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A Sediment Transport Model for

Straight Alluvial Channels

Frank Engelund and Jorgen Fredsee
Technical University of Denmark, Copenhagen

The paper presents a simple mathematical model for sediment transport in
straight alluvial channels. The model, which is based on physical ideas related to
those introduced by Bagnold (1954), was originally developed in two steps, the
first describing the bed load transport (Engelund 1975) and the second account-
ing for the suspended load (Fredsee and Engelund 1976). The model is assumed
to have two advantages as compared with empirical models, first it is based ona
description of physical processes, secondly it gives some information about the
quantity and size of the sand particles in suspension and the bed particles.

Introduction

One of the basic difficulties in sediment transport theory is the definition of bed load
versus suspended load, and some authors have even tried to overcome the problem
by disregarding any such distinction. However, there are several good reasons for
maintaining it, mostly, of course, related to the nature of the physical processes. The
authors would like to draw the attention to the fact that the instability of erodible
beds which leads to the formation of sand dunes (or antidunes) can only be explained
satisfactorily by a theory which clearly distinguishes between bed load and suspen-
ded load. Itis found that transition between dunes and plane bed is very sensitive to a
correct estimation of these transport rates (Engelund and Fredsee 1974, Fredsoe and
Engelund 1975, and Fredsee 1976a). The stability analysis even gives an indication of
one relevant way of defining the difference between the transport of bed load and
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suspension, respectively: The bed load is that part of the total load which accomoda-
tes to spatial changes in the tractive stress, so that spatial lag may be neglected,
assuming inertia of the bed particles to be negligible. On the other hand, the suspen-
ded load responds with a certain lag, because the particles have to settle a certain
distance before they become deposited. This lag depends on flow conditions and
sediment properties and can be estimated from an equatian of continuity.

Also in other problems in the field of river morphology and sedimentation a clear
distinction between bed load and suspended load is important. For example it was
found (Engelund 1976) that the transverse bed slope in river bends increases in linear
proportion to the ratio g;/qg. Concerning the sedimentation of river navigation
channels is, it was demonstrated (Fredsee 1976b) that the rate of sedimentation for
longitudinal currents is a function of the bed load, rather than of the total load.
Further it might be mentioned that observations seem to indicate that the occurrence
of meandering or braiding depends on the ratio g,/ q g, so that the greater the relative
amount of suspension is, the more pronounced is the tendency towards braiding.
This tendency is until now not fully understood.

An obvious possibility is to define the bed load as the particles in the lowest layer
of moving grains, Typically the particles move by rolling, sliding, or in short jumps.
This definition is in accordance with the original definition by H. A. Einstein (1950):
Bed load is the bed particles moving in the so-called »bed layer, defined as »a flow
layer, 2 grain diameters thick, immediately above the bed.«

In this treatise Einstein presented one of the first theoretical approaches to the
problem of predicting theoretically the rate of bed load transport, applying theory of
probability to account for the statistical variation of the forces acting on bed partic-
les. If the magnitude of the instantaneous agitating forces on a certain bed particle
exceeds the stabilizing forces, the particle is supposed to be eroded and to start
moving along the bed, until it becomes deposited downstream at a location, where
the magnitude of the instantaneous forces makes deposition possible. From such
consideration Einstein found that the rate of bed load transport could be described
by a relation between two non-dimensional quantities

9p T U}'
¢ = ————— and ¢ = = 1)
Vis-1)gd? (s=-1)pgd (s-1)gd
in which

g g = rate of bed load transport in volume of material per unit time and unit
width of the channel -

s =relative density of sediment

g =acceleration of gravity

d =fall diameter of sediment particle

P =fluid density

To =bed shear stress (=tractive stress)
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Uf= friction velocity :v%- =\/gDI

D =mean depth

I =energy gradient (slope)

¢ is a non-dimensional form of the transport rate, while

6 is the non-dimensional tractive stress (Shield’s parameter).

When calculating the transport rate of the suspended load Einstein applied the
concentration distribution

e _ (D-y L) (2)
c \y D-a
a

in which

¢ =concentration of suspended sediment (at y above the bed)

¢g = concentration at reference level (v = a)

D =depth of water

y =distance from bed level

z =w/04 Uf (the Rouse number) where w is the settling velocity.

Eq. (2) was derived by Ippen and Rouse (1937) and experimentally verified by
Vanoni (1946). It suffers from the drawback that ¢, usually cannot be predicted. The
present paper suggests a method for calculation of ¢, based on a single dynamical
principle. When ¢, is known the transport rate g is found from

q, = J’D cUdy (3)

a

U being the mean flow velocity at the distance y from the bed. Einstein’s paper
contains some excellent graphs which facilitate this calculation quite considerably.

In case the bed is covered by dunes the shear velocity Usshould be replaced by

U}n= VgD'I . u)

in which the reduced depth D’ is found from the equation (Einstein 1950)

v
7T Ve

where k is the surface roughness, which is usually a little larger than the sediment size
and may be taken as 2.5 d (Engelund and Hansen 1972). V'is the mean velocity of the
flow.

R. A. Bagnold (1954) pointed out a short-coming of the previous theories by
formulating the following paradox: Consider the ideal case of fluid flow over a bed
of uniform, perfectly piled spheres in a plane bed, so that all particles are equally
exposed, statistical variations due to turbulence being neglected.

When a gradually increasing tractive stress exceeds a critical value, all particles in
the upper layer are peeled off simultaneously and are dispersed in the fluid. Hence
the next layer of particles is exposed to the flow and should consequently also be
peeled off. The result is that all subsequent underlying layers are also eroded, so that

= 6 +

N

|l
.5 ln‘?— (5)
k
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a stable bed could not exist at all, when the shear stress exceeds the critical value.
Bagnold explained the paradox by assuming that in a water-sediment mixture the
total shear stress T would be separated in two parts

T=TF+TG ’

where T is the shear stress transmitted by the intergranular fluid, while 7 is the
shear stress transmitted because of the interchange of momentum caused by the
encounters of solid particles, 1.e. tangential dispersive stress.

Hence, Bagnold’s description of the physical process is, that when a layer of
spheres is peeled off, some of the spheres may go into suspension while others will be
transported as bed load. Thus a dispersive pressure on the next layer of spheres will
develop and act as a stabilizing agency. Hence, a certain part of the total bed shear
stress T is transmitted as a grain shear stress 7 and a correspondingly minor part as
a fluid stress (tF = 7 - 1G). Continuing this argumentation, it is understood that
exactly so many layers of spheres will be eroded that the residual fluid stress Tz on
the first immovable layer is equal to the critical tractive stress 7.. Hence, the mecha-
nism in transmission of a tractive shear stress T greater than 7¢ is the following: 7. is
transferred directly by fluid shear stress to the immobile bed while the residual stress
T- 71, is transferred to the moving particles and further from these to the fixed bed as
a dispersive stress. :

By theoretical and experimental research Bagnold developed the following expres-
sion for the dispersive shear stress due to the grain collisions

2
= 2 32 éﬂ) 6
Fg 0.013 ps x?d (dy (6)

where A is the so-called linear concentration, which is related to the volume concen-
tration by the equation
0.65

° S Gane ‘

and y is the distance from the bed.

We shall later revert to an application of these expressions.

In recent publications (R. Fernandez Luque 1974, R. Fernandez Luque and R. van
Beek 1976) certain modifications of Bagnold’s ideas were suggested together with a
consistent theory for the transport of bed load on a plane bed, considering the
motion of individual particles. The theory is supported by a series of interesting
experimental observations. )

One of the basic issues is that close to incipient particle motion (i.e. small transport
rates) only the topmost grains will be eroded, and the bed load will not effectively
reduce the fluid part of the turbulent bed shear stress. This can also hardly be
expected as, under these conditions, the bed load particles cover only a small portion
of the bed surface, because only few particles will be in motion. According to the
model of Fernandez Luque et al. the bed load particles reduce the maximum fluid
shear stress at the bed surface to the critical value T, by exerting an average reaction
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force on the surrounding fluid. Hence the bed load forms a »protection shield« at
higher bed load concentrations, which controls the erosion rate. We shall revert to
this idea later on.

The experiments presented by these authors are of special interest, because they
avoid the complication of dune influence, as the observations were carried out for
very small transport rates mostly before bed waves became appreciable.

The Rate of Bed Load Transportation qg
In the following it is attempted to approach the bed load transportation problem by
considering the motion of the individual particles. Information about the transport
velocity of single particles has been obtained by experiments published by Meland
and Normann (1966). These experiments were carried out with single spherical glass
beads moving over a bed of rhombohedrally packed spherical beads. In some of the
runs the moving single particle was of the same size as those of the bed, while in other
cases the bed particles were either larger or smaller. Following these authors notation
d denotes the diameter of the migrating particle, while & is the diameter of the bed
particles.

On the basis of these measurements it is attempted to develop a semi-empirical law
for the mean transport velocity U g of a particle moving as bed load. To this end we
consider the most important forces determining the motion of an immersed particle:

I) The agitating forces, drag Fp and lift £, and
2) the stabilizing forces, reduced gravity (immersed weight) and the frictional
forces resulting from the occasional contacts between particle and bed.

An exact description of forces and particle motion is impossible due to the complex
character of the phenomenon. What we can do is to establish a »model equation«
containing the time-averaged quantities, and from this equation we can hope to
obtain sufficient information to be able to identify the parameters necessary for a
relevant description of the process.

The agitating forces may be represented in form of a drag

1 _ 2 42
CfO[OLUf UB] Hd

in which U and Up are the friction velocity and the migration velocity of the
particle, respectively. al/,is the flow velocity at a distance of about one or two grain
diameter d from the fixed bed. Assuming the validity of the ordinary velocity distri-
bution in rough channels, @ must be of the order of 6 to 10. The factor ¢ stands for
the drag (and lift) coefficient, but as the time variation of the agitating forces differs
considerably from that of the stabilizing forces, we can hardly expect the value of ¢ to
be exactly equal to the static value.
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The frictional force acting on the particle is written as

og(s=1) £ d* 8
where s is the relative density of the particles, and fis the dynamic friction coeffi-
cient. Actually the gravity of the particle should be corrected for a small dynamic lift
Fy. However, this may be done by changing the value of c.

The model equation then expresses the average equilibrium of agitating and sta-
bilizing forces

c%p(an—UB)zgdz = pgls-1) £d°8 , (8)
from which

UE

~,—=d[7-v80/8] (3)

f
where 6 is given by Eq. (1), and

6, = 3“—5 (10)

ale

0, is seento be the limiting value of 8 for which a particle located on the bed is just
immobile. It is natural to relate this to the critical value 6, corresponding to Shield’s
criterion. As a particle lying on the bed is easier to move than a particle located in the
bed, it must be expected that 6;< §,. A crude estimate can be obtained from Eq. (10)
by insertion of the following values, partly obtained by the subsequent analysis:

0
B = tan27", o = 9, c = 0.6,

which gives 8, = 0.014, which is between one half and one fourth of the generally
accepted values of 6.

It is probably better to evaluate 8, by considering the experiments of Fernandez
Luque et al., which indicated 6, to be about half 8, so that Eq. (9) may be written

U
Z,£=a[1—o.7fm] (1)
f

Comparison of this expression with Meland and Normann's result indicated that for
suitable choice of §, and a = 10, a very good agreement is obtained, as demonstrated
in Fig. 1. Fernandez Luqué’s results, also indicated in this figure, are more satisfacto-
ry in the sense that 6, was measured directly and Up was determined as the mean
transport velocity in a natural bed.

Eq. (11) was first suggested by Fernandez Luque and was checked by experiments
with different slopes of the bed surface. It was found to hold irrespective of the
inclination angle &, provided the proper value of 6, was inserted. The experiments
indicate that we must take

8 =9 [1+ tan §] (129
e e, 0
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Fig. 1. Experiments of the transport velocity Ug of bed load particles.

where 6., is the value of 6, for horizontal bed. § is positive when the particles move
uphill.

For sand the value of a was found to be 9.3.

From the knowledge of mean particle velocity we can now derive an expression for
the rate of bed load transport g under the assumption that the bed load is the
transport of a certain fraction p (= probability) of the particles in a single layer. As

the total number of surface particles per unit area is 1/d? we get
=T43 P ¢y
g =59 537 U

or, after insertion of Eq. (11)

qg = 9.3 ¢dp Upl1-0.7/5,75 ]
. . o« /_—
This is made non-dimensional by the divisory/(s-1)gd® (of Eq. (1)):
¢B=5p(/§—o.7/e“c) (13)

From the experiments of Fernandez Luque et al. we can get some empirical informa-
tion about p, because the measurements comprise ¢, 6, and 6. The result is given in
Fig. 2, where the values of p calculated from Eq. (13) are plotted against §. The
experiments are particularly interesting because the transport rates were so small
that all particles moved as bed load and without the disturbing effect of dunes and
ripples. In case of larger transport rates this technique is no longer applicable, so that
we must find other ways to obtain the necessary information.

Another useful series of data is that presented by Guy-et al. (1966). For the present
purpose, the evaluation of p, the experiments with sand size d = 0,93 mm are particu-
larly suited as explained below. Because of the dune formations it is neccessary to
divide the total shear stress in two components

299



F. Engelund and J. Fredsoe

0.01 0.1 1.0
10r T T T T T T T T T T TT71]V v
- Legend: v Fort Collins (standing waves)
- o Fort Collins (dunes)
B + Ferndndez Luque et al. 4
oL
0.10
i L] . . ' i |
001 L ! ! ! lllLII‘ L L1l
Fig. 2. The probability function p versus .
T '
T =T 't " -— = 2
3 o f

where only the first term, which corresponds to the skin friction, is directly active in
the bed load process. T’ (or U,) is calculated from Einstein’s procedure of Egs. (4)
and (5). Similarly, we have the non-dimensional version of Eq. (13).

8 =86"'"+¢

In all the expre.sions derived above, 8 should consequently be substituted by " in
order to correct for the effect of dunes.

Another difficulty in applying ordinary flume data is that the total sediment load
usually has a component of suspension, which has to be subtracted from the total
load in order to obtain the ‘bed load proper. The selected series of experiments has
the particular advantage that the amount of suspended load was always a minor part
of the total.

There are two different methods of evaluation of the bed load transport. The first
one is to take the total load and subtract the measured suspended load. The second
one is to consider the measured dune height 4 and the migration velocity a and then
apply the equation

’
g = 5 (1-m)an (14)
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where m is the porosity of the sand bed.

Of course there is a considerable amount of uncertainty associated with both
methods, which makes it so important to select experiments where the suspension is
small. In the runs considered, the two methods were found to agree fairly well.
Hence, after making an estimate of 6 (e.g. by Shield’s diagram), we can now calcu-
late the value of p from Eq. (13), substituting the calculated value of §° for 8. The
result of such an analysis is also shown in Fig. 2, where the Fort Collins points and
Fernandez Luque’s data are seen to form a fairly consistent picture.

Now we are able to make a first check on the above-mentioned assumption that
only the partT ¢ of the total shear stress 7 is transferred directly to the immobile bed
as skin friction, while the residual part 7- ¢ is carried as drag on the moving bed
particles and indirectly transferred to the bed by occasional encounters. This idea
leads to the equation

TiTG+nFD R

where Fpyis the average drag on a single moving bed particle, while 7 is the number
of moving particles per unit area. If this expression is divided bypg(s-1)d, and Fpyis
estimated as

F, o~ pgls= )5 d? 8

the resulting equation becomes

6 =6 +zB(nd’) =8 +I6p (15)

From this p can be determined, if 9, and $ are known. From investigations of flow in
meanders (Engelund 1975, Gottlieb 1976) the value of the dynamic friction angle ¢ is
known to be slightly smaller than the static (i.e. angle of repose), the value ¢ = 270
being reasonable for ordinary sand. Taking 6, = 0.05 we get

e:o.05+0.2668p 3

which is given in Fig. 2 for comparison with Fernandez Luque’s experiments. The
agreement is acceptable for small values of g, but for the larger values the curves fall
below the Fort Collins data. The explanation for this seems to be that Eq. (15) is only
valid as long as there is no suspension, a point we shall revert to later in greater
detail.

The next problem is what happens at very large transport rates. In this extreme the
argument leading to Eq. (15) does obviously not hold. If we stick to the model that
the bed load is a single layer of particles, the maximum value of p must be unity
corresponding to a simultaneous motion of all particles in the layer.

In the Fort Collins series four runs (corresponding to »standing waves«) are
marked by triangles in Fig. 2. In these runs the transport rate was large but still
largely occurring as bed load. The fact that they all gave values of p close to unity is

an experimental support for the idea that p approaches unity for increasing values of
0.
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If a limiting value of p = 1 is accepted, the expression for p has to be modified as
for instance

T v =/

5 B )

576 (16)
c

which is about equal to Eq. (15) for 8 close to § and approaches unity for large
values of 6. Eq. (16) is given in Fig. 2 for 6, = 0.05 and 0.06.

The Suspended Load

For large values of " the transfer of shear stress to the bed surface is no longer well
described by Eq. (15). because it neglects the dispersive stress from the suspended
load. In order to take account of this we have to introduce Bagnold’s expression and
write

T = T +nF +F 17)

in which Fy is the dispersive stress as given by Eq. (6), where a specific value of the
velocity gradient will have to be inserted. Assuming the classical logarithmic velocity
distribution to be at least approximately valid, we get

S 57

L9 L‘
du _ f
- Ty

The dispersive stress acting on the bed must depend on this velocity gradient calcu-
lated for a value of y about equal to one particle diameter d. The following calcula-
tions indicated that the value y = 1.73 d vielded the best agreement with observation
of the actual amount of suspension, so that Eq. (17) becomes

T! = T, 4nF,+0.027 ps(AbU}.)z , (18)

where.p is the linear concentration at bed level. In nondimensional form this equa-
tion becomes

' = E 277 o8t 2
5 o +Tep+0.02708" 22 (19)

By Eq. (7) we can now calculate the corresponding volumetric bed concentration cp
as
B 0.65
°y = 7T )\b 3 (20)

Hence this model provides a method for calculation of ¢}, from the requirements of
momentum transfer to the immobile sand surface if p is known.

When # becomes very large, corresponding to large suspended transport rates, we
assume p to be unity and find that

302



A Sediment Transport Model for Straight Alluvial Channels

. = /@ﬁﬁ

b 0.027 9"

for ordinary sand with s = 2.65. This corresponds to the volumetric bed concentra-

tion ¢p = 0.32, which is estimated to be a reasonable maximum value for suspended

sediment in motion. Theoretically ¢, can be as large as 0.65, but this corresponds to
firm packing and does not allow free motion of the particles.

In the general case ¢, must be determined from Egs. (19) and (20), assuming p to
be given by Eq. (16) (an illustrative example is given below). For fixed values of 8, B,
and s, the bed concentration depends on 6’ only. This relationship is presented in Fig.
3 for 0, = 0.05, s=2.65,and B=tan 27° = 0.51. Note that Cb becomes extremely small
for 8" < 0.1 and that it approaches 0.32 for large values of §’.

To proceed further it is necessary to obtain an estimate of the size of the particles
moving in suspension. This is achieved by means of the criterion

w
~1
=

w<O.8U} s (21)

which states that only particles with a fall velocity w smaller than this threshold value
will move in suspension. When the distribution curve for w is known it is possibie to
estimate the »effective fall velocity« for the suspended fraction (Raudkivi 1976).
Criteria of the type (21) seem to be generally accepted (Middleton 1976).

When w has been determined the transport rate of suspended load can be calculat-
ed from Egs. (2) and (3), as described by Einstein (1950). The bed load transport is
obtained from Eqgs. (13) and (16).

G

0.2+

0.1

0041

0021

0.01 I I e’

Fig. 3. Bed concentration cp versus@’, assuming 0.7 0.05,
s =2.65, and B =0.51.
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The problem is now how the theory can be controlled by comparison with experi-
ments. It is well-known, that measurements of the transport rates of bed load and
suspended load separately is difficult and always associated with considerable uncer-
tainty. Likewise, the mean particle size of the suspended load is rather uncertain.

In adapting the Fort Collins data (Guy et al. 1966) we have tried to compare the
calculated bed load transport rates with the measurements applying Eq. (14) (which
is rather doubtful for large transport rates). Although the scatter is rather large, the
general trend in the comparison is satisfactory. A similar remark applies to the
suspended particle size.

The total rate of sediment transport, however, can be measured with good accura-
cy. Hence, the most significant test is to compare the total load with the theory,
which is done in Fig. 4.

T T T T T T T T T T T Ty

" MEASURED x

x 0.19 mm
a  027-028mm s /8

x
100 ¢ .
o Q93 mm x 4

01

T

<]
Lol

T
4

; $ THEORY
0.01 . P eyt ! L Ll i Lo g I 1

0.01 0.1 1.0 100

Fig. 4. Comparison between measured and calculated rates at total sedi-
ment transport.
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Example
As an illustrative example we consider run 21 from the Fort Collins report (Guy et al.
1966) from the series using sand with the mean fall diameter ¢ = 0.28 mm. The data

for this run are:

Slope 7/ =0.00131
Depth D =0.326 m
Mean velocity ¥'=0.725 m/s
Temperature T = 16.°5 C

The hydraulic roughness of the surface is estimated to £ = 2.5 d. Hence, from Eq.
(5) we get D’=0.116 m and Uj = 0.0386 m/s. From this we find that
o' = 2L = 0,329

(s-1)d

With 8, = 0.05and B=0.51 Eq. (16) gives p = 0.859 and the non-dimensional rate of
bed load transport is calculated from Eq. (13):

<I>B = 1.79

If the same quantity is estimated from Eq. (14) we get @ g = 1.22. The critical fall
velocity w, is (Eq. (21)) 0.8 Uz = 0.031 m/s. From the distribution of particle fall
velocity it is found that the mean fall velocity of the suspended part is about w =
0.023 m/s, corresponding to a fall diameter of 0.20 mm. The measured mean diame-
ter of the suspended particles was in this case considerably smaller, about 0.16 mm.
(For the runs in general the agreement between measured and calculated particle
sizes for the suspended material was better and no trend in the deviations was found).
The value of z becomes

w
Z = gy = 148
f

The lower limit a for the integral in Eq. (3) is taken as a = 2 d.
According to Einstein (1950) Eq. (13) can be written as

< (a 300
= i & T .
<I>S 11.6(8 cb(d)[llln X +I2J s

where /, and I, are obtained from his diagrams as 0.40 and -2, respectively. From
Egs. (19) and (20) or from Fig. 3 ¢p is found to be 0.14, so that the non-dimensional
transport rate of suspended material becomes

¢ = 1.9u
S
The total sediment transport rate thus becomes
= = 3.73
@t (I)b + fbs 3

to be compared with the measured value 3.46.
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