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set out in the Agreement reflect the allocation of risk negotiated
and agreed by the parties and that DHI would not enter into the
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1 Introduction

This document presents the scientific background for the MIKE 3 Wave Model FM. The
objective is to provide the user with a detailed description of the governing equations,
numerical discretization and solution methods.

MIKE 3 Wave Model FM can be applied in the following areas:

. Ports and terminals
- Wave agitation caused by short and long waves
- Input to dynamic ship mooring analysis (MIKE 21 MA)

+  Coastal areas
- Non-linear wave transformation
- Surf and swash zone hydrodynamics
- Wave breaking and run-up
- Coastal flooding
- Tsunamis (transient) modelling

»  Coastal structures
- Wave overtopping
- Wave transmission (and reflection) through porous structures
- Input to wave load calculation

. Offshore environments
- Transformation of steep nonlinear waves
- 3D wave kinematics for structural load calculations

The model is based on the numerical solution of the three-dimensional incompressible
Reynolds-averaged Navier-Stokes equations. Thus, the model consists of continuity and
momentum equations, and it is closed by a turbulent closure scheme. The free surface is
taken into account using a sigma coordinate transformation approach. The spatial
discretization of the governing equations in conserved form is performed using a cell-
centered finite volume method. The time integration is performed using a semi-implicit
scheme. The vertical convective and diffusion terms are discretized using an implicit
scheme to remove the stability limitations associated with the vertical resolution. The
remaining terms are discretized using a second-order explicit Runge-Kutta scheme. The
projection method is employed for the non-hydrostatic pressure. The interface convective
fluxes are calculated using a HLLC approximate Riemann solver. This shock-capturing
scheme enables robust and stable simulation of flows involving shocks or discontinuities
such as bores and hydraulic jumps. This is essential for modelling of waves in the
breaking zone or porous structures. The numerical dissipation accounts for the dissipation
in the breaking waves.

Powering WATER DECISIONS 1
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2 Governing equations

The governing equations are solved in a sigma coordinate system or a combination of
sigma coordinate system and a Cartesian coordinate system. For the hybrid system
sigma coordinate is used from the free surface to a specified depth, and z-coordinate is
used below. The most important advantage using sigma coordinate is the ability to
accurately represent the bathymetry and provide consistent resolution near the bed.
However, sigma coordinates can suffer from significant errors in the horizontal pressure
gradients, advection and mixing terms in areas with sharp topographic changes (steep
slopes). These errors can give rise to unrealistic flows. The use of z-level coordinate
allows a simple calculation of the horizontal pressure gradients, advection and mixing
terms, but the disadvantages are their inaccuracy in representing the bathymetry and that
the stair-step representation of the bathymetry can result in unrealistic flow velocities near
the bottom.

The governing equations can also be formulated in a spherical coordinate system. For
more details, see Appendix Al.

2.1  Governing equations in a Cartesian coordinate system

2.1.1 Navier-Stokes equations

The non-hydrostatic model is based on the incompressible Navier-Stokes equations
subject to the assumptions of Boussinesq and with the free surface described by a height
function. In a Cartesian coordinate system the local continuity equation is written as

ou Jdv Jdw _

ou_ v ow_ 21
axtaytaz =" (2.1)

and the conservative form of the momentum equation can be written

6u+6u2+6vu+6wu_ 1 dq 617+F ot (v6u> 2.2)
ot dx dy 0z =fv Po Ox ox v T TVt g, '
ov duv 0v?: owv 1 9q on 0 ov

Ly . - T R R V—) 23
attax Ty T oz Uy Iay Tty (Vfaz (2:3)
ow duw dvw Ow? 1 dq a(  ow

v -8+ (Y 2.4
ot + ox + oy * 0z Po 6Z+FW F"Z+az(”f az) (2:4)

Here t is the time; x, y and z are the Cartesian coordinates; 7 is the surface elevation; u,
v and w are the velocity components in the x, y and z direction; g is the non-hydrostatic
pressure; f = 2Qsing is the Coriolis parameter (Q is the angular rate of revolution and ¢
the geographic latitude); v/ is the vertical eddy viscosity; g is the gravitational
acceleration; p,, is the reference density of water; F,, = (F,y, F,y, F,;) is the drag force due
to vegetation (see section 4.4). Egs. (2.2)-(2.4) are obtained by splitting the total pressure,
p, into a non-hydrostatic and a hydrostatic component, py, where

n
Py =Dat+pog(n—2)+ gf (p — po)dz (2.5)

z
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The atmospheric pressure, p,, at the free surface is assumed to be constant over the
domain, and the density of water, p, is assumed to be constant.

The horizontal diffusion terms are described using a gradient-stress relation, which is
simplified to

F_6(2h6u>+6 h<6u+6v> 26
w = 5\ 7V o dy Ve dy 0x (2.6)
F_a h(au+av) +6(2 hav) 27
v = o\t dy Ox dy Vfay 27)
F_a(h6w>+6(h6w> 8
W= ax " ax) Tay\"t 5y (2.8)

where v} is the horizontal eddy viscosity.

The surface and bottom boundary conditions for u, v and w are

atz = 7@
an an an _ Ju dv\
§+ua+v@—w—0, (g,&)—(o,(]) (29)
atz = —d
6d+ 6d+ =0 (au Ov)_ 1 ( ) 210
“ox vay e 0z’ 9z)  pov? P Fby (210

Here d is the still water depth, and (rbx, ‘L'by) are the x- and y-components of the bottom
stresses.

The total water depth, h = n + d, is obtained by vertical integration of the local continuity
equation and taking into account the boundary condition at the surface and the bottom

oh Ohu Ohv

—t——4+——= 211
ot T ox T oy (2.11)
Where # and 7 are the depth—averaged velocities
n n
hu = f udz, hv= f vdz (2.12)
—d —-d
In matrix form the continuity equation and the momentum equations may be written
oh
—_ . F¢ = 2.13
ac TV (2.13)
au
g TV F" =SutS, (2.14)

Here F¢ = (E¢, F;)T = (h,hv)" , U = (w,v,w)” and F™ = F™ — F™d = (F", FT', F)T.
The flux components and the source terms can be written

Hydrodynamic module - © DHI A/S
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uu + gn uv uw
Fe = ( uv ) FJi¢ = (vv + gn) F'¢ = (vw) (2.15)
uw vw ww
u n (au 617) ou
h a2
ZVt a V¢ ay dx \ V;}E
Ju OJv dv v
md _ (2=, 27 md _ h_"~ md — v_
Fx Ve (8x 6y> Fy | 2ve dy | F t 9z (2.16)
ow ow ow
i no v_ "
VE Gx \ Ve dy / Lo
dq
f‘U - va 1 /32\‘
Sy =|-fu—F, Sy=-—| 5 (2.17)
_F‘;JZ Po y
dq
ow

If the hydrostatic pressure assumption is applied, the non-hydrostatic pressure will be
zero. With this assumption, a three-dimensional, hydrodynamic model can be significantly
simplified because the momentum equation in the vertical direction (Eq. (2.4)) can be
neglected.

2.1.2 Turbulence model

The turbulence is modelled using an eddy viscosity concept. The eddy viscosity can be
described using empirical formula (see section 4.1) or solving a turbulence closure model.
In the MIKE 3 Wave Model FM, there are two turbulence models available, namely the k-¢
model and the k-w model; both are two-equations models.

The k-epsilon model

The k-&£ model presented here follows Rodi (1980,1984) and has an additional limiter from
Larsen and Fuhrman (2018). The model describes k, the specific turbulent kinetic energy
and ¢, the dissipation rate of turbulent kinetic energy (turbulent dissipation). The eddy
viscosity, v;, is defined as

(2.18)

where ¢, is an empirical constant and £ is a limited version of e. Solving a system of
equations for k and ¢ results in the eddy viscosity in eq. (2.18) and this value can be used
in the momentum equations for the horizontal and/or vertical eddy viscosity, v and v}.

The turbulent kinetic energy, k, and the turbulent dissipation, ¢, are obtained from the
following transport equations.

ok  ouk ovk awk . 0 (viok) S 1o
at  ax 9y 9z * 0dz\o} oz kT E (2.19)
oe N dus N ove N owe o (vf, 0¢ L p g2 520
ot " ax Ty "9z T oz\ovaz) T2 (2.20)
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Here, P, and P, are production terms and F,, and F, are horizontal diffusion terms. The
details of the various terms are presented in the following.

The production terms are given as

P =vepo + ¢iPy (2.21)

&
P = ciecukpo + cfsﬁPv (2.22)

where, c,, is a closure coefficient and

3
Po = 2 ZSUSU (2.23)

3
i=1 j=1

where §;; is the mean strain rate tensor defined as

P L) P PY (2.24)
Y 2 ax] axi ’ ’ ”

Here, is used the following notation
U =u, U, =0, Uy =W (2.25)
X, =X, X, =Y, X3 =2 (2.26)

P, is the production term due to vegetation and ¢, and ¢, are two weighting coefficients
(see section 4.4).

The vertical diffusion terms are given directly in the transport equations for k and €. The
horizontal diffusion terms have a similar form and are given by

9 (vhok\ 9 (vl ok
= (B )y (B2 2.27
Fe=ox (a,? 6x> "oy <a,¢ dy (2.27)
d (vh oe d (vh oe
g9 (V08 0 (vio 02 2.28
& ox (agh 6x) + dy (agh dy (2.28)

The coefficients o, o, ol and 7 are closure coefficients. For the diffusion terms is used
an unlimited version of the eddy viscosity

2 %
Vo =Cu V=G (2.29)

If the momentum equations use an empirical formula for either the horizontal or vertical
eddy viscosity, that value is also used in the diffusion terms in the turbulence model. This
means, that vl = v} or v}, = v} is used instead of the corresponding expression in eq.
(2.29).

To limit the eddy viscosity in regions with nearly-potential flow and stabilize the model,
Larsen and Fuhrman (2018) introduced a limited value of the turbulent dissipation &,

(2.30)

Hydrodynamic module - © DHI A/S
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Here, 1, = 0.05 is a limiter coefficient and

3

3
i=1j=1

where (;; is the rotation tensor,

0, = 2(%% 94 gy i,j=123 (2.32)
Y 2 ax] axi ’ ’ "

Several carefully calibrated empirical coefficients enter the k- turbulence model. In the
standard k-e model (Rodi (1984)), they are
c, = 0.09, c1e = 144, cye =192 (2.33)

ol=0Y=10, ol=0r=13 (2.34)

In matrix form, the transport equations for k and € may be written

au

—+V-F=S§ 2.35

ETI (2.35)
where U = (k, &)" and F = F* — F% = (F,,F,,F,)". The flux components and the source
terms can be written

c _ (uk c _ (vk c _ (Wk
FS = (ug), FS = (vg), FS = (Wg) (2.36)
o ok i
ol 0x ol dy o) 0z
Fi=| v | F=| 3 | Fi=|7 2.37
x Vi de Y vk oe z Vio 0€ (2.37)
ol ox al dy of 0z
Pk — &
S= £ (2.38)
Ps - CZS?

The k-omega model

The k-w model presented here is following Larsen and Fuhrman (2018). It extends the
model in Wilcox (2008) with an additional limiter. The model describes the specific
turbulent kinetic energy, k, and the specific dissipation rate, w. The eddy viscosity, v;, is
defined as

(2.39)

8| =

Ve =

where @ is a limited version of w. This value of the eddy viscosity can be used in the
momentum equations for the horizontal and/or vertical eddy viscosity, v and vY.

Powering WATER DECISIONS 7
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The transport equations for the turbulent kinetic energy, k, and the specific dissipation
rate, w, reads

Ok , Quk ovk dwk _ . 0 (viyok) ) )0
at  ax dy 9z ¥ 0dz\o} oz ke = B (2.40)
aw+auw+6vw+aww_F +6 v 0w LR 4P 5 541
ot Vox "oy Tz TRt a\Guag ) Tee v~ huw (2.41)

Here, F, and F,, are horizontal diffusion terms, F,,. is a cross-diffusion term and P, and P,
are production terms. The details of the various terms are presented in the following.

The production terms are given by

Py = v¢po + ¢rihy (2.42)
w C
P, =az(p+L2R) (2:43)

t

where @ is a limited version of the specific dissipation rate, w, a is a closure coefficient
and p, was defined in eq. (2.23). P, is the production term due to vegetation and cs, and
cr,, are two weighting coefficients (see section 4.4).

The vertical diffusion terms are given directly in the transport equations for k and w. The
horizontal diffusion terms have a similar form and are given by

9 (vBok\ a (vl ok
Fp=—(2) +—(2— 2.44
k ax(a,? 6x>+6y<a,? dy (2.44)

v o= d (vl ow N 0 (vl ow (2.45)
® " 9x\olkax ) ay\ok dy '

The coefficients o}, oY, a* and o, are closure coefficients. For the diffusion terms is used
an unlimited version of the eddy viscosity

k k
vip = »’ Vio = » (2.46)

If the momentum equations use an empirical formula for either the horizontal or vertical
eddy viscosity, that value is also used in the diffusion terms in the turbulence model. This
means, that vt = v[* or v}, = v} is used instead of the corresponding expression in eq.
(2.46). The cross-diffusion term in the equation for w reads

F,. = —max {O

dkdw okdw okdw
} (2.47)

"3xdx " dydy | 0z0z
To limit the eddy viscosity in regions with nearly-potential flow and stabilize the model,
Larsen and Fuhrman (2018) introduced an additional limiter for w on top of the limiter

already present in the k-w model from Wilcox (2008). The limited versions of w are
defined as

o = max|w, 1, Po‘; Py ‘ (2.48)
‘I k

Hydrodynamic module - © DHI A/S
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Bw Po

® =max &, ——w
Bk pa

(2.49)

The values of the limiter coefficients are 1, = 0.875 and 4, = 0.05 and p, was defined in
eq. (2.31).

The system contains several empirically determined closure coefficients which have the
following values,

5 1
ot=0l==, ol=0l=2, 04== (2.50)
3 8
@ =052 (2.51)
Bk =0.09, B, =Ppofp, Bo=0.0708 (2.52)
1+ 85y, 1 01 e Q0 S
B= ’ o = (2.53)
1+ 100y, (Brw)?

These values are from Larsen and Fuhrmann (2018), except fz which is from Wilcox
(2008). Larsen and Fuhrman (2018) use f; = 1, consistent with two-dimensional flow.
Note that g, corresponds to c, in the k-¢ model. The mean strain rate tensor S;; and the
rotation tensor ;; were defined in eq. (2.24) and (2.32).

In matrix form, the transport equations for k and w may be written as

oU
STV F-G=s (2.54)

where U = (k, w)" and F = F¢ — F = (F,,F,,F,)". The flux components F, the cross-
diffusion G and the source terms S can be written

_ (uk _(vk _ (wk
FS = (uw), FS = (vw), FS = (Ww) (2.55)
6 ha

Fd = Tl F=| %Y op 0z (2.56)

vl dw vl dw Vo dw

\a,fj ox \J£ dy \J}f, 0z

0
a:( - [0 6k6w+6k6w+6k6w]> (2.57)
dx dx 0dydy 0z 0z
_ Pk - ﬁkwk)

s= (Pw B (2.58)

Boundary conditions at the surface and the seabed

At boundaries where there is a friction, the boundary conditions for k, € and w can be
modelled with wall functions, Wilcox (1998),

Powering WATER DECISIONS 9
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1 U3 U
k=—U2, £=—— W= L

N Kby’ VBircby

Here, U, is the friction velocity associated with the boundary and Ay is the distance from
the boundary to the point where the conditions are employed. Furthermore, x = 0.41 is
the von Karman constant.

(2.59)

At the seabed, z = —d, if there is a bed resistance, the boundary conditions are the wall
functions in eq. (2.59) where Ay = Az, is the distance to the bottom and U, = U, is the
friction velocity associated with the bottom stress, see section 4.2.

At the surface, z = 1, it is assumed there is no friction, and the boundary conditions are

atz = 7@
3/2
ok 0 _ (ky/cn) VK (2.60)
7" T Taa o YT g |
z asK asf,’ kh

where a, = 0.07 is an empirical constant.

2.2  Governing equations in a sigma coordinate system

The equations are solved using a vertical c-transformation

_Z+d

t'=t, x =x, y =y, o=— (2.61)

where ¢ varies between 0 at the bottom and 1 at the surface. The chain rule is applied to
obtain partial derivatives of the function f = f(t,x,y,2)

of _of 0fdo
=30 3. (2.62)
of _of 0fda (2.63)

dx 0x' 0o ox

of _or  orao

3y = 3y %é)y (2.64)

daf df do (2.65)

dz 0o dz '
where

do 10h

do 1/ oh oad

e =) = 2.67

0x h(a ox ax) * ( )

60_ 1( oh 6d)_A 268

oy~ r\%ay ay) =Y (2.68)

10 Hydrodynamic module - © DHI A/S
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L
9z h_ %
2.2.1 Navier-Stokes equations

In the sigma coordinate system, the governing equations are given as

oh + dhu 4 ohv 4 ohw _
at’ ' ax' Ay’  do

ohu N dhu? N dhvu N dhwu
at’  oax' ' ay’ do
dq dqdo an d (v{ou
— (= — gh— + hE — — (=
fhy (6x+606x) Gh g T = R+ 50\ 150

ohv N ohuv N dhv? N dhwv
at’ = ax'  dy’' do

h rdq 0qdo a (vl ov
—fhu——(—+ ) ah 2Ly hE, — hR,y + 2 (YE0Y

dy’' dody ay’ do \ h 0o
dhw N dhuw N dhvw N aha)w 1 dq + hE, —hF,, + a (vl ow
ot ox' oy’ do po 00 vZ " 9o\ h do

MIK@
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(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

The modified vertical velocity, w, in the sigma coordinate system is given by

_1f, 04, ad (6h+ on ah)
R\ TR Ty T %\ o T ax T Yoy

(2.74)

The modified vertical velocity is the velocity across a level of constant o. The horizontal

diffusion terms are approximated by

hE. = 6<2h 6u>+6 hh(au+6v>
“~3 ax) Tay\ "t 5y T ox

hF~a hh(6u+6V) a<2h au)
v\ Gy tax) ) Ty (e,

hF~a(h h6w>+0(h GW)
w o\ ax) Ty Mt g

The surface and bottom boundary conditions for u, v and w are
atz = 7@

—0 (auav)_ 0.0
w_l a a (’)

Powering WATER DECISIONS
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atz = —d
_ 0 (au 617) _h ( ) 279
@=5 dc’da)  pov? Thx: Toy (2.79)
The depth-averaged continuity equation becomes
ah+6hﬁ+ahﬁ_ 2 80
at’ " ax’ ' ay' (2.80)
where & and v are the depth—averaged velocities
1 1
u= f udo, v= f vdo =0 (2.81)
0 0
In matrix form the continuity equations and the momentum equations may be written
oh
- .F¢ = 2.82
StV Fe=0 (2.82)
ou
o TV =Su+S, (2.83)
T
where F¢ = (F¢, Ef) = (hit, hv)" , U = (hu, hv, w)" and F™ = F™¢ — F™d =
(F3, Fy, F)T.
The flux components and the source terms can be written
1 h
huu + = g(n? + 2nd) M huw
Fme = 2 - Fe = | hov +2g(n? + 2nd) | F° = | ww (2.84)
huw how hww
ou du dv v{ du
n Ou hv? (— =) vE ou
ou OJv dv vy dv
Fmd - h (_ _) Fmd — 2 h_” " Fmd | 2= 2.
x hvy P ox y hv; dy o h 9o (2.85)
ow ow vy 6W/
h___ h___ -
hv{ o \ hv{ 3y e
ad h (a_q n a_qa_o)
an Ep + fhv — hE,, dx'  0dodx
s,=| ad 5, = —— h(aq L 60) (2.86)
" gn 3y~ [l by T po| \oy'  doay '
dq
—hF, -t
vz ao_

To give a conservative formulation, the gravity surface terms are split into two terms (see

Chippada (1998), Rogers (2001), Quecedo (2002), Liang or Borthwick (2009))

onp 1
hav =32

o(h? —d?)
9 ox'

ox’ gn ox' 2 9 ox’

ad 1 9(n*+2nd)

ad
n ox’

(2.87)
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a(h? — d?) ad 1 9(n®+2nd) ad

on

b 1
2

= 2.88
g ay’ ( )

It is easily seen that if n is constant, the two terms cancel exactly. In the discrete case,
this is also true if the two derivatives are calculated using the same scheme.

2.2.2 Turbulence model

The k-epsilon model

In the sigma coordinate system, the transport equations for the k-¢ model are given as

dhk 4 Jdhuk 4 dhvk 4 Oohwk hE. + a (v Ok + heP 2 89
ot"  ox’ ay’ dc ~ ¥ dc\ha} do (Pl =€) (2.89)
ohe N ohue N ohve N Ohwe WE 4 o (v} d¢ W(p g2 590
ot " ax' oy | ac T 3g\hovao e T ey (2.90)
The horizontal diffusion terms are defined as
_— (hvfo 6k>+ ] (hvpo 6k> (2:00)
““ox\ o ox)  ay\ of ay '
hE 0 (hvl oe N 0 (hvl oe 2 0
€T 9x\ ol ox) oy \ ol oy (2.92)
In matrix form, the transport equations for k and € may be written
au
il .F = 2.93
StV F=S (2.93)
where U = (hk,he)" and F = F¢ — F% = (F,,F,,F;)". The flux components and the
source terms can be written
¢ _ (huk c _ (hvk c _ (hwk
Fr= (hue)' Fy = (hve)' Fs= (hws) (2.94)
(hv?o akw (hvglo ak\ ( A akw
ol ox ol ov v o
Fe=| % 9| pa_| 9% OV pa_ | hoi00 (2.95)
hv} de hvl de Vio 0€
\ ol ox \ ol ay \ha;’ do
h(P, — ¢)
= 52
s=|, (Pg e, ?> (2.96)

The k-omega model

In this section, the modified vertical velocity in the sigma coordinate system is called w;
(instead of w). This is to distinguish it from the specific dissipation rate, w, of turbulent
kinetic energy which was introduced in section 2.1.2. In the sigma coordinate system, the
transport equations for the k-w model are given as

Powering WATER DECISIONS 13
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ohk Ohke dhuk N dhvk ahws _hE4 a ( vy ok + h(P k 297
ohw N dhuw N ohvw N Ohw,w s 9 (vi Ow +hE,. +h(P, 2) 298
ot ax'  dy’ = 9o do\hoj oo e e (299
The horizontal diffusion terms are defined as
d (hvl ok d (hv{, 0k
~ 2.
i ax( 6x>+6y(ak ay (2.99)
d (hvldw d (hvlow
I B e 2.1
hE, ~ 6x< ol ax) * 6y< ol dy (2.100)

In matrix form, the transport equations for k and w may be written

ou
—+V-F-G=S (2.101)
at’
where U = (hk,hw)" and F = F¢ — F® = (F,,F,,F,)". The flux components F, the cross-
diffusion G and the source terms S can be written

c _ (huk c _ (hvk c (thk>
FS = (huw), FS = (hm), Fe = (e (2.102)
hvpo ak hvly Ok vy ak
Fd = of dy Fd — hay 0o (2.103)
hvto 6w hvto aa) Fo Vio a_a) '
\ \ \hog do
G = (thC) (2.104)
h(P, —€)
S = < ) 2.105
h(B, ~ Bu?) (2109
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The discretization in solution domain is performed using a cell-centered finite volume
method (CCFV). The spatial domain is discretized by subdivision of the continuum into non-
overlapping control volumes and by evaluating the field equations in integral form on these
cells.

3.1 Mesh and discretization scheme

3.1.1 Mesh

The computational mesh is based on the unstructured meshes approach, which gives the
maximum degree of flexibility. Control of node distribution allows for optimal usage of
nodes and adaptation of mesh resolution to the relevant physical scales. The use of
unstructured meshes also makes it possible to handle problems characterized by
computational domains with complex boundaries.

The 3D mesh is a layered mesh. In the horizontal domain an unstructured mesh is used
while in the vertical domain a structured mesh is used (see Figure 3.1). The elements are
prisms with either a 3-sided or 4-sided polygonal base. Hence, the horizontal faces are
either triangles or quadrilateral elements. The elements are perfectly vertical, and all
layers have identical horizontal topology.

[~
™
H—___\

|

Figure 3.1 Principle of meshing

For the vertical discretization both a standard sigma discretization and a combined
sigma/z-level discretization can be used. For the hybrid sigma/z-level discretization,
sigma coordinates are used from the free surface to a specified depth, z,, and z-level
coordinates are used below. The different types of vertical discretization are illustrated in
Figure 3.2. At least one sigma layer is needed using the sigma/z-level discretization to
allow changes in the surface elevation.

Sigma
In the sigma domain a constant number of layers, N, is used, and the height of each
sigma layer is a fixed fraction of the total depth of the sigma domain, h,, where h, =n —
max (z,,2,). The discretization in the sigma domain is given by a number of discrete o-
levels {g;, i =1, (N, + 1)}. Here ¢ varies from g; = 0 at the bottom interface of the
lowest sigma layer to gy_,; = 1 at the free surface.

Powering WATER DECISIONS 15
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Variable sigma coordinates can be obtained using a discrete formulation of the general
vertical coordinate (s-coordinate) system proposed by Song and Haidvogel (1994). First
an equidistant discretization in an s-coordinate system (-7< s <0) is defined

Ny +1—i
Ny

0- i“““*—-_\__‘ F_(,,_J;"’;
: T T | T
' o —

-400-

s = i=1,(N, +1) (3.1)

600 - T — 1

-1 o S B
-1000 <
1200 -

1400 -

-1600 <

-1800 - I B e S

2000 -

2200 -

2400 T

2800 -

2600 <

-3000 -I T T T T T
i 20000 40000 60000 50000 100000

-200

-400

-B00 4

-500

-1000

-1200

-1400

-1600

-1800

-2000

-2200

-2400

-2600

-2800

-3000 4

20000 40000 60000 50000 100000

Figure 3.2 lllustrations of the different vertical grids. Upper: sigma mesh, Lower: combined
sigma/z-level mesh with simple bathymetry adjustment. The red line shows the
interface between the z-level domain and the sigma-level domain

The discrete sigma coordinates can then be determined by
g, =1+a.s;+ (1 —0a.)c(sy) i=1,(N;+1) (3.2)

where

1 0
sinh(6s) tanh (0 (s + ?)) — tanh (7)

sinh(8) 2tanh (%)

(3.3)

c(s)=(0-b)

Here o, is a weighting factor between the equidistant distribution and the stretch
distribution, 6 is the surface control parameter, and b is the bottom control parameter. The

Hydrodynamic module - © DHI A/S
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range for the weighting factor is 0 < g, < 1 where the value 1 corresponds to equidistant
distribution, and O corresponds to stretched distribution. A small value of ¢, can result in
linear instability. The range of the surface control parameter is 0 < 8 < 20, and the range
of the bottom control parameteris 0 < b < 1. If 6 € 1 and b = 0, an equidistant vertical
resolution is obtained. By increasing the value of 6, the highest resolution is achieved
near the surface. If 8 > 0 and b = 1, a high resolution is obtained both near the surface

and near the bottom.

Examples of a mesh using variable vertical discretization are shown in Figure 3.3 and
Figure 3.4.

S s N T
0 R Y e N g B O g oo
T =1 1

-200 4 ———f|

-400 4

-600 4 [~ Tt

\

-B00q L1 1 |
-1000 4
-1200 4

-1400 4 |

-1600 4

-18004

-2000 L

-22009

2400 T

-2600 4 L

-2800 4

-3000 4

20000 40000 60000 80000 100000

Figure 3.3 Example of vertical distribution using layer thickness distribution. Number of layers:
10, thickness of layers 1 to 10: .025, 0.075, 0.1, 0.01, 0.02, 0.02, 0.1, 0.1, 0.075,
0.025

T T T =
1] = ~::55f;/ﬁ
—— e e e et
-200 1 1 T 1T 141

-400 4 1 |

1
I
I
I
I
I
]
/
]

Il

-600 4
-800 4 T 1T
-1000 4
-1200 4

-1400 ] | |

-1600 1
-1300 7

-2000 1

-2200 7
-2400 7

B0 T

-2800 7

-3000 +

20000 40000 60000 80000 100000

Figure 3.4 Example of vertical distribution using variable distribution. Number of layers: 10, oc =
0.1,6=5b=1
Combined sigma/z-level

In the z-level domain the discretization is given by a number of discrete z-levels
{z;, i=1,(N,+ 1)}, where N, is the number of layers in the z-level domain. z, is the
minimum z-level, and zy,_ .4 is the maximum z-level, which is equal to the sigma depth,

z5. The corresponding layer thickness is given by

AZ,: =Ziy1 — Zi i= 1, NZ (34)
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The discretization is illustrated in Figure 3.5 and Figure 3.6.

Using standard z-level discretization the bottom depth is rounded to the nearest z-level.
Hence, for a cell in the horizontal mesh with the cell-averaged depth, z,, each cell in the
corresponding column in the z-domain is only included if the following criterion is satisfied

1
Ziy1 —Zp 2 > (Ziy1 — 2) i=1N, (3.5)

The cell-averaged depth, z,, is calculated as the mean value of the depth at the vertices
of each cell in the horizontal mesh. To take into account the correct depth for the case
where the bottom depth is below the minimum z-level (z; > z,) a bottom fitted approach is
used. Here, a correction factor, f;, for the layer thickness in the bottom cell is introduced.
The correction factor is used in the calculation of the volume and vertical face integrals.
The correction factor for the bottom cell is calculated by

(22 — 2p)

fi=" (3.6)

The corrected layer thickness is given by Az; = f;Az,. The simple bathymetry adjustment
approach is illustrated in Figure 3.5.

For a more accurate representation of the bottom depth an advanced bathymetry
adjustment approach can be used. For a cell in the horizontal mesh with the cell-averaged
depth, z,,, each cell in the corresponding column in the z-domain is included if the
following criterion is satisfied

Zit1 > Zp i= 1, NZ (37)

A correction factor, f;, is introduced for the layer thickness for these cells

(Zi+1 - Zb) Zmin) )
.= mi - 1 i =2 N.
fi = min (max( A7z, Az, )’ l » Nz
(3.8)
: AZi ’ AZi

A minimum layer thickness, Az,,;,, is introduced to avoid very small values of the
correction factor. The correction factor is used in the calculation of the volume and vertical
face integrals. The corrected layer thicknesses are given by {Az] = f;Az;, i = 1,N,}. The
advanced bathymetry adjustment approach is illustrated in Figure 3.6.

Hydrodynamic module - © DHI A/S
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Figure 3.5 Simple bathymetry adjustment approach
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Figure 3.6  Advanced bathymetry adjustment approach

The discrete solution for the water depth, h, is defined at the centroid of the elements of
the 2D horizontal mesh. The discrete solutions for the velocity components, u, v and w,

1.2 Discretization scheme
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AZ3

AZZ

AZl

AZ3

AZZ

AZ]_

and the turbulent variables, k and ¢, are defined at the centroid of the elements of the 3D
mesh. The non-hydrostatic pressure, g, is positioned in the centroid of the horizontal cell
faces as shown in Figure 3.7. The location of the discrete non-hydrostatic pressure
secures an exact representation of the surface boundary condition. The modified vertical
velocity, w, is also positioned in the centroid of the horizontal cell faces. The coordinates
of the centroids are the averages of the coordinates of the cells vertices.

19
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k+1 @ Ui, Vi1, Wiet1

O e s

k 9 U, Ve, Wi
O qr, wi
k-1 ® uy g, Vg, Wiy

Figure 3.7  Vertical variable arrangement around layer k. Velocity components, u, v and w, are
located in cell centers; non-hydrostatic pressure, g, is located in cell interfaces

3.2 Finite volume method

20

The matrix form of the governing equations presented in Chapter 2 can be written as

ow
StV FW) =5 (3.9)

Integrating Eq. (3.9) over the ith cell and using Gauss’s theorem to rewrite the flux integral
gives

f a—wdﬂ + f (FWW)-n)drl = f s(w)da (3.10)
Vi ot T; Vi
where V; is the volume of the ith cell, Q is the integration variable defined on V;, T; is the
boundary of the ith cell and T is the integration variable along the boundary. n =
(ny,ny,n,)" is the unit outward normal vector along the boundary. Evaluating the volume
integrals by a one-point quadrature rule, the quadrature point being the centroid of the

cell, and evaluating the boundary integral using a mid-point quadrature rule, Eq. (3.10)

can be written

ow, 12”
ot +v FnUAF” = Si (311)
[
]

Here W; and §;, respectively, are average values of W and S over the ith cell and stored
at the cell centre. NF is the number of faces of the cell and the face ij is common to the
cells associated with W; and W;. AT}; is the area of the face ij, and n;; is the restriction of

n to the face ij.

The normal flux F,,(W,,Wg) = F(W,, W) - n;; is determined from the variables, W, and
W, to the left and right of the face ij. Using a first order scheme W, = W; and W, = W;.
Second-order spatial accuracy is achieved by employing a linear gradient-reconstruction

technique. The face value at the vertical faces for the primitive variable v in cell i is
obtained by
v(x,y) =v; +Vv;'r (3.12)

where (x,y) is the point where the value is required, r is the distance vector from the cell
centre to the point (x,y) and VI¥; is the gradient vector. For estimation of the gradient
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vector the Green-Gauss gradient approach is utilized. Here the procedure proposed by
Jawahar and Kamath (2000) is used. This procedure is based on a wide computational
stencil to improve accuracy also for meshes with poor connectivity. The vertex (node)
value is computed using the pseudo-Laplacian procedure proposed by Holmes and
Connell (1989).

3.3 Numerical solution of the Navier-Stokes equations

3.3.1 Time integration

The time integration of the Navier-Stokes equations is performed using a semi-implicit
scheme. The vertical convective and diffusive terms are discretized using an implicit
scheme to remove the stability limitations associated with the vertical resolution. Here a
second order implicit trapezoidal method is used (see Lambert (1973) and Hirsch (1990)).
The remaining terms are discretized using a two-stage explicit second-order Runge-Kutta
scheme (the midpoint method). The non-hydrostatic pressure is treated by a fractional
step approach developed by Chorin (1968) called the projection method which is based
on the Helmholtz-Hodge decomposition. In the sigma coordinate system, the integration
procedure is

Stage 1:
() (G G )
Un+;/tz/2_ U* _s; (3.15)
Stage 2:
hn+1At_ hn _ (gixf N Zi};}f)nﬂﬂ (3.16)
. s (R DR SR,
Un+1At_ U _ s (3.18)

Calculating Sy requires knowledge of the non-hydrostatic pressure, q. The pressure is

calculated solving a Poisson equation. The modified vertical velocity is calculated after the
update of the water depth from Eq. (2.74).

Due to the explicit scheme, the time step interval, At, is restricted by the Courant-
Friedrichs-Lewy (CFL) condition

- T G 619
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where C is the Courant number and Al is a characteristic length. C,,,, is the maximum
Courant number and must be less than or equal to 1. A variable time step interval is used
in the time integration of the Navier-Stokes equations and determined so that the Courant
number is less than a maximum Courant number in all computational nodes. The
characteristic length for a prism, where the horizontal face is a quadrilateral element, is
determined as the area of the element divided by the longest edge length of the element.
If the horizontal face is a triangular element, the characteristic length is two times the area
divided by the longest edge length.

3.3.2 Poisson equation

22

The Poisson equation is derived by differentiating the three components of the vector Eq.
(3.15) and (3.18) by x’, y' and ¢ and substituting the resulting expressions back into the
continuity equation

Ju Oudoc O0v Odvdo 16w_

v tooaxt oy T oy Thoo (3:20)

The resulting Poisson equation in sigma coordinates reads
9%q 0%q
*gxag T Ay dy'do
6u*+ av* + A au* + 4 6v*+A ow™*
ox' 9y’ * do il ? do

0%q 09%q

62
+ (A§+A§+A§)%+ 24 +

94,  0Ay\ dq _ po
ox’ 3y’ ) doc At

(3.21)

In the first stage At* = At/2, and in the second stage At* = At. The Poisson equation in
Cartesian coordinate reads

92q 02q 0? ou* vt ow*
q  0%°q  09°q po<u v W) (3.22)

x ayrt oz T \ox Ty T ez

The surface and bottom boundary conditions for the non-hydrostatic pressure, g, in the
sigma coordinate system are

atz = ¢
q=0 (3.23)
atz = —d
%9 _, (3.24)
do

For applications where the still water depth, d, is changing in time the following bottom
boundary condition is used

dq 0%d

- - 3.25

aa P a2 (3.25)
In a Cartesian coordinate system, the boundary condition at the bottom is

0

A_, (3.26)

0z
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3.3.3 Space discretization

The space discretization is performed using the finite volume method as described in
Section 3.2. In this section the focus is on the discretization for the equations in the sigma
coordinate system.

The normal convective flux F,,(U) = (f,,f,. f, f,) at the vertical faces in the sigma
domain can be written

hu,

1
huu, + Eg(r)2 + 2nd)n,

1
hvu, + Eg(nz + 2nd)n,

hwu

where U = (h, hu, hv, hw)" is the solution vector, and u; = un, + vn,, is the velocity
perpendicular to the cell face. Here f; is the contribution to the continuity equation, and
f2. f3 and f, are the contributions to the three momentum equations. This flux is
reconstructed at cell-interfaces using the HLLC scheme introduced by Toro et al. (1994)
for solving the Euler equations. The shock-capturing scheme enables robust and stable
simulation of flows involving shocks or discontinuities such as bores and hydraulic jumps.
This is essential for modelling of waves in the breaking zone or porous structures. The
interface flux is computed as follows (see Toro (2001))

F, ifS,=0
o JF., ifS,<0<S,

FWULUR) n=4 " 5 <0<S, (3.28)
Fr if Sg <0

where F;, = F,(U,) and F, = F,(Ug) are calculated from Eq. (3.27), and the middle
region fluxes, F,, and F,p are given by

€1
en, — u”Leln
F., = Y (3.29)
exny, + UjeqNy

€3

€1
eznx - u||R61n
F.r= + Y (3.30)
eZny u”Relnx

€3

Here u, = —un, + vn, is the velocity tangential to the cell face, and (ey, e, e3) is the
component of the normal flux which is calculated using the HLL solver proposed by
Harten et al. (1983)

E= SREL - SLER + fHLLCSLSR(ﬁR - ﬁL)

3.31
5. —s, (3.31)

=~ —~ T
Here U = (h,hu,, hw)T and E = (hul, hu,u, + %g(nz + 2nd), hw) . To be able to scale

the damping introduced by the HLLC solver a scaling factor f;,. has been introduced,
where the factor must be in the interval [0,1]. The scaling factor, f;;.c = 1, corresponds to
the standard HLLC solver.

Powering WATER DECISIONS 23



=\
MIKE"

MIKE 3 Wave Model FM

An appropriate method for approximating the wave speeds is essential for the efficiency
of the HLLC solver. Different approximations can be found in the literature, e.g.
Fraccarollo and Toro (1994). Here the approach used by Song et al. (2011) is used

U g — 24/ gh h,=0
s, ={ LR gng L (3.32)
min(ulL —Jgh,u, — 1/gh*) h, >0
and
u,; + 2,/ gh hp =0
Sa ={ ey R (3.33)
max(ulR +/ghg,u,, + ,/gh*) hg >0
where the Roe-averaged quantities
_ uJ_L\/h_L + uJ_R\/h_R
Vhy +he
1
The speed S, is given by the
S, = Syhgr(uig — Sg) — Sphy(ui, — S1) (3.36)

hr(ugr — Sg) — hy(uy, —S1)

The convective flux at the horizontal faces is calculated using a second-order upwinding
scheme. The diffusive flux at the cell interfaces is approximated by a central scheme. This
vertical discretization results in a linear five-diagonal system which has to be solved for
each column of the discrete momentum equation.

Discretization of the Poisson pressure equation is performed by integrating over the
individual control volumes. The procedure results in a large sparse linear system that
needs to be solved in each of the two stages in the time integration procedure. This
sparse linear system of equations is solved using an iteractive solver from the PETSc
library, Balay (2017). More specifically, the iterative solver is the restarted Generalized
Minimal Residual method (GMRES), which for single-subdomain simulations is
preconditioned with a two-level incomplete LU factorization, ILU(2). For multi-subdomain
simulations the Block Jacobi preconditioner is used, where each block is solved with
ILU(2). Each block coincides with the division of variables over the processors. See
Chapter 5 for further details on single- and multi-subdomain simulations.

3.3.4 Flooding and drying

24

The approach for treatment of the moving boundaries (flooding and drying fronts) problem
is based on the work by Zhao et al. (1994) and Sleigh et al. (1998). When the depths are
small the problem is reformulated, and only when the depths are very small the
elements/cells are removed from the calculation. The reformulation is made by setting the
momentum fluxes to zero and only taking the mass fluxes into consideration.

The depth in each element is monitored and the elements are classified as dry, partially
dry or wet. Also, the element faces are monitored to identify flooded element faces.

Hydrodynamic module - © DHI A/S
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*  Anelement face is defined as flooded if the water depth at one side of a face is less
than a tolerance depth, h,,,, and the water depth at the other side of the face is
larger than a tolerance depth, hy,.; .

¢ Anelementis dry if the water depth is less than a tolerance depth, h,,,, and none of
the element faces are flooded faces. The element is removed from the calculation.

*  Anelementis partially dry if the water depth is larger than hg,., and less than a
tolerance depth, h,,.., or when the depth is less than hy,.,, and one of the element
faces is a flooded face. The momentum fluxes are set to zero, and only the mass
fluxes are calculated.

*  Anelement is wet if the water depth is bigger than h,,... Both the mass flux and the
momentum flux are calculated.

A non-physical flow across the face will be introduced for a flooded face when the surface
elevation in the wet element on one side of the face is lower than the bed level in the
partially wet element on the other side. To overcome this problem the face will be treated
as a closed boundary (Section 3.3.7).

In case the water depth becomes negative, the water depth is set to zero, and the water is
subtracted from the adjacent elements to maintain mass balance. When this occur the
water depth at the adjacent elements may become negative. Therefore, an iterative
correction of the water depth is applied (max. 100 iterations). Normally only one or a few
correction steps are needed.

3.3.5 Sponge layer

Sponge (or absorbing) layers can be used as efficient numerical wave absorbers in wave
simulations. These could be set up along model boundaries to provide radiation boundary
conditions, which absorb wave energy propagating out of the model area.

The implemented method is based on the sponge layer technique introduced by Larsen
and Dancy (1983). In the sponge layer the calculated surface elevation, n, and the
velocities u, v and w, are corrected at every time step as

n— nref
N c

+ nref u= v = (3.37)

u
1 c

where ¢ is the sponge coefficient, and "¢/ is the reference level.

To minimize reflections, the values of the sponge layer coefficient, ¢, should be close to
unity along the front edge of the sponge layer and should increase smoothly towards the
closed/land boundary. When selecting the sponge layer coefficient, c, the following
formula has been found to work well

c=a"", 0<s<w (3.38)
where w is the width of the sponge layer, and a and r are assigned constant values. s is
the distance from the closed boundary, and 4s is the characteristic size of the elements in

the sponge layer area. Depending on ratio w/As you may use the values listed in Table
3.1
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Table 3.1 Recommended values for sponge layer coefficients

w/As a r

10 5 0.5
20 7 0.7
50 10 0.85
100 10 0.92
200 10 0.95

Figure 3.8

Internal wave generation
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The relaxation zone technique is applied for wave generation and absorption. Here a
relaxation function is applied to introduce the analytical solution for the incoming waves
smoothly into the calculation domain. The analytical solution is the target solution and
contains values from the chosen wave theory for the surface elevation, the velocities and
the pressure. The relaxation zone is defined as the area to the right of the polyline when
positioned at the starting point and looking forward along the line (see Figure 3.8). The
target and the computed solution are weighted in the relaxation zone after each step in
the time integration

(3.39)

Generation line
Relaxation zone

Width of ramp-up zone

The relaxation zone is the area to the right of the generation line when looking

forward along the line from the starting point. The width of the ramp-up zone is

specified by the width parameter.
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where 0 represents the surface elevation, velocity component and non-hydrostatic
pressure. For the surface elevation and velocities the ramp up factor, «, is given as

_exp(sh)-1

a=1 exp(1)-1

0<s<1
(3.40)

a=0 s>1

Here, s is the distance from the polyline divided by the width of the ramp up zone, and f is
the ramp up factor. The value f = 3.5 is applied. For the non-hydrostatic pressure, q, the
target value is applied as a Dirichlet condition for s > 1. Hence, here the ramp up factor is

given by
a=1 0<s<1
(3.41)
a=0 s>1

For unidirectional regular waves Stokes theory (1th and 5th order) and stream function
theory (Fenton (1988)) can be applied. For irregular waves the single summation method
is applied. Here a single direction is assigned to each discrete frequency. A range of
standard formulations for the frequency spectrum and the directional distribution are
applied.

3.3.7 Boundary conditions

At the lateral closed (solid) boundaries, either a condition of zero velocity or a condition of
zero normal velocity is imposed. A condition of zero velocity, u = v =w = 0, is also called
a no-slip condition. For a condition with zero normal velocity, u, = 0, the normal flux

vector is
0
1 2
Eg(n + 2nd)n,
F,(U) = 1 (3.42)
S9(* + 2nd)n,
0

For the zero normal velocity condition, a wall friction can be applied, see section 4.3. If the
normal velocity is zero and there is no wall friction, the tangential stress is set to zero and
this boundary condition is sometimes called a full-slip condition. At the lateral closed
boundaries, the normal pressure gradient is zero.

3.4  Numerical solution of the Transport equations

3.4.1 Time integration

The time integration is performed using either a first order explicit Euler method or a
second-order explicit Runge-Kutta scheme (the midpoint method). However, to overcome
the severe time step restriction due to small vertical grid spacing, the vertical convective
and diffusive terms are treated implicitly. The vertical diffusion term is treated using a
second order implicit trapezoidal method. The vertical convective term is treated either
using the explicit method or an implicit Euler method, and the same method is used for all
discrete equations in a column of the 3D mesh. The explicit method is used when the
following criteria are satisfied
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Sigma domain

widt 1 (3.43)
AO'i 2 '

z-level domain

widt 1 (3.44)
AZl' 2 '

for all elements in the column. Here w; is the modified vertical velocity and Ag; the vertical
grid spacing in the sigma domain. w; is the vertical velocity and Az; the vertical grid
spacing in the z-level domain. Finally, At is the discrete time step interval. For details of
the time integration methods, see Lambert (1973) and Hirsch (1990).

The transport equations for the turbulence model are solved using the same time step as
used for solving the Navier-Stokes equations.

Spatial discretization

Using the first-order scheme for the spatial discretization the normal flux due to the
convective terms at the (vertical) faces is calculated using simple upwinding. It is
calculated as the mass flux times the concentration at the element in the upwind direction.
The numerical damping using the first order scheme is quite high. The advantage is that
there is no overshooting or undershooting, which for some applications is very important.
Using the second-order scheme for the spatial discretization a higher-order upwind
scheme is applied. The concentration at the (vertical) faces is determined using a linear
gradient reconstruction technique based on the concentration and the gradient of the
concentration at the element in the upwind direction. The gradient is determined using a
wide computational stencil (see section 3.2). To provide stability and minimize oscillatory
effects, the gradient limiter proposed by Barth and Jespersen (1989) is applied to limit the
horizontal gradients. This approach significantly reduces the numerical damping
compared to the first-order scheme.

When the explicit time integration approach is used for the vertical convective terms, the
calculation of the normal flux due to the convective terms at the horizontal faces is
performed using a 3™ order ENO procedure (Shu, 1997). When the implicit time
integration approach is used for the vertical convective terms the normal flux is calculated
using a first-order upwinding scheme.

Boundary conditions

Solving the transport equations for the turbulence model, the lateral closed boundary
conditions depend on the boundary conditions for the flow equations. In case of no-slip
condition or in case of zero normal velocity where wall friction is applied, a Dirichlet
boundary condition is applied. The values in the elements at the wall are calculated using
the wall functions in eq. (2.59) . In this case, Ay = Ay,, is the distance to the wall from the
center of the elements and U, = U, is the friction velocity associated with the wall stress,
see section 4.3. In case of zero normal velocity without wall friction, the normal convective
flux is zero, and the normal gradient of the transport variables is zero.
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3.5 Time stepping procedure
The solution is determined at sequence of discrete times
th =t + kAtoperan  k=0,1,2,3... (3.45)

where At,,.rqu IS the overall time step interval. The time steps for the hydrodynamic
calculations are dynamic.

At the actual time t in the interval t*~! < t < t* the new time step interval is determined
using the following procedure

Al
At* = Cppgmin ((m ) + (m " |17i|)> (3.46)
At™ = min (max(At, At,,,) , Atyay) (3.47)
At = t: — (3.48)
int ((tAt_**t)) +1 .

Here At,,;, and At,,,, are the minimum and maximum time steps, respectively, and int is
the whole number of (t* — t)/At. This procedure secures that the time steps for the
hydrodynamic calculations are synchronized at the overall discrete time steps.
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4 Physics

4.1  Eddy viscosity

Both the vertical and horizontal eddy viscosity can be derived solving a turbulence closure
model (see section 2.1.2). In that case the eddy viscosity is calculated using eq. (2.18) or
(2.39). In some applications, a constant eddy viscosity can be used for the horizontal
eddy viscosity. Alternatively, Smagorinsky (1963) proposed to express sub-grid scale
transports by an effective eddy viscosity related to a characteristic length scale. The sub-
grid scale eddy viscosity is given by

v =212 J 2(SyxSxx + 254y Say + SyySyy) (4.1)
where ¢, is a constant, [ is a characteristic length and the deformation rate is given by

Sxx =

du 1/0u Jv ov
_ ( ) = 4.2)

ax =26y ox iy

For more details on this formulation, the reader is referred to Lilly (1967), Leonard (1974),
Aupoix (1984), and Horiuti (1987).

4.2 Bed resistance

The bottom stress, T, = (7)., Tpx) IS determined by a quadratic friction law

Tp
% = crup|upl (4.3)

where ¢ is the drag coefficient, and, u,, is the flow velocity tangential to the seabed at a
distance Az, above the bed, and the drag coefficient is determined by assuming a
logarithmic profile between the seabed and a point Az, above the seabed

1
1 A i (4.4)
(Eln (max (Ziob, 2)))

where k = 0.41 is the von Karman constant, and z, is the bed roughness length scale.
When the boundary surface is rough, z, depends on the roughness height, k,, trough

Cf=

zy = mkg (4.5)
where m is approximately 1/30.

The friction velocity associated with the bottom stress is given by

Up = ’Cflublz (4.6)

A semi-implicit discretization is used to get a stable solution for small water depths, which
for element i reads
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First stage:

‘rn.+1/2
b _ o lultu; 4.7)
Po

Second stage:

T
— = cf |[uf* (4.8)

4

Here the * indicates the provisional value of the velocity.

4.3 Wall friction

For closed lateral boundary with zero normal velocity and wall friction, the stress t,,
tangential to the wall is determined by a quadratic friction law

Tyw = PoCrlyan [uywaul (4.9

Here, ¢ is the drag coefficient and u,,,, is the velocity tangential to the wall at a distance
Ay, to the wall; u,,,;; and Ay,, are evaluated at the cell center. The drag coefficient is
given by

1

2
(%ln (max (Aﬂ, 2))) (4.10)
Yo

where k¥ = 0.41 is the von K&rman constant and y, is the wall roughness length scale
given by

Cf=

Vo = mks (4.11)

The parameter k; is a wall roughness height and m =~ 1/30. Furthermore, the friction
velocity U,,, at the wall is determined as follows (Fuhrman et. al. (2014)).

Uy = ’Cfluwalll2 (4.12)

For a closed lateral boundary with zero velocity (i.e., a no-slip condition), the friction
velocity can be determined using the law of the wall (Bredberg (2008), Wilcox (1998))

|uwall| — lll‘l <UrwAyw> +B (413)
U K v

Here, v is the kinematic viscosity of water and B = 5.1 is an empirically determined

constant. Eq. (4.13) is solved iteratively to find U, the friction velocity at the wall, and

this value can be used in the boundary conditions of the turbulence models described in

section 2.1.2.
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4.4  Vegetation

The vegetation structure is modelled as rigid stems with stem diameter, ds. The height of the
vegetation is hy.

The effect of the vegetation on the flow characteristics is modelled by inclusion of the following
drag force in the momentum equations

1
Fu=§QﬁmuI (4.14)

where Cp is the drag coefficient, A is the frontal area per volume and u is the flow velocity vector.
Here 2= dsN,, where N, is the vegetation density. The vegetation density is the number of plants
per unit area. The force in the vertical direction can be neglected when the vegetation structure is
vertical stem or blades.

A layered approach can be used to take into account the vertical variation of the vegetation. The
drag coefficient, Cp;, the stem diameter, ds;, the vegetation height, hy;, and the vegetation density,
Nv,i, are then specified for each vertical layer, i. The vegetation height is the distance from the bed
to the top of the vegetation layer.

For the turbulence model the production term due to vegetation is given by
1
P, =5 Cplul® (4.15)

Following Lopez and Garcia (1998) the weighting coefficient using the k-¢ model is set to ¢s, = 1
and ¢g; = c./cq,. With the default values for ¢, and c,, then c¢, = 1.33. Using the k-o model
the default values for both ¢, and cf, are set to 1.

45  Porosity

For wave simulations, the governing equations have been modified to include porosity
and the effects of non-Darcy flow through porous media. In this way, it is possible to
model partial reflection, absorption and transmission of wave energy at porous structures
such as rubble mound breakwaters.

The main effects of porosity are introduced by additional laminar and turbulent friction
terms for describing losses due to flow through a porous structure. In most practical cases
the pore sizes are relatively large (typically 0.1m to 1.0m), and the turbulent losses will
dominate. The laminar loss term has also been included to allow the simulation of small
scale physical model tests.

The flow resistance inside the porous structure is described by the linear and non-linear
resistance forces expressed as

F = pau + pb|u|u (4.16)

where a and b are resistance coefficients accounting for the laminar and turbulent friction
loss, respectively, u = (u, v, w) is the velocity vector, and the magnitude of the flow
velocity is defined by |u| = vu? + v? + w?. a and b are determined by the empirical
expressions formulated by van Gent (1995) and Liu et al. (1999)
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1-n)? 9
o
n3® D2,

(4.17)

7.5) 1-n 1 (4.18)

b=ﬁ<1+ﬁ n? Dg,

Where n is the porosity, a and  are user specified coefficients, 9 is the kinematic
viscosity and Ds, is the grain diameter of the porous materials. KC is the Keulegan-
Carpenter number defined as

u,, T

KC =
nDg

(4.19)
where u,, is the maximum oscillating velocity, and T is the period of the oscillation. u,, is
approximated by the magnitude of the flow velocity.

In the momentum equations the time derivative terms are multiplied by a factor (1 + C,,)
where C,, is the added mass coefficient to take transient interaction between grains and
water into account. van Gent (1995) gave C,, as

(4.20)

where y is an empirical coefficient, which takes the value 0.34.

In the transport equations for the k- model additional production terms are included for
porous media flow following the approach by Nakayama and Kuwahara (1999) and Hsu et
al. (2002).

In the sigma domain the z-coordinate (in the physical domain) of the element centers is
varying in time. Therefore the porosity has to be updated at each calculation step. Here, a
bilinear interpolation is applied for mapping the specified porosity map onto the calculation
mesh.
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5 Parallelization

The MIKE 3 Wave Model FM is parallelized for shared-memory multiprocessor/multicore
computers using OpenMP. This parallelization is performed by adding compiler directives
to the code. To improve performance and to be able to perform simulations on large
massively parallel distributed-memory computers and clusters, MIKE 3 Wave Model FM
has also been parallelized using domain decomposition concept and Message Passing
Interface (MPI). Given the number of processor cores allocated to a simulation, the
computational mesh is partitioned into subdomains, and the workload associated with
each domain is distributed between the allocated cores. The data exchange between
domains is performed by message passing using the Intel MPI Library, which has multi
fabric message passing capabilities. It allows the use of mixed communication between
the domains. Thus, domains will exchange data via the fastest communication interface —
in ranked order: shared memory, InfiniBand, Ethernet, etc.. The implementation uses a
hybrid approach (OpenMP and MPI).

5.1 The domain decomposition

The domain partitioning is performed using the METIS graph partitioning library (Karypis
and Kumar, (1998, 1999)). The computational mesh is converted into a graph, and then
METIS uses a multi-level graph partitioning scheme to split the graph into subgraphs,
representing the partitioned subdomains, which are distributed among the allocated
cores. METIS computes a balanced partitioning that minimizes the connectivity of the
subdomains. This partitioning is performed based on the 2D (horizontal) mesh. Using a
2D mesh to partition a 3D domain can cause unbalanced partitioning. When combined
sigma/z-level discretization is used in 3D flow calculations, the number of vertical
elements can vary significantly across the domain. This difference in the number of
vertical elements can lead to an unbalanced partitioning. To get a balanced partitioning
for a 3D mesh, weights corresponding to the actual number of vertical elements
associated to each vertex of the graph are used. The partitioning is then made so that the
sum of vertex-weights is the same for all subdomains. Hence, with both 2D and 3D
meshes, the partitioning strategy ensures that the difference in the number of elements in
all subdomains is minimized.

The chosen numerical scheme for the discretization in the spatial domain requires an
overlapping domain decomposition. It is based on the halo-layer (“ghost’-cells) approach,
where each subdomain contains elements from connected subdomains. This overlap is
needed, because calculations require values from the connecting elements. Thus,
calculations of some elements at the border between subdomains require values from the
connected subdomains.

5.2 Data exchange

The data exchange between processes is based on the aforementioned halo-layer
(“ghost”-cells) approach with overlapping elements. The extension of the halo-layer area
depends on the numerical scheme used for the discretization in the spatial domain and
which variables are chosen to be exchanged between subdomains. Here a two-element
wide halo-layer is applied. The data exchanges are performed via asynchronous
communication when possible, and synchronous communications are used in different
parts of the system to ensure correct execution. The MIKE 3 Wave Model FM uses a
dynamic time step in the time integration scheme. To ensure that the calculations are
performed with the same time step in all subdomains, time step information is exchanged
between processes and thereby synchronizing the processes of each time step. Several
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special features require additional data exchange. These special interest points cause
synchronization of two or more subdomains during the data exchange. The case of input
and output data exchange is mentioned in the next subsection. Finally, information is
exchanged between subdomains in connection with error handling. When the system
encounters an error in the model, the error is distributed to the other processes when the
time step is finished and the simulation is stopped.

5.3 Input and output

36

The input and output (I/O) is handled using a parallel I/O approach. The master process
reads the global mesh information, performs the partitioning of the mesh and distributes
the information about the individual subdomains to the slave processes. Each process
then reads the additional input specifications using the generic specification file. The input
data (porosity maps, sponge layer maps, etc.) are read by each process using the global
data files. Since the individual processes perform I/O locally, the simulation data files
must be accessible by each process. This access could be through a network-attached
storage system or locally on each computer. The output data files from the simulations
are written to private files for each subdomain. At the end of the simulation, the data files
are merged to obtain data files containing global information.
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A Governing equations in spherical coordinates

In spherical coordinates the independent variables in the horizontal domain are the
longitude, A, and the latitude, ¢. The horizontal velocity field (u,v) is defined by

dA d
u= RCOS(I)E v=R d(f (A1.1)

where R is the radius of the earth.

A.1  Governing equations in spherical coordinate system and z-coordinates

A.1.1 Navier-Stokes equations

The continuity and momentum equations are given as

1 (au 4 6vcos¢>) 4 _ 0 A12
Rcos¢ \aA Rl 0z (AL.2)
du 4 1 au avucosd) awu
dt  Rcos¢

(A1.3)
1+ (“’q ) 4k 2 (2%)
f an¢ Rcosd) Po 0A dz ve dz
Jv N 1 auv ov? cosd)
Jdt  Rcos¢
(A1.4)
( +ut ) 1 (16q+ 6n>+F+6( 617)
frgtand)u=pso\n oo T 950 £
aw 1 <6uw avwcosq.')) N ow? _ _la_qu . i(vga_W) (AL5)
at Rcosq.’) lJo) 0z po 0z a 0z
A.1.2 Transport equations
The transport equations for the k- model are given as
dk 4 1 (auk avkcosd)) + owk F o+ d (vi ok p ALG
dt = Rcos¢ da¢p 9z ¥ oz oy 0z kT E (AL.6)
de N 1 (aue avecosd)) N owe N d (vi, 0¢ g2 AL 7
at " Rcose 9 0z =T az\graz) e T e (AL7)

The transport equations for the k-w model are given as
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ak 1 (auk 8vkcos¢) N owk F o+ d (v§ ok i ALS
at Rcosd) ¢ 9z k7 oz oy 0z Brw (AL8)
aw 1 (auw avwcosgb) N oww _p o+l d (vdw LE 4P 5 AL9
ot ' Reosg FrS oz = foto\Guaz )t Fee T Fo = Buw (AL9)

A.2  Governing equations in spherical coordinate system and sigma
coordinates

A.2.1 Navier-Stokes equations

The continuity and momentum equations are given as

dh 1 (ahu Jdhvcosg

Jw
oh 1 0w _ AL1
ot * Reosp\ox T ag' )+ 300 (AL.10)

6hu+ 1 [dhu? +6hvucos¢ +6hwu 3
at'" ' Rcos¢p \ N g’ do

1 h (0 dqd 0 a (vfo
(f+%tan¢)hv— ( (q+ il 0)+ h n)+hF (V_t_u>

(A1.11)

Rcosp \p, \0A = do dA daA do\ h 0o

ohv 1 [dhuv 0hv?cos¢\ OJhwv
—+ + + =
dt'"  Rcos¢p\ oA ap’ do

h 8q 3q0 3 (v’
(f+_ta”¢)h”__(ﬁ(ag)+aza;>+ h6¢>> hFH%(%%)

dhw N 1 <6huw N ahvwcosd)) + dhww
at'"  Rcos¢ \ N ¢’ do

(A1.12)

(A1.13)
1 dq FHE. + a (v{ow
W 0o\ h do

The vertical velocity, w, is given by

(A1.14)

1 N u 6d+v6d (6h+ u 6h+v6h)
YT Reosgp 94 Rag  °\at " Rcosp 91 Rag

A.2.2 Transport equations

The transport equations for the k- model are given as

dhk N 1 <6huk N ahvkcosqb) 4 Jdhwk
ot"  Rcosp \ oA a9’ do

9 “’ak +h(P

(A1.15)
= hF, +
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Ohe 4 1 (ahus N 6hvscos¢) N dhwe
ot'"  Rcos¢p \ oA o9’ do

PR (7 100 WY P
= M T 55\ hov 90 e T G2

The transport equations for the k-w model are given as

(A1.16)

dhk + 1 (ahuk + 8hvkcos¢) 4 dhwk
dt'"  Rcosp \ X a¢’ do
0 (V}’O ok

do ha,'{’%

(A1.17)
= th +

) + h(Py — frwk)

dhw + 1 (ahuw + Ohvwcosqb) 4 Jhw,w
dt"  Rcosp \ oA a¢’ do
(A1.18)

_hE + d <v}’0 ow

— — | + hE, h (P, — 2

Note that in egs. (A1.17)-(A1.18), the modified vertical velocity in the sigma coordinate
system is called w; (instead of w). This is to distinguish it from the specific dissipation
rate, w, of turbulent kinetic energy which was introduced in section 2.1.2.
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