

MIKE 21 Flow Model FM

Sand Transport Module

Step-by-step training guide: Coastal application

DHI A/S headquarters Agern Allé 5 DK-2970 Hørsholm Denmark

+45 4516 9200 Telephone mike@dhigroup.com www.mikepoweredbydhi.com

Company Registration No.: DK36466871

CONTENTS

MIKE 21 Flow Model FM

Sand Transport Module

Step-by-step training guide: Coastal application

1 Introduction 1 1.1 Background 2 1.2 Objective 2

3	Creating the Various Input Parameters to the MIKE 21 Flow Model FM	5
3.1	Water Level Boundary Conditions	
3.1.1	Importing measures water levels to time series file	
3.1.2	Create equidistant time axis	
3.1.3	Filtering time series	
3.1.4	Plot time series file	
3.2	Wave Conditions	.15
3.3	Initial Conditions (Hydrodynamic Module)	.15
3.4	Wind Forcing (Hydrodynamic Module)	.15
3.5	Sediment Data	.17
3.5.1	Sediment properties	.17
3.5.2	Generating sediment transport tables	.17

4	Setup of MIKE 21 Flow Model FM	21
4.1	Specifications	.21
4.2	Specifications for Basic Parameters	.22
4.3	Specifications for the Hydrodynamic Module	.24
	Specifications for the Sediment Transport Module	

5	Model Calibration	37
5.1	Measured Bathymetries	37
5.2	Comparison of Measured and Calculated Bathymetries	39
5.3	Line Series Extension	39

1 Introduction

This Step-by-step training guide relates to Torsminde Harbour on the west coast of Jutland, Denmark. See Figure 1.1 and Figure 1.2.

Figure 1.1 Torsminde Harbour, Denmark. View towards north

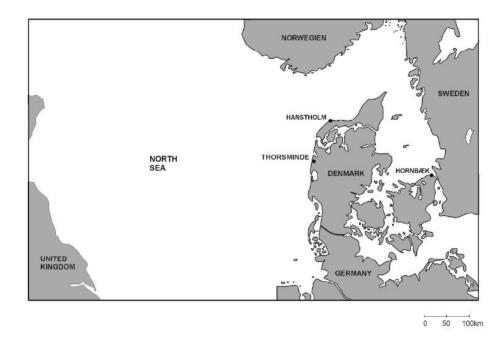


Figure 1.2 Map of the North Sea area. Torsminde is located in the western part of Jutland, Denmark

1.1 Background

Torsminde fishery harbour is located at a tidal inlet on the west coast of Jutland, Denmark, on one of the narrow tidal barriers which divide coastal lagoons from the sea. The port is located at the entrance to the coastal lagoon Nissum Fjord. Sluices regulate the water exchange between the lagoon and the sea.

Up until the 1980's, i.e. for about 100 years, critical parts of the coast were protected by traditional structures such as groynes. A comprehensive nourishment scheme was established in the mid-eighties. Nourishment of about 3 million m³/year along a stretch of approximately 115 km has now stabilised the beach at critical stretches, while other stretches have been left to retreat as part of an overall shoreline management plan prepared and controlled by the Danish Coastal Authority.

Torsminde harbour is located in the central part of a very exposed stretch, where the net littoral drift is southward with an order of magnitude of 0.4 million m³/year, but where the gross transport is several times larger.

As a result severe sedimentation and shoaling problems affected the harbour entrance and a need for alternative layout of the harbour made it necessary to make preliminary investigations of the sediment transport pattern in the area.

1.2 Objective

The objective of this Step-by-step training guide is to set up a model simulating the bed level change for the Torsminde harbour and the adjacent areas from scratch and to calibrate the model to a satisfactory level.

Attempts have been made to make this exercise as realistic as possible although some short cuts have been made with respect to the data input. This mainly relates to quality assurance and pre-processing of raw data to bring it into a format suitable for the MIKE Zero software. Depending on the amount and quality of the data sets this can be a tedious, but indispensable process. For this example the 'raw' data has been provided as standard ASCII text files.

The files used in this Step-by-step training guide are a part of the installation. You can install the examples from the MIKE Zero start page.

Please note that all future references made in this Step-by-step guide to files in the examples are made relative to the main folders holding the examples.

User Guides and Manuals can be accessed via the MIKE Zero Documentation Index in the start menu.

If you are familiar with importing data into DHI's file system, you do not need to generate all the MIKE Zero input parameters yourself from the included raw data. All the MIKE Zero input parameter files required to run the example are included and the simulation can be initiated right away.

2 Creating the Computational Mesh

Creation of the mesh file is a very important task in the modelling process.

The mesh file couples water depths with different positions and contains the following information:

- 1. Computational grid
- 2. Water depths
- 3. Boundary information

Creation of the mesh requires an xyz file(s) for positions of land-boundaries and an xyz file(s) that couples geographical positions with water depths. A data file including a bathymetry can also be used as an alternative to an xyz file with water depths.

Creation of the computational mesh typically requires numerous modifications of the data set, so instead of explaining every mouse click in this phase, the main considerations and methods are explained in the MIKE 21 & MIKE 3 Flow Model FM HD Step-by-step guide, which can be accessed via the MIKE Zero Documentation Index in the start menu:

MIKE 21 & MIKE 3 Flow Model FM, Hydrodynamic Module, Step-by-Step Training Guide

When creating the computational mesh you should work with the mdf file, which contains information about settings for the mesh. Focus in this example is on the Sand Transport Module (ST), so both the necessary xyz files and the mdf file and a mesh file are already supplied with the example, so that the remaining time can be spent on specific Sand Transport subjects. Two mesh files are supplied with the example: a coarse mesh and a fine mesh. Using the coarse mesh will reduce simulation time as fewer calculations are needed and the time step may be increased.

An outline of the properties for the two bathymetries is given in Table 2.1.

	Fine mesh	Coarse mesh
No. of elements	7876	3674
No. of nodes	4211	1997
Minimum element length	4.8 m	11.8 m
Maximum element length	214.8 m	241.0 m
Minimum element area	13 m ²	107 m ²
Maximum element area	21980 m ²	28648 m ²

Table 2.1Mesh bathymetry properties

Figure 2.1 shows the fine mesh, which is used in this example, and Figure 2.2 shows a graphical presentation of the mesh of the Torsminde area as it can be displayed with MIKE Animator.

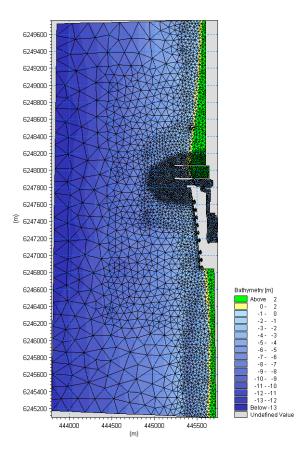


Figure 2.1 The Torsminde area computational mesh and bathymetry as it can be presented with the Data Viewer tool

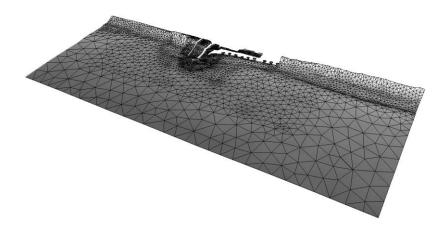


Figure 2.2 The Torsminde area computational mesh and bathymetry as it can be presented with the MIKE Animator tool

3 Creating the Various Input Parameters to the MIKE 21 Flow Model FM

Before the MIKE 21 Flow Model FM complex can be set up, the input data must be generated from the measurements.

The following measurement data are used:

- 1. Water levels at the northern jetty in the period from 1997 to 1999
- 2. Wave model results from the North Sea
- 3. Measured pre- and post storm bathymetric survey data in the harbour entrance. The surveys were carried out 16 October 1997 and 27 October 1997, respectively
- 4. Measured survey lines along the west coast from 1998
- 5. Measured local survey lines from 1999

The bathymetric survey data in the harbour entrance form the basis of calibrating the ST model. Thus it is chosen to start the simulation period at 16/10 1997 00:00 and end it at 27/10 1997 00:00:00, (i.e. 11 days).

The measured data is included in the MIKE Zero Examples folder:

.\MIKE_21\FlowModel_FM\ST\Torsminde\data

Preparation of input data is made by using various tools in MIKE Zero. Therefore reference is also made to the MIKE Zero User Guide, which can be accessed via the MIKE Zero Documentation Index in the start menu:

MIKE Zero Pre- and Postprocessing, Generic Editors and Viewers, User Guide

3.1 Water Level Boundary Conditions

Measured water level recordings from Torsminde harbour are available.

The Torsminde model is forced with water level boundaries and wave radiation stress. Unfortunately there are no measurements of water levels at the boundary, so the correct variation along the boundary is not known. Therefore the boundary is specified as a time series (dfs0 type file) constant along the boundary. Because of the open area and relatively small domain of the model, the water levels measured at Torsminde harbour are selected as boundary conditions for the entire model.

Please note that the time series must have equidistant time steps. That means that if the raw data have time gaps without measurements, the gaps in the raw data must be filled before importing it, or the time series must be interpolated from a non-equidistant time series after importing it. In this case we will do the latter.

3.1.1 Importing measures water levels to time series file

The file 'Torsminde_levels.txt' containing measured water levels can be found in the folder:

.\MIKE_21\FlowModel_FM\ST\Torsminde\Data\Boundary_Conditions

Note that the measured values are stored in unit cm, see Figure 3.1.

Figure 3.1 ASCII file with water level recordings from Torsminde

≩ New File × Product Types: Documents: 🕀 🗁 MIKE Zero Time Series (.dfs0) MIKE HYDRO Profile Series (.dfs1) 🗀 MIKE 11 Data Manager (.dfsu,.mesh,.dfs2,.dfs3) - 🛅 MIKE 21 Grid Series (.dfs3,.dfs2) 🛅 MIKE 3 Plot Composer (.plc) MIKE 21/3 Integrated Models 📥 Result Viewer (.rev) EITPACK Bathymetries (.batsf) MIKE FLOOD Climate Change (.mzcc) MIKE SHE Ecolab (.ecolab) Auto Calibration (.auc) EVA Editor (.eva) 📥 Mesh Generator (.mdf) 📥 Data Extraction FM (.dxfm) MIKE Zero Toolbox (.mzt) Time Series Cancel OK

Open the Time Series Editor in MIKE Zero (File→New→File), see Figure 3.3.

Figure 3.2 Starting the Time Series Editor in MIKE Zero

Select the ASCII template. Open the text file 'Torsminde_levels.txt'. Change the time description to 'Non-Equidistant Calendar Axis' and press OK, see Figure 3.3. Then right click on the generated data and select properties change the type to 'Water Level', see Figure 3.4.

Save the data as 'WaterLevels_NonEq.dfs0'.

e Series Editor: Imp	ort from ascii			
Description				
File name: C:\Data	\Example.wrk\MIK	E_FM\52281_Torsminde	a\data\levels\Torsmi	nde Levels.t
Delimiter: Tab	-	Time description: N	on-Equidistant Calend	dar Axis 💌
		Start Time:	02-06-2005 15:3	5-01
Treat consecutive	delimiters as one	Start Hine.	, 	
Ignore delimiters in	begining of line	Time Step:	0	[days]
🔲 Delimiter between t	ime and first item		00:00:10	[hour:min:sec]
	1.000			[fraction of sec.]
Delete value:	-1e-030		1 0	[naction of sec.]
		V	Time Series Export /	ASCII Format
Preview				
Water Level recording	s from Torsminde			
Time Elevation				
1997-01-01 00:00:00 1997-01-01 00:15:00	-83 -84			
1997-01-01 00:30:00	-83			
1997-01-01 00:45:00	-82			
1997-01-01 01:00:00	-79			
1997-01-01 01:15:00	-77			
Time	Elevation			
1997-01-01 00:00:00	-83			
1997-01-01 00:15:00	-84			
1997-01-01 00:30:00	-83			
1997-01-01 00:45:00	-82			
1997-01-01 01:00:00	-79			
1997-01-01 01:15:00	-77			
,				
	0	K Cano	el	

Figure 3.3 Time Series Editor Import Template

le Properties			<u>?</u> ×
- General Informatic Title:	n Water Level recordings from Torsmind	le	OK Cancel
-Axis Information-			Help
Axis Type:	Non-Equidistant Calendar Axis 💌		
Start Time:	01-01-1997 00:00:00		
Time Step:	0 [days]		
	00:15:09 [hour:min:sec]		
	0.410332 [fraction of sec.]		
No. of Timesteps:	103483	Axis Units:	
∟ ⊢ltem Information –			
Nar		Unit	
<u>1</u> Elevatio	n <u>Water Level</u> Water demand	meter	
	Water Depth Water Level		
	Water level change Water Volume		
	Water Volume Error		
•	Wave action density		
Insert	Append Delete	Item Filtering	

Figure 3.4 Time Series Properties

3.1.2 Create equidistant time axis

The time series file created has a number of gaps in the time series. For example, on 1/7 1997 the recordings stop at 17:30 and are first resumed at 09:00 the next day.

To obtain an equidistant time series for the simulation you should use the MIKE Zero Tool *Interpolate Time Series*.

Open the MIKE Zero Toolbox in MIKE Zero (File \rightarrow New \rightarrow MIKE Zero Toolbox). Select *Interpolate Time Series* in the *Time Series* group, see Figure 3.5.

💷 mztl	- • •
Concatenation Concatenation Concatenation Concatenation Concernent GIS Hydrology Concernent Statistics Time Series Concernent C	
Tool List Setup List	
New Edit Delete Up	Down Run

Figure 3.5 Selecting the Interpolate Time Series tool in MIKE Zero Toolbox

Press the *New* button and follow the dialogues. Select the file 'WaterLevels_NonEq.dfs0' as the input file. In the next dialogue box, please define the interpolation parameters as shown in Figure 3.6. The time step is set to 900 s (e.g. 15 minutes).

Interpolation Method and Subseries Selection		
Specify Intepolation Method and Subseries On this page you specify the interpolation method to use and the start and end time of the interpolation period. You also specify the timestep interval.		
Type of interpolation Linear		
Interpolation Period		
Start: 01-01-1997 00:00:00 🗧 🗸 End: 26-12-1999 05:00:00 🗧 🗸		
Interval 900 [s]		
Data Information		
Start: 1997/01/01 00:00:00 End: 1999/12/26 05:00:00		
Interval 941076 [s]		
<pre></pre>	P	

Figure 3.6 Specifying interpolation parameters in Interpolate Time Series tool

Save the data as 'WaterLevels_Eq.dfs0'.

Open the file in the *Time Series Editor* and multiply the data values with 0.01 to specify the data as unit metres, see Figure 3.7.

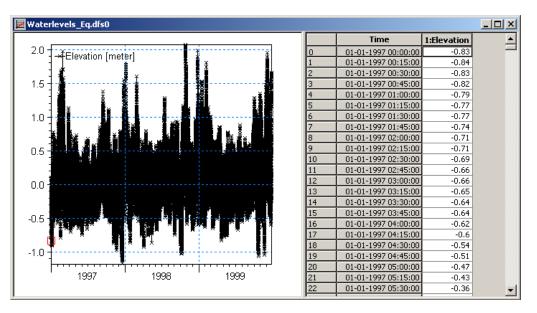


Figure 3.7 Time Series Editor with imported Water Levels from Torsminde

3.1.3 Filtering time series

To obtain a smooth variation of water levels, the measured water level recordings from Torsminde must be low pass filtered. If you do not filter the time series, the numerical simulation may become unstable.

To filter the time series use the MIKE 21 Tool FFT Filtering of Time Series.

Open the MIKE 21 Toolbox in MIKE Zero (File→New→File), see Figure 3.8.

🐴 New File		×
Product Types: MIKE Zero MIKE HYDRO MIKE 11 MIKE 21 MIKE 21 MIKE 21/3 Integrated Models LITPACK MIKE FLOOD MIKE SHE	Documents: Flow Model (.m21) Flow Model FM (.m21fm) Spectral Waves FM (.sw) Boussinesq Waves (.bw) Elliptic Mild Slope Waves (.ems) Parabolic Mild Slope Waves (.pms) Non-Cohesive Sediment Transport (.st2) Curvilinear Flow Model (.m21c) MIKE 21 Toolbox (.21t)	
MIKE 21 Toolbox	OK	Cancel

Figure 3.8 Selecting the MIKE 21 Toolbox in MIKE Zero

Select the tool FFT Filtering of Time series in the Waves group, see Figure 3.9.

🐺 21T1 📃 📼 💌
 Environmental Hydrodynamics Morphology Sediments Seismology Tidal Waves Calculation of Reflection Coefficients FFT Filtering of Timeseries Generate Sponge and Porosity Layer Maps Generate Wave Energy Spectrum Mesh Generation for MIKE21 BW Random Wave Generation Regular Wave Generation Wave Spectra Converter Wave Spectra Converter
Tool List Setup List
New Edit Delete Up Down Run

Figure 3.9 Selecting the FFT Filtering of Time Series tool in MIKE 21 Toolbox

Press the *New* button and follow the dialogues. Select the file 'WaterLevels_Eq.dfs0' as the input file. In the next dialogue box, define the frequency range as shown in Figure 3.10. The maximum frequency of interest is set to 5e-005 Hz, corresponding to 5.5 hours.

Se	lect Frequency Range	×
	Select Frequency Range. On this page you specify lower and upper frequencies of interest. If the wave spectrum corresponding to the time series after removal of the specified waves is to be saved, you should enter a name for the file.	
	Specify Frequency Range:	_
	Minimum Frequency of Interest: 0 [Hz]	
	Maximum Frequency of Interest: 5e-005 [Hz]	
	Save Resulting Energy Spectrum:	
	C Yes	
	No	
_		
	< Back Next > Cancel Help	

Figure 3.10 Specifying frequency range in FFT Filtering of Time Series tool

Save the data as 'Waterlevels_Torsminde. dfs0'1.

Now you are ready to use this file as boundary conditions for the simulation.

3.1.4 Plot time series file

To make a plot of the water level time series, please open the Plot Composer in MIKE Zero, see Figure 3.11. Select 'plot' \rightarrow 'insert a new plot object' and select 'Time Series Plot', see Figure 3.12.

¹ Please note that data files supplied with the installation are write-protected. This means that these files must be renamed or saved to a different folder.

New File Product Types:	Documents:	
Image: Second	 Time Series (.dfs0) Profile Series (.dfs1) Data Manager (.dfsu,.mesh,.dfs2,.dfs3) Grid Series (.dfs3,.dfs2) Plot Composer (.plc) Result Viewer (.rev) Bathymetries (.batsf) Climate Change (.mzcc) Ecolab (.ecolab) Auto Calibration (.auc) EVA Editor (.eva) Mesh Generator (.mdf) Data Extraction FM (.dxfm) MIKE Zero Toolbox (.mzt) 	
	OK	Cancel

Figure 3.11 Starting the Plot Composer in MIKE Zero

Insert Plot Object		×
Insert		
Single Plot Maximized		
Single Plot Sized:	w: 100 [mm] h: 100	[mm]
O Multiple Plots Tiled:	nx: 2 ny: 2	
Standard Graphics		
	OK	ncel

Right click on the plot area and select properties. Add the actual time series file to the Plot

Composer by clicking and selecting the file. It is possible to add more than one time series to the same plot. At the property dialogue it is possible to change some of the properties for the plot such a colours, etc. (see Figure 3.13).

tion) filtering of Elevation	Elevation LP/HP filtering of Elevation	C:\Data\Exam C:\Data\Exam		meter undefined
filtering of Elevation	LP/HP filtering of Elevation	C:\Data\Exam	Undefined	undefined
				Þ

Figure 3.13 Plot Composer Time Series Plot Properties dialogue for selecting time series files and adjusting scales, curves, etc.

The resulting plot of the water level variation at the boundary during the simulation is shown in Figure 3.14.

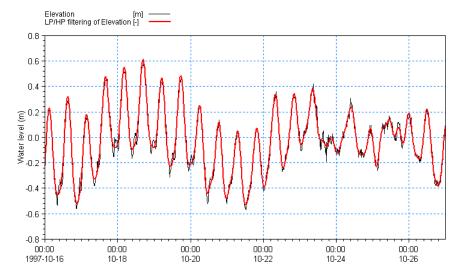


Figure 3.14 Water level variation in time, before and after low pass filtering

3.2 Wave Conditions

The wave conditions must be calculated prior to the simulation of the sand transport. The wave conditions are available from a regional model². The local wave conditions have been simulated by the MIKE 21 Spectral Wave Module using the initial bathymetry in the area³.

Because of the open area and relatively small domain of the present model the wave conditions have been set as constants along the west boundary.

Figure 3.15 shows the boundary wave conditions during the simulation period.

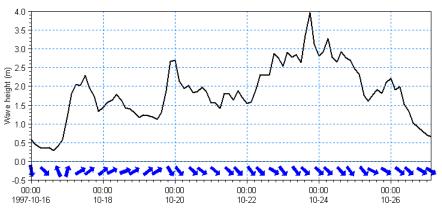


Figure 3.15 Time series of significant wave height and mean wave direction along the west boundary

In the beginning of the period there are fairly small waves from SW. After almost 4 days the wave direction shifts to NW and the wave height increases.

3.3 Initial Conditions (Hydrodynamic Module)

The initial surface level is estimated to be 0.0 m over the whole domain. Using the soft start facility the water level will adapt to the measured water level in Torsminde harbour within the hour.

3.4 Wind Forcing (Hydrodynamic Module)

Wind recordings from Torsminde Harbour will form the wind forcing as time series constant in space.

The wind recordings from Torsminde harbour have been loaded into the Time Series Editor and saved in 3-hour intervals in the file Wind_Torsminde_3h.dfs0.

Time series of the wind speed and direction are shown in Figure 3.16.

² See e.g. www.waterforecast.com

³ The input file for the wave simulation can be found in the folder: .\MIKE_21\FlowModel_FM\ST\Torsminde\data\waves

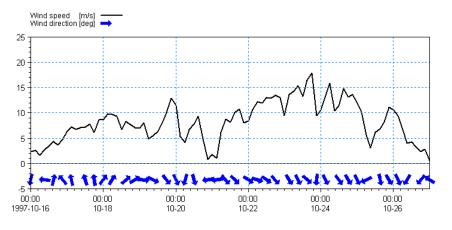


Figure 3.16 Wind speed and direction from Torsminde Harbour during the simulation period

A more descriptive presentation of the wind can be given as a wind speed (or wind rose) diagram. Figure 3.17 shows the wind rose for Torsminde Harbour.

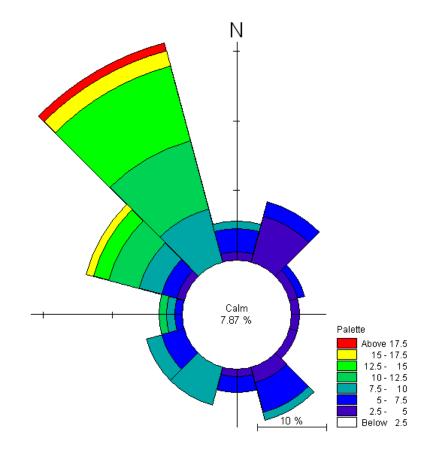


Figure 3.17 Wind rose from Torsminde Harbour for the simulation period as it can be illustrated in the Plot Composer. The dominating wind direction is northwest

3.5 Sediment Data

3.5.1 Sediment properties

The sediment properties are assumed to be constant over the area. The median grain size is 0.3 mm and the sediments are well sorted with a spreading of 1.45.

3.5.2 Generating sediment transport tables

Prior to execution of the quasi-3D sediment transport module, sediment transport look-up tables have to be generated. The extension of the tables must be such that the possible parameters from the simulation are covered.

The necessary extension of the transport tables is not known a priori the simulation. However, an educated guess can be made on basis of the boundary conditions, information about the area and previous experience.

To generate a transport table, please open the *MIKE 21 Toolbox* in MIKE Zero, select the *Generation of Q3D Sediment Tables* and press *New*, see Figure 3.18 and Figure 3.19.

🚰 New File		×
Product Types: MIKE Zero MIKE HYDRO MIKE 11 MIKE 21 MIKE 21/3 Integrated Models LITPACK MIKE FLOOD MIKE SHE MIKE 21 Toolbox	Documents: Flow Model (.m21) Flow Model FM (.m21fm) Spectral Waves FM (.sw) Boussinesq Waves (.bw) Elliptic Mild Slope Waves (.ems) Parabolic Mild Slope Waves (.ems) Non-Cohesive Sediment Transport (.st2) Curvilinear Flow Model (.m21c) MIKE 21 Toolbox (.21t)	
	ОК	Cancel

Figure 3.18 Starting the MIKE 21 Toolbox in MIKE Zero

👯 21T2 📃 📼 💌
 Environmental Hydrodynamics Morphology Sediments Extension of Q3D Sediment Tables Extension of Sediment Tables Generation of Q3D Sediment Tables Generation of Sediment Tables Generation of Storms Integration of Storms Sediment Discharge Calculation Seismology Tidal Waves Wind
Tool List Setup List
New Edit Delete Up Down Run

Figure 3.19 Selecting tool for generation of transport tables

Follow the tutorial, rename the setup and continue to the dialogue containing General Parameters and Additional Parameters. Press next for each to accept the default values. In the Wave Parameters dialogue change the wave theory to Stokes 1st order, see Figure 3.20.

Wave Parameters	×
Select Wave Parameters On this page you specify the wave theory used to des velocity and the value of the breaking wave paramete	
Stokes	king wave parameters: ma 1: 1 ma 2: 0.8
< Back Ne	xt > Cancel Help

Figure 3.20 Selecting wave theory for transport tables

In the following dialogue box the extension of the tables is defined, see Figure 3.21.

t	e the Sediment Transport Table On this page you specify the first he table. The table includes wa speed, angle between current ar	t value, spacing ve height, wave	e period, wave	height/water d	epth, current
ء ا	Sediment table axis	First value	Spacing	No of points	1
	Current speed	0.01	0.15	15	
	Wave height	0.2	0.25	18	
[Wave period	5	1	11	
	Wave height/water depth	0.05	0.05	20	
	Angle current/waves	0	30	13	
	Grain Size	0.3	2	1	
	Sediment grading	1.45	0.15	1	
	Bed slope, curr. direction	0	0.01	1	
	Bed slope, normal to curr.	0	0.02	1	
	Centrifugal acceleration	10	0.001	1	

Figure 3.21 Defining the extension of the transport tables

Insert the values given in Figure 3.21, press next and continue to give the sediment transport tables a descriptive title. Go on with saving the setup and press 'Execute' to the tool in order to generate the sediment transport tables. Two ASCII files will be generated with the extension .lon and .crs, respectively.

As generating sediment transport tables are computationally demanding, sediment transport tables for this example have been provided with the setup.

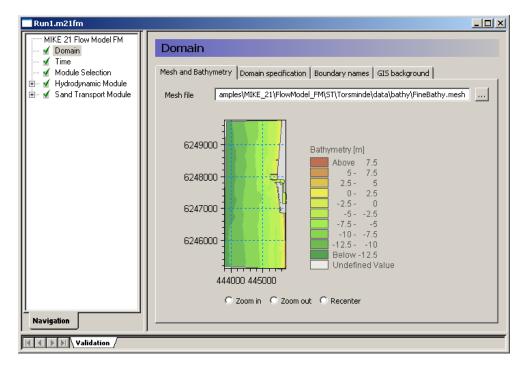
4 Setup of MIKE 21 Flow Model FM

4.1 Specifications

We are now ready to set up the model using the Torsminde mesh with the pre-storm water depths, boundary conditions and forcings as described in Chapter 3. Table 4.1 lists the parameters applied for the simulation in short.

Parameter	Value
Specification file	Run1.m21fm
Mesh and bathymetry	FineBathy.mesh 4211 Nodes, 7876 elements
Simulation period	1997-10-16 00:00 - 1997-10-27 00:00 (11 days)
Time step interval	1800 s
No. of time steps	528
HD: Solution technique	Low order, fast algorithm Minimum time step: 0.1 Maximum time step: 1800 Critical CFL number: 1
HD: Enable flood and dry	Yes
HD: Initial surface level	0.0 m
HD: Wind	Wind_SimulationPeriod.dfs0
HD: Wave radiation	Wave_sim.dfsu
HD: Water level boundaries North and south West boundary	Waterlevels_Torsminde.dfs0 Include radiation stress correction, soft start 3600 s Exclude radiation stress correction, soft start 3600 s
HD: Eddy viscosity	Smagorinsky formulation, Constant 0.28 m ² /s
HD: Resistance	Manning number, Manning.dfs2
ST: Model type	Wave and current
ST: Sediment transport table	QsTable.lon / QsTable.crs
ST: Time step factor	2
ST: Sediment properties	Constant, d50=0.3 mm, spreading 1.45
ST: Forcings	Wave field, Wave_sim.dfsu
ST: Morphology	Include feedback on hydrodynamic, wave and sand transport calculation
ST: Boundaries	Zero sediment flux gradient for outflow, zero bed change for inflow
Result files	HD_output.dfsu, ST_output.dfsu
Simulation time	About 16 minutes with a 2.2 GHz PC, 8 GB RAM, 4 cores, using coarse bathymetry About 1.8 hour with a 2.2 GHz PC, 8 GB RAM, 4 cores, using fine bathymetry

In the following screen dumps, the individual input pages are shown and a short description is provided.


Additional information about the modules can be found in the following User Guides, which can be accessed via the MIKE Zero Documentation Index in the start menu:

MIKE 21 Flow Model FM, Hydrodynamic Module, User Guide

MIKE 21 Flow Model FM, Sand Transport Module, User Guide

4.2 Specifications for Basic Parameters

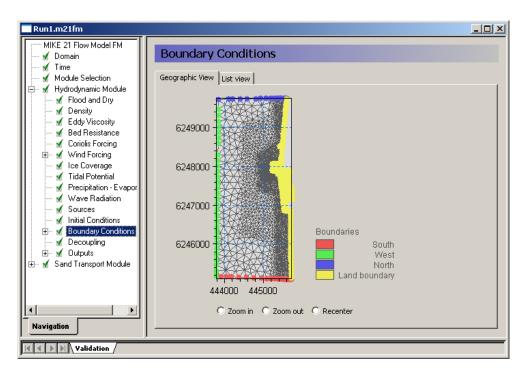

Specify the bathymetry and the mesh file FineBathy.mesh in the Domain dialogue, see Figure 4.1. The projection zone has already been specified in the mesh generation process as UTM-32. In the mesh file, each boundary has been given a code. In this example the North Boundary has 'Code 2', the West Boundary has 'Code 3' and the South Boundary has 'Code 4'. Rename the boundary 'Code 2' to 'North', 'Code 3' to 'West' and 'Code 4' to 'South' in the dialogue Boundary Names.

Figure 4.1 MIKE 21 Flow Model FM: Specify Domain

Please note that you can see a graphical view of the computational mesh and the boundaries by selecting 'Boundary Conditions' in the Hydrodynamic Module. Here you can also view the code values (second item), see Figure 4.2.

Figure 4.2 Computational mesh and code values of the boundaries

Specify the overall time step interval to 1800 s and the number of time steps to 528 in order to simulate a period of 11 days, see Figure 4.3.

Run1.m21fm		
MIKE 21 Flow Model FM Domain Module Selection Hydrodynamic Module Sand Transport Module Navigation	Time Simulation period No. of time steps 528 Time step interval 1800 [sec] Simulation start date 16-10-1997 00:00:00 + [dd-mm-yyyy hh:mm:ss] Simulation end date 27-10-1997 00:00:00 [dd-mm-yyyy hh:mm:ss]	
Validation / Simulation	1	

Figure 4.3 MIKE 21 Flow Model FM: Simulation period

In the MIKE 21 Flow Model FM the modules run simultaneously, allowing feedback of the results between the involved modules.

For this example include the 'Hydrodynamic' and 'Sand Transport' modules in the 'Module Selection' dialogue, see Figure 4.4.

Run1.m21fm		_ 🗆 🗵
MIKE 21 Flow Model FM Domain Time Module Selection Hydrodynamic Module Sand Transport Module Navigation	Module Selection Module Selection Hydrodynamic Transport ECO Lab Mud Transport Particle Tracking Sand Transport	
Validation / Simulation]	

Figure 4.4 MIKE 21 Flow Model FM: Module Selection

4.3 Specifications for the Hydrodynamic Module

The shallow water equations are solved using 'Low order, fast algorithm' for both time integration and space discretisation, see Figure 4.5.

The minimum time step is set to 0.1 s to ensure that the CFL number always is less than the critical CFL number of 1. The maximum time step is set to the overall time step of 1800 s.

Run1.m21fm		
MIKE 21 Flow Model FM	Solution Technique	
Module Selection Hydrodynamic Module Solution Technique ✓ Flood and Dry ✓ Eddy Viscosity ✓ Eddy Viscosity ✓ Eddy Viscosing ✓ Coriolis Forcing ✓ Vind Forcing ✓ Vind Forcing ✓ Ice Coverage	Shallow water equations Time integration Low order, fast algorithm Space discretization Low order, fast algorithm Minimum time step 0.1 [sec] Maximum time step 1800 [sec] Critical CFL number 1	
Tidal Potential ✓ Tidal Potential ✓ Yrecipitation - Evaporatic ✓ Sources ✓ Initial Conditions ✓ Boundary Conditions ✓ Decoupling ✓ Outputs	Transport equations Minimum time step 1 [sec] Maximum time step 1800 [sec] Critical CFL number 1	
Cutput 1 Sand Transport Module Navigation Validation (Simulation	<u>۱</u>	 •]

Figure 4.5 MIKE 21Flow Model FM, Hydrodynamic Module, Solution Technique

In this example the flooding and drying should be included (see Figure 4.6), because the tidal variation of the water level will cause part of the beach to dry out and flood during the simulation. If you choose not to include flooding and drying, the model will blow up in situations with dry areas.

In our case select a drying depth of 0.005 m and a flooding depth of 0.05 m. The wetting depth should be 0.1 m. These are default values.

Run1.m21fm		<u> </u>
MIKE 21 Flow Model FM	Flood and Dry ✓ Include flood and dry Drying depth 0.005 [m] Flooding depth 0.05 [m] Wetting depth 0.1 [m]	
K C D D Validation		

Figure 4.6 MIKE 21 Flow Model FM, Hydrodynamic Module: Flood and Dry

As the density variation is not taken into account in this example, the density should be specified as 'Barotropic' in the 'Density ' dialogue, see Figure 4.7.

Run1.m21fm		<u> </u>	
MIKE 21 Flow Model FM MIKE 21 Flow Model FM Model FM Time	Density		
✓ Module Selection ✓ Hydrodynamic Module ✓ Flood and Dry ✓ Density	Density type	Barotropic	
✓ Uensity ✓ Eddy Viscosity ✓ Eddy Viscosity ✓ Bed Resistance ✓ Coriolis Forcing	Reference temper Reference salinity		
 			
 ✓ Precipitation - Evapo ✓ Wave Radiation ✓ Sources ✓ Initial Conditions 			
Finda Condutors Soundary Conditions Occoupling			
Navigation			-

Figure 4.7 MIKE 21 Flow Model FM, Hydrodynamic Module: Density specification

The default setting for the Horizontal Eddy Viscosity is a Smagorinsky formulation with a coefficient of 0.28, see Figure 4.8.

Run1.m21fm		<u> </u>
MIKE 21 Flow Model FM	Eddy Mooneity	
🚽 🗹 Domain	Eddy Viscosity	
Time		
Module Selection	Horizontal Eddy	
🖻 🗹 Hydrodynamic Module		
Flood and Dry	Eddy type Smagorinsky formulation	
🚽 🗹 Density		
Eddy Viscosity	Smagorinsky formulation data	
	Format Constant 💌	
····· ✔ Coriolis Forcing 		
✓ ✓ Ice Coverage	Constant value 0.28	
✓ Tidal Potential	Data file and item Select	
 Precipitation - Evaporational 		
✓ Wave Badiation	Item: View	
Sources		
🚽 🖌 Initial Conditions		
🕀 🖌 Boundary Conditions	Eddy parameters	
🚽 🖌 Decoupling		
🗄 🗹 Outputs	Minimum eddy viscosity 1.8e-006 [m²/s]	
🗄 🗹 🖌 Sand Transport Module	Maximum eddy viscosity 100000000 [m²/s]	
Navigation		<u> </u>
Validation		

The Bed Resistance will be given as a Manning map, see Figure 4.9. The Manning number is $40^{1/3}$ /s in the overall area, but smaller at the south and north boundaries to avoid instabilities during simulation.

The format must be set as 'Varying in domain' in order to specify the bed resistance by a 2D data file (dfsu or dfs2).

Run1.m21fm		- 🗆 🗵
MIKE 21 Flow Model FM	Dad Desistance	
🚽 🗹 Domain	Bed Resistance	
Time		
🦷 🗹 Module Selection	Resistance type Manning number 🔹	
🖻 🗹 Hydrodynamic Module		
- 🖌 Flood and Dry	Manning number data	
- 🖌 Density	Format Varying in domain	
Eddy Viscosity	Format Varying in domain	
🖌 Bed Resistance	Constant value 40 [m^(1/3)/s]	
🚽 🗹 Coriolis Forcing		
🗄 🛛 🗹 Wind Forcing	Data file and item \ST\Torsminde\data\resistanceMaps\Manning.dfs2 Select	
🚽 🖌 Ice Coverage	Item: Manning View	
🚽 🗹 Tidal Potential		
🦳 🗹 Precipitation - Evaporati		
🦳 🗹 Wave Radiation		
Sources		
🚽 🚽 Initial Conditions		
🗄 🖷 🗹 Boundary Conditions		
Decoupling		
🗄 🗄 🗹 Outputs		
🗄 – 🗹 Sand Transport Module		
Navigation		
Validation		

Figure 4.9 MIKE 21 Flow Model FM, Hydrodynamic Module: The Bed Resistance is specified as varying in domain: Manning.dfs2

Click Select ... to select the data file in the open file window that appears.

The Wind Forcing will be included as a time series file, see Figure 4.10.

Run1.m21fm				
MIKE 21 Flow Model FM	Wind Forcing	1		
✓ Time ✓ Module Selection				
E → Module Selection	Format	Varying in time, constant in domain 💌		
Flood and Dry				
— ✓ Density — ✓ Eddy Viscosity	Speed	0 [m/s]		
✓ Bed Resistance	Direction	0 [deg]		
🗌 🚽 🗹 Coriolis Forcing	Data file and items	T\Torsminde\data\wind\Wind_SimulationPeriod.dfs0	Select	
	Data nic ana items	Item: Wind speed	View	
✓ Tidal Potential		Item: Wind direction	VIGVV	
🖌 🖌 Precipitation - Evaporati		Item:		
🖌 🚽 🖌 Wave Radiation				
Sources	Neutral pressure	1013 [hPa]		
	Soft start interval	3600 [sec]		
🖌 🖌 Decoupling				
i ⊕… 🖌 Outputs I ⊕… 🖌 Sand Transport Module				
🛨 🗹 Sand Transport Module				
Navigation				
KIPN Validation				

Figure 4.10 MIKE 21 Flow Model FM, Hydrodynamic Module: Wind Forcing

The format must be set as 'Varying in time, constant in domain' in order to specify the wind conditions by a time series file.

Click Select ... to select the data file in the Open File window that appears.

The Wind Friction type is set to 'Varying with Wind Speed' with the default values, see Figure 4.11.

Please note that this example **does not** include the parameters of the following subjects:

- Coriolis Force
- Ice Coverage
- Precipitation-Evaporation
- Sources
- Structures
- Tidal Potential
- Decoupling

and their associated dialogue pages are not considered.

Run1.m21fm			<u>_ </u>
MIKE 21 Flow Model FM MIKE 21 Flow Model FM Mike 21 Flow Model FM Module Selection Module Selection Generation Generation Module Selection Module Selection Navigation	Constant	/arying with Wind Speed 0.001255 peed Friction 7 [m/s] 0.001255 25 [m/s] 0.002425	
K I D D Validation /			

The wave radiation should be specified in the 'Wave Radiation' dialogue. In this case the wave radiation has been calculated prior to the simulation, so you should select the type 'Specified wave radiation', see Figure 4.12.

Click Select ... to select the data file in the Open File window that appears.

Run1.m21fm		
Run1.m21fm MIKE 21 Flow Model FM MIKE 21 Flow Model FM Module Selection Hydrodynamic Module Hydrodynamic Module Hydrodynamic Module HydrodyNiscosity	Wave Radiation Type Specified wave radiation Wave radiation Image: Comparison of the system of th	et
K ()) Validation		

Figure 4.12 MIKE 21 Flow Model FM, Hydrodynamic Module: Wave Radiation

Now you should check the boundary conditions at the simulation start time to estimate the initial surface level. In this case we will use a constant level of 0.0 m, which is the measured value in Torsminde harbour 1 hour after the start of the simulation, see Figure 4.13.

Run1.m21fm				<u>- 0 ×</u>
Run1.m21fm MIKE 21 Flow Model FM MIKE 21 Flow Model FM Module Selection Hydrodynamic Module Keldy Viscosity Keldy Viscosity Ged Resistance Mind Forcing Mind Forc	Initial Conditi Type Initial data Surface elevation Data file Surface elevation item Velocity items	Ons Constant 0 [m] u-velocity v-velocity Item: Item: Item:	0 [m/s] 0 [m/s] 5elect View	
Yalidation				

In the Boundary Conditions dialogue, the boundary conditions should be specified for the boundary names, which were specified in the Domain dialogue, see Figure 4.1. There is a North Boundary, a West Boundary and a South Boundary, and the time series that were generated in Chapter 3 should be used on all three boundaries.

In this example the boundary type is 'Specified Level' (Water Level), because only Water Level measurements are available. 'Specified Level' means that the Water Levels are forced at the boundaries, and the discharge across the boundary is unknown and estimated during simulation.

The boundary format must be set as 'Varying in time, constant along boundary' in order to specify the boundary as a time series file (dfs0).

Click Select to select the data file in the Open File window that appears.

At the North and South boundary you must select the 'Include radiation stress correction'. This automatically changes the water level at the boundary to include the water level setup caused by the breaking waves. There is no reason to this correction for the West Boundary as the wave setup here in deep water is negligible.

It is a good practice to use a soft start interval. In our case 3600 s is suggested with a reference value corresponding to the initial value of 0.0 m. The soft start interval is a period in the beginning of a simulation where the effect of the boundary water levels does not take full effect.

In the beginning of the soft start period the effect of the specified Boundary Condition is zero. The effect increases gradually until the boundaries have full effect in the model at the end of the soft start interval period. See Figure 4.14.

MIKE 21 Flow Model FM	Run1.m21fm		_ 🗆 🗵
✓ Domain ✓ Time ✓ Module Selection ✓ Hydrodynamic Module ✓ Flood and Dry ✓ Density ✓ Eddy Viscosity ✓ Bed Resistance ✓ Coriolis Forcing ✓ Vind Forcing ✓ Tidal Potential ✓ Precipitation - Evapo ✓ Initial Conditions ✓ North ✓ Sources ✓ Noth ✓ Noth ✓ West	MIKE 21 Flow Model FM MIKE 21 Flow Model FM Module Selection Mydoule Selection Mydoule and Dry Med Resistance Mcoriols Forcing Mydoule Forcing Mydoule Forcing Mydoule Forcing Mydoule Forcing Mydoule Force Mydoule Force	✓ Include radiation stress correction Boundary data Format Varying in time, constant along boundary ▼ Constant.value [m] Data file and item data\boundary_conditions\Waterlevels_Torsminde.dfs0 Soft start Item: LP/HP filtering of Elevation Type Sinus variation Time interval 3600 [sec]	
Navigation	Navigation		

Figure 4.14 MIKE 21 Flow Model FM, Hydrodynamic Module. The Boundary Conditions for the North Boundary are specified as constant along the boundary: Waterlevels_Torsminde.dfs0

Now you may specify one output as an area series (2D) and also specify the resulting output file name, see Figure 4.15. Specify the file name HD_output.dfsu for the first simulation.

Run1.m21fm	
MIKE 21 Flow Model FM MIKE 21 Flow Model FM Module Selection M Hydrodynamic Module M Flood and Dry M Eddy Viscosity M Eddy Viscosity M Eddy Viscosity M Coriolis Forcing M Coriolis Forcing M Coriolis Forcing M Frecipitation - Evaporatic M Vave Radiation M Sources M Initial Conditions H M Boundary Conditions	Output 1 Geographic View Output specification Output items Data
- 🖌 Decoupling	Easting Northing Layer no. Name
📄 🗹 Outputs	Easting Horthing Layer no. Hame 1 443770.51765 6245046.3359 Image: Control of the second seco
🗄 🖌 🗹 Output 1	2 443770.51765 6249810.7596
🖽 🗠 🗹 Sand Fransport Module	3 445762.53963 6249810.7596
	4 445762.53963 6245046.3359
Navigation	

Figure 4.15 MIKE 21 Flow Model FM, Hydrodynamic Module: Output type and location. Results can be specified as point, line or area series

Reduce the output size for the area series to a reasonable amount by selecting an output frequency of 3600 s, which is a reasonable output frequency for a tidal simulation. As our time step is 1800 s, the specified output frequency is 3600/1800 = 2. As default, the full area is selected.

Pick the parameters to include in the output file as shown in Figure 4.16.

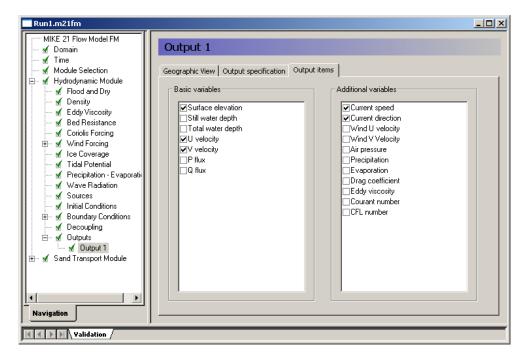


Figure 4.16 MIKE 21 Flow Model FM, Hydrodynamic Module: Output Parameters

4.4 Specifications for the Sediment Transport Module

In the 'Model Definition' dialogue you select the 'Model type' to *Wave and current* as the sediment transport calculations in this simulation are based on the simultaneous calculation of waves and currents, see Figure 4.17.

To limit computational time, the sediment transport rates for this model type are found by interpolation in a table containing sediment transport rates for an array of representative events. The method of generating such a sediment transport table is described in Chapter 3.

Click to select the sediment transport table 'QsTable.lon' in the Open File window that appears.

Run1.m21fm		<u> </u>
MIKE 21 Flow Model FM MIKE 21 Flow Model FM Mike 21 Flow Model FM Mike 21 Flow Model PM Mike 21 Flow Model Performance Mi	Model Definition Model type Wave and current Pure current description Image: Constraint of tractions Image: Constraint of tractions Image: Constraint of tractions Wave and current Image: Constraint of tractions Sediment transport table Data file MIKE_21\FlowModel_FM\ST\Torsminde\data\tables\QsTable.lon Image: Constraint of tractions	
Validation		

Figure 4.17 MIKE 21 Flow Model FM, Sand Transport Module: Model Definition

The time step for the sediment calculations are specified in the 'Time parameters' dialogue. The time step for the ST simulation is defined in term of the overall time step.

The sediment transport simulation should start at the same time as the hydrodynamic simulation, e.g. start time step is 0. The time step for the ST simulation should be defined such that the update of the sediment transport rates reflects the bathymetric changes. In this case an update frequency of $\frac{1}{2}$ hour is chosen, hence the time step factor must be set to 1 (1800 s), see Figure 4.18.

Run1.m21fm	
MIKE 21 Flow Model FM MIKE 21 Flow Model FM Module Selection Module Selection Module Selection Model Definition Model Definition Mo	Time parameters Start time step 0 Time step factor 1
Validation / Simulation	1

Figure 4.18 MIKE 21 Flow Model FM, Sand Transport Module: Time parameters

Please note that decreasing the time step factor may increase the simulation time.

The sediment properties must be defined in the 'Sediment Properties' dialogue. Per default the porosity is set to 0.4.

Important: The specified grain diameter or grading coefficient must be contained in the sediment transport table. If the sediment data is outside the limits of the table, the simulation will stop!

In this case the sediment data in the area is specified as Constant with a mean Grain diameter of 0.3 mm and a Grain coefficient of 1.45, see Figure 4.19. (It is the type of sediment, which is described in the 'Sediment transport table' in Figure 4.17).

Run1.m21fm				<u>- 🗆 ×</u>
MIKE 21 Flow Model FM ✓ Domain ✓ Time ✓ Module Selection ✓ Hydrodynamic Module ✓ Sand Transport Module	Porosity Porosity 0.4	perties -		
Model Definition ✓ Time parameters ✓ Time parameters ✓ Forcings ✓ Forcings ✓ Morphology ✓ Outputs ✓ Output 1	Sediment data Format Grain diameter Grading coefficient Data file and items	Constant 0.3 mm 1.45	Select	
Navigation	Relative density	2.65	View	

Figure 4.19 MIKE 21 Flow Model FM, Sand Transport Module: Sediment properties

In this simulation it is implicit that the current fields are found from the ongoing HD simulation. In the 'Waves' dialogue you specify the type as 'Wave field', so that you can select the wave field from the prior wave simulation, see Figure 4.20.

Click Select to select the data file in the Open File window that appears.

Run1.m21fm MIKE 21 Flow Model FM			
- ✓ Domain ✓ Time	Waves		
Module Selection ✓ Module Selection ✓ Hydrodynamic Module ✓ Sand Transport Module	Type Wave fi		
✓ Model Definition ✓ Time parameters ✓ Sediment properties	Parameter definition	C RMS wave height Peak wave period Significant wave height C Mean wave period	
E- ✓ Forcings	Format	Varying in time and domain	
🕀 🗹 Morphology	Wave height	1 [m] Wave period 3 [sec]	
🗄 – 🗹 Outputs	Wave direction	180 [deg]	
	Data file and items	eL_FM\ST\Torsminde\Data\Waves\Wave_Sim.dfsu Select	
		Item: Sign. Wave Height View	
		Item: Peak Wave Period Item: Mean Wave Direction	
		,	
Navigation			
Validation			

The focus of this simulation is to model the bed level change during a storm period. In the 'Model Definition' dialogue you select to include the feedback on hydrodynamic, wave and sand transport calculation. This enables a dynamic update of the bathymetry that effects the future calculations, see Figure 4.21.

Set the maximum bed level change to 2 metres/day to avoid instabilities in the simulation because of abrupt changes at the boundaries.

Run1.m21fm		- D ×
MIKE 21 Flow Model FM MIKE 21 Flow Model FM Module Selection Module Selection Module Selection Model Definition Model definition	Model definition Max bed level change 2 Speedup factor 1 Include feedback on hydrodynamic, wave and sand transport calculation	
Outputs Navigation Validation		

The time step for the morphological update is the same as the time step for the sediment calculations, i.e. the speed-up factor is 1.

You can start the morphological update of the bathymetry at a later time than the start of the sediment transport calculations, but in the present case you should set the start time step to 0, see Figure 4.22.

Run1.m21fm		<u>- 🗆 ×</u>
MIKE 21 Flow Model FM MIKE 21 Flow Model FM Module Selection Module Selection Model Definition Model definition Mod	Time parameter Start time step 0	
Navigation		

Bank erosion is not included in the model as the focus area is in front of the harbour entrance where no slope failure mechanisms will influence the result.

In the Boundary Conditions dialogue, the boundary conditions should be specified for the boundary names, which were specified in the Domain dialogue, see Figure 4.1. There is a North Boundary, a West Boundary and a South Boundary.

Select the boundary type for all three boundaries as shown in Figure 4.23.

📑 Run1.m21fm		- 🗆 ×
MIKE 21 Flow Model FM Domain Module Selection Module Selection Module Selection Module Definition Model Definition Model Definition Morphology Morphology	South Type Zero sediment flux gradient for outflow, zero bed change for inflow	×
Validation		

The output of the sediment transport simulation is defined as an area series (2D), see Figure 4.24. Select an output frequency of 3600 s, similar to the time step of the HD simulation. As default, the full area is selected.

Run1.m21fm						_	
MIKE 21 Flow Model FM	Output 1						
✓ Time ✓ Module Selection ✓ Hydrodynamic Module ✓ Sand Transport Module ✓ Model Definition ✓ Time parameters ✓ Sediment properties ✓ Forcings ✓ Morphology ✓ Outputs ✓ Output 1	Geographic View Data Field type Output file Treatment of ff First Area series Map projection	ood and dry 0		Out;	Frequency	Poort from file	
					2	X + +	
		Easting	Northing	Layer no.	Na	me	
	1	443770.51765	6245046.3359				
	2	443770.51765	6249810.7596				
	3	445762.53963	6249810.7596				
	4	445762.53963	6245046.3359				
Navigation							

Figure 4.24 MIKE 21 Flow Model FM, Sand Transport Module: Output type and location

Pick the parameters to include in the output file as in Figure 4.25.

Run1.m21fm		_ 🗆 🗵
MIKE 21 Flow Model FM MIKE 21 Flow Model FM Module Selection Module Selection Module Selection Module Selection Module Selection Module Selection Module Selection Module Selection Module Selection Morphology Mo	Output 1 Geographic View Output specification Output items Basic variables Additional variables Image: Total load, x-component Image: Total load, x-component Image: Total load, y-component Image: Total load, y-component Image: Total load, y-component Image: Total load, y-component	
Validation		

5 Model Calibration

In order to calibrate the model, some measurements are required inside the model domain.

5.1 Measured Bathymetries

In this example, the bed level in front of the harbour entrance has been surveyed on 16/10 and 27/10 1997, respectively. These two dates are the beginning and end of the simulation period. The findings are shown in Figure 5.1 as maps of the survey data.

The maps show that two areas in front of the harbour entrance are significantly more shallow than the surroundings. One area is an isolated outer bar, positioned 300 m from the coastline. Another area is an inner bar located close to the northern jetty, extending in front of the harbour entrance.

Before the storm, on 16 October, 1997, the outer bar extended 100 in the north-south direction and 50 m in the west-east direction. It rose up to -3.0 m in an area where the bed levels were below -4 m. The inner bar extended 200 m along the coast and 50 m across. The southern 100 m of the bar was located just in front of the harbour entrance. The bar rose to above -2 m in an area where the bed generally was between -4 m and -5 m.

After the storm, on 27 October, 1997, the outer bar remained in its general appearance. However, it seems like the most shallow area did migrate a bit northwards. The inner bar now stretches even further across the entrance towards the south, though the top level of the bar has decreased.

These bathymetry changes can be related to the hydrodynamic conditions. In the beginning of the period, the fairly small waves from southwest would generate a northbound littoral drift. On 20 October 1997 the wave direction shifted to northwest and the wave height increased thus generating a larger south-bound littoral drift. In total this would cause the sediment in the area to move towards south, as seen for the inner bar.

In reality the sluice inside the harbour was closed during the storm and reopened after the storm, but before the post-storm measurement. The influence of the outflow on the bed level change can be seen as the two seawards extensions on the inner bar.

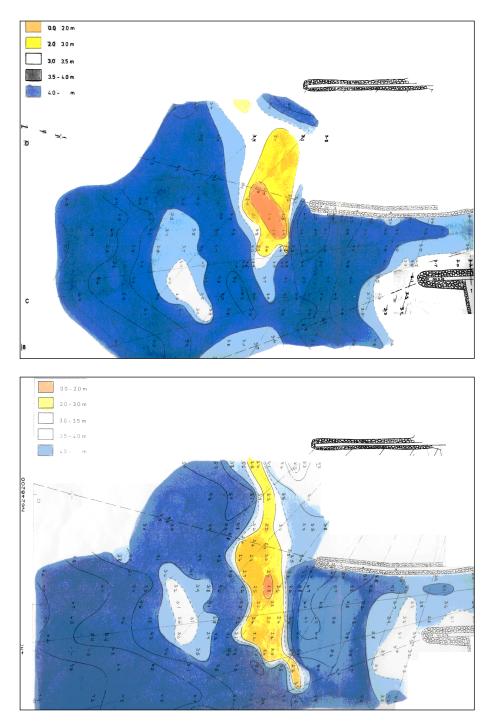


Figure 5.1 Measured bed level in front of harbour entrance. Upper: measured 16/10 1997 Lower: measured 27/10 1997

5.2 Comparison of Measured and Calculated Bathymetries

Use the Data Viewer to plot the initial bathymetry and the calculated bed level after the 11 days of simulation. A comparison can easily be made by applying a colour legend that resembles the scanned map.

Figure 5.2 shows the measured and simulated bathymetries before and after the storm event.

It is seen that the bar in front of the harbour entrance in the simulation does not show the same tendency of southward migration as observed in nature.

This is due to the fact that the simulation is not a fully dynamical setup as the wave conditions have been calculated on basis of the initial wave conditions in a coarse bathymetry. As the bed level change does not influence the wave conditions, the increased wave breaking that would enforce a development of the bar in the southward direction does not exist.

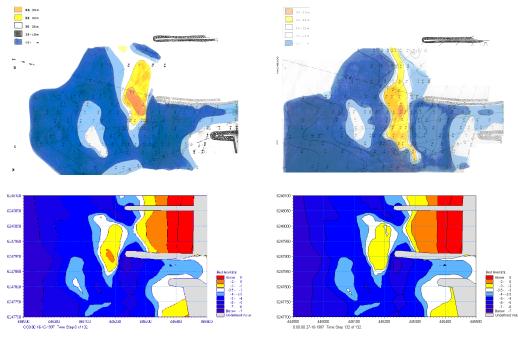


Figure 5.2 Comparison of measured and simulated bathymetries in front of harbour entrance. Upper: measured Lower: calculated

5.3 Line Series Extension

The development of the inner bar can be reviewed in detail by extracting lines from the result file.

To extract lines from a dfsu file, used the Data Extraction FM tool in MIKE Zero, see Figure 5.3.

Rew File		
Product Types:	Documents: Time Series (.dfs0) Profile Series (.dfs1) Data Manager (.dfsu,.mesh,.dfs2,.dfs3) Grid Series (.dfs3,.dfs2) Plot Composer (.plc) Result Viewer (.rev) Bathymetries (.batsf) Climate Change (.mzcc) Ecolab (.ecolab) Auto Calibration (.auc) EVA Editor (.eva) Mesh Generator (.mdf) Data Extraction FM (.dxfm) MIKE Zero Toolbox (.mzt)	
Data Extraction FM		
	ОК	Cancel

Figure 5.3 Starting the Data Extraction FM tool in MIKE Zero

In the input dialogue specify the name of the file containing the simulation results, see Figure 5.4.

ExtractLineData.dxfm		
Data Extraction FM	Input File name xamples\MIKE_	21\FlowModel_FM\ST\Torsminde\simulation1\ST_output.dfsu
	File information	
	Map projection :	UTM-32
	X min, X max :	443790.062500, 445743.000000
	Y min, Y max :	6245093.000000, 6249764.000000
	Z min, Z max :	-14.293978, 7.838003
	Number of dimensions :	2
	Number of layers :	0
	Time step interval :	3600.000000 s
	Number of timesteps :	265
	Start date :	16-10-1997 0:00:00
	End date :	27-10-1997 0:00:00
Navigation		
Validation		

Figure 5.4 Selecting input file

In the output dialogue you define an output file for each line you want to extract, see Figure 5.5.

ExtractLineData.dxfm	<u></u>
Data Extraction FM	Output 1
	Geographic View Output specification Output items Data Field lype 2D (horizontal) Output format Line series Output file FlowModel_FM\ST\Torsminde\simulation1\BedLevel_Line_7880.dfs1
	Time step First 0 Last 264 Frequency 1
	No. of points on line 41
	Line end points Easting Horthing z Hame
	First 445100 6247880 Last 445300 6247880
Navigation	
Validation	

Figure 5.5 Defining output file and line position

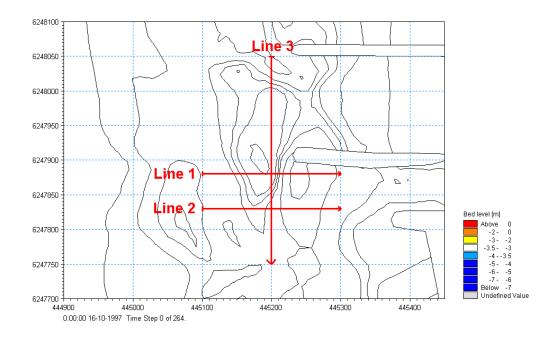

In this case three lines are defined as listed in Table 5.1.

Table 5.1 Extraction lines from the Output dialogue

Lines	Start	End	Description
Line 1	(445100, 6247880)	(445300, 6247880)	North cross-shore line
Line 2	(445100, 6247830)	(445300, 6247830)	South cross-shore line
Line 3	(445200, 6248050)	(445200, 6247750)	Longshore line

The lines are outlined in Figure 5.6.

Figure 5.6 Position of extraction lines

The development of the bed level along Line 1, Line 2 and Line 3 are shown in Figure 5.7, Figure 5.8 and Figure 5.9, respectively. Line 3 is positioned to follow the top level of the bar.

It is seen from Figure 5.7 and Figure 5.8 that the bed level does not change significantly in the sheltered area behind the breakwater, i.e. east of position 120 m on the x-axis. Figure 5.7 shows that the inner bar just adjacent to the northern jetty has been subject to movement of sediment, whereas the bed level in Figure 5.8 seems to be the same after the simulation as before.

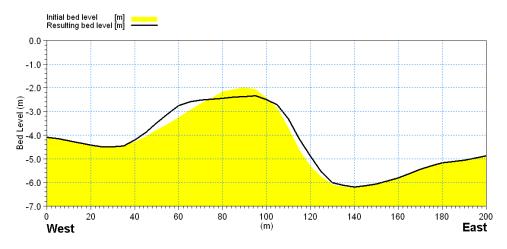


Figure 5.7 Bed level along Line 1: before and after simulation

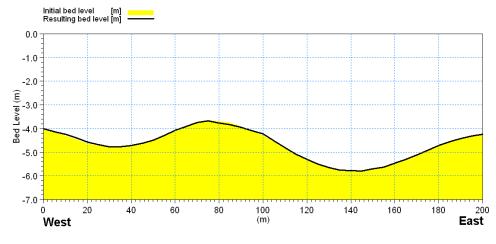


Figure 5.8 Bed level along Line 2: before and after simulation

Figure 5.9 shows that the existing inner bar has migrated very little towards south during the simulation. This behaviour does not match the findings in nature. This can, however, be explained by the fact that the wave conditions in this simulation have been carried out on basis of the initial bed level conditions.

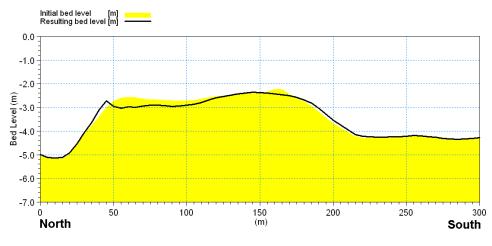


Figure 5.9 Bed level along Line 3: before and after simulation

