:

(4.13)

where

(4.14)

4.4 The "Double Sweep" Algorithm

4.4.1 "Branch matrix"

As shown earlier, the continuity equation and momentum equation can be for-
mulated in a similar form (compare Equation (4.7) and Equation (4.13).

Using, instead of h and Q, the general variable, Z, (which thus becomes h in 
grid points with odd numbers and Q in grid points with even numbers), the 
general formulation will be:

(4.15)

Writing the appropriate equation for every grid point, a system of equations is 
obtained for each conduit (branch) in the network, constituting the 'branch 
coefficient matrix', as illustrated in Figure 4.5.

Q2 f Qj
n 1+ Q  j

n
= f 1  Qj

n Qj
n ––

f
Qj

n 1 2+ Qj
n 1 2+ Qj

n Qj
n–

Qj
n Qj

n j+ Qj
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------------------------------------------------------------------=

jhj 1–
n 1+ jQj
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j f A =

j f Qj
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Numerical Solution of the Flow Equations in MOUSE Link Networks
Applying a local elimination, the branch coefficient matrix can, in principle, be 
transformed as shown in Figure 4.6 below. It is thus possible to express any 
water level or discharge variable within the branch as a function of the water 
levels in the upstream and downstream nodes (e.g. manholes) H1 and H2, 
i.e.:

(4.16)

and similarly:

(4.17)

Figure 4.5 “Branch” matrix, with coefficients derived from the node energy level, 
momentum and continuity equations

Figure 4.6 “Branch” matrix after local elimination

The continuity equation around a node can in principle be expressed as:

(4.18)

h h H1 H2 =

Q Q H1 H2 =

ahnode
n 1+ bhbranch1

n 1+ cQbranch1

n 1+ dhbranch2

n 1+ eQbranch2

n 1+
.... z=+ + + + +
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The "Double Sweep" Algorithm
where, a..z are quasi-constants. If Equation (4.15) is substituted herein, a 
global relation can be obtained:

(4.19)

where A, B, .... to Z are quasi constants.

Equation (4.19) shows that the water level in a node can be described as a 
function of the water levels in the neighbouring nodal points. It is therefore 
possible to set up a 'nodal point matrix' at each time step using the coeffi-
cients from Equation (4.19) and the solution to the matrix yields, by backward 
substitution, the water levels in all nodal points at the next time step.

Figure 4.7 shows an example with 8 nodal points and 9 branches.

Figure 4.7 Principle of a "nodal" matrix for a system with 8 nodes and 9 branches

The crosses in the matrix symbolise coefficients, meaning that, for instance, 
the water level in node 4 can be expressed as a function of the water levels in 
nodes 1, 5 and 6. When the nodal point matrix has been solved, the solution 
in the branches is found by backward local elimination.

The bandwidth of the nodal point matrix, as indicated by the stippled lines, 
depends on the order in which the nodal points are defined. The bandwidth of 
the matrix in Figure 4.7 is equal to 5. The computational time required for 
solution of the nodal point matrix depends on the bandwidth size, and sharply 
increases with increasing bandwidth.

AH1 BH2 .... Z=+ +
69



Numerical Solution of the Flow Equations in MOUSE Link Networks
In order to minimise the computational time, an automatic minimisation of the 
bandwidth is performed by internal perturbation of the nodal points. The 
bandwidth displayed in Figure 4.7 (for the network with 8 nodal points and the 
9 branches) could be reduced to 4 as shown in the matrix in Figure 4.8.

Figure 4.8 Minimised matrix band width

4.5 Stability Criteria

A criterion for a stable solution of the finite difference scheme is given by the 
Courant condition:

(4.20)

where:

v=mean flow velocity, [ms-1]

t=time step, [s]

x=distance between computational points in the conduit, [m]

y=water depth, [m].

Theoretically, the implemented numerical scheme is unconditionally stable for 
all Courant numbers. In practice, however, this is restricted, because the 
numerical implementation and the accuracy criteria impose some additional 
limitations.

The most conservative condition for a correct and stable solution of the imple-
mented finite difference scheme is the velocity condition:

(4.21)

The automatically generated computational grid fulfils this condition.

Cr
t v gy+ 

x
-------------------------------=

v t x
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Optimising the Simulation Time Step t
4.6 Optimising the Simulation Time Step t 

The computational efficiency of any discrete-time numerical simulation algo-
rithm is highly dependent on the time step applied in the simulations. In turn, 
the feasible time step in a concrete situation depends on, apart from the 
inherent performance properties of the computational scheme, the dynamics 
of the flows in the simulated network. It is therefore desirable to optimise the 
algorithm so that in conditions of variable flow dynamics as usually occur dur-
ing the simulated interval, the total computational effort is minimised, while 
preserving stable and accurate computations.

MOUSE optimises the simulation time step by:

 The automated self-adaptive time step variation. This is controlled by the 
actual hydraulic and operational conditions within the entire model area 
throughout the numerical simulation

This concept can be applied in connection with the Dynamic and Diffusive 
flow descriptions while it cannot be used with the Kinematic flow description. 

In this context, it is important to note that a constant time step is simply a 
restricted case of these concepts.

4.6.1 Automated, Self-adaptive Time Step Variation

The automated, self-adaptation of the simulation time step is performed dur-
ing the running simulation. Such on-the-fly calculation of the time step is per-
formed through a three-step procedure:

 Before the actual time step is taken, a preliminary value of the time step 
is calculated, on the basis of the following:

The instantaneously time step is increased by a user-specified fraction 
(the time step acceleration). Acceptance of this time step is validated 
through checking the resolution of boundary conditions and pump 
operations (see below). Finally, the suggested time step is validated 
with respect to user-specified minimum and maximum values. The 
minimum and maximum values and acceleration factors are specified 
as a part of the simulation configuration. If the maximum and minimum 
values of dt are equal, the program will use a constant time step. 

 The preliminary hydrodynamic solution is calculated with the preliminary 
time step value. 
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 Based on an assessment of the preliminary solution, a judgement is 
made whether the used time step is acceptable or not. The user has the 
opportunity to specify numerous different limitation factors, such as a 
maximum allowed variation in the water level in grid points, a maximum 
allowed variation in the courant number, etc. A list of all possible limiting 
factors is given below. If any of these criteria are exceeded, i.e. if the 
generated variation is too large, then a revised solution is calculated. The 
revised solution is obtained as a linear interpolation between the last two 
simulation results (the previous time step solution and the solution with 
preliminary time step), so that all specified criteria are fulfilled.

The different criteria which control the variation in the time step are outlined 
below. The user has the option to modify the individual criteria through varia-
tion in the parameters. All of these parameters must be defined in the 
DHIAPP.INI file.

4.6.2 Criteria Controlling the Self-adaptive Time Step Variation

Resolution of the Boundary Conditions 

The time step is limited by the excessive errors generated due to the differ-
ence in the boundary time series resolution. In case of relatively fine resolu-
tion of boundary time series, application of long time steps may e.g. cause 
volume errors. The maximum allowed error in the boundary conditions is 
given by :

 (4.22)

where is the largest error between the given and simulated boundary condi-
tions (see Figure 4.9), Bvar is the value of the given boundary conditions and 
QacceptLimitRel is a user specified value given in the DHIAPP.INI file.

Figure 4.9 Resolution of the boundary conditions

The boundary resolution criteria is tested on all time series defined as bound-
ary or results from a runoff simulation (the *.CRF file). However, the test is 

 QacceptLimitRel Bvar
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Optimising the Simulation Time Step t
only applied to boundary conditions which are larger than QlowLimitM3s , a 
minimum flow threshhold value.

The default value of QacceptLimitRel is 0.1 and QlowLimitM3s 0.01.

Variation in the Operation of the Pump Flow
The variation in the pump flow through one time step is limited by:

(4.23)

where Q is the variation in the pumped flow, Q is the current value of the 
pumped flow and MaxPumpFlowVar is the user specified maximum relative 
variation. 

The default value of MaxPumpFlowVar is 0.1 which corresponds to a 10% 
maximum variation in the pumped flow during one time step. 

It should be noted that this test also implies that the simulation is always 
decelerated down to the minimum time step whenever a pump is switched 
ON or OFF.

Variations in the water level in grid points  
The variation of the water level in all H-grid points is limited by the following 
functions:

(4.24)

(4.25)

(4.26)

where H is the relative depth (the water depth divided by the height, e.g. by 
diameter for circular pipes), H0 is the relative depth before the attempted time 
step and H1 is the relative depth at the end of the time step. H is the differ-
ence in the relative depth through the time step. The WaterLevDiffMaxRel  
value can be user-controlled from DHIAPP.INI file. If limitation is violated at 
any H-point in the model, then the obtained solution is scaled down with 
respect to dt.

The default value of WaterLevDiffMaxRel is 0.3, which corresponds to a max-
imum relative change of 30 %.

Variation of Cross-Section Parameters
The variation of cross-section parameters A, R2/3 and  B, where A is the cross 
section area, R is the hydraulic radius and B the width of water surface can 
be included as additional criterion for limiting the simulation time step. 
Whether the check on the cross-section parameters is to be activated or not 

Q MaxPumpFlowVar Q

H WaterLevDiffMaxRel H
for   H WaterLevDiffMaxRel H1 H0 



H H for H WaterLevDiffMaxRel H1 H0 

H WaterLevDiffMaxRel for  H WaterLevDiffMaxRel
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Numerical Solution of the Flow Equations in MOUSE Link Networks
is specified through the variable Crosscheck  in the DHIAPP.INI file (the value 
0 means that this is de-activated, while the values 1 or 2 mean that the check 
is activated in one of the two available variants). If the  check on the cross-
section parameters is activated, then it is carried out in all H-grid points. 

The variation in the three cross-section parameters is limited by:

(4.27)

where the variable X is one of the three cross-section variables and the 
meaning of Max(X) depends on the value of Crosscheck. If Crosscheck is 
given as 1 then Max(X) is the maximum value of the actual parameter over 
the cross section, while a value of Crosscheck which is equal to 2 means that 
Max(X) is given as the actual value of the respective cross-section parame-
ters. However, the check is carried out only if the relative depth in the cross-
section is larger than the variable CrossLowDepthLimit. The check of these 
limitations is carried out at the end of a time step simulation. If limitations are 
violated then the solution is scaled down with respect to dt.

The default value of MaxVarCrossConstant is 0.03, if Crosscheck  is 1 and 
CrossLowDepthLimit  is 0.04.

Variation in Courant Number
In the dynamic flow conditions, the Courant number (see section 4.5 Stability 
Criteria (p. 70)) is continuously changing from time step to time step. In order 
to avoid stability and accuracy problems, the Courant number is limited by:

(4.28)

V is flow velocity and dx the distance between two computational grid points.

Check of this limitation is carried out after the simulation of a time step. If the 
limitation is violated the solution is scaled down with respect to dt.

Recommended value of MaxCourant (specified in DHIAPP.INI file) is 20 – 60. 

Weir oscillations
If the storage volume in one of the nodes connecting a weir is small, weir 
oscillations might occur for free flow conditions. This phenomenon results in a 
continuous change in flow direction over the weir until the instability is damp-
ened. In order to avoid this situation, a criterion related to the change in water 
levels between up- and downstream nodes around the weir is implemented.  
The criterion relates to dt by:

(4.29)

X MaxVarCrossCons ttan Max X 

C MaxCourant where C V dt
dx

-------------=

dtpossible  Hn Hn 1+  dt Hn 0.02 –=+
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where H is the difference in water level between the two nodes connected to 
the weir and n corresponds to the time step level. The absolute allowed 
change of 0.02 m is hard-coded in the program and cannot be controlled by 
the user.

4.7 Mass Continuity Balance

Theoretically, what concerns the mass continuity balance, the applied compu-
tational scheme is inherently conservative for prismatic conduits with vertical 
walls. In practical applications, the continuity balance may be jeopardised in a 
number of situations, such as:

 Relatively sharp changes of surface width due to rapid changes of water 
depth or a sharp change of cross-section shape with depth. This may be 
e.g. the case at relatively small depths in circular pipes and in arbitrary 
cross sections

 Sharp changes in surface area of basins

 Surcharge of manholes

 Etc.

The scale of the problem is usually related to the length of the simulation time 
step.  

4.7.1 Improved Continuity Balance for Links 

In order to reduce the amount of water generated in conduits due to the 
changes of surface width as function of water depth, i.e. to improve the conti-
nuity balance, the Taylor expansion of the general continuity equation (3.1) 
has been applied. Since the surface width is assumed to be constant during 
two time steps, the continuity equation can be rearranged as:

 (4.30)

where h is the water level (m) and w is the surface width (m).

The term  in the equation above can be expanded in a Taylor series as:

(4.31)

where  represents the time centering of the numerical scheme and n and 
n+1 refer to the simulation time steps. 

This modification is applicable only for conduits with relatively smooth 
changes of the surface width. As the width for arbitrary pipes and pipes from 
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the cross-section database may vary in a very unpredictable way, the Taylor 
expanded equation is only applied to standard pipes.

4.7.2 User Defined Minimum Water Depth

Further means of controlling the volume continuity balance for links with no or 
little water are provided as user-controlled minimum water depth for links run-
ning dry or with very little flow. The  default minimum water depth can be 
modified in the DHIAPP.INI file. In this file two parameters can be changed:

 BRANCH_MIN_H_REL=20. This is the relative minimum water depth ( 
in promille of the characteristic dimension) in a link 

 BRANCH_MIN_H_ABS=20. This is the absolute minimum water depth 
(mm) in a link.

The minimum water depth in a link will be set to BRANCH_MIN_H_REL, cal-
culated as promille of the link size (e.g. pipe diameter or height of the open 
channel), but never larger than BRANCH_MIN_H_ABS mm. In the pre-
sented example, the minimum water depth is set to 20 promille of the link 
size, but with a maximum of 20 mm. This means that for links smaller than 1 
meter the minimum water depth is set to 20 promille of the link size. For links 
larger than 1 meter the minimum water depth is kept at 20 mm, independently 
of the link dimensions.
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5 Initial Conditions

The hydrodynamic computation is started from the flow conditions in the sys-
tems specified for time t = 0. MOUSE provides two different options for estab-
lishment of proper initial conditions.

5.1 Default Initial Conditions

MOUSE automatically specifies the initial conditions, establishing a default 
initial water depth equal to 0.5% of the characteristic dimension of the conduit 
(diameter for circular pipes), but not more than 0.005 m, and flow rates are 
calculated based on the Manning formulation for uniform flow.

In case of dry weather flow applications, the volume of artificially generated 
water may be significant compared to the dry weather flows. This may com-
promise the volume balance the analysis. For such cases, the default initial 
depth can be reduced by setting the parameters  BRANCH_MIN_H_REL 
(controls the initial depth relative to the conduit size) and 
BRANCH_MIN_H_ABS (controls the absolute depth of the initial water depth) 
to appropriate values (in the DHIAPP.INI file).

If there are outlets in the system with initial water level specified higher than 
the outlet bottom, a horizontal water surface is assumed extending inside the 
system, until the point in the pipe system where the water level coincides with 
the bottom level (see Figure 5.1).

Figure 5.1 Initial conditions with backwater outlet.
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5.2 Initial Conditions provided by Hotstart

Realistic initial conditions can be specified by taking the water levels and dis-
charges from previously calculated result file. Flow conditions at any time 
level contained in the interval covered by the result file can be chosen as ini-
tial condition.

The result file used as a HOTSTART file has to be complete, i.e. water levels 
and flows at all computational points have to be saved.
78 MIKE URBAN - © DHI A/S



Initial Conditions provided by Hotstart
6 Boundary Conditions

Unique solution of the flow equations requires appropriate set of boundary 
conditions. Flow equations are solved for each conduit between two nodes, 
and the boundary conditions are required at both end of the conduit, at each 
time step throughout the computation. 

In some situations boundary conditions are specified as unique relations of 
two flow variables (e.g. stage/discharge relation), i.e. as hydraulic boundaries 
in certain points. These are defined as functions, i.e. as a part of the system 
description. 

In other cases, proper boundary conditions are constructed by the model as a 
consequence of current flow situation and of various user-specified distur-
bances in form of e.g. adding or extracting water, controlling the flow, adding 
energy (pumping) or as effect of external water level. These disturbances 
may be constant (stationary) or time-variable.

By default, MOUSE supplies all necessary boundary conditions, founded on 
the topology and geometry of the system. Therefore, the simulations can be 
run even if no boundary conditions of the other type are specified by the user.

With respect to the volume balance in the system, two groups of boundary 
conditions can be distinguished:

1. External boundary conditions, describing the interaction of the 
modelled system with its surroundings

2. Internal boundary conditions, describing relations between certain parts 
of the model.

The external boundary conditions comprise the following:

At manholes and structures:

1. Constant inflow or extraction, Q = const.,

2. Time variable inflow or extraction, Q = Q(t),

3. Computed inflow hydrograph,  Q = Q(t), 

4. Weir discharging out of the system, Q = Q(H),

5. Pump discharging out of the system, Q = Q(H).

Application of negative inflows (extraction) should be done with due care, 
because extraction of more volume than the system can supply would end up 
with error in computations.

At outlets:

1. Constant outlet water level, H = const., 

2. Time variable outlet water level, H = H(t), 
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3. Q/H relation at the outlet, Q = Q(H).

Internal boundary conditions can be defined as follows:

At manholes and structures:

1. Weir discharging to another manhole or structure, Q = Q(H), where H 
stands for energy level above the weir crest in case of a free overflow, 
and for difference of energy levels upstream and downstream of the weir 
in case of a submerged overflow.

If an alternative formulation for the weir is specified with a user-specified Q/H 
relation, such conditions should be provided that the overflow is always free, 
i.e. that holds the unique relation between the water level and the flow.

2. Pump discharging to another manhole or structure, Q = Q(H) or Q = 
Q(H), where H stands for water level in the manhole or structure, and 
H level difference between the two manholes or structures associated 
with the pump.

Some of the listed boundary conditions are illustrated in Figure 6.1.
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Figure 6.1 Supplying Boundary Conditions – Examples (to be continued)
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Figure 6.2 Supplying Boundary Conditions – Examples (continued)
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7 Flow Resistance

7.1 Friction Losses in Free-Surface Flow Links

7.1.1 Numerical Description

Head losses caused by the resistance in free-surface flow links are intro-
duced as a friction slope term into the momentum equation (see section 3.2 
Implementation of the Saint Venant Equations in MOUSE (p. 52)). The friction 
slope If is equal to the slope of the energy grade line and is defined as:

(7.1)

where:

 = tangential stress caused by the wall friction, [Nm-2],

 = density of water, [kgm-3],

R = hydraulic radius, [m], (= A/P, where P is the wetted 
parameter).

The friction slope can be derived as a function of an appropriate combination 
of the flow parameters (Q, A and R) and the water and conduit wall properties 
(, k).

Generally, the friction slope can be expressed as:

(7.2)

where f  is a generalised friction factor. By these means, the friction slope is 
explicitly determined as a function of instantaneous values of local flow 
parameters.

A more stable formulation is achieved through an implicit description of the 
friction term. It is derived from a variational principle at a grid point j as:

 (7.3)

If


gR
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This results in:

(7.4)

The coefficient  determines the time weighting of the scheme. For stability 
reasons the coefficient should be above 0.5. The recommended (also default) 
value is 1.0, i.e. a fully forward time weighting of the scheme. 

MOUSE provides an optional choice between the explicit and implicit flow 
resistance description through the DHIAPP.INI file (see relevant documenta-
tion). The explicit description is selected per default.

7.1.2 The Friction Resistance Described by the Manning Formula 

The "classic", explicit application of the Manning's formula reads as:

(7.5)

with the friction factor:

(7.6)

where M is the Manning number, A the area, and R the hydraulic radius.

Usage of the QQ|, instead of Q2 facilitates computations of the reverse flow.

The Manning's number M (or n = 1/M) is the parameter used as a measure of 
the conduit's wall roughness. Default values are given in section 2.2.2 Speci-
fication of a Link (p. 14).

The implicit  formulation of the Manning's formula is obtained by the differen-
tiation of f with respect to h, which results in:

 (7.7)

and substituting the derivative into the Equation (7.4).
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7.1.3 Depth-variable Manning coefficient

Per default, MOUSE assumes a constant Manning’s number over the link 
section height. However, in real situations conduit wall roughness often 
changes with water depth, because different parts of the link cross section 
are exposed to quite different flow conditions during its lifetime. This intro-
duces difficulties in fitting the computed stage-discharge curve, based on a 
single M value specified for a link, with the actual, measured stage-discharge 
relation. This is usually related to old systems, where significant sediment 
deposits and pipe-wall erosion are present.

The MOUSE Pipe Flow Model accepts a specification of a non-linear 
variation of Manning number with relative elevation (water depth in the con-
duit). Three parameters define the Manning's number variation: bottom value, 
full flow value and a non-linear exponent. Intermediate values are calculated 
by a general expression:

(7.8)

where:

Mact = calculated Manning's number,
Mbott, Mtop = Manning's numbers specified for the conduit bottom and

top, respectively,
exp = Manning's number variation exponent, default,
y/D = the relative water depth in a conduit.

The formula is used for relative depths h/D in the interval 0.0 - 1.0. For rela-
tive depth > 1.0 the Manning number is set to the Manningtop value.

The variation between Manningbot and Manningtop is controlled by the "Varia-
tion Exponent". The variation of the Manning number in relative terms is illus-
trated in Figure 7.1. An example of the variation is shown in Figure 7.2 with 
Manning M values.

Mact Mbott M top Mbott 
y
D
---- 
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exp

–+=
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Figure 7.1 Relative variation of the Manning number with relative depth.

h/D            Manning

1.100     90.000    90.000    90.000    90.000    90.000    90.000
1.000     90.000    90.000    90.000    90.000    90.000    90.000
0.900     89.686    89.374    88.461    87.000    84.300    81.870
0.800     89.338    88.691    86.833    84.000    79.200    75.360
0.700     88.949    87.934    85.100    81.000    74.700    70.290
0.600     88.506    87.086    83.238    78.000    70.800    66.480
0.500     87.991    86.117    81.213    75.000    67.500    63.750
0.400     87.373    84.977    78.974    72.000    64.800    61.920
0.300     86.597    83.580    76.432    69.000    62.700    60.810
0.200     85.540    81.743    73.416    66.000    61.200    60.240
0.100     83.830    78.929    69.487    63.000    60.300    60.030
0.000     60.000    60.000    60.000    60.000    60.000    60.000
Exponent: 0.1  0.2 0.5  1.0        2.0 3.0

Figure 7.2 Variation of the Manning M for Manningbot=60 and Manningtop=90 with 
different values of the variation exponent.

The Manning number variation is specified through the ASCII file *.ADP. The 
specified Manning numbers in the *.ADP file must follow the selected option 
for the Manning number convention. Syntax of the format of the '*.ADP' files 
must be as shown in the 'DHIAPP.INI and *.ADP Reference Manual'. 

The lines of the '*ADP' file related to the Manning number variation may be 
easily compiled by copy-and-paste operations from the MOUSE650.OUT file. 
This ASCII file is generated by every computation with the MOUSE Pipe Flow 
Model. 
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Before using the '*.ADP' file, the Manning number parameters for the 
selected lines must be modified, i.e. values for bottom and top of pipe Man-
ning numbers and possibly the variation exponent must be adjusted for the 
pipes or canals where varying Manning numbers are to be used.

7.1.4 Colebrook - White Formula for Circular Pipes

In 1939, Colebrook and White derived an approximate formula which unifies 
the description of the turbulent flow in both rough and smooth circular pipes. 
This formula is extensively used for the computation of flow resistance in pre-
dominantly full-flowing pipe networks. 

According to Colebrook and White, the friction factor f is computed iteratively, 
using one of the several formulations known from the literature. The formula 
implemented in MOUSE reads:

(7.9)

where:

k = the equivalent wall roughness [m], 
R = the hydraulic radius, 
Re = the Reynolds number, 
cw1, cw2, cw3, cw4 = empirical constants. 

The default values of the constants cw1-cw4 are:

cw1 = 6.4 
cw2 = -2.45

cw3 = 3.3
cw4 = 1.0

The default values can be modified through DHIAPP.INI file.

The actual friction slope is calculated by using the following relation: 

 (7.10)

The Colebrook -White friction resistance can only be used if an implicit friction 
formulation is activated. 

Use of the Colebrook-White formula must be restricted to circular pipes only. 
Also, the Colebrook-White formula is fully valid for full-flowing pipes.
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7.1.5 Hazen-Williams Equation

The Hazen-Williams equation is an empirical formula which relates the flow of 
water in a pipe with the physical properties of the pipe and the pressure drop 
caused by friction. It is used in the design of water pipe systems such as fire 
sprinkler systems, water supply networks, and irrigation systems. The Hazen-
Williams equation has the advantage that the coefficient C is not a function of 
the Reynolds number, but it has the disadvantage that it is only valid for water 
and it not able to account for temperature or viscosity.

(7.11)

where:

k = is a conversion factor for the unit system (k = 1.318) for US 
customary units, k = 0.849 for SI units), 
C = is the roughness coefficient, 
R = is the hydraulic radius, 
S = is slope of the energy line (head loss per length of pipe)

7.2 Head Losses in Manholes and Structures - Introduction

The general flow equations are valid only for continuous conduits where, in 
principle, the only resistance to the flow originates from the bottom and side-
wall friction. Hydraulic conditions in nodes, i.e. at manholes and structures 
take the role of boundary conditions for computation of the flows in the con-
duits. In turn, hydraulic conditions in a node depend on the flows in the inlet 
and outlet conduits. 

These hydraulic conditions, expressed in terms of the energy conservation 
principle, are calculated as water levels and velocity heads. The calculation is 
based on the mass continuity and formulation of more or less advanced 
energy relation between the node and the neighbouring links, with inclusion 
of some energy losses caused by local flow disturbances at different loca-
tions in the node. 

The implemented solution ensures that mutual dependence of the flows in 
links and hydraulic conditions in nodes are correctly resolved, even for com-
plex branched and looped conduit networks.

Energy losses in junctions are of the same order of magnitude as those 
caused by the pipe wall friction. Knowledge about the magnitude of these 
energy losses, based on experimental data, is very limited, but some theoret-
ical results are available (e.g. ref. /3/). Importance of a detailed evaluation of 
these losses is related to the relative length of the links (l/D), and grows with 
relative shortening of the conduits.

Q k C A R0 63 S0 54  =
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7.3 ‘Standard’ MOUSE Solution (F.A. Engelund)

A simplified computational model for energy losses in junctions implemented 
in MOUSE is based on F.A. Engelund's energy loss formulae (see ref. /5/). 
Furthermore, a critical depth formulation, with approximation of critical flow 
conditions, is used in MOUSE for simulation of a free inlet to a manhole.

7.3.1 Head Loss at the Node Inlet

It is assumed that the water levels in the inlet conduit and in the manhole or 
structure are the same. This assumption implies that the energy loss of the 
flow entering and expanding in the node amounts to the difference of the 
velocity heads in the inlet conduit i and the node m, respectively:

(7.12)

Essentially one-dimensional analysis in MOUSE relies on this simplification 
also in nodes with multiple inlet and outlet conduits, i.e. where mixing of flows 
of different energy levels occurs. Therefore, in some extreme cases, where 
head losses in nodes play a crucial role for the correct solution, it is advisable 
to perform a more detailed analysis, in order to assess the approximation 
errors inherent to this approach.

In a case of a free inlet of a sub-critical flow, i.e. when the water level in the 
junction is lower than the critical depth level in the inlet link, the water level in 
the link is assumed to be equal to the critical depth. For different cross sec-
tions, appropriate approximations are applied, e.g. for a circular pipe as fol-
lows:

(7.13)

where:

Di=diameter of the circular pipe [m].

Similarly, in a case of a low water level in the junction with supercritical flow 
(steep inlet links), the downstream water level is set equal to normal depth in 
the link.

7.3.2 Head losses at the outlet from a node

All the individual losses in a node (except the inlet loss) calculated by the 
model are added-up at the outlet, separately for each outlet link. The outlet 
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loss for the link j is assumed to be proportional to the velocity head in the out-
let link j:

(7.14)

where jk are individual head loss coefficients for link j, calculated on the 
basis of geometrical set-up of the node and flow distribution among the links 
attached to the node.

The model distinguishes among the following losses:

 Change in flow direction,

 Change in elevation,

 Loss due to contraction at outlet.

Loss due to change in flow direction
This loss is a function of the angles between the inlet and outlet links and dis-
tribution of the discharge in the inlet and outlet links, as shown in Figure 7.3 
and Figure 7.4.

Figure 7.3 Manhole consisting of 2 inlet links and 1 outlet link

Figure 7.4 Manhole consisting of 1 inlet link and 2 outlet links
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Based on the generalised notation, the calculation of the head loss coefficient 
is performed individually for each outlet link as follows:

(7.15)

where i stands for inlet links, and j stands for outlet links.

Loss Due to Change in Elevation
Vertical changes in flow direction occur and cause energy losses if there is a 
difference in elevation between inlet and outlet link. These losses are 
described considering the magnitude of the difference in elevation, see 
Figure 7.5.

Figure 7.5 Manhole with a difference in elevation between inlet and outlet pipe

The individual head loss coefficient is calculated according to the following 
expression, where the weighting relative to the flow rates in the inlet links rel-
ative to the outlet link is also included:

(7.16)

If the calculated head loss coefficient is smaller than 0, a zero value is 
assumed.

Loss Due to Contraction
The flow leaving the manhole and entering the outlet conduit is more or less 
contracted and due to subsequent expansion there occurs an energy loss. 
The outlet head loss coefficient depends on the shape of the manhole outlet, 
manhole and the link cross sections and distribution of flow among multiple 
inlet and outlet links. 
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MOUSE calculates the outlet head loss coefficient according to the following:

(7.17)

where: 

Km = specified outlet 'shape' coefficient for the node. For relatively
large basins, Km approaches contr.

Am = flow cross sectional area in the node. 

7.3.3 Implementation of the Total Energy Loss Computation

Theoretically, the total energy loss at the outlet from the node, expressed as a 
function of the velocity head in the outlet pipe can be as high as the available 
energy level in the node. The limiting case occurs e.g. with completely 
clogged outlet (Km ->, with no flow in the outlet pipe.

However, in computational reality, in order to preserve a robustness of the 
computation, various additional limitations could be introduced. With respect 
to that, MOUSE offers two possibilities. 

The first limitation relates the maximum head loss to the depth in the outlet 
pipe:

(7.18)

It also introduces the limitation on the total head loss coefficient as:

(7.19)

These limitations have caused that the computed head losses and the corre-
sponding flow conditions around nodes in some cases were inexact. 
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An Alternative Solution Based on Weighted Inlet Energy Levels
Due to the advances in the computational implementation, the limitation from 
Equation (7.19) could been removed, allowing the total energy loss for the 
outlet pipe j being computed as:

(7.20)

The limitation of the total head loss coefficient to 1.0 is, however, still present.

7.4 An Alternative Solution Based on Weighted Inlet Energy 
Levels

The assumption applied in the MOUSE ‘standard’ solution that the water level 
in the manhole and all downstream water levels of the inflowing conduits are 
the same, often leads to overestimates of the energy loss at the inlet. In many 
cases, the wetted cross-section area in the inlet pipe is smaller than in the 
manhole, leading to almost entire loss of the kinetic energy of the incoming 
flows, which is not the case. This problem is reduced by applying the effective 
flow area in the manhole, but this is available in MOUSE only for circular 
pipes and for the flow-through manholes (i.e. with one pipe in- and one pipe 
outflow).

An alternative solution is available which fully ignores the energy loss at the 
inlet. For a flow-through manhole, this practically means that the energy level 
in the manhole is set to be equal as at the downstream end of the inlet pipe. 
For manholes with multiple inlets, the energy level is calculated as the 
weighted average of the inlet flows (i.e. large flows contribute most to the 
energy level). 

Thus, in this formulation, the total loss at the manhole is concentrated compu-
tationally at the outlet, and can be fully controlled by the user. 

Without doubt, this approach proves valuable for some specific situations, 
particularly for the flow-through manholes with ‘normal’ flow conditions. How-
ever, due attention must be paid for cases with high inlet energy 
levels, e.g. a small pipe with high-velocity flow entering a large basin. In such 
a case, the energy level of otherwise still water in the basin would be calcu-
lated as equal to the energy level of the approaching flow, i.e. much higher 
than realistic, with erroneous results as a consequence.    

7.5 Selecting an Appropriate Local Head-loss Computation

In some cases, results from using different approach for node head loss cal-
culation can be considerably different, and due attention must be paid to the 
selection of the most appropriate approach.
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vj

2
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The head loss calculation for individual nodes can be controlled by selecting 
one of the available options - there are default five options in MIKE URBAN. 
You can always create your own option. 

Each option is characterised by the fundamental computational principle and 
by a number of parameters which control the behaviour of the algorithm or 
the size of loss coefficient. In MIKE URBAN, the existing options can be mod-
ified and new options created in "Outlet Head Loss" dialog. Furthermore, the 
actual head loss calculation for individual nodes can be both in MOUSE and 
in MIKE URBAN controlled by a local specification of various relevant param-
eters.

7.5.1 Constitutive Parameters of Head Loss Computation Options

The following parameters constitute a definition of head loss calculation 
option:

Computation Method

Three different methods are avialable:

 MOUSE Classic (Engelund) - described in section 7.3

 Weighted Inlet Energy Method - described in section 7.4

 No Head Loss Calculation

The first two are described in detail in respective chapters.

The third option ignores all local losses. Regardless of the shape of the out-
lets, geometrical set-up of the junction and distribution of flows among inlet 
and outlet conduits, water levels in the junction and the outlet conduit are set 
equal, as if there is no change of geometry and the flow conditions between 
the junction and outlet conduit. This literary means that this option should be 
applied only where there is no change in cross section. If inappropriately 
applied, inconsistent results may be generated. 

On the contrary, this option can be recommended for use if an artificial node 
is introduced somewhere on a straight section of a conduit, where  actually 
no losses occur.

Maximum Loss Limit

This parameter is of relevance for both MOUSE Classic and Weigthed Inlet 
Energy computation methods. It actually sets  the limitation on the maximum 
computed headloss to the water depth or the velocity head in the outlet pipe, 
according to equations (7.18) to (7.20). 
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Loss Coefficient 

The available loss coefficient types distinguish three different interpretations 
of the specified head loss coefficient. 

Selection of "Km "  (Type (a)) interprets the specified value as the outlet 
'shape' coefficient Km (see Equation (7.17)).

Selection of "Contraction HLC" (Type (b)) interprets the specified value as the 
outlet 'contraction' coefficient zcontr(j) (see Equation (7.17)). This means that 
the model ignores the geometrical relations between the node and the outlet 
links (outlet shape), and applies the specified value directly as the zcontr. The 
contraction losses in the outlet links are then computed by multiplying the 
velocity head in the respective link by the zcontr. The total head loss for an 
outlet link is computed as a sum of the contraction, direction and elevation 
loss.  

Selection of "Total HLC" (Type c)) interprets the specified value as the total 
outlet head loss. This means that the model completely ignores the geometry 
of the node/links, and applies the specified value (Total HLC) directly as the 
zout, the same for all outlet links at the node. The total head losses in the out-
let links are then computed by multiplying the velocity head in the respective 
link by the specified zout.

Effective Node Area

This parameter is only relevant for MOUSE classic computational method 
and for flow-through manholes in circular pipes. In all other cases, the default 
total wetted node area is applied. The following choices are available:

Total wetted area: calculated as product of diameter and  water depth for 
manholes and red from the basin geometry table (Ac) for basins. Typically 
results in overestimate of local loss in a node.

Calculated Effective Area: The effective area in a manhole is calculated on 
the basis of empirical formula (see section 2.3.2 Types and Definition of 
Nodes (p. 19)). This results in a significantly smaller area than full wetted 
area and, consequently with a more realistic flow calculation.

Reduced Calculated Effective Area: The effective area in a manhole is further 
reduced to 50% of the calculated effective area.

7.5.2 Default Computational Options

The following tables provide an overview of available head loss calculation 
options in MIKE URBAN. 
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7.5.3 Example: Node Outlet Head Losses Variation as Function of Head Loss 
Coefficient Mode

In this example a simple sewer system consisting of two pipes, two manholes 
and one outlet is constructed. Tests for different head-loss types (a), (b) and 
(c) have been performed with various modifications in flow direction or drop 
height, or both. Table 7.1 shows a complete test matrix.

Four variants of the model setup have been constructed:

I)Straight sewer pipelines with no drops and no changes in direc-
tions.

II)A change in direction is introduced in variant I). 

III)A drop is introduced in variant I). 

IV)A drop and a change in direction are introduced in variant I). 

A definition sketch of the setups I)-IV) is shown in Figure 7.6. The 
manual calculation example corresponds to test No. 4 in the test matrix. 

Figure 7.6 Example definition sketch

In the performed tests, the value of the HEADLOSS COEFFICIENT has been 
set to 0.5 for all three types (a), (b) and (c). The head loss coefficients for 
drop in the setup III) and IV) is 0.4 (inlet pipe is 0.6 m above the bottom in 
manhole B). The head loss for direction in the setup II) and IV) is 0.25 (angle 
between pipes are 45). 
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The example also includes calculation of the friction loss in the downstream 
pipe.

Manual Head Loss Calculation

Assumptions:

The water level in the inlet pipe is assumed equal to the water level in the 
manhole. This implies that the expansion loss at the inlet is automatically 
assumed. All calculated energy losses are assumed to occur at the outlet 
pipe, i.e.:

(7.21)

or expressed by using the notation in Figure 7.6:

(7.22)

 = a coefficient expressing the total outlet energy loss (see
section 7.3.2 Head losses at the outlet from a node (p. 89)).

Data:

Discharge Q = 2.0 m3s-1

Diameter in outlet pipe Dout = 1.0 m
Diameter in manhole Dm = 1.5 m
Velocity in outlet pipe
(Q is capacity assumed) Vout ~ 2.55 ms-1

Length of outlet pipe L = 50.0 m
Manning number M = 70 m1/3s-1

Water level in outlet Hout = 15.0 m
Bottom level in manhole Zm = 14.0 m
Head “shape” loss coefficient Km = 0.5

Friction loss in outlet pipe from manhole to outlet:

(7.23)

The water level in the manhole (H) can be found from:

(7.24)
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vm is approximated by assuming that ym = yout:

(7.25)

(7.26)

(7.27)

(7.28)

Substituting values to the Equation (7.25) and calculating H yields:

(7.29)

The deviation between the MOUSE simulation and manual calculation result 
is due to the fact that MOUSE calculates vout by using the following area in 
the pipe:

The table shows which setups have been used for the calculation, and also 
which head loss types are included. c0, c1, c2 are all head loss coefficients 
due to contraction and correspond to the types (a) , (b) and (c).

Table 7.1 Test matrix for implementation fo Head Loss Type

Table 7.2

Test Setup Direction d Drop l

Contraction c
Hcalc HM(a) 

c0

b)c1 (c)c0

1 I) X 15.81 15.82

2 I) X 15.87 15.87

3 I) X 15.87 15.87
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Q
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7.5.4 Implementation of Head Loss Description in Kinematic Wave 
Simulations

When applying the kinematic wave approximation, the head loss description 
in nodes is based on the same equations as described above.

However, in order to reduce the computational time, the energy losses are 
computed once for a number of different flow conditions and tabulated for use 
during the simulation. In cases where there is more than one inlet link in a 
manhole, the losses are calculated on the basis of the assumption that the 
flow in each link (relative to the flow in the other inlet links) is proportional to 
the corresponding full flow capacity. This assumption affects the energy 
losses due to changes in elevation and direction only when these losses are 
different for the different inlet links.

4 II) X X 15.89 15.90

5 II) X X 15.95 15.94

6 II) X X 15.87 15.87

7 III) X X 15.94 15.94

8 III) X X 16.00 15.99

9 IV) X X X 16.02 16.02

10 IV) X X X 16.03 16.02

Table 7.2

Test Setup Direction d Drop l

Contraction c
Hcalc HM(a) 

c0

b)c1 (c)c0
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Surface Flooding
8 Some Special Techniques

8.1 Surface Flooding

If the water level in a manhole or a basin reaches the ground level, an artifi-
cial “inundation” basin is inserted above the node. The surface area of this 
basin is gradually (over one meter) increased from the area in the manhole or 
the basin to a 1000 times larger area, thus simulating the surface inundation. 
The maximum level of inundation is 10 meter above the specified ground 
level. When the outflow from the node surmounts the inflow, the water stored 
in the inundation basin re-enters the system. 

When the water level in the node increases and is above ground level, the fol-
lowing is assumed:

During a time step the surface area in the basin is calculated using the water 
level from the start of the actual time step. A situation like this is shown in 
Figure 8.1. If the water level passes through the transition region between the 
actual manhole or structure and the artificial basin, this assumption leads to 
generation of water. In Figure 8.1 the shaded area illustrates the generated 
volume of water.

Figure 8.1 Simulation of the surface flooding

When the increase of the water level during a time step is relatively small, 
then the generated water volume is negligible. If the water level is changing 
rapidly, the generated volume of water is important and due to that an appro-
priate correction is built in the program to ensure no generation of water.

An alternative to the assumption of constant surface area during a time step 
is to introduce iterations in the simulation. Iterations would significantly 
increase the simulation time.

8.2 Sealed Nodes

Any manhole or basin can be defined as 'sealed'. If a node is defined as a 
sealed node, then the maximum water level at a node is set to the ground 
101



Some Special Techniques
surface. In this case, the pressure will rise without any water on the ground 
surface. The following relations are valid:

(8.1)

where:

Hm is the water level in the node [m],
Pm is the pressure level in the node [m],
Htop is the ground level for the node [m].

8.3 Spilling Nodes

Any manhole or basin can be defined as 'spilling'. If the water level in a node 
defined as a spilling node reaches the ground level, the water will start spill-
ing irreversibly out of the system. The flow will be computed using the free 
overflow formula, according to the following: 

(8.2)

where:

Qspill = the spill discharge [m3/s],
B = a conceptual spill width [m],
Hm = the water level in the manhole [m],
Htop = the ground level in the manhole [m],
P = the "Buffer Pressure Level" for the spill [m],
g = the acceleration of gravity [ms-2),
RelativeWeirCoefficient = the linear scaling coefficient for the spill.

The level (i.e. head) at which the spill starts can be controlled by optionally 
specifying the 'Buffer Pressure Level' as a relative elevation above (or below) 
the ground surface (default value = 0).

For circular manholes, the spill width B equals to 1.5 times the manhole diam-
eter for the water level Hm = Htop+P. With increasing water level, the spill 
width B increases, following the same functional relation as used for the 
"basin" area above surcharging nodes (i.e. increases exponentially to approx-
imately max. 1000 times the manhole diameter) - see paragraph 8.1. For 

Hm Pm for Pm Htop
and
Hm Htop for Pm Htop=

=

for Hm Htop P+  :

Qspill 0;

 

for Hm H top P :
Qspill Relative Weir Coefficient 0.63 B 2g Hm Htop P+ – 3 2   =

+

=
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nodes defined as basins, the spill width B is set equal to the square root of 
the basin surface area. 

The spilling capacity of a spilling manhole can be controlled by specifying the 
Relative Weir Coefficient (default value = 1).

8.4 Pressure Mains

The ‘pressure mains’ (also referred to as rising mains in earlier versions of 
MOUSE) feature is intended for modeling the permanently pressurized indi-
vidual pipes or networks in connection to pumps. Computationally MOUSE 
assumes that a rising main network always runs under pressure and there-
fore the reaction time within the rising main network is insignificant.

Solution in pressure mains is based on the two equations: 

(8.3)

and

(8.4)

where

Q = discharge, [m3s-1]
A = flow area, [m2]
y = flow depth, [m]
g = acceleration of gravity, [ms-2]
x = distance in the flow direction, [m]
t = time, [s]
I0 = bottom slope
If = friction slope

All nodes within the pressure main networks are assumed to be sealed. 

MOUSE supports modeling of an arbitrary number of pressure main networks 
and there is no limitation on the number of elements in each sub network. 

Pressure main networks must always converge down to one receiving man-
hole, which is called the tail node. The tail node is the point of transition 
between domains where the hydraulic solution is based on the St. Venant 
equation and the special pressure main model.

The computation of the special pressure main sub models uses the maximum 
of the water level in the “St Venant” governed domain and the water level at 
the tail nodes as downstream boundary conditions. As default it is assumed 

Q
x
------- 0=

Q
t

------- gAy
x
------ gA I0 If– =+
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that the tail node water level is equal to the maximum of the up-vert level of all 
pressure pipes attached to the tail node, but the user can change this default 
value.  

The “upstream” pressure main network must be linked with the St. Venant 
controlled domain through pumps. The “pressure mains” feature can 
handle an unlimited number of pumps attached to one pressure main net-
work, but the solution feature can only handle networks where the upstream 
link to the St Venant domain is modeled by pumps.    

8.5 Dry Conduits

If parts of the sewer system dry-out during the simulation, then the model arti-
ficially maintains a minimum water depth in those conduits, corresponding 
(per default) to 5‰ of the characteristic dimension of the conduit (diameter for 
circular pipes), or max. 5 mm. This is necessary with regards to the numerical 
stability in the solution of the flow equations. 

This correction practically means artificial generation of water, i.e. some 
water volume is added to the system. As a consequence of that, the continu-
ity status report shown at the end of the simulation does not give a fair 
impression of the accuracy of the simulation.

8.6 A note on flooding and spilling

The term "flooding" is used when water level is above ground level, and 
"floodrate" is the volume of water per second running from below ground level 
to above ground level. 

Spilling is defined when water is running out of the system and "spilling rate" 
is the volume of water per second running out of the system. 

Flooding, floodrate, spilling, and spilling rate can all be reported in an .XRF-
file for MOUSE and in the .AddOut.res1d-file for MIKE 1D.

Note that floodrate can be both positive (water coming from below ground 
level) and negative (water running into the ground level), while spilling rate 
can only be positive.

Since both nodes and pipes can have Preismann slots that emulate pressur-
ized nodes or pipes, it often happens that there is flooding in the system but 
NOT spilling. Thus, flooding does not necessarily mean that there is water 
running out of the system onto the ground.

Water volume above ground level in nodes is calculated as total water vol-
ume on the node minus water volume below ground level. This means that 
sealed nodes can also have some (small) amount of flooding due to the slot 
which extends above ground level. 
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Spilling nodes have two input parameters - buffer pressure and spilling coeffi-
cient. The buffer pressure represents the water depth above ground needed 
before water is lost from the system. Hence, if you set the buffer pressure to 
e.g. 10 cm then water will not spill before the water level is more than 10 cm 
above ground level. In this case you will also see flooding because water is 
between ground level and ground level + 10 cm, but it is not lost from the sys-
tem. Hence when the water level is reduced this volume of water is going 
back into the network again. Hence some water is flooding and going back to 
the network again while another volume is spilled and lost to the system.

The buffer pressure is used to model the effect of two physical processes: 1) 
a cover that requires a certain pressure before it lifts and water is lost (in this 
case the water level above ground is really a pressure and hence no real 
water is on the ground), and 2) a sewer grate that is located in a small 
depression in the road and it is not until the water level is above 10 cm that 
water starts running down the street and is lost to the system (in this case 
there actually is water on the ground even though it is not lost.)

When the buffer pressure is zero, the spilling coefficient is still used. Spilling 
is calculated as water spilling over a weir. The weir coefficient is equal to the 
spilling coefficient and the weir width is calculated from the circumference of 
the manhole. In some cases the spilling weir becomes a restriction on the 
flow and then the water level will build up behind the weir (i.e. in the manhole 
itself) and the water level will become higher than the ground. Also this is 
reported as flooding, because the water level is above ground level.
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9 Nomenclature

a,b,c,..,zquasi-constants in a modified continuity equation around a 
node

A,B,..,Zquasi-constants in a generalised continuity equation around 
a 
node

athe speed of sound in water, with actual pipe walls rigidity,
(ms-1)

avertical distance from the point where the jet intercepts the 
manhole to the centreline of the inlet

aothe speed of sound in water for absolutely rigid pipe walls, 
(ms-1)

ar the speed of sound along pipe walls, (ms-1)

Across-section area, (m2)

Afloweffective flow area in a manhole, (m2)

Ajetcrosssection area of the jet at the point of interception with the 
manhole, (m2) 

Am crosssection area of the wet part of the manhole, (m2)

Afullcross-section area at full pipe flow, (m2)

Aothe cross-section area without excess pressure, (m2)

Atstructure, wetted cross section area, (m2)

A0structure, water surface area, (m2)

A0,jsurface area between grid points j-1 and j

A0,j+1surface area between grid points j and j+1

b vertical distance from the point where the side of the outlet 
enters the manhole to the centreline of the inlet

bsurface width, (m)

bsstorage width, (m)

bslotwidth of Preissmann slot, (m)

Boverflows, width, (m)
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C = AR2/3cross-section conveyance, (m8/3)

CrCourant number

CdCoefficient of discharge

CECoefficient of discharge (energy based)

CHCoefficient of discharge (level based)

Dpipe diameter, (m)

Din diameter of the inlet pipe, (m)

Dm diameter of the manhole, (m)

Dout diameter of the outlet pipe, (m)

drop_ factor factor diminishing the effective flow area in a manhole 
due to 
drop in elevation

ethe pipe wall thickness, (m)

Eenergy level just upstream overflow (m)

expManning's number variation exponent, default 1.00

Erthe Young's modulus of elasticity, (Nm-2)

fcoeff. for flow direction change (default f =1)

g = 9.81 constant, acceleration of gravity, (ms-2)

FrFroude's number 

hwater level, (m)

Hcross sections - elevation relative to bottom, (m) pumps, water
level in a pump-sump, (m) overflows, water level just upstream
the overflow, (m)

Hoverflows, entrance energy loss, (m) pumps, level difference 
between two nodes

HAregulation, water level at the control point A, (m)

Hbottnode, bottom elevation, (m)

Hmwater level in a node, (m)

Hmin,
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Hmaxregulation, water levels at the control point A defining the range
in which the regulation is to be applied, (m)

Houtwater surface elevation at outlet, (m)

Hstart,

Hstoppumps, start and stop level for a pump, (m)

Htopnode, surface elevation, (m)

Hup,Hdown or

H1,H2water levels at the computational points upstream and down
stream, respectively, (m)

I0bottom slope, (m-1)

Iffriction slope, (m-1)

kwall roughness (m)

Kcoverflows, energy loss coefficient

Kmspecified outlet 'shape' coefficient for a node

lconduit length, (m)

lrpipe length which gives rise to pressurised flow, (m)

MManning number, (m1/3s-1)

Mactcalculated Manning's number, (m1/3s-1)

MbottManning's numbers specified for the conduit bottom, (m1/3s-1)

MfullManning number at full pipe flow, (m1/3s-1)

ninvers of manning number (1/M)

Nnumber of grid points in a pipe

qspecific discharge, (m2s-1)

Qdischarge, (m3s-1)

Qfullfull pipe flow for uniform flow conditions, (m3s-1)

Q(HA)regulation, discharge defined by the regulation function, (m3s-

1)

Qnatregulation, "natural" discharge, (m3s-1)
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Qregregulation, applied discharge, (m3s-1)

Qweiroverflows, discharge, (m3s-1)

R = A/Phydraulic radius, (m)

Rfullhydraulic radius at full pipe flow, (m)

ttime, (s)

tcomputational time step, (s)

vmean flow velocity, (ms-1)

vmflow velocity in a node, (ms-1)

w0gate opening

w1distance from the overflow crest to the upstream bottom (m)

w2distance from the overflow crest to the downstream bottom (m)

xdistance in the flow direction, (m)

xdistance between two computational points, (m)

x,ynode co-ordinates, (m)

ydepth, (m)

ydepth in a contracted section (m)

y1 y2 y3 depth in upstream, central and downstream  section, (m)

yccritical depth, (m)

ynnormal (natural) depth, (m)

y/Dthe relative water depth

Zgeneralised flow variable, substituting h and Q

Coriolis' velocity distribution coefficient

,‚, coefficients in finite-difference equations

(j)total calculated node head loss coefficient for outlet conduit j

dircalculated node head loss coefficient, due to change of direction

elevationcalculated node head loss coefficient, due to change of 
elevation
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contr(j)calculated outlet contraction head loss coefficient, for outlet 
conduit j

weighting coefficent of the numerical scheme

ijhorizontal angle between inlet conduit i and outlet conduit j

water density, (kgm-3)

odensity of water for a free surface flow, (kgm-3)

tangential stress caused by the wall friction, (Nm-2)

kinematic viscosity (m2s-1)

vvertical contraction coeff.
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