

# MIKE+

User Guide

SWMM



## PLEASE NOTE

| COPYRIGHT         | This document refers to proprietary computer software which is pro-<br>tected by copyright. All rights are reserved. Copying or other repro-<br>duction of this manual or the related programs is prohibited without<br>prior written consent of DHI A/S (hereinafter referred to as "DHI").<br>For details please refer to your 'DHI Software Licence Agreement'.                                                                                                                                            |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIMITED LIABILITY | The liability of DHI is limited as specified in your DHI Software Licence Agreement:                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | In no event shall DHI or its representatives (agents and suppliers) be liable for any damages whatsoever including, without limitation, special, indirect, incidental or consequential damages or damages for loss of business profits or savings, business interruption, loss of business information or other pecuniary loss arising in connection with the Agreement, e.g. out of Licensee's use of or the inability to use the Software, even if DHI has been advised of the possibility of such damages. |
|                   | This limitation shall apply to claims of personal injury to the extent<br>permitted by law. Some jurisdictions do not allow the exclusion or<br>limitation of liability for consequential, special, indirect, incidental<br>damages and, accordingly, some portions of these limitations may<br>not apply.                                                                                                                                                                                                    |
|                   | Notwithstanding the above, DHI's total liability (whether in contract, tort, including negligence, or otherwise) under or in connection with the Agreement shall in aggregate during the term not exceed the lesser of EUR 10.000 or the fees paid by Licensee under the Agreement during the 12 months' period previous to the event giving rise to a claim.                                                                                                                                                 |
|                   | Licensee acknowledge that the liability limitations and exclusions<br>set out in the Agreement reflect the allocation of risk negotiated and<br>agreed by the parties and that DHI would not enter into the Agree-<br>ment without these limitations and exclusions on its liability. These<br>limitations and exclusions will apply notwithstanding any failure of<br>essential purpose of any limited remedy.                                                                                               |



# CONTENTS

| 1 | <b>Gene</b><br>1.1 |                | ngs       9         ype       9         Features       9         Unit       10 |
|---|--------------------|----------------|--------------------------------------------------------------------------------|
|   |                    | 1.1.3          | Network Levels Specification                                                   |
|   | 1.2                | Descript       | ion                                                                            |
| 2 | -                  | -              | ration                                                                         |
|   | 2.1<br>2.2         |                | ate System                                                                     |
| 3 |                    | -              | twork Modelling with SWMM                                                      |
| 5 | 3.1                |                | n of a SWMM Network                                                            |
|   | 3.2                | Nodes          |                                                                                |
|   | 0.1                | 3.2.1          | Identification                                                                 |
|   |                    | 3.2.2          | Geometry                                                                       |
|   |                    | 3.2.3          | Storage Unit                                                                   |
|   |                    | 3.2.4          | Outfall                                                                        |
|   | 0.0                | 3.2.5          | Flow Divider                                                                   |
|   | 3.3                | Conduits 3.3.1 |                                                                                |
|   |                    | 3.3.1          | Identification                                                                 |
|   |                    | 3.3.3          | Hydraulic Properties                                                           |
|   |                    | 3.3.4          | Hydraulic Loss                                                                 |
|   |                    | 3.3.5          | Miscellaneous                                                                  |
|   | 3.4                | Pumps          |                                                                                |
|   |                    | 3.4.1          | Identification                                                                 |
|   |                    | 3.4.2          | Pump Properties                                                                |
|   | 3.5                | Orifices       |                                                                                |
|   |                    | 3.5.1          | Identification                                                                 |
|   |                    | 3.5.2          | Geometry                                                                       |
|   |                    | 3.5.3          | Hydraulic Properties                                                           |
|   | 3.6                |                |                                                                                |
|   |                    | 3.6.1<br>3.6.2 | Identification                                                                 |
|   |                    | 3.6.2<br>3.6.3 | Geometry                                                                       |
|   | 3.7                | Outlets        | 40                                                                             |
|   | 0.1                | 3.7.1          | Identification                                                                 |
|   |                    | 3.7.2          | Hydraulic Properties                                                           |
|   |                    |                |                                                                                |

 $\leq$ 



|   | 3.8<br>3.9<br>3.10 | Transec<br>Controls<br>CS Netv<br>3.10.1<br>3.10.2<br>3.10.3 | • • • • • • • • • • • • • • • • • • • •        |
|---|--------------------|--------------------------------------------------------------|------------------------------------------------|
| 4 |                    |                                                              | off Modelling with SWMM                        |
|   | 4.1                | Catchme                                                      |                                                |
|   |                    | 4.1.1                                                        | Identification                                 |
|   |                    | 4.1.2<br>4.1.3                                               | General    80      Catchment Connections    81 |
|   |                    | 4.1.3                                                        | Catchment Connections                          |
|   |                    | 4.1.4                                                        | Infiltration                                   |
|   |                    | 4.1.6                                                        | Description                                    |
|   | 4.2                | Aquifers                                                     | 1                                              |
|   | 4.3                | Climatol                                                     |                                                |
|   | 7.5                | 4.3.1                                                        | Temperature                                    |
|   |                    | 4.3.2                                                        | Evaporation                                    |
|   |                    | 4.3.3                                                        | Wind Speed                                     |
|   |                    | 4.3.4                                                        | Snowmelt                                       |
|   |                    | 4.3.5                                                        | Areal Depletion                                |
|   |                    | 4.3.6                                                        | Adjustments                                    |
|   | 4.4                | RDII .                                                       |                                                |
|   |                    | 4.4.1                                                        | RDII Hydrographs                               |
|   |                    | 4.4.2                                                        | RDII                                           |
|   | 4.5                | Snowpa                                                       | cks                                            |
|   | 4.6                | LID                                                          |                                                |
|   |                    | 4.6.1                                                        | Bioretention Cell                              |
|   |                    | 4.6.2                                                        | Infiltration Trench                            |
|   |                    | 4.6.3                                                        | Porous Pavement                                |
|   |                    | 4.6.4                                                        | Rain Barrel         120                        |
|   |                    | 4.6.5                                                        | Vegetative Swale                               |
|   |                    | 4.6.6                                                        | Rain Garden         121                        |
|   |                    | 4.6.7                                                        | Green Roof                                     |
|   |                    | 4.6.8                                                        | Rooftop Disconnection                          |
|   |                    | 4.6.9                                                        | LID Properties Editor                          |
|   | 4.7                |                                                              | loyment                                        |
|   | 4.8                |                                                              | <i>vater</i>                                   |
|   | 4.9                |                                                              | ent Tools                                      |
|   |                    | 4.9.1                                                        | Catchment Delineation                          |
|   |                    | 4.9.2                                                        | Catchment Processing                           |
|   |                    | 4.9.3<br>4.9.4                                               | Catchment Slope and Length                     |
|   |                    | 4.9.4                                                        | Connection Tool163Spatial Processing166        |
|   |                    |                                                              |                                                |
| 5 |                    |                                                              | onditions                                      |
|   | 5.1                | Rain Ga                                                      | luges                                          |



|      | 5.2<br>5.3                                   | Dry Weather Flow         172           Inflows         175                                                                                                                                                                                                                                                                                                                  |
|------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6    | <b>Table</b><br>6.1<br>6.2                   | es         179           Curves and Relations         179           Materials         183                                                                                                                                                                                                                                                                                   |
| 7    | <b>Time</b><br>7.1<br>7.2                    | Series         187           Time Series         187           Time Patterns         187                                                                                                                                                                                                                                                                                    |
| 8    | Wate<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5      | r Quality Modelling with SWMM       195         Pollutants       195         Land Uses       198         Initial Loading       206         Coverage       207         Local Treatment       208                                                                                                                                                                             |
| 9    | <b>Calib</b><br>9.1<br>9.2                   | rations         211           Measurement Stations         211           Plots and Statistics         217                                                                                                                                                                                                                                                                   |
| 10   | <b>Scen</b><br>10.1<br>10.2                  | arios225What is Scenario Manager?226Design of the MIKE+ Scenario Manager22610.2.1Data Groups, Alternatives, and Scenarios22610.2.2Alternatives22710.2.3Base Data vs. Child Data22910.2.4Inheritance Principles23010.2.5Data not Specific to any Alternative/Scenario23010.3.1Scenarios and Alternatives23110.3.2Alternatives23310.3.3Scenario Simulation23410.3.4Example234 |
|      | 10.4                                         | 10.3.5Reporting Changes23510.3.6Show Differences on the Map237Step-by-Step Guide to Creating Scenarios238                                                                                                                                                                                                                                                                   |
| 11   | 11.1<br>11.2<br>11.3<br>11.4<br>11.5<br>11.6 | M Simulation Specifications241General242Catchments244HD247Dynamic Wave250Water Quality253Reporting253                                                                                                                                                                                                                                                                       |
| Inde | <b>X</b>                                     |                                                                                                                                                                                                                                                                                                                                                                             |



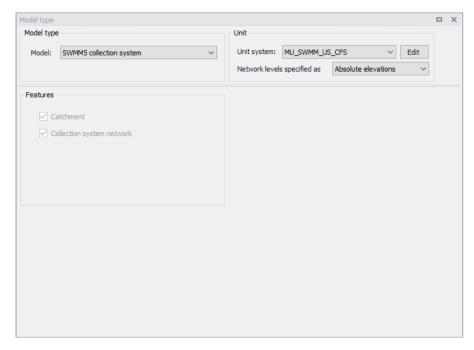


## 1 General Settings

Set the model type for a MIKE+ project in the Model Type editor under the General Settings section. This section also contains the Description editor, wherein a free text note or description about the project may be added.

## 1.1 Model Type

The Model Type editor provides an at-a-glance view of which MIKE+ features and modules are active for a project. Active features and modules control the menus accessible from the Setup tree view.


MIKE+ supports modelling of the following system types:

- Rivers, collection system and overland flows
- SWMM5 collection system
- Water distribution

#### 1.1.1 Features

The following features are activated for 'SWMM5 collection system' models:

- **Catchment**. Various hydrological processes that produce runoff from urban areas can be modelled by SWMM. These include:
  - Time-varying rainfall
  - Evaporation of standing surface water
  - Snow accumulation and melting
  - Rainfall interception in depression storage
  - Infiltration of rainfall into upper soil layers
  - Percolation of infiltrated water into groundwater layers
  - Interflow between groundwater and the conveyance system
  - Non-linear reservoir routing of overland flow
- Collection System Network. This feature allows for the hydrodynamic simulation of flows and water levels in the urban storm drainage and wastewater collection networks, thus providing an accurate information about the network functionality under a variety of boundary conditions. The model can be enhanced by the variety of real-time control functions.





#### 1.1.2 Unit

MIKE+ is fully flexible concerning the applied units for numeric attributes, number of decimals and default values for any attribute in the database. The system allows for a number of predefined unit environments. The unit environment is specified when the model is originally created but can be changed or modified at any stage. The units are automatically converted in the database. i.e. it is possible to change an existing database from one system to another.

The term "unit environment" is a pre-defined set of definitions for units, default values and display formats. The unit environment can be in SI units (International System of units) or US units (United States customary units).

For SWMM5 collection systems, there are six pre-defined unit environments within the SI and US unit groups which differ from each other by the applied units for flows and volumes.

Within the SI group, the following unit environments are available:

- MU\_SWMM\_SI\_CMS: SI environment, with flows in m<sup>3</sup>/s
- MU\_SWMM\_SI\_LPS: SI environment, with flows in L/s
- MU\_SWMM\_SI\_ MLD: SI environment, with flows in MLD.

Within the US group, the following unit environments are available:



- MU\_SWMM\_US\_CFS: US environment, with flows in cfs
- MU\_SWMM\_US\_GPM: US environment, with flows in gpm
- MU\_SWMM \_US\_MGD: US environment, with flows in MGD

| Unit         |                                                                                                          |   |      |
|--------------|----------------------------------------------------------------------------------------------------------|---|------|
| Unit system: | MU_SWMM_US_CFS                                                                                           | ~ | Edit |
|              | MU_SWMM_US_CFS<br>MU_SWMM_US_GPM<br>MU_SWMM_US_MGD<br>MU_SWMM_SI_CMS<br>MU_SWMM_SI_LPS<br>MU_SWMM_SI_MLD |   | ~    |

#### Figure 1.2 Selecting the unit environment for SWMM5 models

The unit environment will apply default units to all attributes (parameters) in the project. These units can then be customised with the Edit button.

The **Edit** button opens the Units Customisation dialog, which contains a first table to select units for given attribute types. The second table in the dialog is used to select the unit for specific attributes. Finally, the third tab in the dialog contains the units selection for real-time controls in collection system network simulations.

| Att | ribute types Individual attributes Real time con | ntrol              |
|-----|--------------------------------------------------|--------------------|
| D   | efault units per type                            |                    |
|     | Attribute type                                   | Unit               |
| Þ   | 1st order rate WQ model                          | [/d]               |
|     | Age                                              | [h]                |
|     | Angles                                           | [deg]              |
|     | Bacteria Concentration                           | [M/100 ml]         |
|     | Bathymetry                                       | [in]               |
|     | Bed level                                        | [ft]               |
|     | Bed level change                                 | [ft]               |
|     | Bed Thickness                                    | Default mixed unit |
|     | Bottom level                                     | [ft]               |
|     | Boundary Layer Thickness                         | [in]               |
|     | Catchment slope                                  | Default mixed unit |
|     | Chezy No                                         | [ft^(1/2)/s]       |
|     | Concentration                                    | [mg/l]             |
|     | Conductivity                                     | [in/h]             |
|     | Conveyance                                       | [ft^3/s]           |
|     | e ve 11                                          | 0 / 1              |







More information on customizing units are found in the MIKE+ Model Manager User Guide chapter on 'Units, Default Values and Numeric Formats.'

## 1.1.3 Network Levels Specification

One may specify how network level values shall be defined in the SWMM5 model via the Model Type editor under the Unit group.

For 'Network levels specified as', choose between the options:

- Absolute elevations
- Relative depths

This especially affects how level data are defined for Nodes and Conduits.

| Unit                        |                                        |
|-----------------------------|----------------------------------------|
| Unit system: MU_SWMM_U      | S_CFS ~ Edit                           |
| Network levels specified as | Absolute elevations $\sim$             |
|                             | Absolute elevations<br>Relative depths |

Figure 1.4 Options for definition of network levels

## 1.2 Description

The Description editor allows addition of information about the project and a free text description of the model. It may also be used as a model build log to make notes on updates and amendments to the model.

| scription   | • | >  |
|-------------|---|----|
| Title       |   |    |
| My Project  |   | F) |
| Description |   |    |
|             |   |    |

Figure 1.5 The Description editor

## 2 Map Configuration

The Map Configuration section contains information on the coordinate system used in the MIKE+ project and presents options for customising the background image.

## 2.1 Coordinate System

The Coordinate System editor (Figure 2.1) displays the Projection system used in the project.

| ordinate system |                                                 | 3 |
|-----------------|-------------------------------------------------|---|
| Coordinate sys  | stem                                            | I |
| Projection      | RGF_1993_Lambert_93 ~                           |   |
|                 | Use projection from MIKE URBAN dassic model     | ŀ |
|                 | (requires that MIKE URBAN classic is installed) |   |
|                 |                                                 |   |
|                 |                                                 | 3 |

# Figure 2.1 The Coordinate System editor showing information on the projection system used in the project

The Projection may be selected from the dropdown list, or by searching amongst the map projections available in MIKE+ via the <Browse...> option at the bottom of the list. This opens a window listing the available projections, where it is also possible to import new projections from a projection file (\*.prj file).

Alternatively, the map projection may be read from a MIKE URBAN classic file. If MIKE URBAN classic is installed on your computer, you can tick the corresponding option, select a MIKE URBAN classic file and the same projection will be used in MIKE+.

When changing the map projection, it is possible to reproject geographical data in the project, for example to convert the coordinates of the network and catchments data, or mesh arcs used for the creation of the 2D domain. Some data files used as input for the simulation however can not be reprojected; this is especially the case for an external 2D domain file (\*.MESH or \*.DFS2) or external 2D data file used to map input parameters (e.g. \*.DFSU or \*.DFS2 file used to map the 2D surface roughness).

The same options for selecting the Projection are also used in the 'New Module Setup' window when a new MIKE+ project is created (Figure 2.2).



| w module setup       |                |                                              | X |
|----------------------|----------------|----------------------------------------------|---|
| Module<br>selection  | Coordinate sys | tem                                          |   |
|                      | Projection     | Local Coordinates                            | - |
| Coordinate<br>system |                | Local Coordinates                            |   |
| system               |                | Google Maps - Mercator                       |   |
|                      |                | ETR589 / UTM zone 32N<br>RGF_1993_Lambert_93 |   |
| Description          |                | WGS_1984_UTM_Zone_32N                        |   |
| A DECEMBER OF STREET |                | WGS 84 / UTM zone 32N<br>UTM-1               |   |
|                      |                | UTM-2                                        |   |
|                      |                | UTM-3                                        |   |
|                      |                | UTM-4                                        |   |
|                      |                | UTM-5<br><browse></browse>                   |   |

Figure 2.2 Specify the projection system for a new MIKE+ project on the New Module Setup dialog

## 2.2 Background Map

The Background Map editor allows the user to select a background image to show on the Map View in MIKE+ (Figure 2.3).

Activate a background map overlay by ticking the 'Visible' checkbox on the editor.

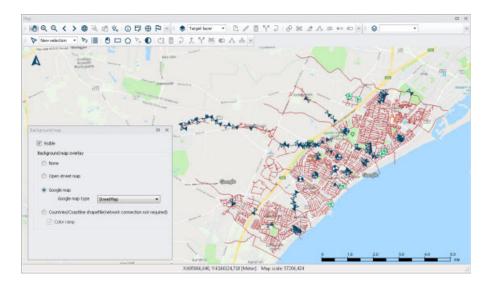

| kground map                                                |                                          |         |
|------------------------------------------------------------|------------------------------------------|---------|
| Visible                                                    |                                          |         |
| Background map overlay                                     |                                          |         |
| O None                                                     |                                          |         |
| Open street map                                            |                                          |         |
| ○ Google map                                               |                                          |         |
| Google map type                                            | SatelliteImage $\lor$                    |         |
| O Countries/Coastline sh                                   | apefile(network connection not required) |         |
|                                                            |                                          |         |
|                                                            |                                          |         |
| O WMS server                                               |                                          |         |
| O WMS server                                               |                                          | Connect |
|                                                            | ~                                        | Connect |
| URL                                                        |                                          | Connect |
| URL Projection                                             |                                          | Connect |
| URL<br>Projection<br>Identification (for priv              |                                          | Connect |
| URL Projection Identification (for pri- User name Password | vate server only)                        | Connect |
| URL<br>Projection<br>Identification (for priv<br>User name | vate server only)                        | Connect |
| URL Projection Identification (for pri- User name Password | vate server only)                        |         |
| URL Projection Identification (for pri- User name Password | vate server only)                        | Up      |

Figure 2.3 The Background Map editor

The following background map overlay options are available:

- None
- Open Street Map
- **Google Map**. Select the Google map type to display (i.e. Street map, Satellite image, Terrain, or Hybrid).
- **Countries/Coastline Shapefile**. Polygon feature showing coastlines and demarcating oceans and inland areas.
- WMS server. Background maps obtained from a remote server. Enter the URL of the server and click 'Connect'. If the server is a private server, you will need to supply the user name and password for authentication, and you may optionally tick 'Save password' in order not to enter it again the next time you open MIKE+. When the connection is established, the table will provide the list of layers available on the server, and it is possible to select which layers to display in MIKE+ using the 'Visible' box. Note that displaying layers from a WMS server requires that the MIKE+ project uses the same map projection as the WMS layers: if they differ, you will be asked to update the map projection in MIKE+. Also note that it is only possible to connect to WMS servers using projected map projections (geographical coordinate systems not supported).

An internet connection must be available for Open Street Map, Google Map and WMS server overlays (Figure 2.4).









## 3 Hydraulic Network Modelling with SWMM

SWMM allows for the hydrodynamic simulation of flows and water levels in urban storm drainage and wastewater collection networks, providing reliable information about the network functionality under a variety of boundary conditions. The hydrodynamic simulations can be extended with pollution and water quality simulations, and the model can also be enhanced by a variety of real-time control functions.

This chapter provides a comprehensive guide for the preparation of basic SWMM hydrodynamic simulation models.

The modelling process consists of the following distinct steps:

- Definition of network data
- Specification of boundary conditions
- Adjustment of computation parameters and running simulations
- Result analysis

Furthermore, an important part of successful modelling is model calibration and verification, which ensure that computed results fit well with observations.

## 3.1 Definition of a SWMM Network

A SWMM network within MIKE+ can be defined in one of the following ways. Please note that MIKE+ supports the EPA SWMM5 format. If you have a SWMM44 model, conversion tools are available on the US EPA website.

 Import of external data (e.g. GIS, \*.INP, MU \*.MDB or \*.GDB) into MIKE+ SWMM network.



When importing existing model setups into MIKE+, ensure that Unit Systems and elevation reference settings are consistent.

- Copying network data from MIKE+ CS network into MIKE+ SWMM network
- Graphical data digitalisation and manual data typing within MIKE+

The last option is frequently used in a combination with one of the previous options to build a well-defined SWMM network model.

The following paragraphs provide a comprehensive information on the SWMM network data model and the associated editors.

A SWMM network model consists of the following elements:

Nodes



- Conduits
- Pumps
- Orifices
- Weirs
- Outlets

## 3.2 Nodes

SWMM network nodes are hydraulic elements such as Junctions, Outfalls, Storage Units and Flow Dividers.

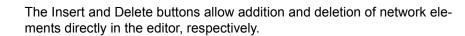
- Junctions are conveyance system nodes where links join together. Physically, they can represent the confluence of natural surface channels, manholes in a sewer system, or pipe connection fittings. External inflows can enter the system at junctions. Excess water at a junction can become partially pressurized during surcharge events and can either be lost from the system or be allowed to pond atop the junction and subsequently drain back through it.
- Outfalls are defined as terminal nodes of the conveyance system and used to define final downstream boundaries under Dynamic Wave flow routing. For other types of flow routing, they behave as junctions. Only one link can be incident on an outfall node.
- Storage Units are defined as conveyance system nodes that provide storage volume. Physically, they could represent something as small as a catch basin or as large as a lake. They are allowed to have any shape as described by a function or table of surface area versus height.
- Flow Dividers are defined as conveyance system nodes used to split the total flow to two outflow conduits in a prescribed manner. Flow dividers are only active under Uniform or Kinematic Wave routing and are treated as simple junctions under Dynamic Wave routing.

The SWMM network Nodes editor organizes related input data into the following groups:

- Identification. General identification and location information for the node
- **Geometry.** Node type and basic geometric information
- Storage Unit. Further specifications for storage unit nodes
- Outfall. Further specifications for outfall nodes
- Flow Divider. Further specifications for flow dividers
- **Description**. Optional descriptive information for the node (Figure 3.3)



| lodes                      |                                                                                                 |                                                                                                                                  |                                                                                            |                                                                                                                            |                                                                                                         |                                                                                                           |                  |                  |                                                                                                                              |                                                                                |                                                                                       |
|----------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------|------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Ide                        | entification                                                                                    | 1                                                                                                                                |                                                                                            |                                                                                                                            |                                                                                                         |                                                                                                           |                  |                  |                                                                                                                              |                                                                                |                                                                                       |
|                            | D 10                                                                                            |                                                                                                                                  |                                                                                            | X                                                                                                                          |                                                                                                         | 77006                                                                                                     | 51.77            | 0365656 [ft]     | 1                                                                                                                            | Insert                                                                         |                                                                                       |
| 1                          |                                                                                                 |                                                                                                                                  |                                                                                            | Y                                                                                                                          |                                                                                                         | 31014                                                                                                     | 144.4            | 1053473 [ft]     | [                                                                                                                            | Delete                                                                         |                                                                                       |
| Geor                       | metry                                                                                           | Storage unit Ou                                                                                                                  | ıtfall                                                                                     | Flow divider                                                                                                               | Desc                                                                                                    | ription                                                                                                   |                  |                  |                                                                                                                              |                                                                                |                                                                                       |
|                            | Node type                                                                                       | e Junction                                                                                                                       |                                                                                            | $\sim$                                                                                                                     |                                                                                                         |                                                                                                           |                  |                  |                                                                                                                              |                                                                                |                                                                                       |
|                            | Invert lev                                                                                      |                                                                                                                                  |                                                                                            | 118.1 [ft]                                                                                                                 | Init                                                                                                    | ial depth                                                                                                 |                  |                  | 0                                                                                                                            | [ft]                                                                           |                                                                                       |
|                            |                                                                                                 | -                                                                                                                                |                                                                                            |                                                                                                                            |                                                                                                         |                                                                                                           |                  |                  |                                                                                                                              |                                                                                |                                                                                       |
|                            | Ground le                                                                                       | vel                                                                                                                              |                                                                                            | 130 [ft]                                                                                                                   | Sur                                                                                                     | ch. depth                                                                                                 |                  |                  | 0                                                                                                                            | [ft]                                                                           |                                                                                       |
|                            | Max. dep                                                                                        | th                                                                                                                               |                                                                                            | 11.9 [ft]                                                                                                                  | Por                                                                                                     | nded area                                                                                                 |                  |                  | 0                                                                                                                            | [ft^2]                                                                         |                                                                                       |
|                            |                                                                                                 |                                                                                                                                  |                                                                                            |                                                                                                                            |                                                                                                         |                                                                                                           |                  |                  |                                                                                                                              |                                                                                |                                                                                       |
|                            |                                                                                                 | ID                                                                                                                               | ~                                                                                          | A11                                                                                                                        | ×                                                                                                       | Clear                                                                                                     | q                | now selected     |                                                                                                                              | ow data errors 1/1                                                             | 2 rows 0 selected                                                                     |
|                            | TD                                                                                              | ID<br>V. coordinate [ff                                                                                                          | _                                                                                          | ALL                                                                                                                        |                                                                                                         | Clear Node type                                                                                           | _                |                  |                                                                                                                              |                                                                                | 2 rows, 0 selected                                                                    |
| 1                          | ID<br>10                                                                                        | X coordinate [ft                                                                                                                 | 1                                                                                          | Y coordinate                                                                                                               | [ft]                                                                                                    | Node type                                                                                                 | 2                | Invert level [f  | t]                                                                                                                           | Ground level [ft]                                                              | Max. depth [ft]                                                                       |
|                            | 10                                                                                              | X coordinate [ft<br>770061.77036                                                                                                 | 5656                                                                                       | Y coordinate<br>3101444.4                                                                                                  | [ft]<br>1053473                                                                                         | Node type<br>Junction                                                                                     | •                | Invert level [f  | t]<br>118.1                                                                                                                  | Ground level [ft]                                                              | Max. depth [ft]                                                                       |
| 2                          | 10<br>60                                                                                        | X coordinate [ft<br>770061.77036<br>772421.27145                                                                                 | ]<br>5656<br>5128                                                                          | Y coordinate<br>3101444.42<br>3102878.36                                                                                   | [ft]<br>1053473<br>5091995                                                                              | Node type<br>Junction<br>Junction                                                                         | 2                | Invert level [f  | t]<br>118.1<br>50.9                                                                                                          | Ground level [ft]<br>130<br>80                                                 | Max. depth [ft]<br>11.<br>29.                                                         |
|                            | 10                                                                                              | X coordinate [ft<br>770061.77036                                                                                                 | ]<br>5656<br>5128<br>7088                                                                  | Y coordinate<br>3101444.4                                                                                                  | [ft]<br>1053473<br>5091995<br>3215009                                                                   | Node type<br>Junction<br>Junction<br>Junction                                                             | •                | Invert level [f  | t]<br>118.1                                                                                                                  | Ground level [ft]                                                              | Max. depth [ft]<br>11.<br>29.<br>21.                                                  |
| 2<br>3                     | 10<br>60<br>50                                                                                  | X coordinate [ft<br>770061.77036<br>772421.27145<br>772225.73096                                                                 | ]<br>5656<br>5128<br>7088<br>9364                                                          | Y coordinate<br>3101444.41<br>3102878.36<br>3102135.3                                                                      | [ft]<br>1053473<br>5091995<br>3215009<br>4108829                                                        | Node type<br>Junction<br>Junction<br>Junction<br>Junction                                                 | •                | Invert level [f  | t]<br>118.1<br>50.9<br>78.7                                                                                                  | Ground level [ft]<br>130<br>80<br>100                                          | Max. depth [ft]<br>111.<br>29.<br>21.<br>26.                                          |
| 2<br>3<br>4                | 10<br>60<br>50<br>40                                                                            | X coordinate [ft;<br>770061.77036<br>772421.27145<br>772225.73096<br>772968.77969                                                | ]<br>5656<br>5128<br>7088<br>9364<br>7179                                                  | Y coordinate<br>3101444.43<br>3102878.36<br>3102135.3<br>3100075.64                                                        | [ft]<br>1053473<br>5091995<br>3215009<br>4108829<br>1032759                                             | Node type<br>Junction<br>Junction<br>Junction<br>Junction                                                 | 2<br>•<br>•<br>• | Invert level [fi | t]<br>118.1<br>50.9<br>78.7<br>83.7                                                                                          | Ground level [ft]<br>130<br>80<br>100<br>110                                   | Max. depth [ft]<br>11.<br>29.<br>21.<br>26.<br>30.                                    |
| 2<br>3<br>4<br>5           | 10<br>60<br>50<br>40<br>70                                                                      | X coordinate [ft<br>770061.77036<br>772421.27145<br>772225.73096<br>772968.77969<br>772525.56095                                 | ] 5656 5<br>5128 7088 9364 7179 2809                                                       | Y coordinate<br>3101444.43<br>3102878.36<br>3102135.3<br>3100075.64<br>3102930.53                                          | [ft]<br>1053473<br>5091995<br>3215009<br>4108829<br>1032759<br>9171809                                  | Node type<br>Junction<br>Junction<br>Junction<br>Junction<br>Junction<br>Junction                         | 2                | Invert level [fi | t]<br>118.1<br>50.9<br>78.7<br>83.7<br>49.2                                                                                  | Ground level [ft]<br>130<br>80<br>100<br>110<br>80                             | Max. depth [ft]<br>11.<br>29.<br>21.<br>26.<br>30.<br>26.                             |
| 2<br>3<br>4<br>5<br>6      | 10           60           50           40           70           110                            | X coordinate [ft;<br>770061.77036<br>772421.27145<br>772225.73096<br>772968.77969<br>772525.56095<br>772512.52011                | ] 5656 5<br>5128 5<br>7088 9<br>9364 7<br>7179 2<br>2809 7<br>7681 5                       | Y coordinate<br>3101444.41<br>3102878.36<br>3102135.3<br>3100075.64<br>3102930.5<br>3098209.39                             | [ft]<br>1053473<br>5091995<br>3215009<br>4108829<br>1032759<br>9171809<br>5083642                       | Node type<br>Junction<br>Junction<br>Junction<br>Junction<br>Junction<br>Junction                         |                  | Invert level [fi | e]<br>118.1<br>50.9<br>78.7<br>83.7<br>49.2<br>103.3                                                                         | Ground level [ft]<br>130<br>80<br>100<br>110<br>80<br>130                      | Max. depth [ft]<br>11.<br>29.<br>21.<br>26.<br>30.<br>26.<br>31.                      |
| 2<br>3<br>4<br>5<br>6<br>7 | 10           60           50           40           70           110           100              | X coordinate [ft<br>770061.77036<br>772421.27145<br>772225.73096<br>772968.77969<br>772525.56095<br>772512.52011<br>771378.39971 | ]     5656       5128     5128       7088     9364       9364     2809       7681     6121 | Y coordinate<br>3101444.42<br>3102878.36<br>3102135.3<br>3100075.64<br>3102930.52<br>3098209.39<br>3097870.48              | [ft]<br>1053473<br>5091995<br>3215009<br>4108829<br>1032759<br>9171809<br>5083642<br>3410137            | Node type<br>Junction<br>Junction<br>Junction<br>Junction<br>Junction<br>Junction<br>Junction             |                  | Invert level [fi | []<br>118.1<br>50.9<br>78.7<br>83.7<br>49.2<br>103.3<br>108.3                                                                | Ground level [ft]<br>130<br>80<br>100<br>110<br>80<br>130<br>130<br>140        | Max. depth [ft]<br>11.<br>29.<br>21.<br>26.<br>30.<br>26.<br>31.<br>31.               |
| 3<br>4<br>5<br>6<br>7<br>8 | 10           60           50           40           70           110           100           20 | X coordinate [ft]<br>770061.77036<br>772421.27145<br>772225.73096<br>77255.56095<br>772512.52011<br>771378.39971<br>771717.33128 | ]<br>5656<br>5128<br>9364<br>7179<br>2809<br>7681<br>6121<br>3461                          | Y coordinate<br>3101444.43<br>3102878.36<br>3102135.3<br>3100075.64<br>3102930.55<br>3098209.39<br>3097870.48<br>3099423.8 | [ft]<br>1053473<br>5091995<br>3215009<br>4108829<br>1032759<br>9171809<br>5083642<br>3410137<br>0965222 | Node type<br>Junction<br>Junction<br>Junction<br>Junction<br>Junction<br>Junction<br>Junction<br>Junction |                  | Invert level [fi | I           118.1           50.9           78.7           83.7           49.2           103.3           108.3           98.4 | Ground level [ft]<br>130<br>80<br>100<br>110<br>80<br>130<br>130<br>140<br>130 | Max. depth [ft]<br>11.<br>29.<br>21.<br>26.<br>30.<br>26.<br>31.<br>31.<br>31.<br>23. |


Figure 3.1 SWMM Nodes editor

## 3.2.1 Identification

Each node is geographically determined by 'x' and 'y' coordinates. The coordinates may be specified in any local coordinate system.

| Identi | fication |   |                       |        |
|--------|----------|---|-----------------------|--------|
|        | []       | х | 770061.770365656 [ft] | Insert |
| ID     | 10       | Y | 3101444.41053473 [ft] | Delete |





| Table 3.1 | The edit fields in the Identification group and Description tab page |
|-----------|----------------------------------------------------------------------|
|           | (mss_Node)                                                           |

| Edit field      | Description                                                                                                                                                                | Used or<br>required by<br>simulations | Field name<br>in data<br>structure |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------|
| ID              | A unique name for the node. Up to 40<br>characters (letters, numbers, blank<br>spaces and underscore characters)                                                           | Yes                                   | MUID                               |
| Х               | X-coordinate of the node position                                                                                                                                          | Yes                                   | GeomX                              |
| Y               | Y-coordinate of the node position                                                                                                                                          | Yes                                   | GeomY                              |
|                 | Description                                                                                                                                                                |                                       |                                    |
| Description     | Descriptive information related to the structure                                                                                                                           | No                                    | Description                        |
| Data<br>Source  | Reference to an external data source from which the record was imported                                                                                                    | No                                    | DataSource                         |
| Asset ID        | Id in the asset management system                                                                                                                                          | No                                    | AssetName                          |
| Status          | Status from a user- specified list in the<br>Status Codes editor                                                                                                           | No                                    | Element_S                          |
| Network<br>Type | Type of network i.e Stormwater, Com-<br>bined or separate. The list of network<br>types can be extended by the user.<br>Network type can be specified for<br>each element. | No                                    | NetTypeNo                          |
| Tag             | Optional label used to categorize or classify the node.                                                                                                                    | No                                    | Tag                                |

| Geometry | Storage unit | Outfall   | Flow divider  | Description |             |
|----------|--------------|-----------|---------------|-------------|-------------|
| Descrip  | tion         |           |               |             |             |
| Data so  | urce         |           |               |             |             |
| Asset II | D            |           |               |             | Add picture |
| Status   |              |           |               | ~           |             |
| Networ   | k type       |           |               | ~           |             |
| Tag      | SB201        | 70915_WHN | 120170815_Cle | anedup      |             |
|          |              |           |               |             |             |
|          |              |           |               |             |             |

Figure 3.3 Nodes editor Description tab page



## 3.2.2 Geometry

Define general node properties and geometries in the Geometry tab page of the editor.

| Geometry  | Storage ( | unit Outfall | Flow divide | r Description |   |        |
|-----------|-----------|--------------|-------------|---------------|---|--------|
| Node typ  | be        | Junction     | ~           |               |   |        |
| Invert le | vel       |              | 118.1 [ft]  | Initial depth | 0 | [ft]   |
| Ground le | evel      |              | 130 [ft]    | Surch. depth  | 0 | [ft]   |
| Max. dep  | oth       |              | 11.9 [ft]   | Ponded area   | 0 | [ft^2] |
|           |           |              |             |               |   |        |
|           |           |              |             |               |   |        |
|           |           |              |             |               |   |        |
|           |           |              |             |               |   |        |

Figure 3.4 The SWMM Nodes Geometry tab page

| Edit field       | Description                                                                     | Used or<br>required by<br>simulations                                     | Field name<br>in data<br>structure |
|------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------|
| Node type        | Definition of node as either Junction,<br>Storage Unit, Outfall or Flow Divider | Yes                                                                       | TypeNo                             |
| Invert Level     | Invert elevation of the node                                                    | Yes                                                                       | Einv                               |
| Ground<br>level  | Ground level of the node                                                        | Yes<br>If Network<br>levels speci-<br>fied as Abso-<br>lute<br>elevations | GroundLevel                        |
| Max. Depth       | Maximum depth of node (i.e. from invert to ground surface)                      | Yes<br>If Network<br>levels speci-<br>fied as Rela-<br>tive depths        | Dmax                               |
| Initial<br>Depth | Initial depth of water at the node at the start of the simulation               | No                                                                        | D0                                 |

#### Table 3.2 The edit fields in the SWMM Nodes Geometry tab (mss\_Node)

| Edit field      | Description                                                                                                                                                                                                                                                                                                                                     | Used or<br>required by<br>simulations | Field name<br>in data<br>structure |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------|
| Surch.<br>Depth | Additional depth of water beyond the<br>maximum depth that is allowed before<br>the junction floods. This parameter<br>can be used to model Bolted/Sealed<br>manholes                                                                                                                                                                           | No                                    | Dsur                               |
| Ponded<br>Area  | Area occupied by ponded water atop<br>the junction after flooding occurs. If<br>the Allow Ponding analysis option is<br>turned on, a non-zero value of this<br>parameter will allow ponded water to<br>be stored and subsequently returned<br>to the conveyance system when<br>capacity exists. Default is allow pond-<br>ing is not turned on. | No                                    | Apond                              |

#### Table 3.2 The edit fields in the SWMM Nodes Geometry tab (mss\_Node)

#### 3.2.3 Storage Unit

Define input parameters for storage units in the Storage Unit tab page of the Nodes editor.

| Geometry Storage u | nit Outfall Flow divi | der Description |                 |          |
|--------------------|-----------------------|-----------------|-----------------|----------|
| Geometry type      | Functional V          |                 | Evaporation     | 0        |
| Coefficent         | 0                     | [ft]            | Include infilt  | ration   |
| Constant           | 19.25                 | [ft^2]          | Suction head    | 0 [ft]   |
| Exponent           | 0                     |                 | Conductivity    | 0 [in/h] |
| Storage geometry   | $\sim$                | Edit            | Initial deficit | 0        |
|                    |                       |                 |                 |          |
|                    |                       |                 |                 |          |



The Geometry Type defines how the geometry of storage unit is specified. The geometry of a Storage Unit can be defined by a Functional geometry or a tabular geometry description (i.e. From curve).

• **Functional**. This option uses the following function to define the geometry by computing for surface area from water depth:



• **From curve**. This option uses a storage area-depth table defined in the Curves and Relations editor to define the geometry of the storage unit.

As an example, a Storage Unit whose cross-sectional area remains constant with depth (e.g. a cylinder or cube) can be described by a FUNCTIONAL geometry type whose coefficient equals the cross-sectional area and whose exponent is 0.

| Edit field       | Description                                                                                                                                                                                                                     | Used or required by simulations | Field name in data structure |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|
| Geometry Type    | Definition of the<br>type of geometry<br>description of the<br>Storage Unit (Func-<br>tional or From<br>curve)                                                                                                                  | Yes                             | GeomTypeNo                   |
| Coefficient      | Coefficient for the<br>Functional relation-<br>ship between stor-<br>age depth and<br>surface area                                                                                                                              | Yes, if Functional is<br>chosen | GeomCoeff                    |
| Exponent         | Exponent for the<br>Functional relation-<br>ship between stor-<br>age depth and<br>surface area                                                                                                                                 | Yes, if Functional is chosen    | GeomExponent                 |
| Constant         | Constant value for<br>the Functional rela-<br>tionship between<br>storage depth and<br>surface area                                                                                                                             | Yes, if Functional is<br>chosen | GeomConst                    |
| Evaporation      | Fraction of potential evaporation realized                                                                                                                                                                                      | No                              | Fevap                        |
| Storage Geometry | ID of the tabular<br>geometrical descrip-<br>tion. The geometry<br>is specified relative<br>to the invert level.<br>This ensures reusa-<br>bility of the geome-<br>try for different<br>Storage Units with<br>different inverts | Yes if From Curve is<br>chosen  | GeomID                       |

#### Table 3.3Edit fields in the SWMM Nodes Storage Unit tab page (mss\_Node)

| Edit field                       | Description                                                                                                                                  | Used or required by simulations  | Field name in data structure |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|
| Include Infiltration<br>checkbox | Option to apply<br>optional Green-<br>Ampt infiltration<br>parameters so that<br>the storage unit can<br>serve as an infiltra-<br>tion basin | Yes                              | StorageInfiltra-<br>tionNo   |
| Suction Head                     | Average value of<br>soil capillary suc-<br>tion along wetting<br>front                                                                       | Yes, if Infiltration is included | StorageSuction-<br>Head      |
| Conductivity                     | Soil saturated<br>hydraulic conductiv-<br>ity                                                                                                | Yes, if Infiltration is included | StorageConductivity          |
| Initial Deficit                  | Fraction of soil vol-<br>ume that is initially<br>dry                                                                                        | Yes, if Infiltration is included | StorageInitialDeficit        |

#### Table 3.3 Edit fields in the SWMM Nodes Storage Unit tab page (mss\_Node)

### 3.2.4 Outfall

Definition of an outfall in an urban drainage network is optional for uniform flow (UF) and Kinematic Wave (KW) routing.

However, when applying Dynamic Wave routing, at least one outfall in the urban drainage system must be defined. It is possible to select between five types of outfalls:

- **Free Outfall**. Bases the outfall stage on the smaller of the critical and normal depths of flow in the connecting conduit.
- Normal Depth. Uses just the normal depth of flow.
- Constant Stage. Uses a constant water elevation at all times.
- **From Tide Curve**. Has outfall stage varying in a repeating fashion over a tidal period.
- **Time Series**. Allows variation of the outfall stage in a specified manner over time.



| Geometry Storage | unit Outfall Flow divider  | r Description   |
|------------------|----------------------------|-----------------|
| Outfall type     | Time series $\checkmark$   | No return valve |
| Constant stage   | [ft]                       | Route to        |
| Tidal curve      | <ul> <li>✓ Edit</li> </ul> | jit.            |
| Time series      | ConnRiverStage             |                 |
|                  |                            |                 |
|                  |                            |                 |
|                  |                            |                 |

#### Figure 3.6 SWMM Nodes editor Outfall dialog

#### Table 3.4 Edit fields in the Nodes Outfall dialog (mss\_Node)

| Edit field          | Description                                                                                                                 | Used or<br>required by<br>simulations            | Field name in datastructure |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|
| Outfall Type        | Type of outfall                                                                                                             | Yes                                              | FlapGate-<br>TypeNo         |
| Constant<br>Stage   | Fixed position of tide gate                                                                                                 | Yes if Outfall is<br>of type Con-<br>stant Stage | FixedStage                  |
| Tidal Curve         | Outfall stage as a function of<br>hour of day over a complete<br>tidal cycle. Curve is specified<br>in Curves and Relations | Yes if Outfall is<br>of type From<br>Tide Curve  | TideGateID                  |
| Time Series         | Outfall stage variation over time.                                                                                          | Yes if Outfall is<br>of type Time<br>Series      | TideGateTSID                |
| Non Return<br>Valve | Option for defining a non-<br>return valve preventing back-<br>water                                                        | No                                               | FlapGateNo                  |
| Route To            | Option for leading the outflow<br>discharge to another sub-<br>catchment                                                    | No                                               | RouteTo                     |

## 3.2.5 Flow Divider

Flow divider nodes can be one of the following types:

- Overflow. All flow above the non-diverted conduits full flow depth is diverted
- Cutoff Flow. All flow above the cutoff level is diverted.



- **From Curve**. A curve is supplied that specifies the amount of diverted flow to total flow.
- Weir. The diverted flow is linearly proportional to the total flow in excess of some minimum flow

| Geometry Storage | unit Outfall | Flow divider | Description |          |     |  |
|------------------|--------------|--------------|-------------|----------|-----|--|
| Divider type     | Overflow     | ~            | Divided to  | ArmoryFM | 1 📐 |  |
| Cutoff flow      |              | [ft/         | ^3/s]       |          |     |  |
| Divider curve    |              | ~ E          | dit         |          |     |  |
| Min. flow        |              | [ft          | ^3/s]       |          |     |  |
| Max. depth       |              | [ft]         |             |          |     |  |
| Diversion coef   | F            |              |             |          |     |  |
|                  |              |              |             |          |     |  |
|                  |              |              |             |          |     |  |



| Edit field       | Description                                                    | Used or<br>required by<br>simulations       | Field name in datastructure |
|------------------|----------------------------------------------------------------|---------------------------------------------|-----------------------------|
| Divider Type     | Type of Divider                                                | Yes, if Junction<br>Type is Flow<br>Divider | DividerTypeNo               |
| Divided To       | The ID of the link that receives the diverted flow             | Yes                                         | LinkID                      |
| Cutoff Flow      | Cutoff flow value used for a<br>Cutoff Flow divider            | Yes, if Divider<br>Type is Cutoff<br>Flow   | CutoffFlow                  |
| Divider<br>Curve | ID of diversion flow series for a<br>From Curve divider        | Yes, if Divider<br>Type is From<br>Curve    | DivertedFlowID              |
| Min. Flow        | Minimum flow at which diver-<br>sion begins for a Weir divider | Yes, if Divider<br>Type is Weir             | DivertedMin-<br>Flow        |

#### Table 3.5Edit fields in the Flow Divider dialog (mss\_Node)



| Edit field         | Description                                                                                                                                                                                                | Used or<br>required by<br>simulations | Field name in datastructure |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Max. Depth         | Maximum depth above invert<br>at which proportional diversion<br>continues for a Weir divider                                                                                                              | Yes, if Divider<br>Type is Weir       | DivertedMax-<br>Depth       |
| Diversion<br>Coeff | Coefficient which determines<br>what fraction between the min.<br>and max. flows the diverted<br>flow will be given the fraction<br>that current water depth is of<br>the max. depth for a Weir<br>divider | Yes, if Divider<br>Type is Weir       | DivertionCoeff              |

#### Table 3.5Edit fields in the Flow Divider dialog (mss\_Node)

## 3.3 Conduits

Conduits are pipes or channels that move water from one node (Junctions, Storage Units, Flow Dividers and Outfalls) to another in the drainage system. Their cross-sectional shapes can be selected from a variety of standard open and closed geometries. Irregular natural cross-section shapes are also supported.

The Conduits editor organizes the related input data into the following groups:

- Identification. General identification and connectivity information
- Geometry. Basic geometric information for the conduit
- Hydraulic Properties. Cross section data for specially-shaped conduits
- Hydraulic Loss. Head loss characteristics
- Miscellaneous. Other conduit properties
- **Description**. Optional descriptive information about the conduit. Also includes option for adding images of the structure (Figure 3.10).

| Conduit     | S                |                 |                |               |               |      |              |                         | □ ×       |
|-------------|------------------|-----------------|----------------|---------------|---------------|------|--------------|-------------------------|-----------|
| -Iden<br>ID | tification       |                 |                | SIS2527748    |               |      | ··· <b>k</b> | Insert<br>Delete        |           |
| Geom        | etry Hydraulic p | roperties Hydra | ulic loss Misc | elleaneous    | Description   |      |              |                         |           |
| Co          | onduit shape CI  | RCULAR ~        |                | Is active     |               |      |              |                         |           |
| G           | eom. depth       | 3.5             | [ft] Len       | gth           |               |      | 32.75 [ft]   | 37.8167265169741 [ft]   |           |
| Se          | diment depth     | 0               | [ft] Inle      | t invert elev | /ation        |      | 15.68 [ft]   | [ft]                    |           |
| То          | p width          |                 | <br>[ft] Out   | let invert el | evation       |      | 0 [ft]       | [ft]                    |           |
|             | ttom width       |                 |                | onent         |               |      |              | Calculate               |           |
| Во          | ttom radius      |                 | [ft] Tria      | ngle height   |               |      |              |                         |           |
| Le          | ft side slope    |                 | [%] Rigi       | nt side slope | 2             |      | [%]          |                         |           |
| Sic         | de walls No      | ne v            | Bar            | rels          |               |      | 1            |                         |           |
|             | ID               | ~ ALL           | ~              | Clear         | Show sele     | cted | Show data    | errors 1/5000 rows, 0 s | elected   |
|             | ID               | From node       | To node        |               | Conduit shape | _    | Length [ft]  | Geometric length [ft]   | Inlet i ^ |
| ▶1          | 10               | GIS2527748      | GSI2527        | 741           | CIRCULAR      | -    | 32.75        | 37.8167265169741        |           |
| 2           | AEC6001004-Dum   | my DMH_AEC600   | 1004 Dummy_    | DMH_Inlet     | CIRCULAR      | -    | 25           | 5.73041596943535        |           |
| 3           | AEC6001005-04    | DMH_AEC600      | 1005 DMH_AE    | C6001004      | CIRCULAR      | -    | 74           | 74.6827459262228        |           |
| 4           | AEC6001006-05    | DMH_AEC600      | 1006 DMH_AE    | C6001005      | CIRCULAR      | -    | 144          | 147.466462988816        |           |
| 5           | AEC6001008-131/  | A DMH_AEC600    | 1008 DMH_AE    | C600131A      | CIRCULAR      | -    | 82           | 75.6292952044686        |           |
| 6           | AEC6001047-46    | DMH_AEC600      |                | C6001046      | CIRCULAR      | -    | 179          | 179.169236673126        |           |
| 7           | AEC6001048-47    | DMH_AEC600      | 1048 DMH_AE    | C6001047      | CIRCULAR      | -    | 249          | 253.479811634275        |           |
| 8           | AEC6001049-48    | DMH_AEC600      | 1049 DMH_AE    | C6001048      | CIRCULAR      | -    | 190          | 193.070894501212        | ~         |
| <           |                  |                 |                | 1             |               |      |              |                         | >         |

Figure 3.8 The SWMM network Conduits editor

## 3.3.1 Identification

Shows ID and connectivity information for conduits. Use the Insert and Delete buttons to add or remove items directly on the editor, respectively.

| Identi | fication       |           |            |              |        |
|--------|----------------|-----------|------------|--------------|--------|
|        |                | From node | GIS2000787 | <br><b>k</b> | Insert |
| ID     | GIS 100 1 19 1 | To node   | CH0000001  | <br>k        | Delete |





| Edit field      | Description                                                                                                                                                                   | Used or<br>required by<br>simulations | Field name in datastructure |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| ID              | Unique conduit Id                                                                                                                                                             | Yes                                   | MUID                        |
| From Node       | Upstream node                                                                                                                                                                 | Yes                                   | FromNodeID                  |
| To Node         | Downstream node                                                                                                                                                               | Yes                                   | ToNodeID                    |
|                 | Description                                                                                                                                                                   | l                                     |                             |
| Description     | Descriptive information related to the structure                                                                                                                              | No                                    | Description                 |
| Data Source     | Reference to an external data source from which the record was imported                                                                                                       | No                                    | DataSource                  |
| Asset ID        | Id in the asset management system                                                                                                                                             | No                                    | AssetName                   |
| Status          | Status from a user- specified list in the Status Codes editor                                                                                                                 | No                                    | Element_S                   |
| Network<br>Type | Type of network i.e Stormwa-<br>ter, Combined or separate. The<br>list of network types can be<br>extended by the user. Network<br>type can be specified for each<br>element. | No                                    | NetTypeNo                   |
| Tag             | Optional label used to catego-<br>rize or classify the conduit                                                                                                                | No                                    | Tag                         |

# Table 3.6Edit fields in the Conduits editor Identification group and Description tab<br/>page (mss\_Link)

| Geometry            | Hydra  | ulic properties | Hydraulic loss   | Miscellaneous | Description |   |             |  |
|---------------------|--------|-----------------|------------------|---------------|-------------|---|-------------|--|
| Descript<br>Data so |        | Franklin 13 C7  |                  |               |             |   |             |  |
| Asset II            | C      |                 |                  |               |             | [ | Add picture |  |
| Status              |        |                 |                  | $\sim$        |             |   |             |  |
| Network             | k type | 2: Storm Water  | r                | ~             |             |   |             |  |
| Tag                 |        | HWPCF_Hartfo    | rd_Franklin_2017 | 70915_TRC_Cle |             |   |             |  |
|                     |        |                 |                  |               |             |   |             |  |
|                     |        |                 |                  |               |             |   |             |  |



## 3.3.2 Geometry

Specify basic conduit geometric information on the Geometry tab page.

| Conduit   | shape    | CUSTOM | $\sim$     | Is active               |              |                  |      |
|-----------|----------|--------|------------|-------------------------|--------------|------------------|------|
| Geom.     | depth    |        | 6.208 [ft] | Length                  | 3411.04 [ft] | 3411.03833161938 | [ft] |
| Sedimer   | nt depth |        | 0 [ft]     | Inlet invert elevation  | 11.08 [ft]   |                  | [ft] |
| Top wid   | th       |        | [ft]       | Outlet invert elevation | 0 [ft]       |                  | [ft] |
| Bottom    | width    |        | [ft]       | Exponent                |              | Calculate        |      |
| Bottom    | radius   |        | [ft]       | Triangle height         |              |                  |      |
| Left side | e slope  |        | [%]        | Right side slope        | [%]          |                  |      |
| Side wa   | s        | None   | $\sim$     | Barrels                 | 1            |                  |      |

Figure 3.11 The Conduits editor Geometry tab page

#### Table 3.7 Edit fields in the Conduits editor Geometry tab page (mss\_Link)

| Edit field                          | Description                                                                                  | Used or required by simulations                   | Field name in datastructure |  |
|-------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|--|
| Conduit Shape                       | Conduit cross sec-<br>tion shape                                                             | Yes                                               | ShapeTypeNo                 |  |
| Is Active                           | Option to include<br>or disregard the<br>conduit in model<br>simulations                     | Yes                                               | Enabled                     |  |
| Max. Height                         | Maximum conduit<br>depth                                                                     | Yes for all shapes<br>except IRREGU-<br>LAR shape | Depth                       |  |
| Length                              | Length of conduit                                                                            | Yes                                               | Length                      |  |
| Inlet Invert Eleva-<br>tion/Offset  | Elevation or depth<br>of upstream end of<br>conduit above the<br>upstream node<br>invert     | Yes                                               | InletInvert                 |  |
| Outlet Invert Ele-<br>vation/Offset | Depth or elevation<br>of downstream end<br>of conduit above<br>the downstream<br>node invert | Yes                                               | OutletInvert                |  |
| Sediment Depth                      | Sediment depth in conduit                                                                    | Yes, if CIRCULAR shape                            | SedimentDepth               |  |



| Edit field        | Description                                                                                                                                                                                 | Used or required by simulations                                                                                                                            | Field name in<br>datastructure |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Top Width         | Top width                                                                                                                                                                                   | Yes, if RECT<br>CLOSED,<br>RECT_OPEN,<br>TRAPEZOIDAL,<br>TRIANGULAR,<br>ARCH,<br>PARABOLIC,<br>POWER,<br>RECT_TRIANGU-<br>LAR, and<br>RECT_ROUND<br>shapes | TopWidth                       |
| Bottom Width      | Bottom width                                                                                                                                                                                | Yes, if MODBAS-<br>KETHANDLE<br>shape                                                                                                                      | BottomWidth                    |
| Bottom Radius     | Conduit bottom<br>radius                                                                                                                                                                    | Yes, if<br>RECT_ROUND<br>shape                                                                                                                             | BottomRadius                   |
| Left Side Slope   | Left side slope of<br>trapezoid                                                                                                                                                             | Yes, if TRAPEZOI-<br>DAL shape                                                                                                                             | LeftSideSlope                  |
| Right Side Slope  | Right side slope of<br>trapezoid                                                                                                                                                            | Yes if TRAPEZOI-<br>DAL shape                                                                                                                              | RightSideSlope                 |
| Side Walls        | Option for defining<br>walls along the<br>cross section                                                                                                                                     | If Shape =<br>RECT_OPEN                                                                                                                                    | SidewallsNo                    |
| Exponent          | Exponent in power<br>function for<br>describing the<br>shape                                                                                                                                | Yes, if POWER                                                                                                                                              | Exponent                       |
| Triangle Height   | Height of triangular<br>shape                                                                                                                                                               | Yes, if RECT_TRI-<br>ANGULAR shape                                                                                                                         | TriangleHeight                 |
| Number of Barrels | A conduit can have<br>a number of bar-<br>rels, meaning that<br>it consists of a mul-<br>tiple number of<br>parallel pipes of<br>equal size, slope<br>and roughness.<br>Default value is 1. | Yes                                                                                                                                                        | Barrels                        |

Note that a DUMMY conduit shape is a connecting pipe without geometry.



### 3.3.3 Hydraulic Properties

Define cross sections for CUSTOM or IRREGULAR shape conduits on the Hydraulic Properties tab page.

| Geometry | / Hydraulic p | properties | Hydraulic loss | Miscelleaneous | Description |  |
|----------|---------------|------------|----------------|----------------|-------------|--|
|          |               |            |                |                |             |  |
| Tran     | isect ID      |            |                |                |             |  |
| Shap     | oe ID         | JSI_Horse  | shoe           |                |             |  |
|          |               |            |                |                |             |  |
|          |               |            |                |                |             |  |
|          |               |            |                |                |             |  |
|          |               |            |                |                |             |  |
|          |               |            |                |                |             |  |

Figure 3.12 The Hydraulic Properties tab page

 Table 3.8
 Edit fields in the Conduits editor Hydraulic Properties tab page (mss\_Link)

| Edit field  | Description                                                                                                                                    | Used or required by simulations | Field name in datastructure |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Transect ID | ID for the Transect<br>describing conduit<br>geometry<br>expressed as sta-<br>tion/elevation value<br>pairs in the Tran-<br>sects editor       | If Shape = IRREGU-<br>LAR       | TransectID                  |
| Shape ID    | ID for the Shape<br>describing conduit<br>geometry<br>expressed as<br>depth/width values<br>defined in the<br>Curves and Rela-<br>tions editor | If Shape = CUS-<br>TOM          | ShapeID                     |

### 3.3.4 Hydraulic Loss

Define hydraulic loss parameters for conduits on the Hydraulic loss tab page of the Conduits editor.

| Geometry | Hydraulic properties | Hydraulic loss | Miscelleaneous | Description                   |     |  |
|----------|----------------------|----------------|----------------|-------------------------------|-----|--|
| -        | material             | ~              |                | age losscoeff<br>/ loss coeff | 2.7 |  |
| Use      | local parameters     |                | Exit           | oss coeff                     | 1   |  |
| Man      | ning roughness       | 0.01           | [s/m^(1/3)]    |                               |     |  |
| H-W      | roughness            | 110            |                |                               |     |  |
| D-W      | roughness            | 0.005          | [ft]           |                               |     |  |
|          |                      |                |                |                               |     |  |
|          |                      |                |                |                               |     |  |

Figure 3.13 The SWMM Conduits Hydraulic Loss tab page

| Table 3.9 | Edit fields in | the Hydraulic Loss | tab page (mss_Link) |
|-----------|----------------|--------------------|---------------------|
|-----------|----------------|--------------------|---------------------|

| Edit field                | Description                                                               | Used or required by simulations                                     | Field name in datastructure |
|---------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|
| Use Material              | Option to use loss<br>parameters from<br>the Materials editor             | Yes                                                                 | FricNo = 1                  |
| Material ID               | ID for the desired<br>conduit material<br>from the Materials<br>editor    | If FricNo = 1                                                       | MaterialID                  |
| Use Local Param-<br>eters | Option to use loss<br>parameters<br>defined on the tab<br>page            | Yes                                                                 | FricNo = 2                  |
| Manning Rough-<br>ness    | Manning n value<br>for the conduit                                        | If FricNo = 1 and<br>Conduit Shape <><br>FORCE MAIN                 | Roughness                   |
| H-W Roughness             | Hazen-Williams<br>coefficient for the<br>conduit                          | If FricNo = 1 and<br>Force Main Equa-<br>tion = Hazen-Wil-<br>liams | ForceMainRough-<br>nessHW   |
| D-W Roughness             | Darcy-Weisbach<br>coefficient for the<br>conduit                          | If FricNo = 1 and<br>Force Main Equa-<br>tion = Darcy-Weis-<br>bach | ForceMainRough-<br>nessDW   |
| Average Loss<br>Coeff     | Average loss coef-<br>ficient (using aver-<br>age velocity in<br>conduit) | No                                                                  | AvgLossCoeff                |



| Edit field       | Description                                              | Used or required by simulations | Field name in datastructure |
|------------------|----------------------------------------------------------|---------------------------------|-----------------------------|
| Entry Loss Coeff | Entry Loss coeffi-<br>cient (using<br>entrance velocity) | No                              | EntryLossCoeff              |
| Exit Loss Coeff  | Exit loss coefficient (using exit velocity)              | -                               | ExitLossCoeff               |

#### Table 3.9Edit fields in the Hydraulic Loss tab page (mss\_Link)

Minor losses are only computed for the Darcy-Weisbach Dynamic wave routing option. The minor losses,  $H_L$ , are computed as:

$$H_L = K \frac{v^2}{2g} \tag{3.2}$$

Where *K* is the energy loss coefficient, and *v* the flow velocity.

### 3.3.5 Miscellaneous

Define other parameters for the conduit on the Miscellaneous tab page.

| Geometry Hydrau | lic properties Hydraulic loss | Miscelleaneous | Description  |                     |
|-----------------|-------------------------------|----------------|--------------|---------------------|
| 🗌 Flap gate     |                               |                |              |                     |
| Initial flow    | 0 [ft^3/s]                    | I              | Max flow     | 0.01547229 [ft^3/s] |
| Culvert Code    |                               |                | Seepage Rate | 0 [in/h]            |
|                 |                               |                |              |                     |
|                 |                               |                |              |                     |
|                 |                               |                |              |                     |

Figure 3.14 The SWMM Conduits Miscellaneous tab page

| Table 3.10 | Edit fields in the Miscellaneo | us tab page (mss_Link) |
|------------|--------------------------------|------------------------|
|------------|--------------------------------|------------------------|

| Edit field   | Description                                                              | Used or required by simulations | Field name in datastructure |
|--------------|--------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Flap Gate    | Option for activat-<br>ing a flap gate pre-<br>venting backwater<br>flow | Yes                             | FlapGateNo                  |
| Initial Flow | Flow in conduit at start of simulation                                   | Yes                             | InitialFlow                 |



| Edit field                                                                   | Description                                                        | Used or required by simulations | Field name in datastructure |  |  |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|-----------------------------|--|--|--|
| Max Flow                                                                     | Maximum flow<br>allowed through<br>conduit                         | Yes                             | MaxFlow                     |  |  |  |
| Culvert Code*                                                                | Culvert type code<br>for inlet geometry if<br>conduit is a culvert | No                              | CulvertCode                 |  |  |  |
| Seepage Rate                                                                 | Seepage loss rate from the conduit                                 | No                              | SeepageRate                 |  |  |  |
| * Refer to the EPA SWMM Help Culvert Code Numbers chapter for Culvert Codes. |                                                                    |                                 |                             |  |  |  |

| Table 3.10 | Edit fields in the Miscellaneous tab page (mss_Linl | k)      |
|------------|-----------------------------------------------------|---------|
| 10010 0.10 | Eart helde in the Mildeenaneede tab page (mod_Ein   | · · · · |

## 3.4 Pumps

Pumps are drainage system elements that lift water to higher elevations. The relation between a pump's flow rate and conditions at its end node is described by a pump curve. MIKE+ SWMM represents a pump as a link connecting two nodes, where the pump itself is placed at the upstream node.

The Pumps editor organizes the related input data into the following groups:

- Identification. General identification and connectivity information
- Pump Properties. Pump data
- **Description**. Optional descriptive information about the pump. Also includes an option for adding images of the structure.

| Pumps          |                 |               |           |              |                |      |                |                  |       |         | х     |
|----------------|-----------------|---------------|-----------|--------------|----------------|------|----------------|------------------|-------|---------|-------|
| Ide            | ntification     |               |           |              |                |      |                |                  |       |         |       |
| ID AirportRdPS |                 | _             | From node | GIS2001789   |                |      | k In           | isert            |       |         |       |
|                |                 |               | To node   | GIS6072589   |                |      | De             | elete            |       |         |       |
|                |                 |               |           |              |                |      |                |                  | iete  | -       |       |
| Pump           | o properties    | Description   |           |              |                |      |                |                  |       |         | _     |
| 6              | 🖌 Initial statu | IS ON         |           |              |                |      |                |                  |       |         |       |
|                | Ideal pump      |               |           |              |                |      |                |                  |       |         |       |
|                | Startup depth   |               |           | 6.           | 8 [ft]         |      |                |                  |       |         |       |
|                | Shutoff depth   |               |           |              |                |      |                |                  |       |         |       |
|                | shuton deput    |               |           |              | 8 [ft]         |      |                |                  |       |         | - 1   |
| F              | Pump curve      |               |           | AirpotRdT    | 4              |      |                |                  |       |         | - 1   |
|                |                 |               |           |              |                |      |                |                  |       |         |       |
|                |                 |               | _         |              | _              | _    |                |                  | _     |         | -     |
|                |                 | ID ~          | ALL       | ~            | Clear [        | Show | v selected 🗌 S | Show data errors |       |         | elect |
|                | ID              | From node     |           | To node      | Initial status | ON   | Ideal pump     | Startup depth [f | ft]   | Shutoff | ^     |
| ▶ 1            | AirportRdPS     | GIS2001789    |           | GIS6072589   | <b>N</b>       |      | Г              |                  | 6.8   |         |       |
| 2              | ArmoryPS1       | ARMORYPSSTOR  | L         | ArmoryFM-1   | Г              |      | Г              |                  | 8.5   |         |       |
| 3              | ArmoryPS2       | ARMORYPSSTOR  | L         | ArmoryFM-2   | Г              |      | Г              |                  | 8.6   |         | -     |
| 4              | ArmoryPS3       | ARMORYPSSTOR  | L         | ArmoryFM-3   | Г              |      | Г              |                  | 8.7   |         |       |
| 5              | BushnellPS1     | BUSHNELLPSWET | NELL      | BushnellFM-1 | Г              |      | Г              |                  | 11.93 |         |       |
| 6              | BushnellPS2     | BUSHNELLPSWET | NELL      | BushnellFM-2 | Г              |      |                |                  | 12.03 |         |       |
| 7              | BushnellPS3     | BUSHNELLPSWET | NELL      | BushnellFM-3 | Г              |      | Г              |                  | 12.13 |         |       |
| 8              | BushnellPS4     | BUSHNELLPSWET | NELL      | BushnellFM-4 | Г              |      | Г              |                  | 4.5   |         | ~     |
| 1              |                 |               |           |              |                |      |                |                  |       |         | -     |

Figure 3.15 The SWMM Pumps editor

#### 3.4.1 Identification

The identification groupbox holds information on the element ID and connectivity. Use the Insert or Delete buttons to add or remove records from the editor, respectively.

| Identi       | fication  |                 |        |  |  |
|--------------|-----------|-----------------|--------|--|--|
| ID ArmoryPS1 | From node | ARMORYPSSTOR1 📐 | Insert |  |  |
|              | To node   | ArmoryFM-1 k    | Delete |  |  |

Figure 3.16 Pumps Identification groupbox

Table 3.11Edit fields in the Pumps Identification groupbox and Description tab<br/>page (mss\_Pump)

| Edit field | Description      | Used or<br>required by<br>simulations | Field name in datastructure |
|------------|------------------|---------------------------------------|-----------------------------|
| ID         | Id of the Pump   | Yes                                   | MUID                        |
| From Node  | Location of Pump | Yes                                   |                             |



| Edit field      | Description                                                                                                                                                                   | Used or<br>required by<br>simulations | Field name in datastructure |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| To Node         | Receiving Node                                                                                                                                                                | Yes                                   |                             |
|                 | Description                                                                                                                                                                   | l                                     |                             |
| Description     | Descriptive information related<br>to the structure                                                                                                                           | No                                    | Description                 |
| Data Source     | Reference to an external data source from which the record was imported                                                                                                       | No                                    | DataSource                  |
| Asset ID        | ld in the asset management system                                                                                                                                             | No                                    | AssetName                   |
| Status          | Status from a user- specified list in the Status Codes editor                                                                                                                 | No                                    | Element_S                   |
| Network<br>Type | Type of network i.e Stormwa-<br>ter, Combined or separate. The<br>list of network types can be<br>extended by the user. Network<br>type can be specified for each<br>element. | No                                    | NetTypeNo                   |
| Tag             | Optional label used to catego-<br>rize or classify the pump                                                                                                                   | No                                    | Tag                         |

# Table 3.11 Edit fields in the Pumps Identification groupbox and Description tab page (mss\_Pump)

| Pump properties | Description |
|-----------------|-------------|
| Description     |             |
| Data source     |             |
| Asset ID        | Add picture |
| Status          | ~           |
| Network type    | ~           |
| Tag             |             |
|                 |             |
|                 |             |
|                 |             |

Figure 3.17 The Pumps Description tab page

## 3.4.2 Pump Properties

Define essential pump properties on the Pump Properties tab page.



| Edit field        | Description                                                            | Used or required by simulations | Field name in datastructure |
|-------------------|------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Initial Status ON | Option to set initial status as ON                                     | No                              | InitialStatusNo             |
| Ideal Pump        | Option to define<br>the pump as<br>"ideal"                             | No                              | IdealPumpNo                 |
| Startup Depth     | Depth at the inlet<br>node at which the<br>pump turns on               | Yes                             | StartupDepth                |
| Shutoff Depth     | Depth at the inlet<br>node at which the<br>pump shuts off              | Yes                             | ShutoffDepth                |
| Pump Curve ID     | Reference to a tab-<br>ular Pump curve in<br>Curves and Rela-<br>tions | Yes                             | PumpCurveID                 |

#### Table 3.12 Edit fields in the Pump Properties tab page (mss\_Pump)

An ideal pump will have a flow rate equal to the inflow rate at the inlet node (From Node), and thus does not require a pump curve. The ideal pump must be the only outflow link from the inlet node.

A pump curve must be defined for each pump. Pump curves are defined in the Curves and Relations editor. The following pump curves types are supported:

- **Pump Curve 1 (Volume-Flow)**. An off-line pump with a wet well where flow increases incrementally with wet well volume
- **Pump Curve 2 (Depth-Flow)**. An in-line pump where flow increases incrementally with node depth
- **Pump Curve 3 (Head-Flow)**. An in-line pump where flow varies continuously with head difference between the inlet and outlet nodes
- **Pump Curve 4 (Depth-Flow)**. A variable speed in-line pump where flow varies continuously with node depth

The on/off status of pumps may be controlled dynamically through userdefined control rules.

## 3.5 Orifices

Orifices are openings in a wall of a manhole junction or storage unit used to model outlet and diversion structures in drainage systems. Orifices belong to



the group of Link components connecting two nodes. An orifice can have either a circular or rectangular shape, be located either at the bottom or along the side of the upstream node, and have a flap gate to prevent backflow.

Orifices attached to storage units are active under all types of flow routing.

Those attached to other types of nodes are active only under Dynamic Wave flow routing; otherwise the flow through them is zero.

The flow through an orifice is computed based on the area of its opening, its discharge coefficient, and the head difference across the orifice. The area of an orifice's opening can be controlled dynamically through user-defined control rules.

The Orifices editor organizes the related input data into the following groups:

- Identification. General identification and connectivity information
- Geometry. Geometric data for an orifice
- **Hydraulic Properties**. Orifice hydraulic parameters
- Description. Optional descriptive information about the element. Also includes an option for adding images of the structure.

| Orifices |                     |                     |                                                       |            |     |                   |     |                  |     | х        |
|----------|---------------------|---------------------|-------------------------------------------------------|------------|-----|-------------------|-----|------------------|-----|----------|
|          | tification          |                     |                                                       |            |     |                   |     |                  | _   | ~        |
| ID       |                     |                     | m node GIS2005004-1<br>node ARMORYPSST                | ·          |     | ··· k             |     | Insert<br>Delete |     |          |
| Geom     | etry Hydraulic prop | perties Description |                                                       |            |     |                   |     |                  |     |          |
| c        | ype SIDE            | 7 [ft]<br>12 [ft]   | Orifice shape F<br>Crest elevation<br>Open Close time | RECT_CLOSE | D   | > [ft]<br>0.1 [h] |     |                  |     |          |
|          | ID                  | ~ All               | ✓ Clear                                               | Show se    | lec | ted 🗌 Show d      | ata | errors 1/45 row  | d   |          |
|          | ID                  | From node           | To node                                               | Туре       |     | Orifice shape     |     | Opening [ft]     |     | • ^      |
| ▶ 1      | ArmoryPS_Gate       | GIS2005004-1        | ARMORYPSSTOR1                                         | SIDE       | •   | RECT_CLOSED       | •   | 7                | 12  |          |
| 2        | BondStOR            | J2                  | GIS2001509                                            | BOTTOM     | •   | RECT_CLOSED       | •   | 1                | 1.5 |          |
| 3        | BushnellPS_Gate     | GIS6007497          | BUSHNELLPSWETWELL                                     | SIDE       | •   | RECT_CLOSED       | •   | 7                | 12  |          |
| 4        | Capitol-P24-Siphon1 | GIS2000878          | GIS2000878-1                                          | SIDE       | •   | CIRCULAR          | •   | 1.333            | 0   |          |
| 5        | FishFryGate         | FishFryInlet        | FishFryComm                                           | SIDE       | •   | RECT_CLOSED       | •   | 3                | 3   |          |
| 6        | G17A_Plate2         | GIS6072394-Well3    | G17A_Plate                                            | SIDE       | •   | CIRCULAR          | •   | 2.5              | 0   |          |
| 7        | G17APlate1          | GIS6072394-Well2    | G17APlate1                                            | SIDE       | •   | CIRCULAR          | •   | 2.5              | 0   |          |
| 8        | G17B_Plate          | GIS6072395          | G17BPlate                                             | SIDE       | •   | CIRCULAR          | •   | 3.5              | 0   |          |
| 9        | G21CSO              | G21_DS              | GIS6007200                                            | SIDE       | •   | CIRCULAR          | •   | 2                | 0   |          |
| 10       | GardenStGate        | GIS2004256          | GardenStSluice                                        | SIDE       | •   | CIRCULAR          | •   | 3                | 0   |          |
| 11       | GIS1006348          | P4SiphonInlet       | GIS2002068                                            | SIDE       | •   | CIRCULAR          | •   | 1                | 0   |          |
| 12       | IslandRdGate        | GIS2377208          | CDM2378596                                            | SIDE       | •   | CIRCULAR          | •   | 2                | 0   | ~        |
| <        |                     |                     |                                                       |            |     |                   |     |                  | 3   | <u>۶</u> |

Figure 3.18 SWMM Orifices editor



## 3.5.1 Identification

The identification groupbox holds information on the element ID and connectivity. Use the Insert or Delete buttons to add or remove records from the editor, respectively.

| Identi | fication |           |            |              |        |
|--------|----------|-----------|------------|--------------|--------|
|        |          | From node | G21_DS     | <br><b>N</b> | Insert |
| ID     | G21CSO   | To node   | GIS6007200 | <br>k        | Delete |



# Table 3.13 Edit fields in the Orifices Identification groupbox and Description tab page (mss\_Orifice)

| Edit field      | Description                                                                                                                                                                   | Used or<br>required by<br>simulations | Field name in datastructure |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| ID              | Id of the Orifice                                                                                                                                                             | Yes                                   | MUID                        |
| From Node       | Node location of orifice                                                                                                                                                      | Yes                                   | FromNodeID                  |
| To Node         | Downstream node                                                                                                                                                               | Yes                                   | ToNodeID                    |
|                 | Description                                                                                                                                                                   | l                                     |                             |
| Description     | Descriptive information related to the structure                                                                                                                              | No                                    | Description                 |
| Data Source     | Reference to an external data source from which the record was imported                                                                                                       | No                                    | DataSource                  |
| Asset ID        | Id in the asset management system                                                                                                                                             | No                                    | AssetName                   |
| Status          | Status from a user- specified list in the Status Codes editor                                                                                                                 | No                                    | Element_S                   |
| Network<br>Type | Type of network i.e Stormwa-<br>ter, Combined or separate. The<br>list of network types can be<br>extended by the user. Network<br>type can be specified for each<br>element. | No                                    | NetTypeNo                   |
| Тад             | Optional label used to catego-<br>rize or classify the orifice                                                                                                                | No                                    | Tag                         |



| Geometry Hydra | ulic properties Description                   |             |
|----------------|-----------------------------------------------|-------------|
| Description    | Gate open ~half way observed in CCTV 2019; Al | ł           |
| Data source    | ССТУ                                          | ]           |
| Asset ID       |                                               | Add picture |
| Status         | 1: Model $\checkmark$                         | -           |
| Network type   | 3: Combined $\checkmark$                      | 1           |
| Tag            |                                               | ]           |
|                |                                               |             |



## 3.5.2 Geometry

Specify geometric properties for orifices on the Geometry tab page.

| Edit field                  | Description                                                              | Used or required by simulations                                                          | Field name in datastructure |
|-----------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------|
| Туре                        | Type of orifice:<br>SIDE or BOTTOM                                       | Yes                                                                                      | TypeNo                      |
| Orifice Shape               | Shape of the ori-<br>fice opening: CIR-<br>CULAR or<br>RECT_CLOSED       | Yes                                                                                      | ShapeTypeNo                 |
| Opening                     | Height/Diameter of<br>orifice opening                                    | Yes                                                                                      | Height                      |
| Width                       | Width of orifice when fully open                                         | Yes, if Orifice<br>shape is RECT<br>CLOSED                                               | Width                       |
| Crest Height/Ele-<br>vation | Offset height of ori-<br>fice bottom from<br>invert of upstream<br>node  | Yes (if Orifice Type<br>is BOTTOM then<br>Crest Height is set<br>zero in SWMM<br>engine) | CrestHeight                 |
| Open/Close Time             | Time it takes to<br>open or close a<br>gated orifice in<br>decimal hours | Yes                                                                                      | TimeToOpenClose             |

### Table 3.14Edit fields in the Orifices Geometry tab page (mss\_Orifice)

## 3.5.3 Hydraulic Properties

Define hydraulic flow properties for orifices on the Hydraulic Properties tab page of the editor.



| Geometry Hydraulic properties | Description |
|-------------------------------|-------------|
| Flap gate                     |             |
| Discharge                     | 0.58        |
|                               |             |
|                               |             |
|                               |             |
|                               |             |

Figure 3.21 Orifices Hydraulic Properties tab page

| Edit field            | Description                                                                      | Used or required by simulations | Field name in datastructure |
|-----------------------|----------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Flap Gate<br>checkbox | Option to add a<br>flap gate prevent-<br>ing reverse flow<br>through the orifice | No                              | FlapGateNo                  |
| Discharge Coeff       | Orifice discharge coefficient. A typi-cal value is 0.65.                         | Yes                             | DischargeCoeff              |

| Table 3.15 | Edit fields in the Hydraulic Properties | tab page (mss_Orifice) |
|------------|-----------------------------------------|------------------------|
|------------|-----------------------------------------|------------------------|

# 3.6 Weirs

Weirs, like orifices, are used to model outlet and diversion structures in a drainage system. Weirs are typically located in a chamber of a manhole, along the side of a channel, or along the top of a storage unit. MIKE+ SWMM represents a weir as a link connecting two nodes, where the weir itself is placed at the upstream node. A flap gate can be included to prevent backflow.

The Weir editor organizes the related input data into the following groups:

- Identification. General identification and connectivity information
- Geometry. Geometric data
- Hydraulic Properties. Hydraulic parameters
- **Description**. Optional descriptive information about the element. Also includes an option for adding images of the structure.



| eirs                                                  |                                                                                                                                        |                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    | 0                   |                                           |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------|-------------------------------------------|
| Iden                                                  | tification                                                                                                                             |                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | _                                                                               |                                                                                    |                     |                                           |
|                                                       |                                                                                                                                        |                                                                                                                                                                                                                            | From node FishF                                                                                                              | ryComm                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Inse                                                                            | rt                                                                                 |                     |                                           |
| ID                                                    | FFCommByps                                                                                                                             |                                                                                                                                                                                                                            | To node FishF                                                                                                                | ryWW                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Delei                                                                           | to                                                                                 |                     |                                           |
|                                                       |                                                                                                                                        |                                                                                                                                                                                                                            |                                                                                                                              | .,                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Dele                                                                            | ue -                                                                               |                     |                                           |
| eom                                                   | etry Hydraulic p                                                                                                                       | roperties Descri                                                                                                                                                                                                           | ption                                                                                                                        |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
| т                                                     | ype                                                                                                                                    | RoadWay                                                                                                                                                                                                                    | ~                                                                                                                            |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
| 0                                                     | pening                                                                                                                                 |                                                                                                                                                                                                                            | 3.25                                                                                                                         | [ <del>0</del> ]                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
|                                                       |                                                                                                                                        |                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
| C                                                     | rest elevation                                                                                                                         |                                                                                                                                                                                                                            | 2.13                                                                                                                         | [ft]                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
| L                                                     | ength                                                                                                                                  |                                                                                                                                                                                                                            | 5                                                                                                                            | [ft]                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
| 5                                                     | ide slope                                                                                                                              |                                                                                                                                                                                                                            | 0                                                                                                                            |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
|                                                       | ide slope                                                                                                                              |                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
|                                                       |                                                                                                                                        |                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
|                                                       |                                                                                                                                        |                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
|                                                       |                                                                                                                                        |                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
|                                                       |                                                                                                                                        | •                                                                                                                                                                                                                          |                                                                                                                              |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                 |                                                                                    |                     |                                           |
|                                                       | ID                                                                                                                                     | ↓<br>✓ ALL                                                                                                                                                                                                                 | ~ c                                                                                                                          | lear Sh                                                                                                                         | now s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | elected Sh | ow data errors                                                                  | 1/101 rows, 0 sel                                                                  | ected               |                                           |
| _                                                     | ID                                                                                                                                     | ← ✓ ALL<br>From node                                                                                                                                                                                                       | ✓ C<br>To node                                                                                                               | lear Sh                                                                                                                         | 10W S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | elected Sh | ow data errors<br>Opening [ft]                                                  | 1/101 rows, 0 sel                                                                  | ected<br>Side slope |                                           |
| 1                                                     | ID                                                                                                                                     | ~ ALL                                                                                                                                                                                                                      |                                                                                                                              |                                                                                                                                 | now s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                                 |                                                                                    | Side slope          | 0                                         |
|                                                       | ID                                                                                                                                     | ✓ ALL<br>From node                                                                                                                                                                                                         | To node<br>FishFryWW                                                                                                         | Туре                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Opening [ft]                                                                    | Length [ft]                                                                        | Side slope          | 0                                         |
| 2                                                     | ID<br>FFCommByps                                                                                                                       | From node FishFryComm                                                                                                                                                                                                      | To node<br>FishFryWW                                                                                                         | Type<br>RoadWay                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Opening [ft]<br>3.25                                                            | Length [ft]<br>5                                                                   | Side slope          | -                                         |
| 2<br>3                                                | ID<br>FFCommByps<br>FishFryWeir                                                                                                        | V ALL<br>From node<br>FishFryComm<br>FishFryCommOut                                                                                                                                                                        | To node<br>FishFryWW<br>FishFryWW                                                                                            | Type<br>RoadWay<br>TRANSVERSE                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Opening [ft]<br>3.25<br>10                                                      | Length [ft]<br>5<br>4                                                              | Side slope          | 0                                         |
| 2<br>3<br>4                                           | ID<br>FFCommByps<br>FishFryWeir<br>GIS1005778_2                                                                                        | From node       FishFryComm       FishFryCommOut       J2                                                                                                                                                                  | To node<br>FishFryWW<br>FishFryWW<br>GIS2001509                                                                              | Type<br>RoadWay<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE                                                                       | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Opening [ft]<br>3.25<br>10<br>1.5                                               | Length [ft]<br>5<br>4<br>4                                                         | Side slope          | 0                                         |
| 2<br>3<br>4<br>5                                      | ID<br>FFCommByps<br>FishFryWeir<br>GIS1005778_2<br>JSI_ThrottleWr                                                                      | From node       FishFryComm       FishFryCommOut       J2       GIS2000785                                                                                                                                                 | To node<br>FishFryWW<br>FishFryWW<br>GIS2001509<br>GIS2000786<br>GIS2000409-Tert                                             | Type<br>RoadWay<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE                                                                       | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Opening [ft]<br>3.25<br>10<br>1.5<br>7                                          | Length [ft]<br>5<br>4<br>4<br>6.5                                                  | Side slope          | 0<br>0<br>0                               |
| 2<br>3<br>4<br>5<br>6                                 | ID<br>FFCommByps<br>FishFryWeir<br>GIS1005778_2<br>JSI_ThrottleWr<br>OldS9_Tertiary                                                    | ALL     From node     FishFryComm     FishFryCommOut     J2     GIS2000785     GIS2000409                                                                                                                                  | To node<br>FishFryWW<br>FishFryWW<br>GIS2001509<br>GIS2000786<br>GIS2000409-Tert                                             | Type<br>RoadWay<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE                                                         | •<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Opening [ft]<br>3.25<br>10<br>1.5<br>7<br>5                                     | Length [ft]<br>5<br>4<br>4<br>6.5<br>4                                             | Side slope          | 0<br>0<br>0                               |
| 2<br>3<br>4<br>5<br>6<br>7                            | ID<br>FFCommByps<br>FishFryWeir<br>GIS1005778_2<br>JSI_ThrottleWr<br>OldS9_Tertiary<br>OldS9-Secondary                                 | ALL     From node     FishFryComm     FishFryCommOut     J2     GIS2000785     GIS2000409     GIS2000409                                                                                                                   | To node<br>FishFryWW<br>FishFryWW<br>GI52001509<br>GI52000786<br>GI52000409-Tert<br>GI52000409-Sec                           | Type<br>RoadWay<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE                                           | •<br>•<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | Opening [ft]<br>3.25<br>10<br>1.5<br>7<br>5<br>5                                | Length [ft]<br>5<br>4<br>4<br>6.5<br>4<br>4<br>4                                   | Side slope          | 0<br>0<br>0<br>0                          |
| 2<br>3<br>4<br>5<br>6<br>7<br>8                       | ID<br>FFCommByps<br>FishFryWeir<br>GIS1005778_2<br>JSI_ThrottleWr<br>OldS9_Tertiary<br>OldS9-Secondary<br>ORG23                        | V ALL<br>From node<br>FishFryComm<br>FishFryCommOut<br>J2<br>GIS2000785<br>GIS2000409<br>GIS2000409<br>GIS2004380                                                                                                          | To node<br>FishFryWW<br>FishFryWW<br>GI52001509<br>GI52000786<br>GI52000409-Tert<br>GI52000409-Sec<br>G23-1                  | Type<br>RoadWay<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE                             | <ul> <li>*</li> <li>*&lt;</li></ul> |            | Opening [ft]<br>3.25<br>10<br>1.5<br>7<br>5<br>5<br>5<br>5                      | Length [ft]<br>5<br>4<br>4<br>6.5<br>4<br>4<br>4<br>4<br>2.61                      | Side slope          | 0<br>0<br>0<br>0<br>0                     |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                  | ID<br>FFCommByps<br>FishFryWeir<br>GIS1005778_2<br>JSI_ThrottleWr<br>OldS9_Tertiary<br>OldS9_Secondary<br>ORG23<br>ORGBI               | V ALL<br>From node<br>FishFryComm<br>FishFryCommOut<br>J2<br>GIS2000785<br>GIS2000409<br>GIS200409<br>GIS2004380<br>GIS2002219                                                                                             | To node<br>FishFryWW<br>FishFryWW<br>GIS2001509<br>GIS2000786<br>GIS2000409-Tert<br>GIS2000409-Sec<br>G23-1<br>GIS2002219-2  | Type<br>RoadWay<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE                             | <ul> <li>*</li> <li>*&lt;</li></ul> |            | Opening [ft]<br>3.25<br>10<br>10<br>1.5<br>7<br>7<br>5<br>3<br>3<br>1.25        | Length [ft]<br>5<br>4<br>4<br>6.5<br>4<br>4<br>4<br>4<br>2.61<br>4.25              | Side slope          | 0<br>0<br>0<br>0<br>0<br>0                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | ID<br>FFCommByps<br>FishFryWeir<br>GIS 1005778_2<br>JSI_ThrottleWr<br>OldS9_Tertiary<br>OldS9_Scondary<br>ORG23<br>ORGBI<br>P2Blockage | <ul> <li>ALL</li> <li>From node</li> <li>FishFryComm</li> <li>FishFryCommOut</li> <li>12</li> <li>GIS2000785</li> <li>GIS2000409</li> <li>GIS2000409</li> <li>GIS2004380</li> <li>GIS200219</li> <li>GIS2002104</li> </ul> | To node<br>FishFryWW<br>GIS2001509<br>GIS2000786<br>GIS2000409-Tert<br>GIS2000409-Sec<br>G23-1<br>GIS2002219-2<br>P2Blockage | Type<br>RoadWay<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE<br>TRANSVERSE | <ul> <li>*</li> <li>*&lt;</li></ul> |            | Opening [ft]<br>3.25<br>10<br>1.5<br>7<br>5<br>5<br>3<br>3<br>4<br>2.25<br>3.48 | Length [ft]<br>5<br>4<br>4<br>6.5<br>6.5<br>4<br>4<br>2.61<br>4.25<br>4.25<br>3.17 | Side slope          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |



## 3.6.1 Identification

The identification group box holds element ID and connectivity information. Use the Insert or Delete buttons to add or remove records from the editor, respectively.

| Identification |           |            |        |        |
|----------------|-----------|------------|--------|--------|
|                | From node | GIS2004380 | <br>R. | Insert |
| ID ORG23       | To node   | G23-1      | <br>k  | Delete |
|                |           |            |        |        |



# Table 3.16 Edit fields in the Weirs Identification groupbox and Description tab page (mss\_Weir)

| Edit field      | Description                                                                                                                                                                                                     | Used or<br>required by<br>simulations | Field name in datastructure |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| ID              | ld of the Weir                                                                                                                                                                                                  | Yes                                   | MUID                        |
| From Node       | Node location of Weir                                                                                                                                                                                           | Yes                                   | FromNodeID                  |
| To Node         | Receiving Node                                                                                                                                                                                                  | Yes                                   | ToNodeID                    |
|                 | Description                                                                                                                                                                                                     | l                                     |                             |
| Description     | Descriptive information for the<br>element                                                                                                                                                                      | No                                    | Description                 |
| Data Source     | Reference to an external data source from which the record was imported                                                                                                                                         | No                                    | DataSource                  |
| Asset ID        | Id in the asset management system                                                                                                                                                                               | No                                    | AssetName                   |
| Status          | Status according to a user-<br>specified list in the Status<br>Code editor                                                                                                                                      | No                                    | Element_S                   |
| Network<br>Type | Network type describes the<br>type of network i.e Stormwater,<br>Combined or separate. The list<br>of network types can be<br>extended by user. Network<br>type can be specified for each<br>hydraulic element. | No                                    | NetTypeNo                   |
| Тад             | Optional label used to catego-<br>rize or classify the weir                                                                                                                                                     | No                                    | Tag                         |

| Geometry Hydra             | sulic properties Description                 |
|----------------------------|----------------------------------------------|
| Description<br>Data source | Sheet 14, FFPS 1953 and M-2, 2005 upgrade.To |
| Asset ID                   | Add picture                                  |
| Status                     | ~                                            |
| Network type               | ~                                            |
| Tag                        | NM_20170807_v30_Run2016                      |
|                            |                                              |

Figure 3.24 Weirs Description tab page

## 3.6.2 Geometry

Specify weir geometric properties on the Geometry tab page.

| Edit field                  | Description                                                             | Used or required by simulations           | Field name in datastructure |
|-----------------------------|-------------------------------------------------------------------------|-------------------------------------------|-----------------------------|
| Туре                        | Type of weir from a<br>predefined list                                  | Yes                                       | TypeNo                      |
| Opening                     | Height of weir                                                          | Yes                                       | Height                      |
| Crest Height/Ele-<br>vation | Offset of weir crest<br>above invert eleva-<br>tion of location<br>node | Yes                                       | CrestHeight                 |
| Length                      | Length of weir                                                          | Yes                                       | Length                      |
| Side Slope                  | Side slope of weir                                                      | If Type = V-<br>NOTCH or TRAP-<br>EZOIDAL | SideSlope                   |

 Table 3.17
 Edit fields in the Weirs Geometry tab page (mss Weir)

The following weir types are available, each with a slightly different formula for computing flow as a function of area, discharge coefficient and head difference across the weir:

- TRANSVERSE (rectangular shape)
- SIDEFLOW (rectangular shape)
- V-NOTCH (triangular shape)
- TRAPEZOIDAL
- Roadway

Weirs attached to storage units are active under all types of flow routing. Those attached to other types of nodes are active only under Dynamic Wave flow routing; otherwise the flow through them is zero.

The height of the weir crest above the inlet node invert can be controlled dynamically through user-defined control rules. This feature can be used to model RTC controlled Weirs and inflatable dams.

Roadway weir types model roadway overtopping using the FHWA HDS-5 (Hydraulic Design Series 5) method and would typically be used in parallel with culvert conduits.



## 3.6.3 Hydraulic Properties

Define weir hydraulic parameter values on the Hydraulic Properties tab page.

| Geometry Hydraulic properties | Description |            |                     |        |
|-------------------------------|-------------|------------|---------------------|--------|
| ✓ Flap gate ✓ Can surcharge   |             |            |                     |        |
| Discharge coeff(roadway)      | 1.0         | 5          | No end contractions | 0      |
| End coeff                     | (           | 0 [ft^3/s] | Coefficient curve   |        |
| Road surf                     | Paved ~     | /          | Road width          | 0 [ft] |
|                               |             |            |                     |        |
|                               |             |            |                     |        |
|                               |             |            |                     |        |

Figure 3.25 Weirs Hydraulic Properties tab page

#### Table 3.18 Edit fields in the Weirs Hydraulic Properties tab page (mss\_Weir)

| Edit field               | Description                                                                                                   | Used or required by simulations                      | Field name in datastructure |
|--------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------|
| Flap gate                | Option to add a<br>flap gate prevent-<br>ing backflow                                                         | No                                                   | FlapGateNo                  |
| Can surcharge            | Option for allow-<br>ing weir surcharge<br>where upstream<br>water level can go<br>above height of<br>opening | No                                                   | CanSurchargeNo              |
| Discharge Coeff          | Weir discharge<br>coefficient                                                                                 | Yes                                                  | DischargeCoeff              |
| No. End Contrac-<br>tion | Number of end<br>contractions for<br>Transverse and<br>Trapezoidal weirs                                      | Yes, if weir type is<br>TRANSVERSE or<br>TRAPEZOIDAL | NoEndContrac-<br>tions      |
| End Coeff                | Discharge coeffi-<br>cient for triangular<br>ends of trapezoidal<br>weir                                      | Yes, if weir type is<br>TRAPEZOIDAL                  | Cd2                         |
| Coefficient Curve        | Optional weir<br>curve that relates<br>discharge coeffi-<br>cient to head                                     | No<br>Does not apply to<br>ROADWAY weirs             | CoeffCurveID                |



| Edit field   | Description                                   | Used or required by simulations | Field name in datastructure |
|--------------|-----------------------------------------------|---------------------------------|-----------------------------|
| Road Surface | Type of road sur-<br>face, PAVED or<br>GRAVEL | Yes, if weir type is<br>ROADWAY | RoadSurf                    |
| Road Width   | Width of the road<br>lanes and shoul-<br>ders | Yes, if weir is<br>ROADWAY      | RoadWidth                   |

| Table 3.18 | Edit fields in th  | ne Weirs Hy | draulic Prope | erties tab nade | (mss Weir) |
|------------|--------------------|-------------|---------------|-----------------|------------|
|            | Eult lielus III ti |             | ulaulic Flope | tiles lab page  |            |

# 3.7 Outlets

Outlets are flow control structures typically used to control outflows from storage units. They are used to model special flow-head relations that cannot be characterized by either orifices or weirs. MIKE+ SWMM represents an Outlet as a link connecting two nodes, where the outlet itself is placed at the upstream node.

Outlets attached to storage units are active under all types of flow routing. Those attached to other types of nodes are active only under Dynamic Wave flow routing; otherwise the flow through them is zero.

The Outlet editor organizes the related input data into the following groups:

- Identification. General identification and connectivity information
- Hydraulic Properties. Hydraulic and geometric parameters for the outlet
- **Description**. Optional descriptive information about the element. Also includes an option for adding images of the structure.

| Outlets    |            |            |                  |            |          |    |             |             |                 |                    |           | × |
|------------|------------|------------|------------------|------------|----------|----|-------------|-------------|-----------------|--------------------|-----------|---|
| Ider<br>IC | Outlet     |            |                  | rom node   | GIS25278 | 07 |             | ) )<br>)    | ╡│              |                    |           |   |
| Hydra      | alic prope | rties Desc | ription          |            |          |    |             |             |                 |                    |           |   |
| E          | 🗹 Flap g   | ate        |                  |            |          |    |             |             |                 |                    |           |   |
| т          | ype        |            | Functional/depth | ~          |          |    |             |             |                 |                    |           |   |
| н          | leight     |            |                  | 2          | [ft]     |    |             |             |                 |                    |           |   |
| с          | oefficient | t          |                  | 10         |          |    |             |             |                 |                    |           |   |
| E          | xponent    |            |                  | 0.5        |          |    |             |             |                 |                    |           |   |
| Q          | -curve ID  | )          |                  |            |          |    |             |             |                 |                    |           |   |
|            |            |            |                  |            |          |    |             |             |                 |                    |           |   |
|            |            | ID         | ~ All            | ~          | Clear    | 1  | Show selec  | ted 🗌 Shov  | data errors 1/: | 1 rows, 0 selected | 1         |   |
|            | ID         | From node  | To node          | Туре       |          |    | Height [ft] | Coefficient | Q-curve ID      | Exponent           | Flap gate |   |
| <b>▶</b> 1 | Outlet     | GIS252780  | 7                | Functional | /depth   | •  | 2           | 1           | 0               | 0.5                | V         |   |
|            |            |            |                  |            |          |    |             |             |                 |                    |           |   |
|            |            |            |                  |            |          |    |             |             |                 |                    |           |   |
|            |            |            |                  |            |          |    |             |             |                 |                    |           |   |

Figure 3.26 The SWMM Outlets editor

## 3.7.1 Identification

The identification group box holds element ID and connectivity information. Use the Insert or Delete buttons to add or remove records from the editor, respectively.

| Identification |           |            |              |        |
|----------------|-----------|------------|--------------|--------|
|                | From node | GIS2527807 | <br><b>N</b> | Insert |
| ID Outlet      |           |            |              |        |
|                | To node   |            |              | Delete |

Figure 3.27 Outlets Identification groupbox

| Table 3.19 | Edit fields in the Outlets Identification groupbox and Description tab |
|------------|------------------------------------------------------------------------|
|            | page (mss_Outlet)                                                      |

| Edit field  | Description                 | Used or<br>required by<br>simulations | Field name in datastructure |  |  |  |
|-------------|-----------------------------|---------------------------------------|-----------------------------|--|--|--|
| ID          | ld of the Outlet            | Yes                                   | MUID                        |  |  |  |
| Location    | Node location of the outlet | Yes                                   | FromNodeID                  |  |  |  |
| То          | Receiving node              | No                                    | ToNodeID                    |  |  |  |
| Description |                             |                                       |                             |  |  |  |



| r               | r                                                                                                                                                                                                               |                                       | 0                           |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Edit field      | Description                                                                                                                                                                                                     | Used or<br>required by<br>simulations | Field name in datastructure |
| Description     | Descriptive information for the<br>outlet                                                                                                                                                                       | No                                    | Description                 |
| Data Source     | Reference to an external data source from which the record was imported                                                                                                                                         | No                                    | DataSource                  |
| Asset ID        | Id in the asset database                                                                                                                                                                                        | No                                    | AssetName                   |
| Status          | Status according to user speci-<br>fied list in Status Codes editor                                                                                                                                             | No                                    | Element_S                   |
| Network<br>Type | Network type describes the<br>type of network i.e Stormwater,<br>Combined or separate. The list<br>of network types can be<br>extended by user. Network<br>type can be specified for each<br>hydraulic element. | No                                    | NetTypeNo                   |
| Tag             | Optional label used to catego-<br>rize or classify the outlet                                                                                                                                                   | No                                    | Tag                         |

# Table 3.19 Edit fields in the Outlets Identification groupbox and Description tab page (mss\_Outlet)

| Hydraulic properties | Description                           |
|----------------------|---------------------------------------|
|                      |                                       |
| Description          |                                       |
| Data source          |                                       |
| Asset ID             | Add picture                           |
| Status               | · · · · · · · · · · · · · · · · · · · |
| Network type         | $\checkmark$                          |
| Tag                  |                                       |
|                      |                                       |

Figure 3.28 Outlets Description tab page

## 3.7.2 Hydraulic Properties

Specify geometric and hydraulic parameters for outlets on the Geometry tab page.

| ydraulic properties | Description      |        |  |  |
|---------------------|------------------|--------|--|--|
| 🗹 Flap gate         |                  |        |  |  |
| Туре                | Functional/depth | $\sim$ |  |  |
| Height              |                  | 2 [ft] |  |  |
| Coefficient         |                  | 10     |  |  |
| Exponent            |                  | 0.5    |  |  |
| Q-curve ID          |                  |        |  |  |

Figure 3.29 Outlets editor Hydraulic Properties tab page

| Edit field  | Description                                                                                                     | Used or required by simulations      | Field name in datastructure |
|-------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------|
| Flap Gate   | Option for adding a flap gate<br>preventing backflows                                                           | Yes                                  | FlapGateNo                  |
| Туре        | Outlet Type:<br>Tabular/depth,<br>Tabular/head,<br>Functional/depth,<br>Functional/head                         | Yes                                  | TypeNo                      |
| Height      | Minimum water depth at<br>upstream node for outflow to<br>occur                                                 | Yes                                  | Height                      |
| Coefficient | Coefficient of power function<br>that relates outflow to head<br>across the outlet for a Func-<br>tional outlet | Yes, if Outlet Type<br>is Functional | Qcoeff                      |
| Exponent    | Exponent of power function<br>that relates outflow to head<br>across the outlet fir a Func-<br>tional outlet    | Yes, if Outlet Type<br>is Functional | Qexpon                      |
| Q-curve ID  | ID of rating curve with outflow<br>rate as a function of head<br>across the outlet for a tabular<br>outlet      | Yes if Outlet Type<br>is Tabular     | QcurveID                    |

| Table 3.20 | Edit fields in the O | Outlets Hydraulic | Properties tab | page (mss_Outlet) |
|------------|----------------------|-------------------|----------------|-------------------|
|------------|----------------------|-------------------|----------------|-------------------|

Outlet types are based on how flow is computed as a function of freeboard depth or head across the outlet:

- Tabular/depth. Uses a tabulated curve of flow-freeboard depth values.
- **Tabular/head**. Uses a tabulated curve of flow-head difference values.



- **Functional/depth**. Uses a power function Q = Coefficient(y<sup>Exponent</sup>) where y is the freeboard depth above the outlet's opening.
- **Functional/head**. Uses a power function Q = Coefficient(y<sup>Exponent</sup>) where y is the head difference across the outlet.


An outlet can have a flap gate which restricts flow to only one direction and prevents backwater flow.

The flow through an outlet is determined by a user-supplied function or table of flow versus head difference across the outlet (Q-curve ID). This flow can be controlled dynamically through user-defined control rules.

## 3.8 Transects

Transects are geometric cross section data describing how bottom elevation varies with horizontal distance over the cross section of a natural channel or irregularly-shaped conduit. The figure below (Figure 3.30) displays an example of a transect for a natural channel.

MIKE+ offers a tool for automatically generating or editing transect data from survey points or DEM data. Access the Create and Update Transects tool from the Network Editing Tools toolbox on the CS Network menu ribbon (Figure 3.31).





| File Projec     | t Map    | CS network | Cat      | chments  | Sin   | ulation    | Tools            | Results              |                            |                         |
|-----------------|----------|------------|----------|----------|-------|------------|------------------|----------------------|----------------------------|-------------------------|
| 🖍 Undo          | 📚 Target | layer:     | <b>P</b> | 1        |       | <u> </u>   | Ç                |                      | -<br>-<br>-<br>            | 21                      |
| 🞢 Redo          | Targe    | t layer 🔻  | Create   | Edit     | Delet | e Split    | Reverse<br>links | Open layer<br>editor | Network<br>editing tools 🔻 | View WD<br>network      |
| Undo / Redo 🛛 🦼 |          |            |          | Edit fea |       | nterpolati | on and assi      | ignment Ctr          | I+T, Ctrl+A                | WD network              |
|                 |          |            |          |          | দ্ধ   | Create and | l update tra     | insects              | Crea                       | te and update transects |



Each transect has a unique ID. When a conduit has an IRREGULAR shape then a user-defined Transect must be set to define the cross-section shape for the conduit.

The SWMM engine converts these data into tables of area, top width, and hydraulic radius versus channel depth. In addition, as shown in the figure above, each Transect can have a left and right overbank section whose Manning roughness can be different from that of the main channel. This feature can provide more realistic estimates of channel conveyance under high flow conditions.

The Transects editor organizes the related input data into the following groups:

- Identification. General identification and description
- **Geometric & Hydraulic Properties**. Transect geometry and Manning *n* information

| ects         |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|-------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| entification |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          | Tagast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ID [         | Trans                                     | ect 1                                                                              |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          | Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L            |                                           | -                                                                                  |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          | Delete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Description  |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ert Delete   | U                                         | p Down                                                                             |                                                                                                                                 | Geometric &                                 | nydraulic properties                                                                                                                                                       |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tran         | sects                                     | data                                                                               |                                                                                                                                 | Transect ge                                 | ometry                                                                                                                                                                     |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manning n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Station [ft] |                                           | Elevation [f                                                                       | t]                                                                                                                              |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 60                                        |                                                                                    | 1000                                                                                                                            | Left bank st                                | ation                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          | 1004 [ft]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Left overb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ank n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.013 [s/m^(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /3)]                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 | Right bank s                                | tation                                                                                                                                                                     |                                                                                                                                                                                                                                                                                          | 1004 [ft]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Right over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bank n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.013 [s/m^(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ./3)]                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 | Horizontal st                               | hrink/expand fact                                                                                                                                                          |                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Channel n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.013 [s/m^(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3)]                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 150                                       |                                                                                    | 1004                                                                                                                            |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /1                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 | Elevation of                                | fset                                                                                                                                                                       |                                                                                                                                                                                                                                                                                          | 0 [#]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 | Meander rat                                 | tio                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | ID                                        | ~                                                                                  | ALL                                                                                                                             | ~ d                                         | lear Show :                                                                                                                                                                | selected                                                                                                                                                                                                                                                                                 | Show data errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/1 rows,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            | Transect                                                                                                                                                                                                                                                                                 | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ID           | Des                                       | cription                                                                           | Left bank                                                                                                                       | station [ft]                                | Right bank statio                                                                                                                                                          | n [ft]                                                                                                                                                                                                                                                                                   | Horizontal shrink/exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Elevation offset [ft]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Meander ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( ) ( )                                                                                       | Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Transect_1   |                                           |                                                                                    |                                                                                                                                 | 1004                                        | ŧ                                                                                                                                                                          | 1004                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                           |                                                                                    |                                                                                                                                 |                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Description [ ret Delete Tran Station [ 1 | ID Trans<br>Description<br>ert Delete U<br>Station (ft)<br>00<br>100<br>110<br>150 | ID Transect_1 Description  Transects data Station (Rt) Elevation (Rt) Station (Rt) Elevation (Rt) ID Description ID Description | ID         Transect_1           Description | entification ID Transect_1 Description ert Delete Up Down Transects data Station [R] 60 1000 100 999 110 1002 150 1004 Horizontal si Elevation of Meander rai ID V ALL V C | entification ID Transect_1 Description ert Delete Up Down Transect data Transect data Station [ft] Elevation [ft] 60 1000 100 999 110 1002 Horizontal strink/expand fact Elevation offset Meander ratio ID V ALL V Clear Show a ID Description Left bank station [ft] Right bank station | entification  ID Transect_1  Description  ert Delete Up Down Transect data Transect data Station [R] Elevation [R] Elevation [R] Elevation and fact Elevation offset Elevation o | ID       Transect_1       Insert         ID       Transect_1       Delete         Description       Ceometric & hydraulic properties       Delete         Transects data       Transect geometry       Left bank station       1004 [ft]         60       1000       999       110       1004 [ft]         Horizontal shrink/expand fact       0       0       [ft]         Horizontal shrink/expand fact       0       [ft]         ID       ALL       Clear       Show selected       Show data errors         ID       Left bank station [ft]       Right bank station [ft]       Horizontal shrink/expand | ID       Transect_1       Insert         ID       Transect_1       Delete         Description       Geometric & hydraulic properties       Transect data         Transect data       Transect data       Transect data         Station [ft]       Elevation [ft]       Right bark station       1004 [ft]         Notizental shrink/expand fact       0       0         100       999       Elevation offset       0 [ft]         Header ratio       0       Charnel n         ID       ALL       Clear       Show selected       Show data errors       1/1 rows,         ID       Description       Left bark station [ft]       Right bark station [ft]       Horizontal shrink/expand fact | entification ID Transect_1 Description  ert Delete Up Down Transect data Transect geometric & hydraulic properties Transect data Transect geometry Italian (ft) Elevation (ft) Elevation (ft) Elevation (ft) Elevation (ft) Right bark station 1004 (ft) Right overbank n Right overbank n Elevation offset 0 ID ALL Clear Show selected Transects ID Description Left bark station (ft) Right bark station (ft) Horizontal shrink/expand fact ID Description Elevation offset ID Description Left bark station (ft) Right bark station ID Horizontal shrink/expand fact ID Description Left bark station ID Right | ID       Transect_1       Insert         ID       Transect_1       Delete         Description | entification ID Transect_1 Description  ert Delete Up Down Station [ft] Elevation [ft] Geometric & hydraulic properties Transects data Transect geometry Left bank station 1004 [ft] Right towerbank n 0.013 [s/m ^(1/3)] Left overbank n 0.013 [s/m ^(1/3)] Right towerbank n 0.013 [s/m ^(1/3)] Horizontal shrink/expand fact 0 Channel n 0.013 [s/m ^(1/3)] Elevation offset 0 ID 	 ALL 	 Clear Show selected Transects ID Description Left bank station [ft] Right bank station [ft] Horizontal shrink/expand fact ID Description ID Description If Right bank station [ft] Right bank station [ft] Horizontal shrink/expand fact ID Description If Right bank station [ft] Right bank station [ft] Horizontal shrink/expand fact ID Description If Right bank station [ft] Right bank station [ft] Horizontal shrink/expand fact ID Description If Right bank station [ft] Right bank station [ft] Horizontal shrink/expand fact ID Description If Right bank station [ft] Right bank station [ft] Horizontal shrink/expand fact ID Description If Right bank station [ft] Right bank station [ft] Horizontal shrink/expand fact III Description If Right bank station [ft] Right bank station [ft] Horizontal shrink/expand fact III Description IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |

Figure 3.32 The SWMM Transects editor

| Identification |            | Insert |
|----------------|------------|--------|
| ID             | Transect_1 | Delete |
| Description    |            | Delete |



| Edit field                                  | Description                                                                                    | Used or<br>required by<br>simulations | Field name in datastructure |
|---------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| ID                                          | ID of the transect                                                                             | Yes                                   | MUID                        |
| Description                                 | Descriptive information on the transect                                                        | No                                    | Description                 |
|                                             | Transect Geom                                                                                  | netry                                 |                             |
| Left Bank<br>Station                        | Left overbank station                                                                          | Yes                                   | Xleft                       |
| Right Bank<br>Station                       | Right overbank station                                                                         | Yes                                   | Xright                      |
| Horizontal<br>Shrink/<br>Expand Fac-<br>tor | Horizontal shrink/expand factor<br>by which the distance between<br>each station is multiplied | Yes                                   | Wfactor                     |
| Elevation<br>Offset                         | Elevation offset                                                                               | Yes                                   | Eoffset                     |
| Meander<br>Ratio                            | Meander ratio                                                                                  | Yes                                   | LFactor                     |
|                                             | Manning <i>n</i>                                                                               |                                       |                             |
| Left Over-<br>bank n                        | Manning <i>n</i> for left overbank                                                             | Yes                                   | Nright                      |
| Right Over-<br>bank n                       | Manning <i>n</i> for right overbank                                                            | Yes                                   | Nleft                       |
| Channel n                                   | Manning <i>n</i> for main channel                                                              | Yes                                   | Nchannel                    |

#### Table 3.21 Edit fields in the Transects editor (mss\_Transect)

| Inser | t Delete U   | p Down         | Transect geometry               |
|-------|--------------|----------------|---------------------------------|
|       | Transects    | data           | Transect geometry               |
|       | Station [ft] | Elevation [ft] | Left bank station 1004 [ft]     |
| ▶ 1   | 60           | 1000           |                                 |
| 2     | 100          | 999            | Right bank station 1004 [ft]    |
| 3     | 110          | 1002           | Horizontal shrink/expand fact 0 |
| 4     | 150          | 1004           | Elevation offset 0 [ft]         |
|       |              |                | Meander ratio 0                 |
|       |              |                |                                 |

## Figure 3.34 Transects geometry groupbox on the Transects editor

Specify station-elevation value pairs describing the transect in the Transects Data secondary table.



| Edit field | Description                                                                                                           | Used or required by simulations | Field name in datastructure |
|------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Station    | Distance of cross<br>section station<br>from some fixed<br>reference                                                  | Yes                             | Station                     |
| Elevation  | Elevation of the<br>channel bottom at<br>a cross section<br>station relative to<br>some fixed rela-<br>tive reference | Yes                             | Elevation                   |

#### Table 3.22 Edit fields in the Transects Data secondary table

# 3.9 Controls

Control rules are used to define how pumps and regulators are controlled based on simulation time or conditions at specific nodes and links.

The Controls editor organizes the related input data into the following groups:

- Identification. Identification and description
- **Control Rules**. Built from combinations of conditions and actions and are defined in the input box



| Control                | s                                                                               |                                                                               |             | • X                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | ntification                                                                     |                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                 |                                                                               |             | Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ID                     | ARMORYPS_                                                                       | GRAVITY                                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dec                    | cription                                                                        |                                                                               |             | Delete                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Des                    |                                                                                 |                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | Is active                                                                       |                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                 |                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | NODE ConnRiver 50.0 HE<br>IEN ORIFICE ArmoryPS G                                |                                                                               | : 0         | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                                                 |                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                 |                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                 |                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                 |                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                 |                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | ID                                                                              | ✓ ALL                                                                         | ~           | Clear Show selected Show data errors 1/36 rows, 0 select                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | ID                                                                              | Is active                                                                     | Description | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ▶ 1                    | ARMORYPS_GRAVITY                                                                | ₹                                                                             |             | IF NODE ConnRiver50.0 HEAD < 22.0 THEN ORIFICE ArmoryPS_Gate                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                      | ARMORYPS_PUMPING                                                                | V                                                                             |             | IF NODE ConnRiver50.0 HEAD > 22.63 THEN ORIFICE ArmoryPS_Gab                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                      | BUSHNELLPS_GRAVITY                                                              | <b>V</b>                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4                      |                                                                                 |                                                                               |             | IF NODE ConnRiver 50.0 HEAD < 13.0 THEN ORIFICE BushnellPS_Gate                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | BUSHNELLPS_PUMPING                                                              | V                                                                             |             | IF NODE ConnRiver50.0 HEAD < 13.0 THEN ORIFICE BushnellPS_Gate<br>IF NODE ConnRiver50.0 HEAD > 13.5 THEN ORIFICE BushnellPS_Gate                                                                                                                                                                                                                                                                                                                            |
| 5                      | BUSHNELLPS_PUMPING<br>FishFry                                                   | <u>থ</u><br>হ                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5<br>6                 | _                                                                               |                                                                               |             | IF NODE ConnRiver50.0 HEAD > 13.5 THEN ORIFICE BushnellPS_Gate                                                                                                                                                                                                                                                                                                                                                                                              |
| -                      | FishFry                                                                         | V                                                                             |             | IF NODE ConnRiver50.0 HEAD > 13.5 THEN ORIFICE BushnellPS_Gate<br>IF NODE FishFryWW HEAD > 10 AND NODE FishFryWW HEAD <> 12                                                                                                                                                                                                                                                                                                                                 |
| 6                      | FishFry<br>G17APLATE1                                                           | <u>र</u>                                                                      |             | IF NODE ConnRiver50.0 HEAD > 13.5 THEN ORIFICE BushnellPS_Gate<br>IF NODE FishFryWW HEAD > 10 AND NODE FishFryWW HEAD <> 12<br>IF SIMULATION TIME >= 0THEN ORIFICE G17APlate1 SETTING = 0.2                                                                                                                                                                                                                                                                 |
| 6<br>7                 | FishFry<br>G17APLATE1<br>G17APLATE2                                             | য<br>ব<br>ব                                                                   |             | IF NODE ConnRiver50.0 HEAD > 13.5 THEN ORIFICE BushnellPS_Gate<br>IF NODE FishFryWW HEAD > 10 AND NODE FishFryWW HEAD <> 12<br>IF SIMULATION TIME >= 0THEN ORIFICE G17APlate1 SETTING = 0.2<br>IF SIMULATION TIME >= 0.0THEN ORIFICE G17A_Plate2 SETTING =                                                                                                                                                                                                  |
| 6<br>7<br>8            | FishFry<br>G17APLATE1<br>G17APLATE2<br>G17BPLATE-LOW                            | হা হা<br>হা<br>হা<br>হা                                                       |             | IF NODE ConnRiver50.0 HEAD > 13.5 THEN ORIFICE BushnellPS_Gate<br>IF NODE FishFryWW HEAD > 10 AND NODE FishFryWW HEAD <> 12<br>IF SIMULATION TIME >= 0THEN ORIFICE G17APlate1 SETTING = 0.2<br>IF SIMULATION TIME >= 0.0THEN ORIFICE G17A_Plate2 SETTING =<br>IF SIMULATION TIME >= 0THEN ORIFICE G17B_PLATE SETTING = 1                                                                                                                                    |
| 6<br>7<br>8<br>9       | G17APLATE1<br>G17APLATE2<br>G17BPLATE2.OW<br>GARDENSTGATE                       | য<br>য<br>ব                                                                   |             | IF NODE ConnRiver50.0 HEAD > 13.5 THEN ORIFICE BushnellPS_Gate<br>IF NODE FishFryWW HEAD > 10 AND NODE FishFryWW HEAD <> 12<br>IF SIMULATION TIME >= 0THEN ORIFICE G17APlate1 SETTING = 0.2<br>IF SIMULATION TIME >= 0.0THEN ORIFICE G17A_Plate2 SETTING =<br>IF SIMULATION TIME >= 0THEN ORIFICE G17B_PLATE SETTING = 1<br>IF SIMULATION TIME >= 0THEN ORIFICE GARdenStrate SETTING = 0.5                                                                  |
| 6<br>7<br>8<br>9<br>10 | FishFry<br>G17APLATE1<br>G17APLATE2<br>G17BPLATE2LOW<br>GARDENSTGATE<br>HUDSON1 | ব হা<br>ব হা<br>ব<br>হা<br>হা<br>হা<br>হা<br>হা<br>হা<br>হা<br>হা<br>হা<br>হা |             | IF NODE ConnRiver50.0 HEAD > 13.5 THEN ORIFICE BushnellPS_Gate<br>IF NODE FishFryWW HEAD > 10 AND NODE FishFryWW HEAD <> 12<br>IF SIMULATION TIME >= 0THEN ORIFICE G17APlate1 SETTING = 0.2<br>IF SIMULATION TIME >= 0.0THEN ORIFICE G17A_Plate2 SETTING =<br>IF SIMULATION TIME >= 0THEN ORIFICE G17B_PLATE SETTING = 1<br>IF SIMULATION TIME >= 0THEN ORIFICE GARdenStGate SETTING = 0.5<br>IF NODE ConnRiver50.0 HEAD >= 19.13 THEN ORIFICE GI55007896 5 |

Figure 3.35 The SWMM Controls editor

| Table 3.23 | Edit fields in the SWMM Controls editor |
|------------|-----------------------------------------|

| Edit field  | Description                                                                     | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------|---------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| ID          | ID of the specific rule                                                         | Yes                                   | MUID                        |
| Description | User's descriptive information related to the node                              | No                                    | Description                 |
| Is Active   | Option for activating/deactivat-<br>ing a control rule during a sim-<br>ulation | Yes                                   | Enabled                     |



#### Figure 3.36 Control rules input box

Define control rules in the dialog dividing the lines into Conditions and Actions. Please note there can only be either a Condition or an Action in one line. Build control rules as combinations of conditions and actions using the following elements:

| Elements  | Description                                                  | Used or required by simulations |
|-----------|--------------------------------------------------------------|---------------------------------|
| Operator  | IF, AND, OR, THEN, ELSE                                      | Yes                             |
| Object    | Node, Link, Pump, Orifice, Weir or<br>Simulation             | Yes                             |
| Object ID | ID of the object                                             | Yes                             |
| Attribute | Depth, Head, Inflow, Flow, Setting,<br>Time, Date, Clocktime | Yes                             |
| Relation  | =, <, >, <>, <=,>=                                           | Yes                             |
| Value     | Value                                                        | Yes                             |

#### Table 3.24 Elements for building control rules

# 3.10 CS Network Tools

There are several tools available for facilitating edits to collection system network data. These tools are accessed via the CS Network menu ribbon.

| File Project  | t Map CS network | Catchments  | Simulation   | Tools            | Results              |                            |                    |                    |
|---------------|------------------|-------------|--------------|------------------|----------------------|----------------------------|--------------------|--------------------|
| 🖍 Undo        | Target layer:    | C. /        | 靣 57         | $\bigcirc$       |                      | ଞ୍ଜି                       | থ্*                | <b>M</b>           |
| 🞢 Redo        | Target layer 🔻   | Create Edit | Delete Split | Reverse<br>links | Open layer<br>editor | Network<br>editing tools ▼ | Special<br>tools ▼ | View WD<br>network |
| Undo / Redo 🔒 |                  | Edit fea    | tures        |                  | 4                    | CS toolbox                 | с "л               | WD network 🦼       |



The tools are grouped as:

- **Network Editing Tools**. Includes tools that assist in assigning or deriving model network data from various available data sources:
  - Interpolation and Assignment



- Create and Update Transects
- Special Tools. Offers the Spatial Processing tool, which may be used for performing various GIS processing operations on polygon and line features in the project.
  - Spatial Processing

## 3.10.1 Interpolation and Assignment

The Interpolation and Assignment tool helps assign values to any field in the MIKE+ database either by taking the attribute value directly from another feature/attribute or by interpolating between any number of other features.

Examples of the tasks that may be performed with this tool are:

- Assign ground elevation values from a raster layer representing the DEM to nodes
- Assign the diameter of manholes to be equal to the largest pipe entering the manhole
- Calculate missing values for manhole invert levels from a point theme
   using Inverse Distance weighted spatial interpolation
- Calculate pipe levels by interpolating values following the network (pipes)
- Assign a value to a construction year and or contractor based upon a polygon theme giving city areas

The source of the data (i.e. the features from where values are taken) may be any layer in the MIKE+ Map view, including layers that have been added as background layers. Any compatible data value can be assigned to almost any field in the database. This also means that it should be used with some care as it obviously can also make completely non-sense assignment if the wrong fields or names are specified.

The tool is accessed through the MIKE+ CS Network menu ribbon under Network Editing Tools.

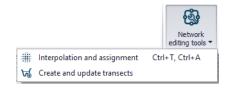



Figure 3.38 CS Network Editing Tools

The tool is used following the steps below:

Target selection



- Assignment Method
- Assignment options (depending on the method chosen)
- Overall assignment
- Reporting

Each of the above steps are described in detail in the following sections.

## **Target Selection**

First, select the target layer and attribute for the assignment--i.e. the model element and property that shall be modified/defined. A target map layer (network component) must first be selected followed by a target attribute from the selected network component. For example, nodes layer, ground level attribute.

Once the empty fields are populated, MIKE+'s data validation functionality changes the "Target Selection" section of the workflow heading colour from red to green.

| Interpolation and assig | Inment               |               | х  |
|-------------------------|----------------------|---------------|----|
|                         | Interpolation and as | signment      |    |
| Target selection        |                      |               |    |
| Assignment Method       |                      |               |    |
| Assignment options      | Target map layer:    | Nodes ~       |    |
| Overall assignment      |                      |               |    |
| Reporting               | Target attribute:    | GroundLevel ~ |    |
|                         |                      |               |    |
|                         |                      |               |    |
|                         |                      |               |    |
|                         |                      |               |    |
|                         |                      |               |    |
|                         |                      |               | -1 |
|                         | Configuration file:  |               |    |
|                         | Open                 | Save Run      |    |
|                         | opentit              |               |    |



## **Assignment Method**

Then, define the method to use for assigning values to the target, and the data source.

| - |   |   |
|---|---|---|
|   | 5 |   |
|   |   | Y |

| nterpolation and assig | nment                                                       |  |  |  |  |  |
|------------------------|-------------------------------------------------------------|--|--|--|--|--|
|                        | Source and assignments                                      |  |  |  |  |  |
| Target selection       | O Assign from raster grid cells                             |  |  |  |  |  |
| Assignment Method      | O Assign from nearest feature                               |  |  |  |  |  |
| Assignment options     | O Use IDW interpolation between features                    |  |  |  |  |  |
| Overall assignment     | Assignment from network neighbours                          |  |  |  |  |  |
| Reporting              | Linear interpolation along network path                     |  |  |  |  |  |
|                        | O Directly assign a value or NULL 0                         |  |  |  |  |  |
|                        | Source - map layer: Nodes ~                                 |  |  |  |  |  |
|                        | Source - attribute: GroundLevel ~                           |  |  |  |  |  |
|                        |                                                             |  |  |  |  |  |
|                        |                                                             |  |  |  |  |  |
|                        | Configuration file:           Open         Save         Run |  |  |  |  |  |

#### Figure 3.40 The Assignment Method dialog

The method selected will influence the valid choices for the data source. A number of methods exist:

- Assign from Raster Grid Cells. This will assign a value from the raster (DEM) cell located directly above the target data. For example, assign node ground levels based on levels in a raster. If the target is a polyline or polygon the tool will use the centroid position to determine the correct cell. No interpolation is done. The supported raster formats are \*.DFS2 files, ESRI text files (\*.TXT, \*.ASC), Arc/Info binary grids, GeoTIFF files (\*.TIF, \*.TIFF).
- Assign from Nearest Feature. The tool will locate the feature from the source layer that is closest to the feature in the target layer. If lines or polygons are used the centroid position is used for calculating distances.
- Use IDW Interpolation Between Features. This option will make an Inverse Distance Weighted (IDW) interpolation between features in the source layer to determine the value for each target feature. The IDW parameters are fixed to the following: max number of points is 12 and the max distance away from the target feature is 300 (map units).
- Assignment from Network Neighbours. This option will take the source value from a network neighbour to the feature being updated. This obviously requires both the target and the source to be included in the same network. For example, assign manhole diameters from other manhole diameters nearby. Assignment will only be done if the immediate neighbour has the requested value i.e. the network will not be traced.



- Linear Interpolation Along Network Path. This option will do a distance weighted interpolation along the path of the network. If the direct neighbours do not contain values (null) the network is traced until a value is reached or the number of 'hops' (number of network nodes traced though) exceed a given maximum.
- Directly Assign a Value or NULL. This option allows to assign a specific value or to delete the content of an attribute (by assigning the NULL value).

Depending on the choice of assignment method, the two selection boxes for the source data will be filled with layers/attributes compatible with the choice of method (i.e. only raster layers will be shown for raster assignment) or greyed out in the case of the last option.

## **Assignment Options**

When the assignment method is 'Assignment from network neighbours' or 'Linear interpolation along network path,' extra parameters need to be specified in the Assignment Options section.

| Interpolation and assig | anment                            |   | х |  |
|-------------------------|-----------------------------------|---|---|--|
|                         | Assignment options                |   |   |  |
| Target selection        | Olosest node                      |   |   |  |
| Assignment Method       | O Upstream element                |   |   |  |
| Assignment options      | O Downstream element              |   |   |  |
| Overall assignment      | O Upstream Neighbour max. value   |   |   |  |
| Reporting               | O Upstream Neighbour min. value   |   |   |  |
|                         | O Downstream Neighbour max. value |   |   |  |
|                         | O Downstream Neighbour min. value |   |   |  |
|                         | O Max. value of neighbours        |   |   |  |
|                         | O Min. value of neighbours        |   |   |  |
|                         | Max. number of hops: 3            |   |   |  |
|                         |                                   |   |   |  |
|                         | Configuration file:               | _ |   |  |
|                         | Open Save Run                     |   |   |  |

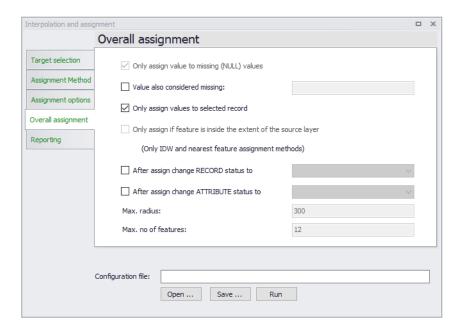
#### Figure 3.41 The Assignment Options dialog

For the 'Assignment from network neighbours' assignment method, the following assignment options are available:

 Closest Node. This will use the node that is closest to the one being assigned to. This option is only relevant if both target and source are nodes.



- **Upstream Element**. This option will assign from the upstream element (upstream/downstream is as defined by the GIS geometric network and may differ from the actual flow direction (which may not be constant).
- Downstream Element. This option will assign from the downstream element (upstream/downstream is as defined by the GIS geometric network and may differ from the actual flow direction (which may not be constant).
- Upstream/Downstream Neighbour Max. Value. These two options will scan the connected network neighbours upstream/downstream and use the maximum source value found as data source. Example: for assigning ground level and diameters.
- Upstream/Downstream Neighbour Min. Value. These two options will scan the connected network upstream/downstream neighbours and use the minimum source value found as data source. Example: for assigning invert levels.
- Max. Value of Neighbours. This option will scan the connected network neighbours and use the maximum source value found as data source. Example: for assigning ground level and diameters.
- Min. Value of Neighbours. This option will scan the connected network neighbours and use the minimum source value found as data source. Example: for assigning invert levels.


For the 'Linear interpolation along network path' option, only the maximum number of hops (i.e. number of elements away) need to be specified.

Max. number of hops: 3

This allows control of how many network 'hops' the interpolation will search for a value. The search continues until the max number is reached or a nonnull value is found. When the value is set to 5 or higher it may cause instability (particularly in looped networks). A value of 0 means that only immediate neighbours are taken into consideration. Large values may be time consuming if a large number of features are selected for update.

## **Overall Assignment**

This step of the workflow controls which features are taken into account for the assignment operation.



#### Figure 3.42 The Overall Assignment dialog

The following options are available:

- Only assign value to missing (NULL) values. Features that already have a value in the target field will not be updated. Removing this tick mark will overwrite any existing attribute values.
- Only assign values to selected records. Only records that are selected before the wizard was started are taken into consideration for updates.
- Only assign to features inside the extent of the source layer. This
  option prevents the tool from extrapolating outside the boundaries of the
  source layer when looking for the closest feature or when doing IDW
  interpolation.
- After assign change RECORD status to. This option changes the status of the modified records (e.g. nodes), by applying the predefined status selected from the list. This is the main status for the record (e.g. the nodes), which is typically found in the Description tab.
- After assign change ATTRIBUTE status to. This option changes the status of the modified attribute (e.g. ground level), by applying the predefined status selected from the list. Every record is defined with multiple attributes, and this option will change the status for the updated attribute only. Attribute status information (e.g. the node's ground level) is found in the **Property And Result Explorer** Status menu.

| Pro | perty and result explore          | r 4×         |
|-----|-----------------------------------|--------------|
| •   | 👌 🖾 🗊 <u>0</u> 🗅 Sta              | tus          |
| ~   | <ldentification></ldentification> |              |
|     | ID                                |              |
|     | X                                 |              |
|     | Y                                 |              |
| >   | Cover                             |              |
| ~   | Description                       |              |
|     | Data source                       |              |
|     | Asset ID                          |              |
|     | Critical level                    |              |
|     | Description                       |              |
|     | How regulation                    |              |
| ~   | Geometry                          |              |
|     | Node type                         |              |
|     | Diameter                          |              |
|     | Ground level                      | Interpolated |
|     | Bottom level                      |              |
|     | Basin geometry                    |              |
|     | River ID                          |              |
|     | Chainage                          |              |



## Running the Tool and Reporting

Finally, update the model with the specified interpolation/assignment settings, click on the **Run** button. The Reporting tab page gives a summary of the features that have been updated.

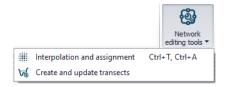
| Interpolation and assi | gnment              |                              | х |
|------------------------|---------------------|------------------------------|---|
|                        | Reporting           |                              |   |
| Target selection       |                     |                              | ٦ |
| Assignment Method      |                     | 4 features have been updated |   |
| Assignment options     |                     |                              |   |
| Overall assignment     |                     |                              |   |
| Reporting              | -                   |                              |   |
|                        |                     |                              |   |
|                        |                     |                              |   |
|                        |                     |                              |   |
|                        |                     |                              |   |
|                        |                     |                              |   |
|                        |                     |                              |   |
|                        | Configuration file: |                              |   |
|                        |                     | Open Save Run                |   |
|                        |                     |                              |   |



Note that the features to be updated are selected on the Map before clicking on Run to make it easy to check that only the expected features are included.



This selection does not check for other constraints i.e. null values may still prevent some of the selected features from being updated.


## **Configuration File**

As with other MIKE+ tools, it is possible to save the tool setup configuration (Save button located near the bottom of the tool). A configuration file is created in \*.XML format, which can be reused later (Open button).

## 3.10.2 Create and Update Transects

The Create and Update Transects tool is used for deriving or updating transects data used for Conduits with Irregular cross sections. Transects data describe how bottom elevation varies with horizontal distance over the cross section. These are represented by Station-Elevation value pairs defined on the Transects editor in MIKE+.

Access the tool through the MIKE+ CS Network menu ribbon under Network Editing Tools.



#### Figure 3.45 CS Network Editing Tools

Use the tool proceeding thorough each section of the dialog as follows:

- Method
- Survey Points Settings (depending on the method chosen)
- DEM Settings (depending on the method chosen)
- Input selection
- Reporting

Each of the above steps are described in the following sections.

## Method

Select the transect editing process to perform on the Method tab page of the dialog. The available operations are:

• **Create Transects from Survey Points**. Generate transects from survey points in \*.SHP or \*.XYZ file formats. This option activates the Survey Points Settings tab page, wherein one defines the file and the attribute from which elevation values are taken.



- Create or Extend Transect from DEM. Generate new or extend existing transects from a DEM raster. Transect data may be derived based on the locations of existing conduits or background features. This option activates the DEM Settings tab page on the dialog.
- Create Transects from Survey Points and DEM. Use both survey points data and a DEM to create or extend transect data. This option activates both the Survey Point Settings and the DEM Settings tab pages on the dialog.
- **Update Transects with DEM**. Option to make changes to existing Transects using a DEM raster, when, for example, new updated elevation data are available for the study area.

| Generate transects     |                                                      |          |      | х |
|------------------------|------------------------------------------------------|----------|------|---|
|                        |                                                      |          |      |   |
| Method                 |                                                      |          |      | ] |
| Survey points settings | Create transects from survey points                  |          |      |   |
| DEM settings           | ○ Create or extend transects from DEM                |          |      |   |
| Input selection        | ○ Create transects from survey points and DEM        |          |      |   |
| Reporting              | O Update transects with DEM                          |          |      |   |
|                        | Add vertical walls at ends of transects, with height | 5 [ft]   |      |   |
|                        | Configuration<br>Open Save                           | Run Clos | se . |   |

#### Figure 3.46 Method section on the Generate Transects dialog

There is also an option for adding vertical walls with a specified height to the ends of created/updated transects. Tick on the '**Add vertical walls at ends** of transects' option, and define the **height** of the vertical wall in the input box beside the option.

| Add vertical walls at ends of transects, with height | 5 | [ft] |
|------------------------------------------------------|---|------|
|------------------------------------------------------|---|------|

### Survey Points Settings

If the selected method from the previous tab page involves the use of survey points, the survey points data file and parameters related to how data from the file shall be interpreted by the tool are defined on the Survey Points Settings tab page.

| Method                 | Currupy points by ore     |                              | lung alan      |                             |   |      |
|------------------------|---------------------------|------------------------------|----------------|-----------------------------|---|------|
| Survey points settings | Survey points layer:      | Layers\SurveyPointsVa        | iues.snp       |                             | ~ |      |
| DEM settings           | Elevation attribute:      | Z v                          | meter 🗸 🗸      |                             |   |      |
| Input selection        | Gathering points in trans | iects                        |                |                             |   |      |
| Reporting              | O Automatically           | using transect ID attribut   | 2              | Transect ~                  |   |      |
|                        | Manually by s             | electing points in digitised | polygon (right | t-click to stop digitizing) |   |      |
|                        |                           |                              |                |                             |   |      |
|                        |                           |                              |                |                             |   |      |
| L                      | Configuration             |                              |                |                             |   |      |
|                        | comgaration               |                              |                |                             |   | lose |

Figure 3.47 Survey Points Settings tab page on the Generate Transects dialog

Define the following on the page:

- Survey Points Layer. Choose or load the shape file or \*.XYZ file to use in the processing from the dropdown list or the ellipsis button, respectively.
- Elevation Attribute. Choose the item from the shape or \*.XYZ file to use as source of elevation values.
- **Gathering Points in Transects**. Set how values are obtained and saved as transect data:
  - Automatically using Transect ID attribute. Select the attribute in the file that connects the individual survey points to a specific transect. All survey points with the same ID field will be created as one transect.
  - Manually by selecting points in digitised polygon. Define a polygon on the Map covering survey points to be used for a transect. Click on the 'Digitize' button at the bottom of the dialog to start defining the polygon feature on the Map. Right-click on the Map to end digitizing the polygon. This option creates one transect at a time.

The transect will be created as a straight line through the connected survey points using a least square fit. The individual survey points are projected orthogonal on to the transect line.

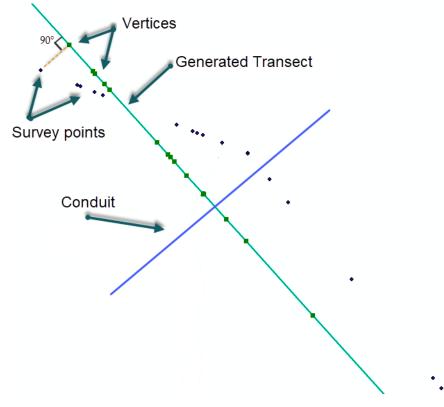



Figure 3.48 Survey points are projected onto the transect

# **DEM Settings**

If the selected transect creation method involves the use of DEM data, the DEM raster file and parameters related to how data from the file shall be used by the tool are defined on the DEM Settings tab page.

| od                 | Elevation and spacing                 |                              |                                 |     |
|--------------------|---------------------------------------|------------------------------|---------------------------------|-----|
| ey points settings | DEM layer: C:\Users\nsd\(             | OneDrive - DHI\Documents\DHI | Work\1109510 $ \smallsetminus $ |     |
| settings           | Maximum spacing between points:       | Half cell size from DEM      | 0.5                             | [m] |
| t selection        |                                       | O Custom spacing             | 1                               | [m] |
|                    | Maximum number of points:             | 100                          |                                 |     |
| rting              | Use bilinear interpolation from 4 d   | osest cells                  |                                 |     |
|                    | Transect location                     |                              |                                 |     |
|                    | Create one new transect per cond      | duit Width                   | 200                             | [m] |
|                    |                                       |                              |                                 |     |
|                    | O Create new location from layer      |                              | $\sim$                          |     |
|                    | Assign ID from attribute              |                              | $\sim$                          |     |
|                    | O Extend existing with fixed width o  | n both sides of conduits     | 500                             | [m] |
|                    | O Extend existing up to alignment lin | les                          |                                 |     |
|                    | Alignment lines layer                 |                              | $\sim$                          |     |
|                    | Marker attribute                      |                              | $\sim$                          |     |
|                    | Left extent marker value              |                              | $\sim$                          |     |
|                    | Right extent marker value             |                              | $\sim$                          |     |
|                    | [m]                                   | 1000                         |                                 | [m] |
|                    | O Manually digitize on map (right did | k to stop digitizing)        |                                 |     |
|                    | onfiguration                          |                              |                                 |     |

Figure 3.49 DEM Settings tab page on the Generate Transects dialog

### **Elevation and Spacing**

Define the following parameters under the Elevation and Spacing group:

- DEM Layer. Define or load the DEM raster layer to use for transects generation. These raster files may be in \*.TXT, \*.ASC, \*.DFS2, \*.TIF, or \*.TIFF formats.
- Maximum Spacing Between Points. The maximum spacing between transect points can be user-specified or assumed as half the cell size of the DEM.
  - Half cell size from DEM. Half the DEM grid size resolution.
  - Custom Spacing. Option to define a spacing for transect point values.
- **Maximum Number of Points**. Should the specified maximum spacing between points results in more than the allowed maximum points the spacing is increased to obtain the maximum number of points.



• Use Bilinear Interpolation from 4 Closest Cells. Option to use bilinear interpolation when extracting elevation values from DEM cells. If unchecked, the elevation along the transect will be the exact value from the DEM cells that are intersected, whereas if bilinear interpolation is used, elevation values will be the interpolated from the 4 closest neighbouring DEM grid cells.

#### Transect Location

Define the following parameters under the Transect Location group:

- **Create One New Transect per Conduit.** Option to define one transect per conduit (as selected on the Input Selection tab page).
  - **Width**. Define the width of the transects to be generated.
- Create New Location from Layer. Use a shape file containing transect polylines at the requested locations along the irregular conduits in the model. Select the shape file to be used in the drop-down list of shape files.

Transects will only be generated where shape file features intersect with the selected conduits. The transect will be generated as a straight line from the first to the last point in the line shape.

- Assign ID from Attribute. Automatically assign an ID to each generated transect by activating this option and selecting the shapefile attribute from the dropdown list.
- Extend Existing with Fixed Width on Both Sides of Conduits. Option to extend transect data a fixed distance on both sides of the conduits. Define the fixed width in the input box beside the option.
- Extend Existing up to Alignment Lines. Option to use defined alignment lines to extend existing transects data.
  - Alignment Lines Layer. Define/load the shapefile defining the alignment lines from the dropdown list or via the ellipsis button.
  - Marker Attribute. Shapefile attribute that contains the identifier corresponding to markers.
  - Left Extent Marker Value. The marker attribute value representing the left extent line.
  - Right Extent Marker Value. The marker attribute value representing the right extent line.
  - Maximum Length to Extend per Side. The length defines the maximum distance a transect can be extended. If an alignment line is not found within the given distance, the transect will not be updated.



Manually Digitize on Map (Right Click to Stop Digitizing). Define the location of the transect to be generated directly on the Map (intersecting a conduit). Click on the 'Digitize' button at the bottom of the dialog to start defining the transect line feature on the Map. Right-click on the Map to end digitizing the line. This option creates one transect for one conduit at a time.

## Input Selection

Input Selection options control for which conduits transects are generated. These options are not available for settings involving manual digitization of transect locations on the Map, as this process creates one transect (for the intersected conduit) at a time.

| Generate transects                                                                      |                                                                                                                   |                         |    | × |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------|----|---|
| Generate transects Method Survey points settings DEM settings Input selection Reporting | Conduits selection<br>All conduits<br>Conduits from selection on the map<br>Conduits from table<br>Single conduit | Edit table<br>Channel 1 |    | x |
|                                                                                         | Configuration<br>Open Save                                                                                        | Run Clo                 | se |   |

### Figure 3.50 The Input Selection tab page on the Generate Transects dialog

Options available include:

- All Conduits. New transects are generated for all conduits.
- **Conduits from Selection on the Map**. New transects are generated only for conduits selected on the Map.
- Conduits from Table. The conduits for which new transects are generated are specified in a table. Click on the Edit Table button to access the Select Conduits dialog.




| Se | lect con | duits        |            |                  | × |
|----|----------|--------------|------------|------------------|---|
| Г  |          | la de de     | Conduit ID |                  |   |
| ŀ  |          |              |            | Insert           |   |
|    |          | $\checkmark$ | Channel2   | Delete           |   |
|    |          | $\checkmark$ | Channel3   | ×                | _ |
|    | •        | $\checkmark$ | L1 ·       | Import all       |   |
|    |          |              |            | Import from file | е |
|    |          |              |            | Include all      |   |
|    |          |              |            | Exclude all      |   |
|    |          |              |            |                  |   |
|    |          |              |            |                  |   |
|    |          |              |            |                  |   |
|    |          |              |            |                  |   |
|    |          |              |            |                  |   |
|    |          |              |            | ОК               |   |



• **Single Conduit**. Select the conduit for which a transect will be created from the **ID Selector** list accessed via the ellipsis button.

| D selector |              | х |
|------------|--------------|---|
|            | Search Clear |   |
| ID         |              | ^ |
| L1         |              |   |
| L10        |              |   |
| L101       |              |   |
| L11        |              |   |
| L22        |              |   |
| L23        |              | ¥ |
|            | OK Cancel    |   |



## Running the Tool and Reporting

For options not involving manual digitization of transect lines on the Map, manually run the tool via the **Run** button at the bottom of the dialog.

A status report of the operation is displayed on the Reporting tab page of the dialog. The report may then be saved in a \*.TXT file via the **Save Report** button. Use the **Clear Report** button to remove previous status reports displayed on the tab page ready for a new run of the tool.

| Generate transects                                                                      | 2                                                                      | ⊐ × |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----|
| Generate transects Method Survey points settings DEM settings Input selection Reporting | Transect Transect_7 is generated<br>1 transects was generated<br>Ended | ×   |
|                                                                                         | Configuration Open Save Run Close                                      |     |

#### Figure 3.53 The Reporting tab page on the Generate Transects dialog

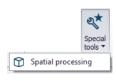


When a transect is created for a conduit, the conduit ID is indicated in the transect Description including the line coordinates for the transect.

| Identification |                                                  | Insert |
|----------------|--------------------------------------------------|--------|
| ID             | Transect_6                                       | Delete |
| Description    | Channel1 (1752369; 5947859) - (1752367; 5947818) | Delete |

If another transect is made for the same conduit, the Description for the previous transect is removed to avoid confusion about which conduit a transect is associated.

Also, when extending transects, left and right bank locations are updated (if they are initially different than 0).


### **Configuration File**

Save the tool setup configuration via the **Save** button located near the bottom of the tool dialog. An \*.XML configuration file is created, which may be reused later via the **Open** button.

### 3.10.3 Spatial Processing

The Spatial Processing tool may be used to perform various GIS processing operations on SWMM project line and polygon features. These layers are either model element layers or shapefile layers loaded into the project.

The tool is accessed via 'Special Tools' on the 'CS Network' menu ribbon.



#### Figure 3.54 The Spatial Processing tool on the NS Network menu ribbon

| Spatial processing |                                                 |        | х |
|--------------------|-------------------------------------------------|--------|---|
| Polygon Line       |                                                 |        |   |
| Target layers      | SWMMLinksLayer                                  | $\sim$ |   |
| Method             | Buffer                                          | $\sim$ |   |
| Buffer             | 5                                               |        |   |
| Output path        | lueBeach_SWMM\Layers\SWMMLinksLayerBuffer5m.shp |        |   |
|                    | Run                                             |        |   |

Figure 3.55 The Spatial Processing tool dialog

#### Line

Operations such as Buffer and To Polygon may be performed for line layers. The analysis results are saved in a new shapefile and automatically loaded into the project as a new layer. It may also be imported as a model element feature.

- **Target Layers**. Line layer to be modified (i.e. to which the operation will be done).
- Method. Dropdown menu for selecting spatial operation to use:
  - Buffer. Creates buffer polygons around target layer features according to a buffer distance.
  - To Polygon. Converts the line features to polygons. Note that polyline features must be closed with overlapping start- and end-vertices to be converted to polygons.
- Buffer. Distance around the line features that will be buffered. If Method = Buffer.
- Output Path. Use the ellipsis button "..." to specify the path and file name for the resulting feature layer from the operation.
- **Run.** Button for executing the spatial processing.

| Spatial processing |                                                            |        | > |
|--------------------|------------------------------------------------------------|--------|---|
| Polygon Line       |                                                            |        |   |
| Target layers      | C: \Users \mikeadmin \Documents \Odense \LandUse \FlowPath | ~      |   |
| Method             | Buffer                                                     | $\sim$ |   |
| Buffer             | 5                                                          |        |   |
| Output path        | hin \Documents \Odense \LandUse \FlowpathBuffer 5m.shp     |        |   |
|                    |                                                            |        |   |
|                    | Run                                                        |        |   |

Figure 3.56 Spatial processing for lines

### Polygon

Operations such as Merge and Clip may be performed between various polygon layers. The analysis results are saved in a new shapefile and automatically loaded into the project as a new layer. It may also be imported as a model element feature.

Define the following parameters when using the tool for polygon features:

- **Target Layers**. Polygon feature to be modified (i.e. to which the operation will be done).
- Reference Layers. The second polygon layer used to modify the target layer.
- **Keep Properties**. Information on the feature attributes to keep for the resulting layer.
- Method. Dropdown menu for selecting spatial operation to use:
  - Clip. Extracts from target the areas intersecting the reference. Features in target not intersecting the reference are also kept.
  - **Erase**. Removes from target the areas intersecting the reference.
  - Merge. Features in both layers combined, where intersecting features are fused in new features.
  - **Join**. Extracts from target the areas intersecting the reference.
- **Output Path**. Use the ellipsis button "..." to specify the path and file name for the resulting feature layer from the operation.
- **Run**. Button for executing the spatial processing.

| Spatial pro | ocessing    |                                                            |        | х |
|-------------|-------------|------------------------------------------------------------|--------|---|
| Polygon     | Line        |                                                            |        |   |
|             |             |                                                            |        |   |
| Target      | t layers    | C: \Users \mikeadmin \Documents \Odense \LandUse \Green.sh | $\sim$ |   |
| Refere      | ence layers | C:\Users\mikeadmin\Documents\Odense\LandUse\Catchmer       | $\sim$ |   |
| Keep p      | properties  | Target                                                     | $\sim$ |   |
| Metho       | d           | Join                                                       | $\sim$ |   |
| Outpu       | t path      | :eadmin\Documents\Odense\LandUse\GreenJoinExtent.s         |        |   |
|             |             | Run                                                        |        |   |

Figure 3.57 Spatial Processing dialog Polygon tab page





## 4 Rainfall-Runoff Modelling with SWMM

MIKE+ provides a versatile set of tools and computational models for modelling surface storm runoff and infiltration on urban and semi-rural catchments. The User can quickly prepare a precipitation-runoff model setup of desired level of detail (in terms of spatial discretization and input data) and use the computed runoff as a load to the collection network.

Various hydrological processes that produce runoff from urban areas can be modelled by SWMM. These include:

- Time-varying rainfall
- Evaporation of standing surface water
- Snow accumulation and melting
- Rainfall interception in depression storage
- Infiltration of rainfall into upper soil layers
- Percolation of infiltrated water into groundwater layers
- Interflow between groundwater and the conveyance system
- Nonlinear reservoir routing of overland flow

Spatial variability in these processes is achieved by dividing a study area into a smaller collection of homogeneous areas. In literature, different terms are used to describe the delineation of large study areas into smaller sub-areas each containing its own fraction of pervious and impervious areas.

The following terms for the delineation of areas are widely used in North America:

- Basin
- Sub-basin
- Watershed/Sewershed
- Catchment

Throughout this documentation the term *catchment* will be used as the term for the smallest hydrological unit of land.

Overland flow can be routed between catchments or to load points of a drainage conveyance system.

## 4.1 Catchments

Catchments are hydrological units of land whose topography cause surface runoff to drain to a single point. The user is responsible for the delineation of a watershed/sewershed into a compatible number of catchments, and for



identifying the outlet point of each catchment. Outlet points can be either nodes of the conveyance system or other catchments.

Catchments can be divided into pervious and impervious sub-areas. Surface runoff can infiltrate into the upper soil zone of the pervious sub-area, but not through the impervious sub-area. Impervious areas are themselves divided into two sub-areas - one that contains depression storage and another that does not. A portion of the runoff flow from one sub-area in a catchment can be routed to the other sub-area, or both sub-areas can drain to the catchment outlet.

For SWMM models, the Catchments editor organizes data into the following groups.

- Identification
- General Information
- SWMM Catchment Connections
- SWMM Hydrology & Hydraulic Properties
- SWMM Infiltration
- Description



**Note** that catchment data in the Catchment editor is shared by Network models in MIKE+ (i.e. MIKE 1D, SWMM, River).

| Catchn                 |                                      |                                      |                                                                                                  |                                                 |                                                                               |                                                                    |                    |                                                        |                                                                                |                                                             |                  |       |
|------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|-------|
| -Ide                   | ntification<br>D 4000                | on<br>)_24_2_R                       | L                                                                                                | X<br>Y                                          |                                                                               |                                                                    | 1859456 [ft]       |                                                        | Insert<br>Delete                                                               |                                                             |                  |       |
| Gene                   | eral S                               | WMM Cat                              | hment connectio                                                                                  | ons S                                           | WMM Hydro                                                                     | logy & Hy                                                          | draulic Properties | SWMM                                                   | I Infiltration                                                                 | Descrip                                                     | tion             |       |
| H                      | Hydrolo                              | gical mode                           | SWMM Hydr                                                                                        | rology                                          | ~                                                                             |                                                                    |                    |                                                        |                                                                                |                                                             |                  |       |
| (                      | Catchme                              | ent area                             |                                                                                                  |                                                 | 75.13961                                                                      | [ac]                                                               | 75.466244985549    | { [ac]                                                 |                                                                                |                                                             |                  |       |
|                        |                                      |                                      |                                                                                                  |                                                 |                                                                               |                                                                    |                    |                                                        |                                                                                |                                                             |                  |       |
|                        |                                      |                                      |                                                                                                  |                                                 |                                                                               |                                                                    |                    |                                                        |                                                                                |                                                             |                  |       |
|                        |                                      |                                      |                                                                                                  |                                                 |                                                                               |                                                                    |                    |                                                        |                                                                                |                                                             |                  |       |
| ,                      |                                      |                                      |                                                                                                  |                                                 |                                                                               |                                                                    |                    |                                                        | _                                                                              |                                                             |                  |       |
| ٢                      |                                      |                                      |                                                                                                  |                                                 | _                                                                             |                                                                    |                    |                                                        |                                                                                | _                                                           |                  |       |
| <                      |                                      | ID                                   | ~                                                                                                | ALL                                             | ~                                                                             | Clear                                                              | Show sele          | cted 🗌                                                 | ] Show data e                                                                  | errors                                                      | 1/3772           | 2 rov |
| ٢                      | ID                                   | ID                                   | ✓ /<br>X coordinate [fi                                                                          |                                                 | Y coordinate                                                                  |                                                                    | Show sele          |                                                        | Show data e                                                                    |                                                             | 1/3772<br>Persor |       |
| _                      |                                      | ID<br>_24_2_R1                       |                                                                                                  | ťJ                                              | _                                                                             | e [ft]                                                             | Catchment area     |                                                        | -                                                                              | [ac]                                                        |                  |       |
| <                      |                                      | _24_2_R1                             | X coordinate [f                                                                                  | t]<br>59456                                     | Y coordinate                                                                  | e [ft]<br>16536882                                                 | Catchment area     | [ac]                                                   | Geom area                                                                      | [ac]<br>9855498                                             |                  |       |
| ▶ 1                    | 4000_                                | _24_2_R1<br>_24N                     | X coordinate [fi<br>1024697.7185                                                                 | t]<br>59456<br>78691                            | Y coordinate<br>854520.11                                                     | e [ft]<br>16536882<br>85636987                                     | Catchment area     | [ac]<br>75.13961                                       | Geom area<br>75.4662449                                                        | [ac]<br>9855498<br>1616116                                  |                  |       |
| ▶ 1<br>2               | 4000_<br>4000_                       | 24_2_R1<br>_24N<br>_24S              | X coordinate [ft<br>1024697.7185<br>1017585.9207                                                 | t]<br>59456<br>78691<br>98427                   | Y coordinate<br>854520.11<br>862376.38                                        | e [ft]<br>16536882<br>85636987<br>33673189                         | Catchment area     | [ac]<br>75.13961<br>858.6189                           | Geom area<br>75.4662449<br>858.61882                                           | [ac]<br>9855498<br>1616116<br>7372306                       |                  |       |
| ▶ 1<br>2<br>3          | 4000_<br>4000_<br>4000_              | 24_2_R1<br>24N<br>24S<br>_00N        | X coordinate [fi<br>1024697.7185<br>1017585.9207<br>1019358.0909                                 | t]<br>59456<br>78691<br>98427<br>12977          | Y coordinate<br>854520.11<br>862376.38<br>856711.68                           | e [ft]<br>16536882<br>85636987<br>83673189<br>81076986             | Catchment area     | [ac]<br>75.13961<br>858.6189<br>899.167                | Geom area<br>75.4662449<br>858.618821<br>899.167047                            | [ac]<br>9855498<br>1616116<br>7372306<br>4690252            |                  |       |
| 1<br>2<br>3<br>4       | 4000<br>4000<br>4000<br>4005         | 24_2_R1<br>24N<br>24S<br>_00N<br>_03 | X coordinate [fi<br>1024697.7185<br>1017585.9207<br>1019358.0909<br>1019063.4611                 | t]<br>59456<br>78691<br>98427<br>12977<br>01262 | Y coordinate<br>854520.11<br>862376.38<br>856711.68<br>823058.73              | e [ft]<br>16536882<br>85636987<br>33673189<br>31076986<br>51521463 | Catchment area     | [ac]<br>75.13961<br>858.6189<br>899.167<br>725         | Geom area<br>75.4662449<br>858.618821<br>899.167047<br>724.964664              | [ac]<br>9855498<br>1616116<br>7372306<br>4690252<br>3241924 |                  |       |
| 1<br>2<br>3<br>4<br>11 | 4000<br>4000<br>4000<br>4005<br>4401 | 24_2_R1<br>_24N<br>_24S<br>_00N      | X coordinate [ft<br>1024697.7185<br>1017585.9207<br>1019358.0909<br>1019063.4611<br>992090.79420 | t]<br>59456<br>78691<br>98427<br>12977<br>01262 | Y coordinate<br>854520.11<br>862376.38<br>856711.68<br>823058.73<br>811188.16 | e [ft]<br>16536882<br>85636987<br>33673189<br>31076986<br>51521463 | Catchment area     | [ac]<br>75.13961<br>858.6189<br>899.167<br>725<br>1089 | Geom area<br>75.4662449<br>858.61882<br>899.167047<br>724.964664<br>1210.51983 | [ac]<br>9855498<br>1616116<br>7372306<br>4690252<br>3241924 |                  |       |





Catchments are featured as a data layer in MIKE+. They can be managed both graphically on the Map and through the Catchments editor.

The two modes complement each other, and efficient management of catchment data can be achieved through joint application of both modes.

The graphical mode (i.e. Edit Features functionality from the Catchments menu ribbon) allows digitisation of catchment extent by tools like Create, Edit, Delete, and Split. Descriptions of graphical catchment tools are found in the Model Manager User Guide.

The Catchments editor is used for:

- Editing catchment attributes. It is possible to insert catchments through the editor; these are given a schematised quadratic shape.
- Editing connections to model networks and hydrological data for Rainfall-Runoff models.
- Editing catchment hydrological model attributes. It is possible to edit catchment attributes in relation to various hydrological runoff models available in MIKE+.

### 4.1.1 Identification

The Catchments editor has a general Identification group containing information on catchment identifier and geographic location.

| Г   |                       |        |  |
|-----|-----------------------|--------|--|
| X   | 1095418.71348999 [ft] | Insert |  |
| î L |                       |        |  |
| Y   | 907896.342153769 [ft] | Delete |  |
| ١   |                       |        |  |

Figure 4.2 The Catchments editor Identification group

# Table 4.1 Edit fields in the Catchments editor Identification group (msm\_Catchment)

| Edit field | Description                                             | Usage | Attribute Table<br>Field |
|------------|---------------------------------------------------------|-------|--------------------------|
| ID         | Unique catchment<br>identifier                          | Yes   | MUID                     |
| X          | X coordinate of the<br>catchment geome-<br>try centroid | Yes   | GeomCentroidX            |
| Y          | Y coordinate of the<br>catchment geome-<br>try centroid | Yes   | GeomCentroidY            |

Other catchment attributes related to hydrological modelling and connections to model networks are organized in tabs within the editor and are described in succeeding Sections.

## 4.1.2 General

General catchment attributes related to hydrological model type and geometry are specified in the General tab page of the Catchments editor.

In MIKE+, the geographical extent of a catchment is determined by the catchment polygon perimeter. MIKE+ provides information on the total catchment area based on polygon geometry.

In some cases, the geographical boundaries of a catchment do not coincide with the actual drainage area. A catchment extent may be defined based on some administrative division, while the drainage network is present only in some parts of the catchment. In such cases, the User may specify the Catchment Area value, which overwrites the actual geometric area in all hydrological computations.



| General | SWMM Catchm                  | ent connections | SWMM Hydrology & I   | Hydraulic Properties | SWMM Infiltration | Description |   |
|---------|------------------------------|-----------------|----------------------|----------------------|-------------------|-------------|---|
|         | ological model<br>hment area | SWMM Hydrolog   | y v<br>75.13961 [ac] | 75.4662449855498     | [ac]              |             |   |
|         |                              |                 |                      |                      |                   |             |   |
| <       |                              |                 |                      |                      |                   |             | > |



## Table 4.2 Edit fields in the Catchments editor General tab page (msm\_Catchment)

| Edit field                  | Description                                                             | Usage                      | Attribute Table<br>Field |
|-----------------------------|-------------------------------------------------------------------------|----------------------------|--------------------------|
| Hydrological Model          | Hydrological runoff<br>model to use for a<br>catchment                  | Yes                        | HydrologicalMod-<br>elNo |
| Catchment Area              | The catchment area<br>of relevance for the<br>project (<= Geom<br>Area) | Optional                   | Area                     |
| (Derived Geometric<br>Area) | Program-calculated<br>geometric area of<br>the catchment poly-<br>gon   | Calculated (read-<br>only) | GeomArea                 |

## 4.1.3 Catchment Connections

To transfer runoff generated on catchment surfaces into the collection network, the model must include information about the connection of the catchment outlet to the network.

For SWMM models, MIKE+ supports the connection of catchments to nodes as well as other catchments wherein runoff is routed from one area to another. One or multiple catchments can be connected to the same node.

Define catchment connections for SWMM models on the SWMM Catchment Connections tab page of the Catchments editor.



| General SWMM Catch  | ment connections | SWMM Hydrology & Hydraulic Properties | SWMM Infiltration | Description |
|---------------------|------------------|---------------------------------------|-------------------|-------------|
| Load to             | Node             | $\sim$                                |                   |             |
| Load point ID       | Meadow058        | 000                                   |                   |             |
| Outlet catchment ID | 4000_24_2_       | R1                                    |                   |             |
| Rain gauge ID       | LongTe           | rm                                    |                   |             |
|                     |                  |                                       |                   |             |
|                     |                  |                                       |                   |             |
|                     |                  |                                       |                   |             |

#### Figure 4.4 The SWMM Catchment Connections tab page in the Catchments editor

The definition and management of catchment connections is supported both through the editor and by a set of graphical catchment connection tools accessed via the Catchments menu ribbon.

| File Project  | t Map CS network | k Catchm | ents Sin | ulation | Tools Results                  |                                |                      |             |            |                               |      |
|---------------|------------------|----------|----------|---------|--------------------------------|--------------------------------|----------------------|-------------|------------|-------------------------------|------|
| Ka Undo       | S Target layer:  | Ph .     | 1 1      | 57      | Oo Delete catchment connection | 🧷 Erase catchments             |                      | ~           | ି          | _                             | c,b  |
|               |                  | -+ 0     | _        | e Split | Append catchment               | X Clip catchments by selection |                      | U           | Catchment  | Cabebraratician               |      |
| A Redo        | Catchments •     | Create E | on Deet  | e oper  | SC Clip catchments             | Erase catchments by selection  | Open layer<br>editor | delineation | processing | Catchment slope<br>and length | tool |
| Undo / Redo 🔒 |                  |          |          |         | Edit features                  |                                |                      |             | Catchm     | ent toolbox                   |      |

#### Figure 4.5 The Catchment Connection tool on the Catchments menu ribbon

| Table 4.3 | Edit fields in the Catchment Connections tab page (msm | Catchment) |
|-----------|--------------------------------------------------------|------------|
|           | Eat holdo in the outonment connections tab page (mon   |            |

| Edit field                | Description                                                                                                             | Usage                              | Attribute Table<br>Field    |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|
| Load to                   | Specifies the type of network<br>element to which the catch-<br>ment is connected.<br>Options are:<br>Node<br>Catchment | Yes                                | SWMM_Load-<br>ToNo          |
| Load Point                | ID of Node that receives the                                                                                            | Yes                                | SWMM_OutletNo-              |
| ID                        | catchment runoff                                                                                                        | If Load to = Node                  | delD                        |
| Outlet<br>Catchment<br>ID | ID of Catchment that receives the surface runoff                                                                        | Yes<br>If Load to = Catch-<br>ment | SWMM_Outlet-<br>CatchmentID |
| Raingage ID               | Rain Gauge boundary setup ID associated with the catchment                                                              | Yes                                | SWMM_Rain-<br>gageID        |

## 4.1.4 Hydrology & Hydraulic Properties

The concept of the surface runoff used by SWMM is illustrated in the figure below. Each catchment surface is treated as a nonlinear reservoir. Inflow comes from precipitation and upstream catchments. There are several outflows, including infiltration, evaporation, and surface runoff.

The capacity of this "reservoir" is the maximum depression storage, which is the maximum surface storage provided by ponding, surface wetting, and interception.

Surface runoff per unit area, Q, occurs only when the depth of water in the "reservoir" exceeds the maximum depression storage,  $d_p$ , in which case the outflow is given by Manning's equation (Kinematic Wave).

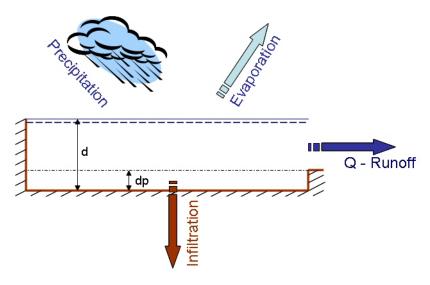



Figure 4.6 Nonlinear Reservoir Concept

Depth of water over the catchment is continuously updated with time by numerically solving a water balance equation over the catchment.

Define SWMM surface runoff computation data on the SWMM Hydrology & Hydraulic Properties tab page of the Catchments editor.

| General SWMM Catchmer | nt connections SW | VMM Hydrology & H | Hydraulic Properties | SWMM Infiltratio | on Description |        |
|-----------------------|-------------------|-------------------|----------------------|------------------|----------------|--------|
| Width                 |                   | 5 [ft]            | Imperv. d            | . storage        | 0.05           | [in]   |
| Ground slope          |                   | 0.1 [%]           | Perv. d. s           | torage           |                | [in]   |
| Imperviousness        |                   | 23 [%]            | % DCIA v             | ı/o d. storage   | 25             | i [0]  |
| Impervious Manning    |                   | 0.02 [s/m^(1/     | /3)] Subarea r       | outing PE        | RV ~           | •      |
| Pervious Manning      |                   | 0.2 [s/m^(1/      | (3)] Percent ro      | outed            | 65             | j [%]  |
| Snowpack ID           | Sn                | nowpack           | Curb leng            | th 🗌             | 0              | ) [ft] |
| N-perv Pattern        |                   |                   | Infil Patte          | rn 🗌             |                |        |
| Dstore Pattern        |                   |                   |                      |                  |                |        |
|                       |                   |                   |                      |                  |                |        |
|                       |                   |                   |                      |                  |                |        |
|                       |                   |                   |                      |                  |                |        |

Figure 4.7 The SWMM Hydrology & Hydraulic Properties tab page of the Catchments editor

# Table 4.4Edit fields in the SWMM Hydrology & Hydraulic Properties tab page<br/>(msm\_Catchment)

| Edit field              | Description                                                                                                                                                                                                                                                                | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Width                   | Width of catchment                                                                                                                                                                                                                                                         | Yes                                   | SWMM_Width                  |
| Ground<br>Slope         | Ground slope of catchment in<br>percentage                                                                                                                                                                                                                                 | Yes                                   | SWMM_Slope                  |
| Impervious-<br>ness     | Impervious part of the catch-<br>ment area in percentage                                                                                                                                                                                                                   | Yes                                   | SWMM_Imper-<br>vious        |
| Impervious<br>Manning   | Manning number for the Imper-<br>vious part of the area                                                                                                                                                                                                                    | Yes                                   | SWMM_NIm-<br>perv           |
| Pervious<br>Manning     | Manning number for the Pervi-<br>ous part of the area                                                                                                                                                                                                                      | Yes                                   | SWMM_NPerv                  |
| Imperv. d.<br>Storage   | Size of Impervious Depression<br>Storage                                                                                                                                                                                                                                   | Yes                                   | SWM-<br>M_DImperv           |
| Perv. d. Stor-<br>age   | Size of Pervious Depression<br>Storage                                                                                                                                                                                                                                     | Yes                                   | SWMM_DPerv                  |
| %DCIA w/o<br>d. Storage | Percent of the impervious area with no depression storage                                                                                                                                                                                                                  | Yes                                   | SWMM_Imper-<br>vPctZero     |
| Subarea<br>Routing      | Choice of internal routing of<br>runoff between pervious and<br>impervious areas:<br>IMPERV: runoff from pervious<br>area flows to impervious area<br>PERV: runoff from impervious<br>flows to pervious area<br>OUTLET: runoff from both<br>areas flows directly to outlet | Yes                                   | SWMM_Route-<br>ToNo         |



| Edit field          | Description                                                                                                    | Used or<br>required by<br>simulations | Field name in<br>datastructure |
|---------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|
| Percent<br>Routed   | Percent of runoff routed<br>between subareas                                                                   | Yes                                   | SWMM_Pc-<br>tRouted            |
| Snowpack<br>ID      | Snowpack parameter set ID (if any) assigned to the catch-<br>ment                                              | Optional                              | SWMM_Snow-<br>PackID           |
| Curb Length         | Total length of Curbs in the<br>catchment. Only used when<br>pollutant buildup is normalized<br>to curb length | No                                    | SWMM_Cur-<br>bLength           |
| N-perv Pat-<br>tern | Operational monthly pattern that adjust pervious Manning n                                                     | Optional                              | SWMM_NPer-<br>vPatternID       |
| DStore Pat-<br>tern | Optional monthly pattern that<br>adjust depression storage                                                     | Optional                              | SWMM_Dstore-<br>PatternID      |
| Infil Pattern       | Optional monthly pattern that<br>adjust infiltration rate                                                      | Optional                              | SWMM_InfilPat-<br>ternID       |

#### Table 4.4 Edit fields in the SWMM Hydrology & Hydraulic Properties tab page (msm\_Catchment)

## 4.1.5 Infiltration

Infiltration is the process of rainfall penetrating the ground surface into the soil over the pervious areas of catchments. SWMM supports the following methods for modelling infiltration:

- Horton Method. This method is based on empirical observations showing that infiltration decreases exponentially from an initial maximum rate to some minimum rate over the course of a long rainfall event. Input parameters required by this method include the maximum and minimum infiltration rates, a decay coefficient that describes how fast the rate decreases over time, and a regeneration constant that describes the restoration of infiltration rate during dry periods.
- **Green-Ampt Method**. This method for modelling infiltration assumes that a sharp wetting front exists in the soil column, separating soil with some initial moisture content below from saturated soil above. The input parameters required are the initial moisture deficit of the soil, the soil's hydraulic conductivity, and the suction head at the wetting front.

- **Curve Number Method**. This approach is adopted from the NRCS (SCS) Curve Number method for estimating runoff. It assumes that the total infiltration capacity of a soil can be found from the soil's tabulated Curve Number. During a rain event this capacity is depleted as a function of cumulative rainfall and remaining capacity. The input parameters for this method are the curve number, the soil's hydraulic conductivity (used to estimate a minimum separation time for distinct rain events), and a regeneration constant that describes the restoration of infiltration capacity during dry periods.
- Modified Horton Method. A modified version of the Horton Method that uses the cumulative infiltration in excess of the minimum rate as its state variable (instead of time along the Horton curve), providing a more accurate infiltration estimate when low rainfall intensities occur. It uses the same input parameters as the traditional Horton Method.
- Modified Green-Ampt Method. This is a modified version of the original Green-Ampt procedure by not depleting moisture deficit in the top surface layer of soil during the initial periods of low rainfall as was done in the original method. This change can produce more realistic infiltration behavior for storms with long initial periods where the rainfall intensity is below the soil's saturated hydraulic conductivity.

Define SWMM Infiltration model parameters on the SWMM Infiltration tab page on the Catchments editor.

| General SWMM Catchme   | ent connections | SWMM Hy | drology & Hydra | aulic Properties | SWMM Infilt | ration | Description |      |        |
|------------------------|-----------------|---------|-----------------|------------------|-------------|--------|-------------|------|--------|
| Horton                 |                 |         |                 |                  |             |        |             |      |        |
| Max infiltration rate  |                 |         | [in/h]          | Decay rate       |             |        |             | 10   | [%]    |
| Min infiltration rate  |                 |         | [in/h]          | DWF regene       | eration     |        |             |      | [d]    |
| Max infiltration vol.  |                 | 0       | [in]            |                  |             |        |             |      |        |
| Green Ampt             |                 |         |                 |                  |             |        |             |      |        |
| Soil capillary suction |                 | 6.57    | [in]            | Conductivity     | (           |        |             | 0.39 | [in/h] |
| Initial soil moisture  |                 | 17      | [%]             |                  |             |        |             |      |        |
| Curve Number           |                 |         |                 |                  |             |        |             |      |        |
| Curve number           |                 |         | [0]             |                  |             |        |             |      |        |
| DWF regeneration       |                 |         | [d]             |                  |             |        |             |      |        |
|                        |                 |         |                 |                  |             |        |             |      |        |
|                        |                 |         |                 |                  |             |        |             |      |        |
|                        |                 |         |                 |                  |             |        |             |      |        |
|                        |                 |         |                 |                  |             |        |             |      |        |

#### Figure 4.8 The SWMM Infiltration tab page

Only one of the above infiltration methods can be used in a simulation, which is defined in the Simulation Setup editor (Figure 4.9).

When running a simulation, defining infiltration parameters are mandatory only for the selected infiltration model; the other parameters may remain empty.

| Simulation setup       |           |            |                   |     |                   | 1                      | ×              |
|------------------------|-----------|------------|-------------------|-----|-------------------|------------------------|----------------|
| Identification         |           |            |                   |     |                   |                        |                |
| ID                     | MU_Export | _20190306  |                   |     | [                 | Insert Copy            |                |
| Scenario               | Base      |            | $\sim$            |     | [                 | Delete RUN             |                |
| General Catchm         | ents HD   | Dynamic wa | we Water quality  | Rep | orting            |                        |                |
| Time Step              |           |            |                   |     | -Infiltration Mod | lel                    |                |
| Runoff step:           | Days      | Hr         | ::Min:Sec         |     | O Horton          |                        |                |
|                        |           |            |                   |     | Green Ar          | npt                    |                |
| Dry weather            |           | 0 01:0     | 0:00              |     | O Curve Nu        | umber                  |                |
| Wet weather            |           | 0 00:0     | 5:00              |     | O Modified        | Horton                 |                |
|                        |           |            |                   |     | O Modified        | Green Ampt             |                |
| -Runoff interface file | es        |            |                   |     |                   |                        |                |
| Rainfall dat           | a         | Use        |                   |     |                   |                        |                |
| _                      |           | O Save     |                   |     |                   |                        |                |
| Save runof             | fdata     |            |                   |     |                   |                        |                |
| Save RDII o            | lata      |            |                   |     |                   |                        |                |
|                        |           |            |                   |     |                   |                        |                |
|                        | 10        | V ALL      | class.            |     |                   |                        | + <i>l</i> 4 - |
|                        | ID        | 1.22       | ✓ Clear           |     | Show selecte      |                        | 1/4 r          |
| ID                     |           | Scenario   | Active simulation | Rai | infall runoff     | Rainfall dependent I/I | Snov           |
| ▶ 1 MU_Export_         |           |            | <b>v</b>          |     | <b>N</b>          | <u> </u>               |                |
| 2 12                   |           | Base       | V                 |     | V                 | Г                      |                |
| <                      |           |            |                   |     |                   |                        | >              |

Figure 4.9 Infiltration method used in simulation as defined in the Simulation Setup editor

| Edit field                  | Description             | Used or<br>required by<br>simulations | Field name in datastructure |  |  |  |  |
|-----------------------------|-------------------------|---------------------------------------|-----------------------------|--|--|--|--|
|                             | Horton                  |                                       |                             |  |  |  |  |
| Max infiltra-<br>tion rate  | Max Infiltration Rate   | Yes                                   | SWMM_Max-<br>Rate           |  |  |  |  |
| Min infiltra-<br>tion rate  | Min Infiltration Rate   | Yes                                   | SWMM_Min-<br>Rate           |  |  |  |  |
| Max infiltra-<br>tion vol.  | Max Infiltration Volume | Yes                                   | SWMM_MaxIn-<br>Fil          |  |  |  |  |
| Decay rate                  | Decay Rate              | Yes                                   | SWMM_Decay-<br>Rate         |  |  |  |  |
| DWF regen-<br>eration       | DWF regeneration factor | Yes                                   | SWMM_HRe-<br>gen            |  |  |  |  |
| Green-Ampt                  |                         |                                       |                             |  |  |  |  |
| Soil capil-<br>lary suction | Soil Capillary Suction  | Yes                                   | SWMM_Suction                |  |  |  |  |

| Edit field               | Description                                | Used or<br>required by<br>simulations | Field name in datastructure |
|--------------------------|--------------------------------------------|---------------------------------------|-----------------------------|
| Initial soil<br>moisture | Initial saturated soil moisture            | Yes                                   | SWMM_InitDef                |
| Conductivity             | Soil saturated hydraulic con-<br>ductivity | Yes                                   | SWMM_Con-<br>duct           |
|                          | Curve Numb                                 | er                                    |                             |
| Curve Num-<br>ber        | Curve No                                   | Yes                                   | SWMM_Run-<br>offCN          |
| DWF regen-<br>eration    | DWF regeneration factor                    | Yes                                   | SWMM_CRe-<br>gen            |

#### Table 4.5 Edit fields in the Infiltration tab page (msm\_Catchment)

## 4.1.6 Description

The Catchments editor Description tab page allows the User to provide additional information for a catchment record.

| General | SWMM C   | Catchment connections | SWMM Hydrology & Hydr | aulic Properties | SWMM Infiltration | Description |  |
|---------|----------|-----------------------|-----------------------|------------------|-------------------|-------------|--|
| Deso    | ription  |                       |                       |                  |                   |             |  |
| Data    | source   |                       |                       |                  |                   |             |  |
| Asse    | t ID     |                       |                       |                  | Add picture       |             |  |
| Statu   | JS       |                       | ~                     |                  |                   |             |  |
| Netw    | ork type | 2: Storm Water        | ~                     |                  |                   |             |  |
| Tag     |          |                       |                       |                  |                   |             |  |
|         |          |                       |                       |                  |                   |             |  |
|         |          |                       |                       |                  |                   |             |  |
|         |          |                       |                       |                  |                   |             |  |
|         |          |                       |                       |                  |                   |             |  |

### Figure 4.10 The Catchments editor Description tab page



| Edit field            | Description                                                                                                                                       | Usage    | Attribute Table<br>Field |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|
| Description           | Free text description<br>related to the catch-<br>ment                                                                                            | Optional | Description              |
| Data source           | Reference to an<br>external data source<br>(e.g. table ID) from<br>where the record<br>was taken                                                  | Optional | DataSource               |
| Asset ID              | Reference to an ID<br>used in external<br>data sources                                                                                            | Optional | AssetName                |
| Status                | Data status based<br>on a user-specified<br>list (Status Code<br>editor)                                                                          | Optional | Element_S                |
| Network Type          | Attributes the catch-<br>ment to a certain<br>type of network.<br>Used in cases<br>where different net-<br>work types are in<br>the same project. | Optional | NetTypeNo                |
| Tag                   | Optional label to<br>categorize/classify<br>the catchment                                                                                         | Optional | SWMM_Tag                 |
| Add Picture<br>button | Facility for defining<br>an image file for the<br>catchment record.<br>Accepts .PNG,<br>.JPG, and .BMP<br>image files.                            | Optional | -                        |

#### Table 4.6Edit fields in the Description tab page (msm\_Catchment)

## 4.2 Aquifers

Aquifers are subsurface groundwater areas used to model the vertical movement of water infiltrating from the catchments above. They also permit the infiltration of groundwater into the conveyance system, or exfiltration of surface water from the conveyance system, depending on the hydraulic gradient. The same aquifer object can be shared by several catchments.

Aquifers are represented using two zones - an unsaturated zone and a saturated zone. Their behaviour is characterized using such parameters as soil

porosity, hydraulic conductivity, evapotranspiration depth, bottom elevation, and loss rate to deep groundwater. In addition, the initial water table elevation and initial moisture content of the unsaturated zone must be defined.

Define aquifers via the SWMM Aquifers editor in MIKE+. The editor organizes the aquifer data into the following groups:

- Identification
- Aquifer properties

Aquifers are connected to catchments and network nodes through the Groundwater editor (see Chapter 4.8. Groundwater)

| Aquife | re                    |            |               |                       |                   |          |            | х    |
|--------|-----------------------|------------|---------------|-----------------------|-------------------|----------|------------|------|
|        | ntification           |            |               |                       |                   |          | _          | ~    |
| IUe    | nuncauon              |            |               |                       |                   | Inser    | t          |      |
| 1      | ID Catchment_         | 10         |               |                       |                   |          |            |      |
|        |                       |            |               |                       |                   | Delet    | e          |      |
|        |                       |            |               |                       |                   |          |            |      |
| 1      | Porosity              |            | 0.35          | Fraction of to        | otal evap         |          | 0.3        |      |
| 1      | Wilting point         |            | 0.25          | Max depth             |                   |          | 12 [ft]    |      |
|        | Field capacity        |            | 0.33          | Rate of perco         | plation           | 0.0      | 003 [in/h] |      |
|        |                       |            |               |                       | _                 |          |            |      |
|        | Conductivity, K       |            | 0.86 [in/h    | ] Aquifer eleva       | Aquifer elevation |          | 999 [ft]   |      |
|        | Slope of conductivity |            | 32            | Water table elevation |                   | 1        | 999 [ft]   |      |
|        | Slope of soil tensio  | n          | 0             | Initial moistur       | e content         | 0        | .25        |      |
|        |                       |            |               |                       |                   |          |            |      |
| `      | Upper zone evapo      |            |               |                       |                   |          |            |      |
|        | ID                    | ~          | ALL ~         | Clear                 | Show selected     | Show d   | ata errors | 1    |
|        | ID                    | Porosity 🔺 | Wilting point | Field capacity        | Conductivity,     | K [in/h] | Slope of   | cc ^ |
| ▶ 1    | Catchment_10          | 0.35       | 0.25          | 0.33                  |                   | 0.86     |            |      |
| 2      | Catchment_13          | 0.35       | 0.25          | 0.33                  |                   | 0.86     |            |      |
| 3      | FairfieldSt_S         | 0.35       | 0.17          | 0.28                  |                   | 0.64     |            | _    |
| 10     | Kane-05-06            | 0.35       | 0.25          | 0.33                  |                   | 0.86     |            | -    |
| 11     | Kane-05-07            | 0.35       | 0.25          | 0.33                  |                   | 0.86     |            | -    |
| 12     | Kane-05-08            | 0.35       | 0.25          | 0.33                  |                   | 0.86     |            | ~    |
| <      |                       |            |               |                       |                   |          |            | •    |



#### Table 4.7Edit fields in the Aquifers editor (mss\_Aquifer)

| Edit field          | Description                    | Used or<br>required by<br>simulations | Field name in datastructure |
|---------------------|--------------------------------|---------------------------------------|-----------------------------|
| Porosity            | Soil porosity (fraction)       | Yes                                   | Por                         |
| Wilting Point       | Soil wilting point (fraction)  | Yes                                   | WP                          |
| Field Capac-<br>ity | Soil field capacity (fraction) | Yes                                   | FC                          |



| Edit field                | Description                                                                                                    | Used or<br>required by<br>simulations | Field name in datastructure |
|---------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Conductiv-<br>ity, K      | Saturated hydraulic conductiv-<br>ity                                                                          | Yes                                   | К                           |
| Slope of<br>Conductivity  | Slope of hydraulic conductivity versus moisture content curve                                                  | Yes                                   | Kslope                      |
| Slope of Soil<br>Tension  | Slope of soil tension versus moisture content curve                                                            | Yes                                   | Yslope                      |
| Fraction of<br>Total Evap | Fraction of total evaporation<br>available for evapotranspira-<br>tion                                         | Yes                                   | UEF                         |
| Max Depth                 | Maximum depth into lower sat-<br>urated zone over which evapo-<br>transpiration can occur                      | Yes                                   | LED                         |
| Rate of Per-<br>colation  | Rate of percolation from satu-<br>rated zone to deep groundwa-<br>ter when water table is at<br>ground surface | Yes                                   | GWR                         |
| Aquifer Ele-<br>vation    | Elevation of the bottom of the aquifer                                                                         | Yes                                   | BE                          |
| Water Table<br>Elevation  | Water table elevation at the start of simulation                                                               | Yes                                   | WTE                         |
| UMC                       | Unsaturated zone moisture<br>content at the start of simula-<br>tion                                           | Yes                                   | UMC                         |

#### Table 4.7 Edit fields in the Aquifers editor (mss\_Aquifer)

## 4.3 Climatology

Climate-related variables used for computing runoff and snowmelt are defined in the Climatology editor.



| Climatology |                    |            |               |                 |             |  | х |
|-------------|--------------------|------------|---------------|-----------------|-------------|--|---|
| Temperature | Evaporation        | Wind speed | Snowmelt      | Areal depletion | Adjustments |  |   |
| 🔿 No data   | 3                  |            |               |                 |             |  |   |
| O Time se   | ries ID            |            |               |                 |             |  |   |
| Olimate     | file               | BrainardTe | emperature 14 | 752.dat         |             |  |   |
| Sta         | rt reading file at | Saturday   | , January     | 1, 2011 🔲 🔻     |             |  |   |
|             |                    |            |               |                 |             |  |   |
|             |                    |            |               |                 |             |  |   |
|             |                    |            |               |                 |             |  |   |
|             |                    |            |               |                 |             |  |   |
|             |                    |            |               |                 |             |  | _ |

#### Figure 4.12 The Climatology editor for SWMM models

The editor organizes climatological data into the following groups:

- Temperature
- Evaporation
- Wind Speed
- Snowmelt
- Areal Depletion
- Adjustments

#### 4.3.1 Temperature

Temperature data are used when simulating snowfall and snowmelt processes during runoff calculations. If these processes are not being simulated then no temperature data are needed.

Temperature data can be supplied from one of the following sources:

- A user-supplied time series of point values (values at intermediate times are found by interpolation)
- A NCDC 3200 or 3210 climatological file containing daily minimum and maximum values (SWMM fits a sinusoidal curve through these values depending on the day of the year).

For user-defined time series, temperatures are in degrees F for US units and degrees C for metric units. Note that the NCDC climatological file can also be used to define evaporation and wind speed data.

| Temperature | Evaporation        | Wind speed | Snowmelt     | Areal depletion | Adjustments |  |
|-------------|--------------------|------------|--------------|-----------------|-------------|--|
| 🔿 No data   | 1                  |            |              |                 |             |  |
| ○ Time se   | ries ID            |            |              |                 |             |  |
| Olimate     | file               | BrainardTe | mperature 14 | 752.dat         |             |  |
| Sta         | rt reading file at | Saturday   | , January    | 1, 2011 🔲 🔻     |             |  |
|             |                    |            |              |                 |             |  |
|             |                    |            |              |                 |             |  |
|             |                    |            |              |                 |             |  |
|             |                    |            |              |                 |             |  |

Figure 4.13 The SWMM Climatology Temperature tab page

| Edit field                 | Description                                                                | Used or<br>required by<br>simulations | Field name in datastructure |
|----------------------------|----------------------------------------------------------------------------|---------------------------------------|-----------------------------|
|                            | Radio button for temperature<br>data type                                  | Yes                                   | TypeNo                      |
| No Data                    | No temperature data                                                        | Yes if TypeNo =<br>1                  |                             |
| Time Series<br>ID          | Temperature data read from<br>time series defined in Time<br>Series editor | Yes if TypeNo =<br>2                  | TimeSeriesID                |
| Climate File               | Temperature data read from<br>NCDC *.DAT file                              | Yes if TypeNo =<br>3                  | FileName                    |
| Start Read-<br>ing File at | Start date for reading from NCDC data file                                 | Yes if TypeNo =<br>3                  | StartDate                   |

#### Table 4.8Edit fields in the Temperature tab page (mss\_Temperature)

## 4.3.2 Evaporation

Evaporation can occur for standing water on catchment surfaces, for subsurface water in groundwater aquifers, and from water held in storage units. Evaporation rates can be defined as:

- A single constant value
- A set of monthly average values
- User-supplied time series of daily values
- Daily values read from a NCDC climate file
- Values computed from the daily temperatures in the external climate file



If a NCDC file is used, then a set of monthly pan coefficients should also be supplied to convert the pan evaporation data to free water surface values.

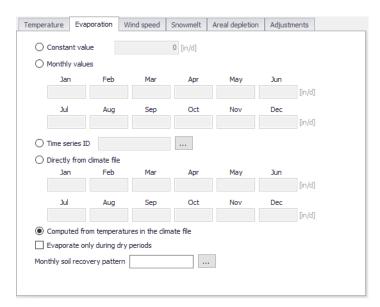



Figure 4.14 The Climatology Evaporation tab page

| Table 4.9 | Edit fields in the Evaporation tab page (mss_Evaporation) |
|-----------|-----------------------------------------------------------|
|           |                                                           |

| Edit field        | Description                                               | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------------|-----------------------------------------------------------|---------------------------------------|-----------------------------|
|                   | Radio button for evaporation data type                    | Yes                                   | TypeNo                      |
| Constant<br>Value | Evaporation is set to constant<br>value<br>TypeNo = 1     | Yes if TypeNo =<br>1                  | ConstValue                  |
|                   | Monthly Valu                                              |                                       |                             |
|                   | TypeNo = 2                                                | 2                                     |                             |
| Jan               | Monthly evaporation value for<br>January entered by user  | Yes if TypeNo =<br>2                  | Value1                      |
| Feb               | Monthly evaporation value for<br>February entered by user | Yes if TypeNo =<br>2                  | Value2                      |
| Mar               | Monthly evaporation value for<br>March entered by user    | Yes if TypeNo =<br>2                  | Value3                      |
| Apr               | Monthly evaporation value for<br>April entered by user    | Yes if TypeNo =<br>2                  | Value4                      |



| Table 4.9         |                                                                            | page (mss_rvap                        |                             |
|-------------------|----------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Edit field        | Description                                                                | Used or<br>required by<br>simulations | Field name in datastructure |
| May               | Monthly evaporation value for<br>May entered by user                       | Yes if TypeNo =<br>2                  | Value5                      |
| June              | Monthly evaporation value for<br>June entered by user                      | Yes if TypeNo =<br>2                  | Value6                      |
| July              | Monthly evaporation value for<br>July entered by user                      | Yes if TypeNo =<br>2                  | Value7                      |
| Aug               | Monthly evaporation value for<br>August entered by user                    | Yes if TypeNo =<br>2                  | Value8                      |
| Sept              | Monthly evaporation value for<br>September entered by user                 | Yes if TypeNo =<br>2                  | Value9                      |
| Oct               | Monthly evaporation value for<br>October entered by user                   | Yes if TypeNo =<br>2                  | Value10                     |
| Nov               | Monthly evaporation value for<br>November entered by user                  | Yes if TypeNo =<br>2                  | Value11                     |
| Dec               | Monthly evaporation value for<br>December entered by user                  | Yes if TypeNo =<br>2                  | Value12                     |
| Time Series<br>ID | Evaporation data read from<br>time series defined in Time<br>Series editor | Yes if TypeNo =<br>3                  | TimeSeriesID                |
|                   | Directly from Clim<br>TypeNo = 4                                           |                                       |                             |
| Jan               | Evaporation data for January<br>read from NCDC file                        | Yes if TypeNo =<br>4                  | Pan1                        |
| Feb               | Evaporation data for February<br>read from NCDC file                       | Yes if TypeNo =<br>4                  | Pan2                        |
| Mar               | Evaporation data for March<br>read from NCDC file                          | Yes if TypeNo =<br>4                  | Pan3                        |
| Apr               | Evaporation data for April read<br>from NCDC file                          | Yes if TypeNo =<br>4                  | Pan4                        |
| May               | Evaporation data for May read<br>from NCDC file                            | Yes if TypeNo =<br>4                  | Pan5                        |
| June              | Evaporation data for June read<br>from NCDC file                           | Yes if TypeNo =<br>4                  | Pan6                        |
| July              | Evaporation data for July read from NCDC file                              | Yes if TypeNo =<br>4                  | Pan7                        |
| Aug               | Evaporation data for August<br>read from NCDC file                         | Yes if TypeNo =<br>4                  | Pan8                        |
| Sept              | Evaporation data for Septem-<br>ber read from NCDC file                    | Yes if TypeNo =<br>4                  | Pan9                        |

#### Table 4.9 Edit fields in the Evaporation tab page (mss\_Evaporation)

| Edit field                                                    | Description                                                                      | Used or<br>required by<br>simulations | Field name in datastructure |
|---------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Oct                                                           | Evaporation data for October<br>read from NCDC file                              | Yes if TypeNo =<br>4                  | Pan10                       |
| Nov                                                           | Evaporation data for Novem-<br>ber read from NCDC file                           | Yes if TypeNo =<br>4                  | Pan11                       |
| Dec                                                           | Evaporation data for Decem-<br>ber read from NCDC file                           | Yes if TypeNo =<br>4                  | Pan12                       |
| Computed<br>from Tem-<br>peratures in<br>the Climate<br>Files | Evaporation calculated based<br>on temperature in the climate<br>file            | Yes if TypeNo =<br>5                  |                             |
| Evaporate<br>Only During<br>Dry Periods                       | Option for setting evaporation<br>to occur only during dry peri-<br>ods          | Yes                                   | DryOnlyNo                   |
| Monthly Soil<br>Recovery<br>Pattern                           | Monthly infiltration recovery<br>rate pattern defined in Time<br>Patterns editor | Yes                                   | SoilRecov-<br>eryPatternID  |

 Table 4.9
 Edit fields in the Evaporation tab page (mss\_Evaporation)

### 4.3.3 Wind Speed

Wind speed is an optional climatological variable that is only used for snowmelt calculations. Define either a set of monthly average speeds, or wind speed data from the same NCDC climatological file used for daily min/max temperatures.

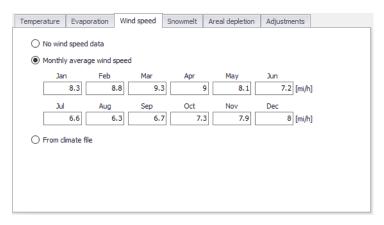



Figure 4.15 The Climatology Wind Speed tab page

| Edit field             | Description                                                                                           | Used or required by simulations  | Field name in datastructure |
|------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|
|                        | Radio button for data type                                                                            | Yes                              | WindSpeed-<br>TypeNo        |
| No Wind-<br>Speed Data | No Windspeed data should be used                                                                      | Yes if WindSpeed-<br>TypeNo = 1  |                             |
|                        | Monthly Average V<br>WindSpeedType                                                                    |                                  |                             |
| Jan                    | Monthly evaporation value for<br>January entered by user                                              | Yes if WindSpeed-<br>TypeNo = 2  | Value1                      |
| Feb                    | Monthly evaporation value for<br>February entered by user                                             | Yes if WindSpeed-<br>TypeNo = 2  | Value2                      |
| Mar                    | Monthly evaporation value for<br>March entered by user                                                | Yes if WindSpeed-<br>TypeNo = 22 | Value3                      |
| Apr                    | Monthly evaporation value for<br>April entered by user                                                | Yes if WindSpeed-<br>TypeNo = 2  | Value4                      |
| May                    | Monthly evaporation value for<br>May entered by user                                                  | Yes if WindSpeed-<br>TypeNo = 2  | Value5                      |
| June                   | Monthly evaporation value for<br>June entered by user                                                 | Yes if WindSpeed-<br>TypeNo = 2  | Value6                      |
| July                   | Monthly evaporation value for<br>July entered by user                                                 | Yes if WindSpeed-<br>TypeNo = 2  | Value7                      |
| Aug                    | Monthly evaporation value for<br>August entered by user                                               | Yes if WindSpeed-<br>TypeNo = 2  | Value8                      |
| Sept                   | Monthly evaporation value for<br>September entered by user                                            | Yes if WindSpeed-<br>TypeNo = 2  | Value9                      |
| Oct                    | Monthly evaporation value for<br>October entered by user                                              | Yes if WindSpeed-<br>TypeNo = 2  | Value10                     |
| Nov                    | Monthly evaporation value for<br>November entered by user                                             | Yes if WindSpeed-<br>TypeNo = 2  | Value11                     |
| Dec                    | Monthly evaporation value for<br>December entered by user                                             | Yes if WindSpeed-<br>TypeNo = 2  | Value12                     |
| From Cli-<br>mate File | WindSpeed data read from the<br>NCDC data file which is speci-<br>fied on the Temperature tab<br>page | Yes if WindSpeed-<br>TypeNo = 3  |                             |

#### Table 4.10Edit fields in the Wind Speed tab page (mss\_Temperature)

## 4.3.4 Snowmelt

Snowmelt parameters are climatological variables that apply across the entire model area when simulating snowfall and snowmelt. They include:



- The temperature at which precipitation falls as snow
- Heat exchange properties of the snow surface
- Study area elevation, latitude, and longitude correction

For additional information on Snowfall and Snowmelt processes please consult the section on Snowpacks.

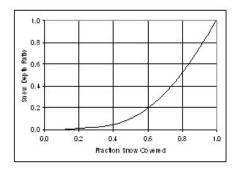
| Temperature             | Evaporation            | Wind speed | Snowmelt | Areal depletion | Adjustments |  |
|-------------------------|------------------------|------------|----------|-----------------|-------------|--|
| Dividing te<br>snow and | mperature betw<br>rain | een        | 34       | [deg F]         |             |  |
| ATI weigh               | t                      |            | 0.5      |                 |             |  |
| Negative r              | nelt ratio             |            | 0.6      |                 |             |  |
| Elevation a             | above MSL              |            | 190      | [ft]            |             |  |
| Latitude                |                        |            | 41.9     | [degN50]        |             |  |
| Longitude               | correction             |            | -9       | [min]           |             |  |
|                         |                        |            |          |                 |             |  |
|                         |                        |            |          |                 |             |  |
|                         |                        |            |          |                 |             |  |
|                         |                        |            |          |                 |             |  |



| Edit field                                                                 | Description                                                                                                                                                                                                                                                                                                                      | Used or<br>required by<br>simulations | Field name in<br>datastructure |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|
| Dividing<br>Tempera-<br>ture<br>Between<br>Snow and<br>Rain<br>(degrees F) | Temperature below which pre-<br>cipitation falls as snow                                                                                                                                                                                                                                                                         | Yes                                   | SnowTemp                       |
| ATI Weight                                                                 | This parameter reflects to what<br>degree heat transfer within a<br>snowpack during non-melt<br>periods is affected by prior air<br>temperatures. Smaller values<br>reflect a thicker surface layer<br>of snow which result in<br>reduced rates of heat transfer.<br>Values must be between 0 and<br>1.The default value is 0.5. | Yes                                   | Atiwt                          |

| Table 4.11 | Edit fields in the | Snowmelt tab | page (mss  | Temperature) |
|------------|--------------------|--------------|------------|--------------|
|            |                    | onownion tab | page (moo_ |              |




|                                      | Edit fields in the Showment tab p                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|
| Edit field                           | Description                                                                                                                                                                                                                                                                                                                                                                                                           | Used or<br>required by<br>simulations | Field name in<br>datastructure |
| Negative<br>Melt Ratio               | This is the ratio of the heat<br>transfer coefficient of a snow-<br>pack during non-melt condi-<br>tions to the coefficient during<br>melt conditions. It must be a<br>number between 0 and 1. The<br>default value is 0.6.                                                                                                                                                                                           | Yes                                   | Rnm                            |
| Elevation<br>Above MSL<br>(feet)     | Enter the average elevation<br>above mean sea level for the<br>study area, in feet or meters.<br>This value is used to provide a<br>more accurate estimate of<br>atmospheric pressure. The<br>default is 0.0, which results in a<br>pressure of 29.9 inches Hg.<br>The effect of wind on snowmelt<br>rates during rainfall periods is<br>greater at higher pressures,<br>which occur at lower eleva-<br>tions.        | Yes                                   | Elev                           |
| Latitude<br>(degrees<br>North)       | Enter the latitude, in degrees<br>North, of the study area. This<br>number is used when comput-<br>ing the hours of sunrise and<br>sunset, which in turn are used<br>to extend min/max daily tem-<br>peratures into continuous val-<br>ues. The default is 50 degrees<br>North.                                                                                                                                       | Yes                                   | Lat                            |
| Longitude<br>Correction<br>(minutes) | This is a correction, in minutes<br>of time, between true solar<br>time and the time on clocks. It<br>depends on a location's longi-<br>tude (q) and the standard<br>meridian of its time zone (SM)<br>through the expression 4 (q-<br>SM). This correction is used to<br>adjust the hours of sunrise and<br>sunset when extending daily<br>min/max temperatures into<br>continuous values. The default<br>value is 0 | Yes                                   | Dtlong                         |

### Table 4.11 Edit fields in the Snowmelt tab page (mss\_Temperature)



## 4.3.5 Areal Depletion

Areal Depletion refers to the tendency of snow to melt nonuniformly over the surface of a catchment. As the melting process proceeds, the area covered by snow is reduced. This behaviour can be described by an *Areal Depletion Curve*. It plots the fraction of total area that remains snow covered against the ratio of the actual snow depth to the depth at which there is 100% snow cover. A typical ADC for a natural area is shown below.



#### Figure 4.17 Example Areal Depletion Curve

Two such curves can be supplied; one for impervious areas and another for pervious areas.

| Temperature | Evaporation                      | Wind speed | Snowmelt | Areal depletion | Adjustments |  |  |  |  |
|-------------|----------------------------------|------------|----------|-----------------|-------------|--|--|--|--|
|             | Fraction of area covered by snow |            |          |                 |             |  |  |  |  |
| Depth ratio | Imp                              | ervious    | Pervious |                 |             |  |  |  |  |
| 0.0         |                                  | 0.1        |          | 0.1             |             |  |  |  |  |
| 0.1         |                                  | 0.35       |          | 0.35            |             |  |  |  |  |
| 0.2         |                                  | 0.53       |          | 0.53            |             |  |  |  |  |
| 0.3         |                                  | 0.66       |          | 0.66            |             |  |  |  |  |
| 0.4         |                                  | 0.75       |          | 0.75            |             |  |  |  |  |
| 0.5         |                                  | 0.82       |          | 0.82            |             |  |  |  |  |
| 0.6         |                                  | 0.87       |          | 0.87            |             |  |  |  |  |
| 0.7         |                                  | 0.92       |          | 0.92            |             |  |  |  |  |
| 0.8         |                                  | 0.95       |          | 0.95            |             |  |  |  |  |
| 0.9         |                                  | 0.98       |          | 0.98            |             |  |  |  |  |
|             |                                  |            |          |                 |             |  |  |  |  |
|             |                                  |            |          |                 |             |  |  |  |  |
|             |                                  |            |          |                 |             |  |  |  |  |

Figure 4.18 The SWMM Areal Depletion tab page



| Edit field | Description                                                              | Used or<br>required by<br>simulations | Field name ir<br>datastructure |
|------------|--------------------------------------------------------------------------|---------------------------------------|--------------------------------|
|            | Impervious                                                               |                                       | .1                             |
| 0.0        | Fraction of impervious area<br>covered by snow at interval<br>[0.0-0.1]  | Yes                                   | AdcImPerv0                     |
| 0.1        | Fraction of impervious area<br>covered by snow at interval<br>]0.1-0.2]  | Yes                                   | AdcImPerv1                     |
| 0.2        | Fraction of impervious area<br>covered by snow at interval<br>]0.2-0.3]  | Yes                                   | AdcImPerv2                     |
| 0.3        | Fraction of impervious area<br>covered by snow at interval<br>]0.3-0.4]  | Yes                                   | AdcImPerv3                     |
| 0.4        | Fraction of impervious area<br>covered by snow at interval<br>]0.4-0.5]  | Yes                                   | AdcImPerv4                     |
| 0.5        | Fraction of impervious area<br>covered by snow at interval<br>]0.5-0.6]  | Yes                                   | AdcImPerv5                     |
| 0.6        | Fraction of impervious area<br>covered by snow at interval<br>]0.6-0.7]  | Yes                                   | AdcImPerv6                     |
| 0.7        | Fraction of impervious area<br>covered by snow at interval<br>]0.7-0.8]  | Yes                                   | AdcImPerv7                     |
| 0.8        | Fraction of impervious area<br>covered by snow at interval<br>]0.8-0.9]  | Yes                                   | AdcImPerv8                     |
| 0.9        | Fraction of impervious area<br>covered by snow at interval<br>]0.9-1.0]  | Yes                                   | AdcImPerv9                     |
|            | Pervious                                                                 |                                       |                                |
| 0.0        | Fraction of pervious area cov-<br>ered by snow at interval [0.0-<br>0.1] | Yes                                   | AdcPerv0                       |
| 0.1        | Fraction of pervious area cov-<br>ered by snow at interval ]0.1-<br>0.2] | Yes                                   | AdcPerv1                       |

#### Table 4.12 Edit fields in the Areal Depletion tab page (mss\_Temperature)

| Edit field | Description                                                              | Used or<br>required by<br>simulations | Field name in datastructure |
|------------|--------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| 0.2        | Fraction of pervious area cov-<br>ered by snow at interval ]0.2-<br>0.3] | Yes                                   | AdcPerv2                    |
| 0.3        | Fraction of pervious area cov-<br>ered by snow at interval ]0.3-<br>0.4] | Yes                                   | AdcPerv3                    |
| 0.4        | Fraction of pervious area cov-<br>ered by snow at interval ]0.4-<br>0.5] | Yes                                   | AdcPerv4                    |
| 0.5        | Fraction of pervious area cov-<br>ered by snow at interval ]0.5-<br>0.6] | Yes                                   | AdcPerv5                    |
| 0.6        | Fraction of pervious area cov-<br>ered by snow at interval ]0.6-<br>0.7] | Yes                                   | AdcPerv6                    |
| 0.7        | Fraction of pervious area cov-<br>ered by snow at interval ]0.7-<br>0.8] | Yes                                   | AdcPerv7                    |
| 0.8        | Fraction of pervious area cov-<br>ered by snow at interval ]0.8-<br>0.9] | Yes                                   | AdcPerv8                    |
| 0.9        | Fraction of pervious area cov-<br>ered by snow at interval ]0.9-<br>1.0] | Yes                                   | AdcPerv9                    |

| Table 4.12 | Edit fields in the Areal | Depletion tab page | e (mss_Temperature) |
|------------|--------------------------|--------------------|---------------------|
|------------|--------------------------|--------------------|---------------------|

## 4.3.6 Adjustments

Climate Adjustments are optional modifications applied to the temperature, evaporation rate, rainfall intensity, and hydraulic conductivity that SWMM would otherwise use at each time step of a simulation. Separate sets of adjustments that vary periodically by month of the year can be assigned to these variables.

Adjustments to the hydraulic conductivity are used in computing rainfall infiltration on all pervious land surfaces, including those in all LID units, and exfiltration from all storage nodes and conduits.

These can reflect the increase of hydraulic conductivity with increasing temperature or the effect that seasonal changes in land surface conditions, such as frozen ground, can have on infiltration capacity.

They can be overridden for individual catchments (and their LID units) by assigning a monthly infiltration adjustment Time Pattern to a catchment.



Monthly adjustment time patterns for depression storage and pervious surface roughness coefficient (Manning n) can also be specified for individual catchments (see Chapter 4.1.4 SWMM Hydrology & Hydraulic Properties).

| Temperature                                                                                                                                          | Evaporation | Wind speed | Snowmelt | Are | al depletion | Adjustments |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|----------|-----|--------------|-------------|----|
| Month                                                                                                                                                | Temp        |            | Evap     |     | Rain         | Co          | nd |
| January                                                                                                                                              | 32          | [deg F]    | 0 [in/d  | 0   | 1            |             | 1  |
| February                                                                                                                                             | 32          | [deg F]    | 0 [in/d  | 0   | 1            |             | 1  |
| March                                                                                                                                                | 32          | [deg F]    | 0 [in/d  | 1]  | 1            |             | 1  |
| April                                                                                                                                                | 32          | [deg F]    | 0 [in/d  | []  | 1            |             | 1  |
| May                                                                                                                                                  | 32          | [deg F]    | 0 [in/d  | []  | 1            |             | 1  |
| June                                                                                                                                                 | 32          | [deg F]    | 0 [in/d  | []  | 1            |             | 1  |
| July                                                                                                                                                 | 32          | [deg F]    | 0 [in/d  | []  | 1            |             | 1  |
| August                                                                                                                                               | 32          | [deg F]    | 0 [in/d  | []  | 1            |             | 1  |
| September                                                                                                                                            | 32          | [deg F]    | 0 [in/d  | []  | 1            |             | 1  |
| October                                                                                                                                              | 32          | [deg F]    | 0 [in/d  | ]   | 1            |             | 1  |
| November                                                                                                                                             | 32          | [deg F]    | 0 [in/d  | ]   | 1            |             | 1  |
| December                                                                                                                                             | 32          | [deg F]    | 0 [in/d  | []  | 1            |             | 1  |
| Temp - Temperature adjustment (+ -)     Rain - Rainfall multiplier       Evap - Evaporation adjustment (+ -)     Cond - Soil conductivity multiplier |             |            |          |     |              |             |    |

Figure 4.19 The SWMM Climatology Adjustments tab page

| Table 4.13 | Edit fields in the Adjustments tab page (mss_Adjustment.Default_Ad- |
|------------|---------------------------------------------------------------------|
|            | justment)                                                           |

| Edit field | Description                                                              | Used or required by simulations | Field name in<br>datastructure |
|------------|--------------------------------------------------------------------------|---------------------------------|--------------------------------|
| Temp       | Temperature adjust-<br>ment (+-) for the<br>months January-<br>Decembers | Yes                             | Temp01-Temp12                  |
| Evap       | Evaporation adjust-<br>ment (+-) for the<br>months January-<br>Decembers | Yes                             | Evap01-Evap12                  |

| Edit field | Description                                                              | Used or required by simulations | Field name in datastructure |
|------------|--------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Rain       | Rainfall multiplier for<br>the months Janu-<br>ary-Decembers             | Yes                             | Rain01-Rain12               |
| Cond       | Soild conductivity<br>multiplier for the<br>months January-<br>Decembers | Yes                             | Con01-Con12                 |

# Table 4.13Edit fields in the Adjustments tab page (mss\_Adjustment.Default\_Adjustment)

## 4.4 RDII

For SWMM models, Rainfall Dependent Inflow/Infiltration (RDII) are stormwater flows that enter sanitary or combined sewers due to inflow from direct connections of downspouts, sump pumps, foundation drains, etc. as well as infiltration of subsurface water through cracked pipes, leaky joints, poor manhole connections, etc.

## 4.4.1 RDII Hydrographs

RDII for SWMM models can be computed for a given rainfall record based on a set of triangular unit hydrographs (UH) that determine a short-term, intermediate-term, and long-term inflow response for each interval of rainfall. Each unit hydrograph is defined by three parameters:

- R. The fraction of rainfall volume that enters the sewer system
- T. The time from the onset of rainfall to the peak of the UH in hour
- **K**. The ratio of time to recession of the UH to the time to peak

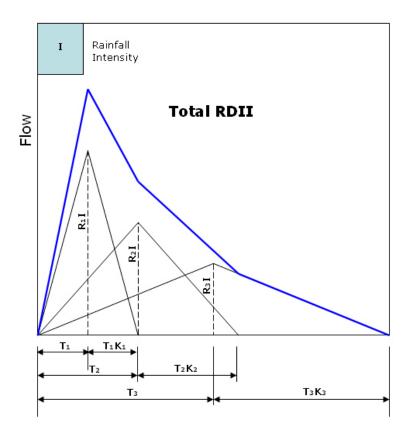



Figure 4.20 RTK concept for unit hydrographs

A SWMM RDII Hydrograph can contain up to 12 sets of unit hydrographs (one for each month of the year), and each set may consist of up to 3 individual hydrographs (for short-term, intermediate-term, and long-term responses, respectively).

| RDII h | ydrographs     |       |          |            |     |             |               |           |         |          |               |         | × |
|--------|----------------|-------|----------|------------|-----|-------------|---------------|-----------|---------|----------|---------------|---------|---|
| Ide    | entification — |       |          |            |     |             |               |           |         | In       | sert          |         |   |
| ID     |                | Site  | 21       |            |     | ]           |               |           |         |          |               |         |   |
| Rai    | in gauge ID    | Bra   | ainard   |            |     | -           |               |           | k       | De       | lete          |         |   |
| De     | scription      |       |          |            |     |             |               | 1         |         |          |               |         |   |
|        |                |       |          |            |     |             |               |           |         |          |               |         |   |
| Inse   | rt Delete      |       | Up       | Down       |     | 1/12 rows   | s, 0 selected |           |         |          |               |         |   |
|        | an day         |       |          |            | -   |             |               |           |         |          | raphDTable    |         |   |
|        | MonthNo        | _     | R1       | R2         | R3  | T1 [h]      | T2 [h]        | T3        | K1      | K2       | K3 [h]        | IA_Rec2 |   |
| ▶ 1    | JAN            | •     | 0.03     |            | 0   | 0.5         | 3             | 0         | 15      | 15       | 0             |         |   |
| 2      | FEB            | •     | 0.03     |            | 0   | 0.5         | 3             | 0         | 15      | 15       | 0             |         |   |
| 3      | MAR            | •     | 0.03     |            | 0   | 0.5         | 3             | 0         | 15      | 15       | 0             |         |   |
| 4      | APR            | •     | 0.02     |            | 0   | 0.5         | 3             | 0         | 15      | 15       | 0             |         |   |
| 5      | MAY            | •     | 0.02     | 2 0.1      | 0   | 0.5         | 3             | 0         | 15      | 15       | 0             |         |   |
| 6      | JUN            | -     | 0.02     | 2 0.1      | 0   | 0.5         | 3             | 0         | 15      | 15       | 0             |         |   |
| 7      | JUL            | -     | 0.02     | 2 0.1      | 0   | 0.5         | 3             | 0         | 15      | 15       | 0             |         |   |
| 8      | AUG            | •     | 0.007    | 0.017      | 0   | 0.5         | 3             | 0         | 15      | 15       | 0             |         |   |
| 9      | SEP            | •     | 0.007    | 0.017      | 0   | 0.5         | 3             | 0         | 15      | 15       | 0             |         |   |
| 10     | OCT            | •     | 0.08     | 0.017      | 0   | 6           | 8             | 0         | 2       | 5        | 0             |         |   |
| 11     | NOV            | •     | 0.04     | 0.2        | 0   | 0.5         | 3             | 0         | 15      | 15       | 0             |         | ~ |
| <      |                |       |          |            |     |             |               |           |         |          |               | >       |   |
|        |                | Ну    | drograph | h ID 🗸 🗛   | \LL | ~ C         | ilear         | ] Show se | elected | Show     | v data errors |         |   |
|        |                |       |          |            |     |             |               |           |         | RDII hyd | lrographs     |         |   |
|        | Hydrogra       | ph II | ) R      | Rain gauge | ID  | Description |               |           |         |          |               |         | ^ |
| ▶ 1    | Site 1         |       | Br       | rainard    |     |             |               |           |         |          |               |         |   |
| 2      | Site2          |       | M        | DC-RG-3    |     |             |               |           |         |          |               |         |   |
| 7      | uhWI-03A       |       | M        | DC-RG-1    |     |             |               |           |         |          |               |         |   |
| 8      | uhWI-04        |       | M        | DC-RG-1    |     |             |               |           |         |          |               |         | ~ |

Figure 4.21 The SWMM RDII Hydrographs Editor

The SWMM RDII Hydrographs Editor organizes the related input data for the RDII Unit Hydrograph approach into following groups:

- Identification
- Tabular Data

## Identification

| Identification |            | Insert |
|----------------|------------|--------|
| ID             | Site 1     | Delete |
| Rain gauge ID  | Brainard 🕨 | Delete |
| Description    |            |        |

Figure 4.22 RDII Hydrographs Identification group

| Edit field      | Description                         | Used or<br>required by<br>simulations | Field name in datastructure |
|-----------------|-------------------------------------|---------------------------------------|-----------------------------|
| ID              | RDII Hydrograph ID                  | Yes                                   | MUID                        |
| Raingauge<br>ID | ID of the associated Rain-<br>gauge | Yes                                   | RaingageID                  |
| Description     | User descriptive text               | No                                    | Description                 |

# Table 4.14 Edit fields in the RDII Hydrographs Identification group (mss\_Hydrograph)

## Tabular Data

Define hydrograph characteristics in the secondary table on the RDII Hydrographs editor. Use the Insert and Delete buttons to add or remove records from the table, respectively. The Up and Down buttons may be used to reorder the table entries.

| Inser               | t Delete | Г | Up    | Down  |    | 12/12 rov | vs, 0 selected | ł  |    |    |        |              |         |
|---------------------|----------|---|-------|-------|----|-----------|----------------|----|----|----|--------|--------------|---------|
| MssHydrographDTable |          |   |       |       |    |           |                |    |    |    |        |              |         |
|                     | MonthNo  |   | R1    | R2    | R3 | T1 [h]    | T2 [h]         | Т3 | К1 | К2 | K3 [h] | IA_Max1 [in] | IA_Rec1 |
| 1                   | JAN      | • | 0.03  | 0.15  | 0  | 0.5       | 3              | 0  | 15 | 15 | 0      | 0            |         |
| 2                   | FEB      | • | 0.03  | 0.15  | 0  | 0.5       | 3              | 0  | 15 | 15 | 0      | 0            |         |
| 3                   | MAR      | • | 0.03  | 0.15  | 0  | 0.5       | 3              | 0  | 15 | 15 | 0      | 0            |         |
| 4                   | APR      | • | 0.02  | 0.05  | 0  | 0.5       | 3              | 0  | 15 | 15 | 0      | 0            |         |
| 5                   | MAY      | • | 0.02  | 0.1   | 0  | 0.5       | 3              | 0  | 15 | 15 | 0      | 0            |         |
| 6                   | JUN      | • | 0.02  | 0.1   | 0  | 0.5       | 3              | 0  | 15 | 15 | 0      | 0            |         |
| 7                   | JUL      | • | 0.02  | 0.1   | 0  | 0.5       | 3              | 0  | 15 | 15 | 0      | 0            |         |
| 8                   | AUG      | • | 0.007 | 0.017 | 0  | 0.5       | 3              | 0  | 15 | 15 | 0      | 0            |         |
| 9                   | SEP      | • | 0.007 | 0.017 | 0  | 0.5       | 3              | 0  | 15 | 15 | 0      | 0            |         |
| 10                  | OCT      | • | 0.08  | 0.017 | 0  | 6         | 8              | 0  | 2  | 5  | 0      | 0            |         |
| 11                  | NOV      | • | 0.04  | 0.2   | 0  | 0.5       | 3              | 0  | 15 | 15 | 0      | 0            |         |
| ▶12                 | DEC      | • | 0.03  | 0.15  | 0  | 0.5       | 3              | 0  | 15 | 15 | 0      | 0            |         |
|                     |          |   |       |       |    |           |                |    |    |    |        |              |         |
| < >                 |          |   |       |       |    |           |                |    |    |    |        |              |         |

Figure 4.23 Define RDII hydrograph characteristics in the secondary table on the editor

| Edit field | Description                                                       | Used or<br>required by<br>simulations | Field name in datastructure |  |
|------------|-------------------------------------------------------------------|---------------------------------------|-----------------------------|--|
| MonthNo    | Individual Months or all months                                   | Yes                                   | MonthNo                     |  |
| R1         | The fraction of rainfall volume that enters the sewer system      | Yes                                   | R1                          |  |
| T1         | The time from the onset of rainfall to the peak of the UH in hour | Yes                                   | T1                          |  |
| K1         | The ratio of time to recession of the UH to the time to peak      | Yes                                   | K1                          |  |
| R2         | The fraction of rainfall volume that enters the sewer system      | Yes                                   | R2                          |  |
| T2         | The time from the onset of rainfall to the peak of the UH in hour | Yes                                   | T2                          |  |
| K2         | The ratio of time to recession of the UH to the time to peak      | Yes                                   | K2                          |  |
| R3         | The fraction of rainfall volume that enters the sewer system      | Yes                                   | R3                          |  |
| Т3         | The time from the onset of rainfall to the peak of the UH in hour | Yes                                   | Т3                          |  |
| K3         | The ratio of time to recession of the UH to the time to peak      | Yes                                   | K3                          |  |
| IA_Max1    | Short term maximum depth                                          | Yes                                   | IA_Max1                     |  |
| IA_Rec1    | Short term recovery rate                                          | Yes                                   | IA_Rec1                     |  |
| IA_Init1   | Short term initial depth                                          | Yes                                   | IA_Init1                    |  |
| IA_Max2    | Medium term maximum depth                                         | Yes                                   | IA_Max2                     |  |
| IA_Rec2    | Medium term recovery rate                                         | Yes                                   | IA_Rec2                     |  |
| IA_Init2   | Medium term initial depth                                         | Yes                                   | IA_Init2                    |  |
| IA_Max3    | Long term maximum depth                                           | Yes                                   | IA_Max3                     |  |
| IA_Rec3    | Long term recovery rate                                           | Yes                                   | IA_Rec3                     |  |
| IA_Init3   | Long term initial depth                                           | Yes                                   | IA_Init3                    |  |

#### Table 4.15 Edit fields in the hydrographs data table (mss\_Hydrograph)

## 4.4.2 RDII

After defining the RDII Hydrographs, connect them to a node of the conveyance system and the sewershed area that contributes to RDII flow.



This is done via the SWMM RDII editor which organizes the related data into following groups:

- Identification
- Contributing RDII area

| RD | II                    |            |            |               |        |            |        |             |                  | □ X |
|----|-----------------------|------------|------------|---------------|--------|------------|--------|-------------|------------------|-----|
|    | Ident                 | ification  |            |               |        |            |        |             | Insert           |     |
|    | ID 5711               |            |            |               |        |            | Delete |             |                  |     |
|    | Node ID GIS2003755    |            |            |               |        |            | Delete |             |                  |     |
|    | Hydrograph ID uhWI-02 |            |            |               |        |            |        |             |                  |     |
|    | Descr                 | ription    |            |               |        |            |        |             |                  |     |
|    | Contr                 | ributing l | RDII data  |               |        |            |        |             |                  |     |
|    | Sewe                  | ershed a   | rea        |               |        |            | 0      | .775 [ac]   |                  |     |
|    |                       |            |            |               |        |            |        |             |                  |     |
|    |                       |            |            |               |        |            |        |             |                  |     |
|    |                       |            | ID         | ~ ALL         | $\sim$ | Clear      | Sh     | ow selected | Show data errors |     |
|    |                       | ID         | Node ID    | Hydrograph ID | Sewe   | rshed area | a [ac] | Description |                  | ^   |
| ►  | 1                     | 6711       | GIS2003755 | uhWI-02       |        |            | 0.775  |             |                  |     |
|    | 2                     | 1          | CDM2378553 | uhWI-04       | 13.209 |            |        |             |                  |     |
|    | 3                     | 10         | GIS2075013 | Site2         | 3.7    |            |        |             |                  |     |
|    | 4                     | 100        | GIS2076177 | Site7         | 29.4   |            |        |             |                  |     |
| 1  | 1                     | 107        | GIS2076925 | Site 1        | 9.27   |            |        |             |                  |     |
| 1  | 12                    | 108        | GIS2076927 | Site 1        |        |            | 2.7    |             |                  |     |
| 1  | 13                    | 109        | GIS2076929 | Site 1        |        |            | 10.8   |             |                  | ~   |

Figure 4.24 The SWMM RDII editor

## Identification

The Identification groupbox holds information on the RDII setup ID, connectivity, and Description.

| ID         111         Delete           Node ID         GIS2076934            Hydrograph ID         Site 1 | Identification |            | Insert |
|------------------------------------------------------------------------------------------------------------|----------------|------------|--------|
| Node ID         GIS2076934            Hydrograph ID         Site 1                                         | ID             | 111        | Delete |
|                                                                                                            | Node ID        | GIS2076934 | Delete |
|                                                                                                            | Hydrograph ID  | Site1      |        |
| Description                                                                                                | Description    |            |        |





| Edit field       | Description                                             | Used or<br>required by<br>simulations | Field name in datastructure |
|------------------|---------------------------------------------------------|---------------------------------------|-----------------------------|
| ID               | RDII setup ID                                           | Yes                                   | MUID                        |
| Node ID          | ID of Node which receives<br>RDII                       | Yes                                   | NodelD                      |
| Hydrograph<br>ID | ID of Hydrograph defined in the RDII Hydrographs editor | Yes                                   | HydrographID                |
| Description      | User-defined descriptive text                           | No                                    | Description                 |

#### Table 4.16 Edit fields in the SWMM RDII editor Identification group (mss\_RDII)

### Contributing RDII Data

Define the size of the sewershed area contributing to RDII flows in the Contributing RDII Data groupbox.

| - Contributing RDII | data |           |
|---------------------|------|-----------|
| Sewershed area      |      | 6.93 [ac] |
|                     |      |           |

Figure 4.26 The RDII editor Contributing RDIIData group

| Table 4.17 | Edit fields in the Contributing RDII Data group (mss_RD | )II) |
|------------|---------------------------------------------------------|------|
|            |                                                         |      |

| Edit field     | Description                             | Used or<br>required by<br>simulations | Field name in datastructure |
|----------------|-----------------------------------------|---------------------------------------|-----------------------------|
| Sewershed area | Area that contributes to RDII<br>inflow | Yes                                   | SewerArea                   |

## 4.5 Snowpacks

The snowmelt routine is part of the runoff modelling process. It updates the state of the snowpacks associated with each catchment by accounting for snow accumulation, snow redistribution by areal depletion and removal operations, and snowmelt via heat budget accounting. Any snowmelt coming off the pack is treated as an additional rainfall input into the runoff process.

At each runoff timestep the following computations are made:



- 1. Air temperature and melt coefficients are updated according to the calendar date.
- 2. Any precipitation that falls as snow is added to the snowpack.
- 3. Any excess snow depth on the plowable area of the pack is redistributed according to the removal parameters established for the pack.
- 4. Areal coverages of snow on the impervious and pervious areas of the pack are reduced according to the Areal Depletion Curves defined for the study area.
- 5. The amount of snow in the pack that melts to liquid water is found using:
  - a heat budget equation for periods with rainfall, where melt rate increases with increasing air temperature, wind speed, and rainfall intensity
  - a degree-day equation for periods with no rainfall, where melt rate equals the product of a melt coefficient and the difference between the air temperature and the pack's base melt temperature.
- 6. If no melting occurs, the pack temperature is adjusted up or down based on the product of the difference between current and past air temperatures and an adjusted melt coefficient. If melting occurs, the temperature of the pack is increased by the equivalent heat content of the melted snow, up to the base melt temperature. Any remaining melt liquid beyond this is available to runoff from the pack.
- 7. The available snowmelt is then reduced by the amount of free water holding capacity remaining in the pack. The remaining melt is treated the same as a direct rainfall input onto the catchment.

The SWMM Snowpacks editor and the Climatology editor (Climatology (p. 91)) contains the above information required for characterizing the modelling of the snowfall and snowmelt processes. The Snowpacks editor organizes the data into following groups:

- Identification
- Snowpack Data

|--|

| Snowpa     | icks                          |             |               |                             |               |                  |          |                  |         |               | -             | x    |
|------------|-------------------------------|-------------|---------------|-----------------------------|---------------|------------------|----------|------------------|---------|---------------|---------------|------|
| IC         | tification<br>D<br>escription | Snowpack    |               |                             |               | Insert<br>Delete |          |                  |         |               |               |      |
| Snov       | vpack data                    |             |               |                             |               |                  |          |                  |         |               |               |      |
|            |                               | Cmin        | Cmax          |                             | Tbase         | FWF              |          | SD0              | FW0     | S             | NN            |      |
|            | Plowable                      | 0.002 [i    | in/F/h] 0.0   | 006 [in/F/h]                | 25 [deg F]    | 0.03             |          | 0 [in]           |         | 0 [in]        | 0.7           |      |
|            |                               | Cmin        | Cmax          |                             | Tbase         | FWF              |          | SD0              | FW0     | SE            | 0100          |      |
|            | Impervious                    | 0.002 [i    | in/F/h] 0.0   | 006 [in/F/h]                | 25 [deg F]    | 0.03             |          | 0 [in]           |         | 0 [in]        | 1 [in]        |      |
|            |                               | Cmin        | Cmax          |                             | Tbase         | FWF              |          | SD0              | FW0     | S             | 0100          |      |
| 1          | Pervious                      | 0.002 [i    | in/F/h] 0.0   | 006 [in/F/h]                | 25 [deg F]    | 0.03             |          | 0 [in]           |         | 0 [in]        | 1 [in]        |      |
|            |                               | SDplow      | Fout          |                             | Fimperv       | Fperv            |          | Fimelt           | Fsubcat | ch Sut        | ocatch        | _    |
|            | Plowing                       | 0.1 [i      | in]           | 0                           | 0.2           | 0.6              |          | 0.2              |         | 0             |               |      |
|            |                               |             |               |                             |               |                  |          |                  |         |               |               |      |
|            |                               | ID          | ~ ALL         | <ul> <li>✓ Clear</li> </ul> | Show selected | Show dat         | a errors | 1/1 rows, 0 sele | cted    |               |               |      |
|            | ID                            | Description | Cmin [in/F/h] | Cmax [in/F/h]               | Tbase [deg F] | FWF              | SD0 [in] | FWF [in]         | SNN     | Cmin [in/F/h] | Cmax [in/F/h] | ]    |
| <b>▶</b> 1 | Snowpack                      |             | 0.002         | 0.                          | 006           | 25 0.03          |          | 0                | 0.7     | 0.002         | 0             | .006 |
|            |                               |             |               |                             |               |                  |          |                  |         |               |               |      |
| <          |                               |             |               |                             |               |                  |          |                  |         |               |               | >    |
|            |                               |             |               |                             |               |                  |          |                  |         |               |               |      |



### Identification

The Identification groupbox holds parameter set ID and optional descriptive information. Use the Insert or Delete buttons to add or remove records from the editor, respectively

| Identification |          | Insert |
|----------------|----------|--------|
| ID             | Snowpack | Delete |
| Description    |          | Delete |
|                |          |        |



## Table 4.18 Edit fields in the Snowpacks editor Identification group (mss\_Snow-Pack)

| Edit field  | Description                                      | Used or required by simulations | Field name in datastructure |
|-------------|--------------------------------------------------|---------------------------------|-----------------------------|
| ID          | Snowpack parame-<br>ter set ID                   | Yes                             | MUID                        |
| Description | User-defined<br>description for<br>snowpack data | No                              | Description                 |



## **Snowpack Data**

Snowpack data characterize the buildup, removal, and melting of snow over Plowable, Impervious, and Pervious areas within a catchment. A set of snow removal parameters may also be defined for the Plowable area.

- **Plowable**. A user-defined fraction of the total impervious area representing such areas as streets and parking lots where plowing and snow removal can be done.
- **Impervious**. Covers the remaining impervious area of a catchment.
- **Pervious**. The entire pervious area of a catchment.
- **Plowing**. These parameters consist of the depth at which snow removal begins and the fractions of snow moved onto other areas.

| Snowpack data |                |                |            |       |        |           |          |
|---------------|----------------|----------------|------------|-------|--------|-----------|----------|
|               | Cmin           | Cmax           | Tbase      | FWF   | SD0    | FW0       | SNN      |
| Plowable      | 0.002 [in/F/h] | 0.006 [in/F/h] | 25 [deg F] | 0.03  | 0 [in] | 0 [in]    | 0.7      |
|               | Cmin           | Cmax           | Tbase      | FWF   | SD0    | FW0       | SD 100   |
| Impervious    | 0.002 [in/F/h] | 0.006 [in/F/h] | 25 [deg F] | 0.03  | 0 [in] | 0 [in]    | 1 [in]   |
|               | Cmin           | Cmax           | Tbase      | FWF   | SD0    | FW0       | SD 100   |
| Pervious      | 0.002 [in/F/h] | 0.006 [in/F/h] | 25 [deg F] | 0.03  | 0 [in] | 0 [in]    | 1 [in]   |
|               | SDplow         | Fout           | Fimperv    | Fperv | Fimelt | Fsubcatch | Subcatch |
| Plowing       | 0.1 [in]       | 0              | 0.2        | 0.6   | 0.2    | 0         |          |
|               |                |                |            |       |        |           |          |

Figure 4.29 Snowpack Data group

| Table 4.19 | Edit fields in the | Snowpack Data group | (mss_SnowPack) |
|------------|--------------------|---------------------|----------------|
|------------|--------------------|---------------------|----------------|

| Edit field | Description                                               | Used or required by simulations | Field name in datastructure |
|------------|-----------------------------------------------------------|---------------------------------|-----------------------------|
|            | Plow                                                      | able                            |                             |
| Cmin       | Minimum melt coef-<br>ficient                             | Yes                             | Cmin1                       |
| Cmax       | Maximum melt coef-<br>ficient                             | Yes                             | Cmax1                       |
| Tbase      | Snowmelt base temperature                                 | Yes                             | Tbase1                      |
| FWF        | Ratio of free water-<br>holding capacity of<br>snow depth | Yes                             | Fwf1                        |
| SD0        | Initial snow depth                                        | Yes                             | Sd01                        |
| FW0        | Initial free water in<br>snowpack                         | Yes                             | Fw01                        |



| Edit field | Description                                                                               | Used or required by simulations | Field name in datastructure |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|--|--|--|--|--|--|--|
| SNN        | Fraction of impervi-<br>ous area with<br>depression storage<br>that can be plowed         | Yes                             | Snn0                        |  |  |  |  |  |  |  |
| Impervious |                                                                                           |                                 |                             |  |  |  |  |  |  |  |
| Cmin       | Minimum melt coef-<br>ficient                                                             | Yes                             | Cmin1                       |  |  |  |  |  |  |  |
| Cmax       | Maximum melt coef-<br>ficient                                                             | Yes                             | Cmax1                       |  |  |  |  |  |  |  |
| Tbase      | Snowmelt base temperature                                                                 | Yes                             | Tbase1                      |  |  |  |  |  |  |  |
| FWF        | Ratio of free water-<br>holding capacity of<br>snow depth                                 | Yes                             | Fwf1                        |  |  |  |  |  |  |  |
| SD0        | Initial snow depth                                                                        | Yes                             | Sd01                        |  |  |  |  |  |  |  |
| FW0        | Initial free water in<br>snowpack                                                         | Yes                             | Fw01                        |  |  |  |  |  |  |  |
| SD100      | Snow depth above<br>which there is 100%<br>cover                                          | Yes                             | SD1002                      |  |  |  |  |  |  |  |
|            | Perv                                                                                      | ious                            |                             |  |  |  |  |  |  |  |
| Cmin       | Minimum melt coef-<br>ficient                                                             | Yes                             | Cmin1                       |  |  |  |  |  |  |  |
| Cmax       | Maximum melt coef-<br>ficient                                                             | Yes                             | Cmax1                       |  |  |  |  |  |  |  |
| Tbase      | Snowmelt base temperature                                                                 | Yes                             | Tbase1                      |  |  |  |  |  |  |  |
| FWF        | Ratio of free water-<br>holding capacity of<br>snow depth                                 | Yes                             | Fwf1                        |  |  |  |  |  |  |  |
| SD0        | Initial snow depth                                                                        | Yes                             | Sd01                        |  |  |  |  |  |  |  |
| FW0        | Initial free water in<br>snowpack                                                         | Yes                             | Fw01                        |  |  |  |  |  |  |  |
| SD100      | Snow depth above<br>which there is 100%<br>cover                                          | Yes                             | SD1003                      |  |  |  |  |  |  |  |
|            | Plov                                                                                      | ving                            |                             |  |  |  |  |  |  |  |
| SDplow     | Depth of snow on<br>plowable area at<br>which redistribution<br>through plowing<br>occurs | Yes                             | SDplow                      |  |  |  |  |  |  |  |

## Table 4.19 Edit fields in the Snowpack Data group (mss\_SnowPack)



| Edit field | Description                                                                                            | Used or required by simulations | Field name in datastructure |
|------------|--------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Fout       | Fraction of excess<br>snow on plowable<br>area transferred out<br>of watershed                         | Yes                             | Fout                        |
| Fimperv    | Fraction of excess<br>snow on plowable<br>area transferred to<br>impervious area by<br>plowing         | Yes                             | Fimperv                     |
| Fperv      | Fraction of excess<br>snow on plowable<br>area transferred to<br>pervious area by<br>plowing           | Yes                             | Fperv                       |
| Fimelt     | Fraction of excess<br>snow on plowable<br>area converted into<br>immediate melt                        | Yes                             | Fimelt                      |
| Fsubcatch  | Fraction of excess<br>snow on plowable<br>area transferred to<br>pervious area in<br>another catchment | Yes                             | Fsubcatch                   |
| Subcatch   | ID of catchment<br>receiving the Fsub-<br>catch fraction of<br>transferred snow                        | Yes                             | SubcatchID                  |

#### Table 4.19 Edit fields in the Snowpack Data group (mss\_SnowPack)

- **Cmin**. Minimum melt coefficient.
- Cmax. Maximum melt coefficient.

The minimum and maximum snowmelt coefficients are used to estimate a melt coefficient that varies by day of the year. The latter is used in the following degree-day equation to compute the melt rate for any particular day. Melt Rate = (Melt Coefficient) \* (Air Temperature - Base Temperature).

- **Tbase**. Snowmelt base temperature. Temperature at which snow begins to melt.
- FWF. Ratio of free water-holding capacity of snow depth. Fraction of snowpack depth which must fill with melted snow before liquid runoff from the pack begins.
- **SD0**. Initial snow depth. Depth of snow at the start of the simulation.



- **FW0**. Initial free water on the snowpack. Depth of melted water held within the pack at the start of the simulation. This number should be at or below the product of SD0 and FWF.
- **SD100**. Snow depth above which there is 100% cover. The depth of snow beyond which the entire area remains completely covered and is not subject to any areal depletion effect.
- **SNN**. Fraction of impervious area that is plowable.
- **SDplow**. Depth of snow on plowable area at which redistribution through plowing occurs. Depth which must be reached before any snow removal begins.
- Fout. Fraction of excess snow on plowable area transferred out of watershed. The fraction of snow depth that is removed from the system and does not become runoff.
- Fimperv. Fraction of excess snow on plowable area transferred to impervious area by plowing. The fraction of snow depth that is added to snow accumulation on the pack's impervious area.
- **Fperv**. Fraction of excess snow on plowable area transferred to pervious area by plowing. The fraction of snow depth that is added to snow accumulation on the pack's pervious area.
- **Fimelt**. Fraction of excess snow on plowable area converted into immediate melt. The fraction of snow depth that becomes liquid water which runs onto any subcatchment associated with the snowpack.
- **Fsubcatch**. Fraction of excess snow on plowable area transferred to pervious area in another catchment. The fraction of snow depth which is added to the snow accumulation on some other subcatchment. Define the subcatchment under 'Subcatch'.

Catchments are assigned snowpack parameters through their Snowpack ID property in the SWMM Hydrology & Hydraulic Properties tab page of the Catchments editor.

## 4.6 LID

Low Impact Development (LID) represents an approach to land development (or redevelopment) that works with nature to manage stormwater as close to its source as possible. It is also known as Water-Sensitive Urban Design (WSUD). LID employs principles such as preserving and recreating natural landscape features, minimizing effective imperviousness to create functional and appealing site drainage that treat stormwater as a resource rather than a waste product.

The ability to assess the benefit of LID practices installed in urban catchments is required by water utilities and other stakeholders responsible for the urban drainage. An essential part of this requirement is the ability to model



the various LID practices in order to evaluate the effect of installing LID practices as parts of a stormwater drainage system.

MIKE+ offers 2 ways of modelling LID structures:

- Modelling of LIDs at screening level catchment-based approach
- Detailed hydraulic modelling of individual LID structures drainage network based approach

Only the catchment-based method is available for SWMM models, and is described in this chapter. These methods are based on research published by US EPA adapted to the MIKE+ modelling concept of urban hydrology.

A user-defined number of LID controls can be deployed and assessed for each individual catchment. This catchment-based approach is used to size the required infiltration or rainwater harvest by subtraction of flow from the calculated runoff within each catchment.

LIDs are low impact development structures designed to capture or reduce surface runoff from the collecting area by means of a combination of detention, infiltration and evapotranspiration. LID controls are conceptual objects that are not displayed on the map visualization of the urban catchment model. Once deployed, they are considered as properties of a given catchment. MIKE+ can model the following types of LIDs:

- Bioretention Cell
- Infiltration Trench
- Porous Pavement
- Rain Barrel
- Vegetative Swale
- Rain Garden
- Green Roof
- Rooftop Disconnection

Bioretention cells, infiltration trenches, and porous pavement systems can have optional underdrain systems in their gravel storage beds to convey storage runoff off the site rather than infiltrate it all. They can also have an impermeable liner that prevents infiltration into the native soil. Infiltration trenches and porous pavement systems can also be subject to a decrease in hydraulic conductivity over time due to clogging.

#### 4.6.1 Bioretention Cell

Bioretention Cells are terrain depressions that comprise of selected types of vegetation, resistant to the extended periods of high moisture and extreme levels of nutrient concentrations (Nitrogen and Phosphorus) found in storm-

water runoff, grown in an engineered soil mixture above a gravel drainage bed. They provide storage, infiltration and evaporation of both direct rainfall and runoff captured from the collecting area surrounding the cell. Rain gardens, street planters, and green roofs are all different types of bioretention cells.

The different structural layers of this feature are:

- Surface
- Soil
- Storage
- Drain (optional)



Figure 4.30 Bioretention cell structure layers

These are illustrated in Figure 4.30. There are one or several relevant hydrological processes associated with each layer.

In the surface occur surface storage, surface infiltration, the collecting area run-on, surface evaporation and overflow.

In the soil layer occur percolation (vertical water movement to the storage layer), evapotranspiration (loss due to the plant root action) and storage in the soil's voids.

In the storage layer, stormwater provided by the percolation through the soil layer is detained in the storage layer's voids. Infiltration (leakage) to the native soil through the storage bottom, controlled by the characteristics of the surrounding soil, restores the storage capacity.

An optional underdrain may be included to empty the storage. The underdrain is activated (with the specified capacity) when the water level in the storage reaches the offset level.

## 4.6.2 Infiltration Trench

Infiltration Trenches are storage cells filled with gravel that capture runoff from upstream impervious areas. They provide storage capacity and the possibility for captured runoff to infiltrate the soil underneath.

Figure 4.31 illustrates an infiltration trench structure showing the following components:

- Surface
- Storage
- Drain (optional)

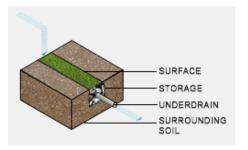



Figure 4.31 Infiltration trench structure layers

The processes simulated for the infiltration trench are similar as for bioretention cells, except for the missing soil layer; stormwater from the surface enters the storage directly, i.e. without detention in the soil layer.

#### 4.6.3 Porous Pavement

Porous Pavement systems are excavated areas filled with gravel and paved over with a porous concrete or asphalt mix. Porous pavements are implemented in places where the surface has to provide a firm support for vehicle traffic, such as streets and parking lots.

Normally, all rainfall will immediately pass through the pavement into the gravel storage layer below where it can infiltrate at natural rates into the native soil.

Figure 4.32 shows a porous pavement structure, which has the following components:

- Surface
- Pavement material
- Soil (optional)



- Storage
- Drain (optional)




Figure 4.32 Porous Pavement structure layers

Essentially, the hydraulic functionality of porous pavements is similar to that of the bioretention cells, except that the soil layer (and vegetation) is replaced by some porous asphalt or concrete.

Some types of porous pavements may be subject to clogging by fine sediment particles, which reduces their infiltration capacity.

#### 4.6.4 Rain Barrel

Rain Barrels are containers that collect roof runoff during storm events and can either release or re-use the rainwater during dry periods.

A rain barrel includes:

- Storage
- Drain

The processes simulated include water detention in the storage, overflow and drainage (i.e. storage recovery). The action of the underdrain is timed; the time offset between the end of rain and the drain activation can be specified. This feature allows for the simulation of rainwater reuse for garden watering, which normally takes place several hours or days after the rain has stopped.

A conceptual sketch of a rain barrel is presented in Figure 4.33.



Figure 4.33 Rain Barrel

Surface

## 4.6.5 Vegetative Swale

Vegetative Swales are waterways or depressed areas with sloping sides covered with grass and other vegetation. They slow down the conveyance of collected runoff and allow it more time to infiltrate to soil beneath it.

Vegetative swales are characterized by a surface and surrounding soil layer:

SURFACE



## 4.6.6 Rain Garden

A Rain Garden is a simplified form of bioretention cell, which takes advantage of rainfall and stormwater runoff in its design, simultaneously contributing to the reduction of runoff volume and pollutants released from the site. Typically, it is designed as a small garden with selected types of vegetation resistant to the extended periods of high moisture and extreme levels of nutrient concentrations (Nitrogen and Phosphorus) found in stormwater runoff.

The different layers comprising rain gardens are presented in Figure 4.35. These include:

- Surface
- Soil



Surface storage, surface infiltration, the collecting area run-on, surface evaporation, and overflow occur on the surface.

In the soil layer occur storage in the soil's voids, evapotranspiration (loss due to the plant root action) and infiltration (leakage) to the native surrounding soil through the bottom. The infiltration is controlled by the characteristics of the surrounding soil.




Figure 4.35 Rain Garden process layers

### 4.6.7 Green Roof

Green Roofs are structural components that reduce the negative effects of urbanization on water quality and rainfall runoff by absorbing or detaining, and filtering runoff. They are built of a planted lightweight soil media and a drainage layer, and have the following components:

- Surface
- Soil
- Drainage Mat

Green Roofs may be designed with intensive or extensive vegetation cover. Intensive green roofs are heavy, with soil media layers larger than 15 cm. Extensive green roofs may include a soil layer as thin as 3 cm, affecting the choice of vegetative cover.

Green roofs are equipped with a drainage layer called a drainage mat placed beneath the soil media. The purpose of the drainage mat is to conduct the surplus water percolated through the soil layer from the roof to the drainage system.

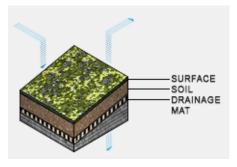



Figure 4.36 Green roof process layers

## 4.6.8 Rooftop Disconnection

Rooftop Disconnection involves the discharge from downspouts to pervious areas instead of directly into storm drains. It can also be used to model roofs directly connected to drains but that overflow onto pervious areas.

This LID solution has the following components:

- Surface
- Roof Drain

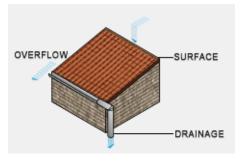



Figure 4.37 Rooftop Disconnection components

## 4.6.9 LID Properties Editor

The MIKE+ LID Properties editor organizes the data input for the different layers and functional elements of LID structures. The input data is organized into the following group and tabs:

- Identification. This group holds information on unique LID IDs. Each LID is generic and is specified per unit area. As such, it can be replicated and placed in any sub-catchment of the study area (i.e. deployed) with different actual sizes and in any number of instances.
- General. Tab page where LID type is defined.



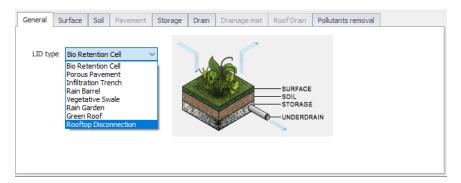
**LID components tabs.** Surface, Soil, Pavement, Storage, Drain, Drainage Mat, Roof Drain, and Pollutants Removal tabs. The properties of layers and functional elements constituting a LID type are entered in these tab pages.



Only the relevant data fields and tabs for a LID type are activated and available for data input.

And note that some components/functionalities are optional for some LID types.

### Identification


The identification group box displays element ID information. Use the Insert or Delete buttons to add or remove records from the editor, respectively.

| Identification       |        |  |  |  |  |
|----------------------|--------|--|--|--|--|
| ID 2_Porous_pavement | Insert |  |  |  |  |
|                      | Delete |  |  |  |  |

Figure 4.38 LID Properties Identification group

#### General

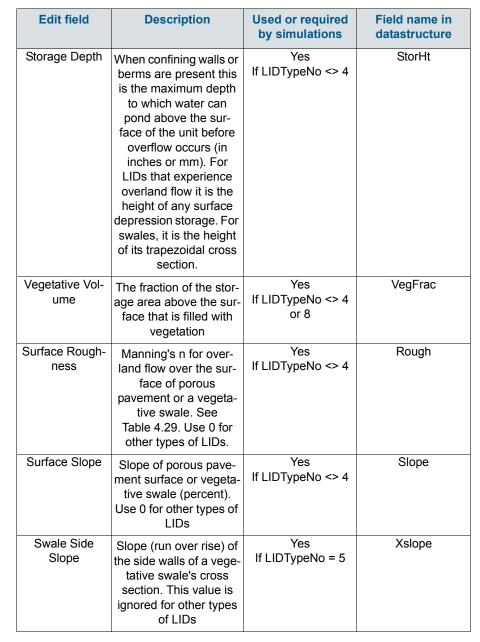
Define LID type on the General tab page of the LID Properties editor.





| Edit field | Description                                                                                                                                                                                          | Used or required by simulations | Field name in data structure |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|
| ID         | ID of the LID ele-<br>ment                                                                                                                                                                           | Yes                             | MUID                         |
| LID Type   | Type of LID<br>1: Bio Retention<br>Cell<br>2: Porous Pavement<br>3: Infiltration Trench<br>4: Rain Barrel<br>5: Vegetative Swale<br>6: Rain Garden<br>7: Green Roof<br>8: Rooftop Discon-<br>nection | Yes                             | LIDTypeNo                    |

# Table 4.20 Edit fields in the LID Properties Identification group and General tab page (mss\_LIDControl)


## Surface

A Surface component is used for the following LID structures:

- Bioretention Cell (LIDTypeNo = 1)
- Porous Pavement (LIDTypeNo = 2)
- Infiltration Trench (LIDTypeNo = 3)
- Vegetative Swale (LIDTypeNo = 5)
- Rain Garden (LIDTypeNo = 6)
- Green Roof (LIDTypeNo = 7)
- Rooftop Disconnection (LIDTypeNo = 8)

| General | Surface     | Soil | Pavement | Storage  | Drain    | Drainage mat    | RoofDrain | Pollutants removal |  |
|---------|-------------|------|----------|----------|----------|-----------------|-----------|--------------------|--|
|         |             |      |          |          |          |                 |           | -                  |  |
| Storage |             |      |          | 200 [ìn] | Sv       | vale side slope |           | 5 [0]              |  |
| Vegeta  | tive cover  |      |          | 0.1      |          |                 |           |                    |  |
| Surface | e roughness |      |          | 10 [s/   | m^(1/3)] |                 |           |                    |  |
| Surface | e slope     |      |          | 1 [%     | ]        |                 |           |                    |  |
|         |             |      |          |          |          |                 |           |                    |  |
|         |             |      |          |          |          |                 |           |                    |  |
|         |             |      |          |          |          |                 |           |                    |  |
|         |             |      |          |          |          |                 |           |                    |  |
|         |             |      |          |          |          |                 |           |                    |  |





#### Table 4.21 Edit fields in the LID Properties Surface tab page (mss\_LIDControl)

#### Soil

A Soil component is used for the following LID structures:

- Bioretention Cell (LIDTypeNo = 1)
- Rain Garden (LIDTypeNo = 6)
- Green Roof (LIDTypeNo = 7)
- Porous Pavement (LIDTypeNo = 2) (optional)

| General | Surface | Soil | Pavement | Storage  | Drain   | Drainage mat | RoofDrain | Pollutants removal |
|---------|---------|------|----------|----------|---------|--------------|-----------|--------------------|
| Thickn  | iess    |      |          | 450 [in] | Conduc  | tivity       |           | 10 [in/h]          |
| Porosi  | ty      |      |          | 0.35     | Conduc  | tivity slope |           | 10                 |
| Field o | apacity |      |          | 0.2      | Suction | head         |           | 10 [in]            |
| Wilting | g point |      |          | 0.1      |         |              |           |                    |
|         |         |      |          |          |         |              |           |                    |
|         |         |      |          |          |         |              |           |                    |
|         |         |      |          |          |         |              |           |                    |
|         |         |      |          |          |         |              |           |                    |



| Edit field | Description                                                                                                                                                                                                                                                                                                                      | Used or required by simulations     | Field name in datastructure |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|
| Thickness  | The thickness of the<br>soil layer (inches or<br>mm). Typical val-<br>ues range from 18<br>to 36 inches (450 to<br>900 mm) for rain<br>gardens, street<br>planters and other<br>types of land-based<br>bio-retention units,<br>but only 3 to 6<br>inches (75 to 150<br>mm) for green roofs.<br>Set Thickness = 0<br>when unused. | Yes<br>If LIDTypeNo = 1, 6,<br>7, 2 | SThick                      |
| Porosity   | The volume of pore<br>space relative to<br>total volume of soil<br>(as a fraction).                                                                                                                                                                                                                                              | Yes<br>If LIDTypeNo = 1, 6,<br>7, 2 | Por                         |

#### Table 4.22 Edit fields in the LID Properties Soil tab page (mss\_LIDControl)

|                    | _                                                                                                                                                                                                                               |                                     |                                |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|
| Edit field         | Description                                                                                                                                                                                                                     | Used or required<br>by simulations  | Field name in<br>datastructure |
| Field Capacity     | Volume of pore<br>water relative to<br>total volume after<br>the soil has been<br>allowed to drain fully<br>(as a fraction).<br>Below this level,<br>vertical drainage of<br>water through the<br>soil layer does not<br>occur. | Yes<br>If LIDTypeNo = 1, 6,<br>7, 2 | FC                             |
| Wilting Point      | Volume of pore<br>water relative to<br>total volume for a<br>well dried soil where<br>only bound water<br>remains (as a frac-<br>tion). The moisture<br>content of the soil<br>cannot fall below<br>this limit.                 | Yes<br>If LIDTypeNo = 1, 6,<br>7, 2 | WP                             |
| Conductivity       | Hydraulic conductiv-<br>ity for the fully satu-<br>rated soil. This is<br>equivalent to leak-<br>age capacity                                                                                                                   | Yes<br>If LIDTypeNo = 1, 6,<br>7, 2 | Ksat                           |
| Conductivity Slope | Slope of the curve<br>of log (conductivity)<br>versus soil mois-<br>ture content (dimen-<br>sionless). Typical<br>values range from 5<br>for sands to 15 for<br>silty clay                                                      | Yes<br>If LIDTypeNo = 1, 6,<br>7, 2 | Kcoeff                         |
| Suction Head       | The average value<br>of soil capillary suc-<br>tion along the wet-<br>ting front. This is the<br>same parameter as<br>used in the Green-<br>Ampt infiltration<br>model                                                          | Yes<br>If LIDTypeNo = 1, 6,<br>7, 2 | Suct                           |

#### Table 4.22 Edit fields in the LID Properties Soil tab page (mss\_LIDControl)



Set Soil Thickness to 0 if it is unused for a LID.



## Pavement

A pavement component is used for Porous Pavements (LIDTypeNo = 2).

| General | Surface      | Soil | Pavement | Storage | Drain   | Drainage mat        | Roof Drain | Pollutants remova | 1   |
|---------|--------------|------|----------|---------|---------|---------------------|------------|-------------------|-----|
|         |              | _    |          |         |         |                     |            |                   |     |
| Thickne | SS           |      |          | 100     | [in] Cl | ogging factor       |            | 0                 |     |
| Void ra | tio          |      |          | 0.15    | Re      | egeneration interv  | al         | 1 [               | [d] |
| Imperv  | ious surface | • 🗌  |          | 0       | [0] Re  | egeneration fractio | n          | 0.5 [             | 01  |
| Permea  | bility       |      |          | 500     | [in/h]  |                     |            |                   |     |
|         |              |      |          |         |         |                     |            |                   |     |
|         |              |      |          |         |         |                     |            |                   |     |
|         |              |      |          |         |         |                     |            |                   |     |
|         |              |      |          |         |         |                     |            |                   |     |
|         |              |      |          |         |         |                     |            |                   |     |

Figure 4.42 The LID Properties editor Pavement tab page

| Table 4.23 | Edit fields in the LID Properties Pavement tab page (mss_LIDControl)    |
|------------|-------------------------------------------------------------------------|
|            | Luit lields in the Lib i roperties i avenient tab page (mss Libeontion) |

| Edit field         | Description                                                                                                                                                                                                                                                                     | Used or required by simulations | Field name in data-<br>structure |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|
| Thickness          | The thickness of the<br>pavement layer<br>(inches or mm).<br>Typical values are 4<br>to 6 inches (100 to<br>150 mm)                                                                                                                                                             | Yes<br>If LIDTypeNo = 2         | PThick                           |
| Void Ratio         | The ratio<br>(expressed as a<br>fraction) of the vol-<br>ume of the pores or<br>interstices of a<br>material to the total<br>volume of the pave-<br>ment. Typical values<br>range from 0.11 to<br>0.17 for pavements<br>Note that<br>porosity = void<br>ratio/(1 + void ratio). | Yes<br>If LIDTypeNo =2          | PVratio                          |
| Impervious Surface | Ratio of impervious<br>paver material to<br>total area for modu-<br>lar systems; 0 for<br>continuous porous<br>pavement systems                                                                                                                                                 | Yes<br>If LIDTypeNo = 2         | FracImp                          |

| Edit field      | Description                                                                                                                                                                                                                                                                                                                                                                                                      | Used or required by simulations | Field name in data-<br>structure |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|
| Permeability    | Permeability of con-<br>crete or asphalt<br>used in continuous<br>systems or hydrau-<br>lic conductivity of<br>the fill material<br>(gravel or sand)<br>used in modular<br>systems. Permea-<br>bility of new porous<br>concrete or asphalt<br>is high (>2450<br>mm/h), but over<br>time the fine parti-<br>cles in the runoff<br>tend to clog the<br>pavement, reducing<br>the permeability of<br>the structure. | Yes<br>If LIDTypeNo = 2         | Perm                             |
| Clogging Factor | Number of pave-<br>ment layer void vol-<br>umes of runoff<br>treated it takes to<br>completely clog the<br>pavement. Use a<br>value of 0 to ignore<br>clogging. Clogging<br>progressively<br>reduces the pave-<br>ment's permeability<br>in direct proportion<br>to the cumulative<br>volume of runoff<br>treated.<br>Max. value = 1.                                                                            | Yes<br>If LIDTypeNo = 2         | PVclog                           |

#### Table 4.23 Edit fields in the LID Properties Pavement tab page (mss\_LIDControl)



| Edit field                 | Description                                                                                                                                                                                                                                                                                                                                                                                                            | Used or required by simulations | Field name in data-<br>structure |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|
| Regeneration Inter-<br>val | The number of days<br>that the pavement<br>layer is allowed to<br>clog before its per-<br>meability is<br>restored. A value of<br>0 indicates that no<br>permeability regen-<br>eration occurs.                                                                                                                                                                                                                        | Yes                             | PRegInterval                     |
| Regeneration Frac-<br>tion | The fractional<br>degree to which the<br>pavement's perme-<br>ability is restored<br>when a regenera-<br>tion interval is<br>reached. A value of<br>0 means no restora-<br>tion while a value of<br>1 indicates com-<br>plete restoration to<br>the original permea-<br>bility value. Once a<br>regeneration occurs<br>the pavement<br>begins to clog once<br>again at a rate<br>determined by the<br>Clogging Factor. | Yes                             | PRegFraction                     |

#### Table 4.23 Edit fields in the LID Properties Pavement tab page (mss\_LIDControl)

### Storage

A Storage component is used for the following LID structures:

- Bioretention Cell (LIDTypeNo = 1)
- Porous Pavement (LIDTypeNo = 2)
- Infiltration Trench (LIDTypeNo = 3)
- Rain Barrel (LIDTypeNo = 4)

| • • |  |
|-----|--|
|     |  |

| General | Surface      | Soil | Pavement | Storage | Drain  | Drainage mat | Roof Drain | Pollutants removal |  |
|---------|--------------|------|----------|---------|--------|--------------|------------|--------------------|--|
|         |              |      |          |         |        |              |            |                    |  |
| He      | ight         |      |          | 500     | [in]   |              |            |                    |  |
| Voi     | id ratio     |      |          | 0.4     |        |              |            |                    |  |
| Co      | nductivity   |      |          | 12      | [in/h] |              |            |                    |  |
| Clo     | ogging facto | r 🗌  |          | 0       |        |              |            |                    |  |
|         |              |      |          |         |        |              |            |                    |  |
|         |              |      |          |         |        |              |            |                    |  |
|         |              |      |          |         |        |              |            |                    |  |
|         |              |      |          |         |        |              |            |                    |  |

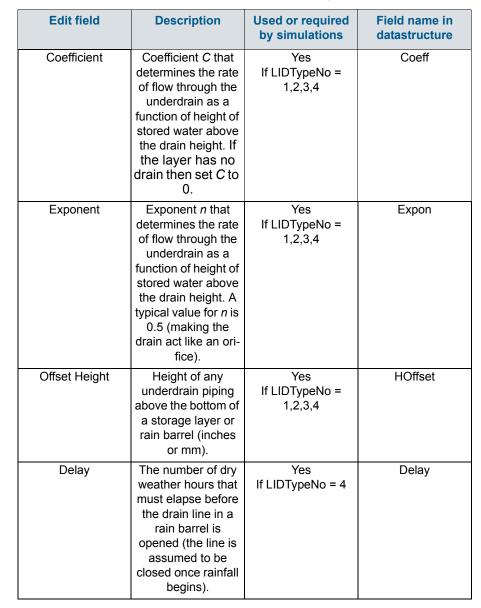


| Edit field | Description                                                                                                                                                                                                                                                                                              | Used or required by simulations  | Field name in datastructure |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|
| Height     | This is the height of<br>a rain barrel or<br>thickness of a<br>gravel layer (inches<br>or mm). Crushed<br>stone and gravel<br>layers are typically 6<br>to 18 inches (150 to<br>450 mm) thick while<br>single family home<br>rain barrels range in<br>height from 24 to 36<br>inches (600 to 900<br>mm). | Yes<br>If LIDTypeNo =<br>1,2,3,4 | Height                      |
| Void Ratio | The volume of void<br>space relative to the<br>volume of solids in<br>the layer. Typical<br>values range from<br>0.5 to 0.75 for<br>gravel beds. Note<br>that porosity = void<br>ratio / (1 + void<br>ratio).                                                                                            | Yes<br>If LIDTypeNo =<br>1,2,3   | SVratio                     |

#### Table 4.24 Edit fields in the LID Properties Storage tab page (mss\_LIDControl)

| Edit field      | Description                                                                                                                                  | Used or required by simulations  | Field name in datastructure |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|
| Conductivity    | The maximum rate<br>at which water can<br>flow out the bottom<br>of the layer after it is<br>first constructed<br>(in/hr or mm/hr).          | Yes<br>If LIDTypeNo = 1, 2,<br>3 | Filt                        |
| Clogging Factor | Total volume of<br>treated runoff it<br>takes to completely<br>clog the bottom of<br>the layer divided by<br>the void volume of<br>the layer | Yes<br>If LIDTypeNo =<br>1,2,3   | SVclog                      |

#### Table 4.24 Edit fields in the LID Properties Storage tab page (mss\_LIDControl)


#### Drain

A Drain component is used for the following LID structures:

- Bioretention Cell (LIDTypeNo = 1) (optional)
- Porous Pavement (LIDTypeNo = 2) (optional)
- Infiltration Trench (LIDTypeNo = 3) (optional)
- Rain Barrel (LIDTypeNo = 4)

| General   | Surface | Soil | Pavement | Storage    | Drain | Drainage mat | RoofDrain | Pollutants removal |  |
|-----------|---------|------|----------|------------|-------|--------------|-----------|--------------------|--|
|           |         |      |          |            |       |              |           |                    |  |
| Coefficie | ent     |      |          | 120 [in/h] | Ope   | n level      |           | 0 [in]             |  |
| Exponer   | nt      |      |          | 1          | Clos  | ed level     |           | 0 [in]             |  |
| Offset h  | eight   |      |          | 0 [in]     | Con   | trol curve   |           |                    |  |
| Delay     |         |      |          | 0 [h]      |       |              |           |                    |  |
|           |         |      |          |            |       |              |           |                    |  |
|           |         |      |          |            |       |              |           |                    |  |
|           |         |      |          |            |       |              |           |                    |  |
|           |         |      |          |            |       |              |           |                    |  |

Figure 4.44 The LID Properties editor Drain tab page



#### Table 4.25 Edit fields in the LID Properties Drain tab page (mss\_LIDControl)

| Edit field    | Description                                                                                                                                                                                | Used or required by simulations | Field name in datastructure |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Open Level    | The height in the<br>drain's storage<br>Layer that causes<br>the drain to auto-<br>matically open when<br>the water level rises<br>above it. Default is 0<br>which indicates dis-<br>abled | No                              | OpenLev                     |
| Closed Level  | The height in the<br>drain's storage level<br>that causes the<br>drain to automati-<br>cally close when the<br>water level falls<br>below it. Default is 0                                 | No                              | ClosedLev                   |
| Control Curve | The name of an<br>optional control<br>curve that adjust the<br>computed drain flow<br>as function of the<br>head of water above<br>the drain. Leave<br>blank if not applica-<br>ble        | No                              | ControlCurveID              |

#### Table 4.25 Edit fields in the LID Properties Drain tab page (mss\_LIDControl)

The drain coefficient *C* and exponent *n* determines the rate of flow through a drain as a function of the height of stored water above the drain's offset.



I

Set the coefficient to 0 when a drain is not used.

The following equation is used to compute this flow rate per unit area of the LID unit:

 $q = Ch^n$ 

(4.1)

where q is outflow (in/hr or mm/hr) and h is the height of saturated media above the drain (inches or mm).

Note that the units of *C* depend on the unit system being used as well as the value assigned to *n*.

#### **Drainage Mat**

A Drainage Mat component is used for Green Roofs (LIDTypeNo = 7).

| General | Surface    | Soil    | Pavement | Storage | Drain     | Drainage mat | Roof Drain | Pollutants removal |  |
|---------|------------|---------|----------|---------|-----------|--------------|------------|--------------------|--|
| Thick   | ness       |         |          | (       | ).003 [in | 1            |            |                    |  |
| Void    | fraction   |         |          |         | 0.5 [()   | ]            |            |                    |  |
| Roug    | hness (Mar | ning n) |          |         | 0.1 [s    | /m^(1/3)]    |            |                    |  |
|         |            |         |          |         |           |              |            |                    |  |
|         |            |         |          |         |           |              |            |                    |  |
|         |            |         |          |         |           |              |            |                    |  |
|         |            |         |          |         |           |              |            |                    |  |

#### Figure 4.45 The LID Properties editor Drainage Mat tab page

# Table 4.26 Edit fields in the LID Properties Drainage Mat tab page (mss\_LIDControl)

| Edit field    | Description                                                                                                                                                                                                                                                                                                      | Used or required by simulations | Field name in datastructure |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Thickness     | The thickness of the<br>mat or plate. It typi-<br>cally ranges<br>between 25 to 50<br>mm                                                                                                                                                                                                                         | Yes<br>If LIDTypeNo = 7         | DMThick                     |
| Void Fraction | The ratio of void vol-<br>ume to total volume<br>in the mat. It typi-<br>cally ranges from<br>0.5 to 0.6                                                                                                                                                                                                         | Yes<br>If LIDTypeNo = 7         | DMVFractiony                |
| Roughness     | Manning's <i>n</i> used to<br>compute the hori-<br>zontal flow rate of<br>drained water<br>through the mat. In<br>absence of standard<br>product specifica-<br>tions provided by<br>manufacturers, the<br>roughness must be<br>estimated.<br>One may use <i>n</i> val-<br>ues from 0.1 to 0.4<br>(M = 2.5 - 10). | Yes<br>If LIDTypeNo = 7         | DMRough                     |



#### **Roof Drain**

Define Rooftop Disconnection (LIDTypeNo = 8) flow capacity on the Roof Drain tab page of the editor.

| General                                                                                                                                                  | Surface  | Soil | Pavement | Storage | Drain | Drainage mat | Roof Drain | Pollutants removal |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|----------|---------|-------|--------------|------------|--------------------|--|
| Flow                                                                                                                                                     | capacity |      |          | 3 [in   | /h]   |              |            |                    |  |
| Enter the maximum flow rate that the roof's drain system<br>(gutters, downspouts and leaders) can handle before<br>overflowing. Use 0 if not applicable. |          |      |          |         |       |              |            |                    |  |
|                                                                                                                                                          |          |      |          |         |       |              |            |                    |  |
|                                                                                                                                                          |          |      |          |         |       |              |            |                    |  |
|                                                                                                                                                          |          |      |          |         |       |              |            |                    |  |

Figure 4.46 The LID Properties Roof Drain tab page

| Edit field  | Description                    | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------|--------------------------------|---------------------------------------|-----------------------------|
| Flow Capac- | Maximum flowrate the roof gut- | Yes                                   | RDFlowCap                   |
| ity         | ters and downspouts can han-   | If LIDTypeNo =                        |                             |
|             | dle (in inches/hour or         | 8                                     |                             |
|             | mm/hour) before overflowing.   |                                       |                             |

Table 4.27 Edit fields in the Roof Drain tab page (mss\_LIDControl)

#### **Pollutants Removal**

The Pollutants Removal page of the LID Properties editor allows one to specify the degree to which pollutants are removed by a LID unit as seen by the flow leaving through its underdrain system. Hence, it only applies to LIDs with underdrain:

- Bioretention Cell (LIDTypeNo = 1)
- Porous Pavement (LIDTypeNo = 2)
- Infiltration Trench (LIDTypeNo = 3)
- Rain Barrel (LIDTypeNo = 4)





Figure 4.47 The Pollutants Removal tab page

# Table 4.28 Edit fields in the Pollutants Removal tab page secondary table (mss\_LIDControl)

| Edit field   | Description                                          | Used or<br>required by<br>simulations | Field name in datastructure |
|--------------|------------------------------------------------------|---------------------------------------|-----------------------------|
| Pollutant ID | Pollutant treated by the LID (see Pollutants editor) | Yes<br>If LIDTypeNo =<br>1,2,3,4      | PollutantID                 |
| Removal [%]  | Percent of pollutant removed<br>by the LID           | Yes<br>If LIDTypeNo =<br>1,2,3,4      | Removal                     |

The page has a secondary table where entries are made for pollutant ID and the percent removal treated by the LID unit. The default status is blank interpreted as percent removal being 0.

The removals specified are applied to the LIDs underdrain when it sends flow onto either a subcatchment or into a conveyance system node. They do not apply to any surface flow that leaves the LID unit.

As an example (taken from EPA SWMM5.1 Help manual), if the runoff treated by the LID unit had a TSS concentration of 100 mg/L and a removal percentage of 90, then if 5 cfs flowed from its drain into a conveyance system node, the mass loading contribution to the node would be 100 x (100 - 90) x 5 x (28.3 L/ft3) = 1,415 mg/sec.

If in addition the unit had a surface outflow of 1 cfs into the same node, the mass loading from this flow stream would be  $100 \times 1 \times 28.3 = 2,830$  mg/sec.

### Example Manning Coefficient and Soil Characteristics Values

Table 4.29 shows examples of Manning M and n values for different types of surfaces. Table 4.30 Table 4.31 show example hydraulic conductivity properties for various porous media.

| Surface Type                                                                                                      | Manning <i>M</i> | n     |  |  |
|-------------------------------------------------------------------------------------------------------------------|------------------|-------|--|--|
| Smooth asphalt                                                                                                    | 91               | 0.011 |  |  |
| Smooth concrete                                                                                                   | 83               | 0.012 |  |  |
| Ordinary concrete lining                                                                                          | 77               | 0.013 |  |  |
| Good wood                                                                                                         | 71               | 0.014 |  |  |
| Brick with cement mortar                                                                                          | 71               | 0.014 |  |  |
| Vitrified clay                                                                                                    | 67               | 0.015 |  |  |
| Cast Iron                                                                                                         | 67               | 0.015 |  |  |
| Corrugated metal pipes                                                                                            | 42               | 0.024 |  |  |
| Cement rubble surface                                                                                             | 42               | 0.024 |  |  |
| Fallow soils (no residue)                                                                                         | 20               | 0.05  |  |  |
| Cultivated soils                                                                                                  |                  |       |  |  |
| Residue cover < 20%                                                                                               | 17               | 0.06  |  |  |
| Residue cover > 20%                                                                                               | 6                | 0.17  |  |  |
| Range (natural)                                                                                                   | 8                | 0.13  |  |  |
| Grass                                                                                                             |                  |       |  |  |
| Short, prairie                                                                                                    | 7                | 0.15  |  |  |
| Dense                                                                                                             | 4                | 0.24  |  |  |
| Bermuda grass                                                                                                     | 2                | 0.41  |  |  |
| Woods                                                                                                             |                  |       |  |  |
| Light underbrush                                                                                                  | 2.5              | 0.4   |  |  |
| Dense underbrush                                                                                                  | 1.25             | 0.8   |  |  |
| Source: McCuen, R. et al. (1996), Hydrology, FHWA-SA-96-067, Federal Highway Adminis-<br>tration, Washington, DC. |                  |       |  |  |

## Table 4.29Example surface Manning M and n values for porous pavement or veg-<br/>etative swale

# Table 4.30Example hydraulic conductivity and porosity values for unconsolidated<br/>porous media

| Material                                                                                          | Hydraulic Conductivity, <i>K</i><br>(cm/s) | <b>Porosity</b> , η<br>(%) |  |  |  |
|---------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|--|--|--|
| Gravel                                                                                            | 10 <sup>-1</sup> - 10 <sup>2</sup>         | 25 - 40                    |  |  |  |
| Sand                                                                                              | 10 <sup>-5</sup> - 1                       | 25 - 40                    |  |  |  |
| Silt                                                                                              | 10 <sup>-7</sup> – 10 <sup>-3</sup>        | 35 - 50                    |  |  |  |
| Clay                                                                                              | 10 <sup>-9</sup> – 10 <sup>-5</sup>        | 40 - 70                    |  |  |  |
| Source: Freeze, R.A., and Cherry, J.A., (1979), Groundwater, Prentice-Hall, Englewood Cliffs, NJ. |                                            |                            |  |  |  |

#### Table 4.31 Example soil characteristics values

| Soil Texture Class                                           | Hydraulic<br>Conductivi<br>ty, <i>K</i><br>(in/hr) | Suction<br>Head, Ψ<br>(in.) | Porosity, φ<br>(fraction) | Field<br>Capacity,<br>FC<br>(fraction) | Wilting<br>Point, WP<br>(fraction) |  |
|--------------------------------------------------------------|----------------------------------------------------|-----------------------------|---------------------------|----------------------------------------|------------------------------------|--|
| Sand                                                         | 4.74                                               | 1.93                        | 0.437                     | 0.062                                  | 0.024                              |  |
| Loamy Sand                                                   | 1.18                                               | 2.40                        | 0.437                     | 0.105                                  | 0.047                              |  |
| Sandy Loam                                                   | 0.43                                               | 4.33                        | 0.453                     | 0.190                                  | 0.085                              |  |
| Loam                                                         | 0.13                                               | 3.50                        | 0.463                     | 0.232                                  | 0.116                              |  |
| Silt Loam                                                    | 0.26                                               | 6.69                        | 0.501                     | 0.284                                  | 0.135                              |  |
| Sandy Clay Loam                                              | 0.06                                               | 8.66                        | 0.398                     | 0.244                                  | 0.136                              |  |
| Clay Loam                                                    | 0.04                                               | 8.27                        | 0.464                     | 0.310                                  | 0.187                              |  |
| Silty Clay Loam                                              | 0.04                                               | 10.63                       | 0.471                     | 0.342                                  | 0.210                              |  |
| Sandy Clay                                                   | 0.02                                               | 9.45                        | 0.430                     | 0.321                                  | 0.221                              |  |
| Silty Clay                                                   | 0.02                                               | 11.42                       | 0.479                     | 0.371                                  | 0.251                              |  |
| Clay                                                         | 0.01                                               | 12.60                       | 0.475                     | 0.378                                  | 0.265                              |  |
| Source: Rawls, W.J. et al., (1983). J. Hyd. Engr., 109:1316. |                                                    |                             |                           |                                        |                                    |  |

## 4.7 LID Deployment

The LIDs are assigned to a catchment by means of the LID Deployment editor.



| LID dep | oloyment            |                                        |                       |                    |                            |           | □ X        |
|---------|---------------------|----------------------------------------|-----------------------|--------------------|----------------------------|-----------|------------|
| Ider    | ntification         |                                        |                       |                    |                            |           |            |
| п       | D Deployment_infi   | ltration trend                         | d Catchment II        |                    | Jrban_Catchment_1          |           | Insert     |
|         |                     |                                        | LID ID                | 3                  | 3_Infiltration_trench      | [         | Delete     |
| Dep     | ployment parameters |                                        |                       |                    |                            |           |            |
| N       | umber of units      |                                        | 1                     | Initial saturation | 0 [%]                      |           |            |
| A       | rea of unit         |                                        | 54 [ft^2]             | Impervious area    | 0 [%]                      |           |            |
| c       | Verland flow width  | width 10 [in] Send outflow to Outlet ~ |                       |                    |                            |           |            |
| Ε       | Result file         |                                        |                       | Infilt             | ration_trench.txt          |           |            |
|         |                     |                                        |                       |                    |                            |           |            |
|         | ID                  | ~                                      | ALL V                 | Clear Show s       | elected 🗌 Show data errors | 4ows, 0 s | elected    |
|         | ID                  |                                        | LID ID                | Number of units    | Area of unit [ft^2]        |           | Overland f |
| 1       | Deployment_Bio_re   | tention                                | 1_Bio_retention_cell  | 1                  |                            | 100       |            |
| 2       | Deployment_rain_g   | arden                                  | 6_Rain_garden         | 1                  |                            | 130       |            |
| 3       | Deployment_porous   | _pavement                              | 2_Porous_pavement     | 1                  |                            | 1648      |            |
| ▶ 4     | Deployment_infiltra | tion trench                            | 3_Infiltration_trench | 1                  |                            | 54        |            |
| 5       | Deployment_Rain b   | arrels                                 | 4_Rain_barrel         | 17                 |                            | 2         |            |
|         |                     |                                        |                       |                    |                            |           |            |
| <       |                     |                                        |                       |                    |                            |           | >          |

#### Figure 4.48 The LID Deployment editor

The input data is organized into the following groups:

- Identification
- Deployment Parameters

#### Identification

Each LID is linked to a LID Deployment ID i.e. each deployment represents a LID deployed on a single catchment in a specified number of units.

| Identifi | cation                   |              |                      |   |        |
|----------|--------------------------|--------------|----------------------|---|--------|
| ID       | Deployment_Bio_retention | Catchment ID | Urban_Catchment_1    | 📐 | Insert |
|          |                          | LID ID       | 1_Bio_retention_cell |   | Delete |
|          |                          |              |                      |   |        |





| Edit Field   | Description                                                                           | Used or required by simulations | Field name in data structure |
|--------------|---------------------------------------------------------------------------------------|---------------------------------|------------------------------|
| ID           | LID deployment ID                                                                     | Yes                             | MUID                         |
| Catchment ID | ID of catchment in which<br>the LID is<br>deployed/located (see<br>Catchments editor) | Yes                             | CatchID                      |
| LID ID       | ID of LID to be deployed (see LID Properties editor)                                  | Yes                             | LidID                        |

#### Table 4.32 Edit fields in the Deployment Identification group (mss\_LIDusage)

#### **Deployment Parameters**

It is possible to specify the size (i.e. area) of the individual LID structure, the size of the catchment's impervious area that is funnelled into it and the number of LID units of a certain type in a catchment. Furthermore, level of initial saturation and routing width for overland flow can be specified.

For each LID deployment, a result file can be generated containing time series of relevant variables (fluxes and storages). This result file is in the TXT time series format.

| Deployment parameters | I        |                    |                     |
|-----------------------|----------|--------------------|---------------------|
| Number of units       | 1        | Initial saturation | 0 [%]               |
| Area of unit          | 54 [ft^2 | ] Impervious area  | 0 [%]               |
| Overland flow width   | 10 [in]  | Send outflow to    | Outlet $\checkmark$ |
| Result file           |          | Infilt             | ration_trench.txt   |
|                       |          |                    |                     |

#### Figure 4.50 The LID Deployment Parameters group

| Table 4.33 | Edit fields in the LID | <b>Deployment Parameters</b> | group (mss_LIDusage) |
|------------|------------------------|------------------------------|----------------------|
|------------|------------------------|------------------------------|----------------------|

| Edit Field      | Description                                                                  | Used or required by simulations | Field name in datastructure |
|-----------------|------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Number of Units | Number of replicate LID<br>units deployed within the<br>catchment            | Yes                             | ReplicateNumber             |
| Area of Unit    | The surface area<br>devoted to each replicate<br>LID unit (sq. ft or sq. m). | Yes                             | Area                        |



| Edit Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Used or required by simulations | Field name in<br>datastructure |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|
| Overland Flow<br>Width | The width of the outflow<br>face of each identical LID<br>unit (in ft or m). This<br>parameter only applies to<br>LID processes such as<br>Porous Pavement and<br>Vegetative Swales that<br>use overland flow to con-<br>vey surface runoff off of<br>the unit. (The other LID<br>processes, such as Bio-<br>Retention Cells and Infil-<br>tration Trenches simply<br>spill any excess captured<br>runoff over their berms.)                                                                             | Yes                             | Width                          |
| Initial Saturation     | For Bio-Retention Cells<br>this is the degree to<br>which the unit's soil is ini-<br>tially filled with water (0<br>% saturation corre-<br>sponds to the wilting<br>point moisture content,<br>100 % saturation has the<br>moisture content equal to<br>the porosity). The stor-<br>age zone beneath the<br>soil zone of the cell is<br>assumed to be com-<br>pletely dry. For other<br>types of LIDs it corre-<br>sponds to the degree to<br>which their storage zone<br>is initially filled with water | Yes                             | InitSat                        |

#### Table 4.33 Edit fields in the LID Deployment Parameters group (mss\_LIDusage)

| Edit Field              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Used or required by simulations | Field name in datastructure |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Impervious Area         | The percent of the imper-<br>vious portion of the<br>catchment's non-LID<br>area whose runoff is<br>treated by the LID prac-<br>tice. (E.g., if rain barrels<br>are used to capture roof<br>runoff and roofs repre-<br>sent 60% of the impervi-<br>ous area, then the<br>impervious area treated<br>is 60%). If the LID unit<br>treats only direct rainfall,<br>such as with a green<br>roof, then this value<br>should be 0. If the LID<br>takes up the entire sub-<br>catchment then this field<br>is ignored. | Yes                             | FromImp                     |
| Send Outflow to         | Select whether to send<br>the outflow from the LID<br>onto the subcatchment's<br>pervious area, or the<br>subcatchment's outlet.<br>An example of where this<br>might apply is a rain bar-<br>rel whose contents are<br>used to irrigate a lawn<br>area. This field is ignored<br>if the LID takes up the<br>entire subcatchment.                                                                                                                                                                                | Yes                             | ToPervNo                    |
| Result File             | Activate this option to generate a detailed result file for the LIDs                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes                             | RptFileNo                   |
| (Filename input<br>box) | The name of an optional<br>TXT file where detailed<br>time series results for the<br>LIDs will be written                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                             | RptFileName                 |

#### Table 4.33Edit fields in the LID Deployment Parameters group (mss\_LIDusage)

## LID Deployment Result File

A TXT result file may be generated for each deployed LID structure. The file includes time series of relevant variables for the LID structure in terms of inflow, flow between layers, storage levels in various layers and output from the structure to the native soil.



If the user does not activate this option, the only visible outputs from the runoff simulation including LIDs are the changed (reduced) runoff hydrographs, caused by infiltration loss and storage in the LID structure, and a LID Performance Summary in the simulation summary file.

The contents of the TXT file depend on the actual LID type. In Figure 4.51, an example file for porous pavement is presented. Columns contain time series values for processes in the porous pavement.



**Note:** The flow inside the LID structure and the drain flow are reported as intensities based on the LID area. In cases where the collecting area is bigger than the LID area, the reported intensities will not be comparable with rainfall and evapotranspiration intensities, which are given as model boundary conditions. In order to make the comparison possible, the reported flow intensities must be scaled down by the ratio between the LID area and the collecting area.

| 1          | 1        | 2       | 3      | 4      | 5       | 6        | 7     | 8       | 9       | 10      | 11      | 12       | 13       | 14      |
|------------|----------|---------|--------|--------|---------|----------|-------|---------|---------|---------|---------|----------|----------|---------|
|            |          | Elapsed | Total  | Total  | Surface | Pavement | Soil  | Storage | Surface | Drain   | Surface | Pavement | Soil     | Storage |
|            |          | Time    | Inflow | Evap   | Infil   | Perc     | Perc  | Exfil   | Runoff  | OutFlow | Level   | Level    | Moisture | Level   |
| Date       | Time     | Hours   | in/hr  | in/hr  | in/hr   | in/hr    | in/hr | in/hr   | in/hr   | in/hr   | inches  | inches   | Content  | inches  |
| 01/01/2010 | 00:10:00 | 0.167   | 0.000  | 0.0000 | 0.000   | 0.000    | 0.000 | 0.000   | 0.000   | 0,000   | 0.000   | 0,000    | 0,000    | 0.000   |
| 01/01/2010 | 00:15:00 | 0.250   | 0.623  | 0.0000 | 0.623   | 0.623    | 0.000 | 0.623   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 00:20:00 | 0.333   | 0.623  | 0.0000 | 0.623   | 0.623    | 0.000 | 0.623   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 00:25:00 | 0.417   | 0.664  | 0.0000 | 0.664   | 0.664    | 0.000 | 0.664   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 00:30:00 | 0.500   | 0.664  | 0.0000 | 0.664   | 0.664    | 0.000 | 0.664   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 00:35:00 | 0.583   | 0.713  | 0.0000 | 0.713   | 0.713    | 0.000 | 0.713   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 00:40:00 | 0.667   | 0.713  | 0.0000 | 0.713   | 0.713    | 0,000 | 0.713   | 0.000   | 0.000   | 0.000   | 0.000    | 0,000    | 0.000   |
| 01/01/2010 | 00:45:00 | 0.750   | 0.772  | 0.0000 | 0.772   | 0.772    | 0.000 | 0.772   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 00:50:00 | 0.833   | 0.772  | 0.0000 | 0.772   | 0.772    | 0.000 | 0.772   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 00:55:00 | 0.917   | 0.843  | 0.0000 | 0.843   | 0.843    | 0,000 | 0.843   | 0.000   | 0,000   | 0.000   | 0,000    | 0,000    | 0,000   |
| 01/01/2010 | 01:00:00 | 1.000   | 0.843  | 0.0000 | 0.843   | 0.843    | 0.000 | 0.843   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 01:05:00 | 1.083   | 0.933  | 0.0000 | 0.933   | 0.933    | 0,000 | 0.933   | 0.000   | 0.000   | 0.000   | 0.000    | 0,000    | 0,000   |
| 01/01/2010 | 01:10:00 | 1.167   | 0.933  | 0.0000 | 0.933   | 0.933    | 0.000 | 0.933   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 01:15:00 | 1.250   | 1.049  | 0.0000 | 1.849   | 1.849    | 0.000 | 1.049   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 01:20:00 | 1.333   | 1.049  | 0.0000 | 1.049   | 1.049    | 0,000 | 1.049   | 0.000   | 0.000   | 0.000   | 0.000    | 0,000    | 0.000   |
| 01/01/2010 | 01:25:00 | 1.417   | 1.207  | 0.0000 | 1.207   | 1.207    | 0.000 | 1.207   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 01:30:00 | 1.500   | 1.207  | 0.0000 | 1.207   | 1.207    | 0.000 | 1.207   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 01:35:00 | 1.583   | 1.436  | 0.0000 | 1.436   | 1.436    | 0.000 | 1.436   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 01:40:00 | 1.667   | 1.436  | 0.0000 | 1.436   | 1.436    | 0.000 | 1.436   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |
| 01/01/2010 | 01:45:00 | 1.750   | 1.807  | 0.0000 | 1.807   | 1.807    | 0.000 | 1.807   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000    | 0.000   |

Figure 4.51 Example of a result report DFS0 file per deployment (a porous pavement control)

- 1. Date/Time. Calendar time for the simulated time steps
- 2. Elapsed Time [T]. Time elapsed relative to simulation start
- 3. Total Inflow [L/T]. Inflow to the LID unit given as a multiple of the rain intensity and the collecting area outside LID/LID area. It is the run-on from the collecting area outside the LID and rain on top of the LID unit. The run on represents the net rain on the impervious collecting area, i.e. with initial losses subtracted.
- Total Evap [L/T]. Evaporation based on given Climatology parameter specified by the User valid for the catchment as well as for the LID unit.
- Surface Infil [L/T]. Infiltration from the surface layer to the pavement layer.
- Pavement Perc [L/T]. Flow from the pavement layer to the next layer i.e. storage layer or optional soil layer.
- 7. Soil Perc [L/T]. Flow from the optional soil layer to the storage layer.



- 8. Storage Exfil [L/T]. Infiltration from the storage layer to the surrounding soil.
- Surface Runoff [L/T]. Represents overland flow for vegetative swale s or overflow for other LIDs
- 10. Drain Outflow [L/T]. Water flow through the optional underdrain.
- 11. Surface Level [L]. accumulated water on the surface expressed as the water height on the surface. Maximum value is the specified surface storage depth/berm height.
- 12. Pavement Level [L]. Accumulated water depth in the pavement layer. Maximum value is the pavement thickness.
- 13. Soil Moisture Content []. Presented as a fraction relative to the total volume of the optional soil layer. Corresponds to the water that is held in the spaces between soil particles. Maximum soil moisture (i.e. full saturation) is equivalent to the specified soil porosity.
- 14. Storage Level [L]. Accumulated water in the storage layer expressed as the water height in the storage. Maximum value is the storage height.

### LID Performance Summary

The LID Performance Summary is provided as part of the overall simulation summary file. The summary reports the overall storage/loss depths and volume balance for each LID deployment (see example in Figure 4.52).

| ************************************** | ummary              |                 |              |               |                |      |      |                |                  |                     |
|----------------------------------------|---------------------|-----------------|--------------|---------------|----------------|------|------|----------------|------------------|---------------------|
|                                        |                     | Total<br>Inflow | Evap<br>Loss | Infil<br>Loss | Surfa<br>Outf] |      |      | itial<br>orage | Final<br>Storage | Continuity<br>Error |
| Subcatchment                           | LID Control         | in              | in           | in            |                | in   | in   | in             | in               | %                   |
| Urban Catchment 1                      | 4 Rain barrel       | 8.32            | 0.00         | 0.00          |                | 0.00 | 0.00 | 0.00           | 8.20             | 1.43                |
| Jrban_Catchment_1                      | 3_Infiltration_trer | nch             | 8.32         | 0.00          | 8.32           | 0.00 | 0.0  | 10 e           | .00              | 0.00 0              |
| Jrban Catchment 1                      | 2 Porous pavement   | 8.32            | 0.0          | 8.3           | 2              | 0.00 | 0.00 | 0.00           | 0.0              | 0.00                |
| Jrban Catchment 1                      | 6 Rain garden       | 8.32            | 0.00         | 0.00          |                | 0.00 | 0.00 | 85.00          | 93.21            | 0.11                |
| Inhan Catchmont 1                      | 1 Bio retention cel | 1 8             | 3.32         | 0.00          | 0.00           | 0.00 | 0.00 | 45.            | 00 5             | 3.21 0.             |

Figure 4.52 Example of a LID Performance Summary

# 4.8 Groundwater

A sketch of the two-zone groundwater model that is used in EPA SWMM is shown in Figure 4.53. The upper zone is unsaturated at a varying moisture content of q. The lower zone is saturated and therefore its moisture content is fixed at the soil porosity h. The fluxes shown in the figure, expressed as volume per unit area per unit time, consist of the following:

- f<sub>l</sub> infiltration from the surface
- f<sub>EU</sub> evapotranspiration from the upper zone which is a fixed fraction of the un-used surface evaporation



- $f_U$  percolation from the upper to lower zone which depends on the upper zone moisture content q and depth  $d_U$
- f<sub>EL</sub> evapotranspiration from the lower zone, which is a function of the depth of the upper zone d<sub>U</sub>
- f<sub>L</sub> percolation from the lower zone to deep groundwater which depends on the lower zone depth d<sub>L</sub>
- f<sub>G</sub> lateral groundwater interflow to the conveyance network which depends on the lower zone depth d<sub>L</sub> as well as depths in the receiving channel or node.

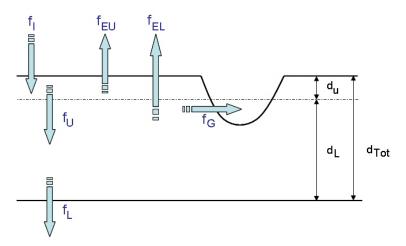



Figure 4.53 Groundwater Modelling Concept

After computing the water fluxes at a given point in time, a mass balance is written for the change in water volume stored in each zone so that a new water table depth and unsaturated zone moisture content can be computed for the next time step.

The SWMM Groundwater editor organizes the related input data for Groundwater into the following groups:

- Identification
- Groundwater Properties

| Gro | ound   | water               |                            |                            |                             |                               | □ X                                   |
|-----|--------|---------------------|----------------------------|----------------------------|-----------------------------|-------------------------------|---------------------------------------|
|     | Iden   | tification          |                            |                            |                             |                               | Transl                                |
|     |        | hment IE<br>ription | 37734<br>MDC_485           |                            | Aquifer<br>. Node ID        |                               | Delete                                |
|     | Grou   | ndwater             | properties                 |                            |                             |                               |                                       |
|     | Cato   | hment su            | ırface elev.               |                            | 21 [ft]                     | Surface water flow coefficien | nt (A2) 0 [ft^2/s/ac]                 |
|     | GW     | flow coef           | fient (A1)                 | 0.                         | 0008 [ft^2/s/ad             | ] Surface water flow exponent | t (B2) 0                              |
|     | GW     | flow expo           | onent (B1)                 |                            | 2                           | GW interaction coefficient (A | 3) 0 [ft/s/ac]                        |
|     |        |                     | r height (Hsw)             |                            | 0 [ft]                      | Channel bottom height (Hcb)   |                                       |
|     |        | om eleva            |                            | 3.2                        | 8084 [ft]                   | Water table elevation         | 50.75459 [ft]                         |
|     |        | at. zone r          |                            |                            | 0.33                        | Water table clevation         | Contro ios [iq                        |
|     |        |                     |                            |                            | 0.35                        |                               | - 11                                  |
|     | _      |                     | ateral flow equation       |                            |                             |                               | Edit                                  |
|     |        | Custom d            | eep flow equation          | 0*(Hgw-Hcb)                | ^2+0.0001*Hg                | v/Hgs                         | Edit                                  |
|     | _      |                     |                            |                            |                             |                               |                                       |
| ⊨   |        |                     | ID                         | ~ ALL                      | <ul> <li>✓ Clear</li> </ul> |                               | w data errors 1/3786 rows, 0 selected |
| Ŀ   |        | ID                  | Catchment ID               | Aquifer ID                 | Node ID                     | Catchment surface elev. [ft]  | GW HOW COEMENC (A1) [IT 2/s/ac]       |
|     | -      | 37734               | MDC_485                    | MDC_485                    | GIS2003888                  | 21                            | 0.0008                                |
| I   | 2      | 37735               | MDC_1128                   | MDC_1128                   | GIS2003110                  | 44                            | 0.0008                                |
| I   | 3<br>4 | 37736<br>37737      | NNBI-07_16-C               | NNBI-07_16-C               | GIS2003105<br>GIS2002939    | 51.81 42.92                   | 0.0008                                |
|     | 4<br>5 | 37738               | NNBI-07_1-C<br>NNBI-07_2-C | NNBI-07_1-C<br>NNBI-07_2-C | GIS2002939<br>GIS2003106    | 42.92                         | 0.0004                                |
|     | 5<br>6 | 37730               | NNB1-07_2-C                | NNBL07_3-C                 | GIS2003106                  | 52.57                         | 0.0008                                |
| <   |        |                     |                            |                            |                             |                               | >                                     |



### Identification

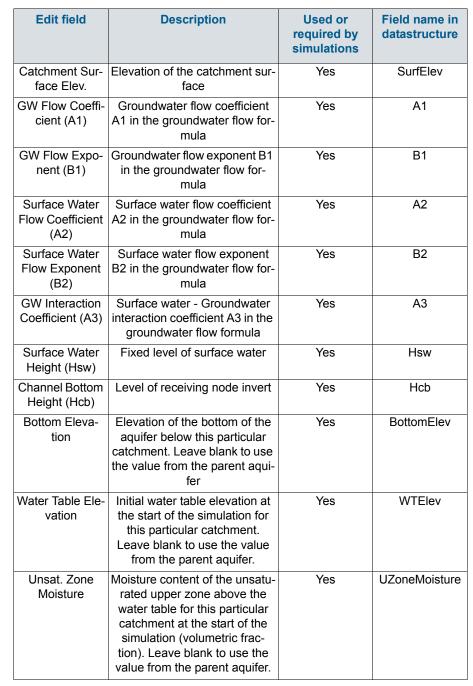
The Identification groupbox of the Groundwater editor holds associated Catchment, Aquifer, and receiving Node information for the groundwater flow parameter set.

| Identification |         |   |            |            | Insert     |
|----------------|---------|---|------------|------------|------------|
| ID             | 37734   | ] | Aquifer ID | MDC_485    | <br>       |
| Catchment ID   | MDC_485 |   | Node ID    | GIS2003888 | <br>Delete |
| Description    |         | ] |            |            |            |

Figure 4.55 The Groundwater Identification group



| Edit field   | Description                                                                                       | Used or<br>required by<br>simulations | Field name in datastructure |
|--------------|---------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| ID           | Groundwater flow parameter set ID                                                                 | Yes                                   | MUID                        |
| Catchment ID | ID of catchment associated<br>with the groundwater flow<br>parameters                             | Yes                                   | SubCatchID                  |
| Description  | Optional descriptive informa-<br>tion for groundwater flow<br>parameters                          | No                                    | Description                 |
| Aquifer ID   | ID of Aquifer describing sub-<br>surface soil properties, thick-<br>ness, and initial conditions. | Yes                                   | AquiferID                   |
| Node ID      | ID of node receiving ground-<br>water from the catchment                                          | Yes                                   | NodelD                      |


#### Table 4.34 Edit fields in the Groundwater Identification group (mss\_Groundwater)

### **Groundwater Properties**

Define groundwater flow properties on the Groundwater Properties groupbox of the Groundwater editor.

| Groundwater properties       |                            |                                     |               |
|------------------------------|----------------------------|-------------------------------------|---------------|
| Catchment surface elev.      | 21 [ft]                    | Surface water flow coefficient (A2) | 0 [ft^2/s/ac] |
| GW flow coeffient (A1)       | 0.0008 [ft^2/s/ac]         | Surface water flow exponent (B2)    | 0             |
| GW flow exponent (B1)        | 2                          | GW interaction coefficient (A3)     | 0 [ft/s/ac]   |
| Surface water height (Hsw)   | 0 [ft]                     | Channel bottom height (Hcb)         | 11.4 [ft]     |
| Bottom elevation             | 3.28084 [ft]               | Water table elevation               | 50.75459 [ft] |
| Unsat. zone moisture         | 0.33                       |                                     |               |
| Custom lateral flow equation |                            |                                     | Edit          |
| Custom deep flow equation    | 0*(Hgw-Hcb)^2+0.0001*Hgw/H | gs                                  | Edit          |





#### Table 4.35 Edit fields in the Groundwater Properties group (mss\_Groundwater)



| Edit field                      | Description                                                                                                                                                                                                                             | Used or<br>required by<br>simulations | Field name in datastructure |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Custom Lateral<br>Flow Equation | Option to use a user-defined<br>groundwater flow equation for<br>lateral groundwater flow (QL).<br>The equation will be used in<br>addition to the standard equa-<br>tion to compute groundwater<br>outflow from the subcatch-<br>ment. | No                                    | Lateral-<br>FlowEquation    |
| Custom Deep<br>Flow Equation    | Option to use a user-defined<br>groundwater flow equation for<br>deep groundwater flow (QD).<br>The equation will be used to<br>replace the standard equation<br>for deep groundwater flow.                                             | No                                    | DeepFlowEqua-<br>tion       |

#### Table 4.35Edit fields in the Groundwater Properties group (mss\_Groundwater)

### **Custom Groundwater Flow Equations**

Tick on the associated checkboxes to define and use custom groundwater flow equations.

| Custom lateral flow equation |                              | Edit |
|------------------------------|------------------------------|------|
| Custom deep flow equation    | 0*(Hgw-Hcb)^2+0.0001*Hgw/Hgs | Edit |

Figure 4.57 Define custom groundwater flow equations on the Groundwater editor

Click on the 'Edit' buttons to access the Custom Groundwater Flow Equation dialog, where one may define an equation in the input box.

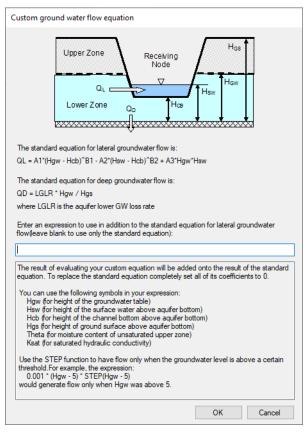
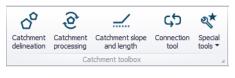




Figure 4.58 The Custom Groundwater Flow Equation dialog

# 4.9 Catchment Tools

The Catchment Toolbox is a collection of tools that makes delineation of catchments for stormwater networks easy and fast.





The toolbox includes the following automated tools:

 Catchment Delineation. Helps delineate catchment polygons in an automated and reproducible way. The catchments can be automatically created as Thiessen polygons derived from a layer of points or lines or as polygons derived from a digital elevation model (DEM).



- **Catchment Processing**. Automated way to calculate imperviousness and catchment widths for SWMM hydrological models normally a very time consuming task with big risk of making errors and inconsistencies.
- **Catchment Slope and Length**. An automated way to calculate the slope and length of a catchment based on a DEM.
- Connection Tool. Automatically connects selected catchments to network elements based on a number of user-specified settings, e.g. to the nearest node. For those places where you want the catchments to be connected differently, the connections can be moved using graphical editing tools.
- Special Tools. An additional tool available for Catchments is Spatial Processing, wherein additional GIS operations such as Merge and Join could be performed with catchment layers and the results exported to a shapefile.

### 4.9.1 Catchment Delineation

The Catchment Delineation tool helps delineate catchment polygons in an automated and reproducible way. The catchments can be automatically created as Thiessen polygons derived from a layer of points or lines or as polygons derived from a digital elevation model (DEM).

The wizard guides you through the steps of the delineation process (Figure 4.60).

| Catchment delineation                                                              |           | х |
|------------------------------------------------------------------------------------|-----------|---|
| Type of delineation                                                                |           |   |
| <ul> <li>Generate Catchment on basis of point layer (Thiessen polygons)</li> </ul> |           |   |
| O Generate Catchment on basis of line layer                                        |           |   |
| O Generate Catchment on basis of DEM and Nodes                                     |           |   |
| Point layer                                                                        |           |   |
| Nodes                                                                              | $\sim$    |   |
| Area of interest                                                                   |           |   |
|                                                                                    |           |   |
| Complete Model Network                                                             |           |   |
| O Network inside polygon - select existing polygon in map                          |           |   |
|                                                                                    |           |   |
| O Network inside a polygon - manually digitize polygon Digit                       | tize      |   |
| Reporting                                                                          |           |   |
|                                                                                    |           |   |
|                                                                                    |           |   |
| Configuration                                                                      |           |   |
|                                                                                    |           |   |
| Open Save Preview Run R                                                            | leset map |   |
|                                                                                    |           |   |
|                                                                                    |           |   |
|                                                                                    |           | _ |

Figure 4.60 The Catchment Delineation wizard

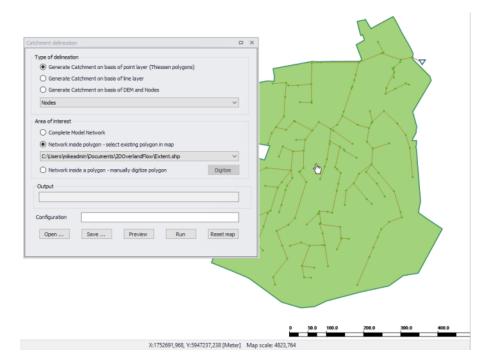


# Type of Delineation

The first step in the use of the tool is selection of delineation type. The options available are:

- Generate Catchment on Basis of Point Layer (Thiessen Polygons). Based on Voronoi partitioning, which is a mathematical way of diving spaces into a number of regions.
- **Generate Catchment on Basis of Line Layer**. Also based on Voronoi partitioning principles, but around line segments instead of points.
- Generate Catchment on Basis of DEM and Nodes. The catchments will describe the actual hydrological catchments around inlet nodes, defined based on the slopes on the DEM. This option requires pre-loading a valid DEM layer in the project. A valid DEM must be in \*.ASC or \*.DFS2 file format.

Depending on the delineation type, select the actual layer upon which the delineation shall be based. Available layers relevant to a delineation type are offered in the drop-down menu.


### Area of Interest

The next step is selection of the extent for the delineation. The options available are:

- **Complete Model Network**. Uses a default boundary defined by a rectangle covering the complete network (including a 30-m buffer zone). There is no additional dialog for this option.
- Network Inside Polygon Select Existing Polygon on Map. Select an existing polygon from any polygon layer in the project. If this method is selected, the specific layer to be used is chosen from the dropdown menu and the specific feature selected on the map. See Figure 4.61.
- Network Inside Polygon Manually Digitize Polygon. Manually digitize the boundary on the map. If this method is selected, use the Digitize button to draw the boundary directly on the map, ending the digitization with a double-click. See Figure 4.62.

Note that for DEM-based delineation, the delineation is performed according to the defined area of interest, but catchments covering the total extent of the input DEM will still be generated (See Figure 4.64).







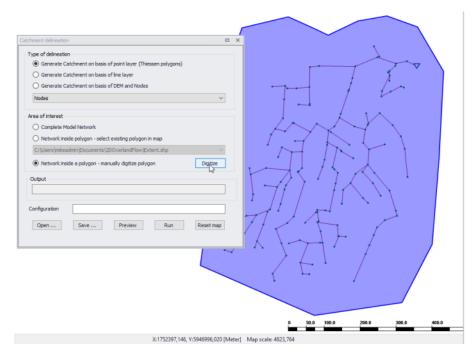



Figure 4.62 Digitizing the boundary on the Map via the 'Digitize' button



Click on the '**Run**' button to delineate the catchments according to the specified configuration.

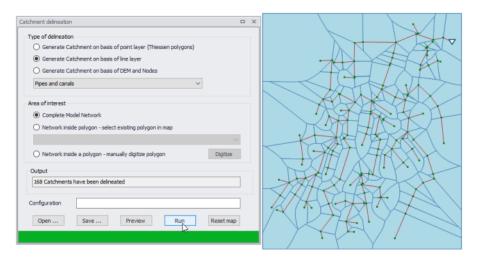



Figure 4.63 Click on the 'Run' button to perform catchment delineation

#### Catchments Generated as Thiessen Polygons

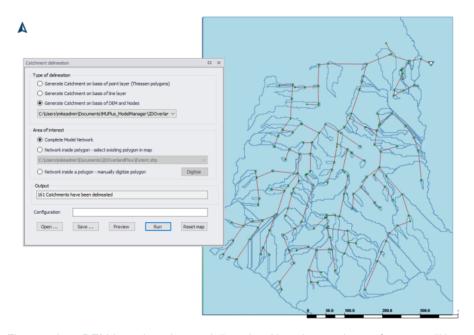
When the catchments are created as Thiessen polygons (or Voronoi cells) you start out by specifying a selection of points or lines to use as an input layer. Typically either all manholes or all links.

The tool will proportionally divide and distribute a point coverage into the polygons known as Thiessen polygons. When a line layer is used as input, the points used are the midpoints of the lines. Each polygon contains only one input feature point. Each polygon has the unique property that any location within the polygon is closer to the polygon's point than to the point of any other polygon.

The Thiessen polygons (or Voronoi cells) are constructed as follows:

- All points are triangulated into a triangulated irregular network (TIN) that meets the Delaunay criterion.
- The perpendicular bisectors for each triangle edge are generated, forming the edges of the Thiessen polygons. The location at which the bisectors intersect determine the locations of the Thiessen polygon vertices.

The outside boundary of the Thiessen polygons needs to be specified. Either as a user specified polygon (created on the fly or loaded in as a layer) or as extent of the points used plus an additional area.


Please note that the underlying Delaunay triangulation method used works best with data in a projected coordinate system.



#### Catchment Boundaries Based on a DEM

This method uses the geometrical network together with DEM data to delineate catchments.

To use this option, specify the DEM to use and the network inlets, which are the nodes where catchment runoff can enter the network. The tool will then use spatial analysis to pre-process the data and generate delineated catchments based on a DEM with sinks at node locations, and a flow direction grid following the terrain.





#### Reporting

This section displays a summary of results from running the delineation tool. It starts off empty before the tool is run.

| ( | Dutput                              |  |
|---|-------------------------------------|--|
|   | 161 Catchments have been delineated |  |
|   |                                     |  |

#### Configuration

Displays the file name for a loaded/opened or saved delineation configuration \*.XML file. The path and file name for a new configuration may also be speci-



fied in the input box. Note that only specifying a file name will save the file in the user's Documents folder by Default.

'Open...' button Loads a previously-saved catchment delineation \*.XML configuration file.

#### 'Save...' button

Saves the current catchment delineation configuration into an \*.XML file.

#### 'Preview' button

Option for viewing preliminary results of a catchment delineation configuration.

#### 'Run' button

Executes the catchment delineation tool following the defined configuration.

#### 'Reset map' button

Resets the map view by removing highlights or preliminary delineation lines related to result previewing or extent digitization.

#### 4.9.2 Catchment Processing

The Catchment Processing tool is an automated and reproducible way to calculate imperviousness and catchment width for SWMM hydrological models.

| Catchment processing                                           |               |                                                             |         |     | х |
|----------------------------------------------------------------|---------------|-------------------------------------------------------------|---------|-----|---|
| Model Setup Imperviousness source Imperviousness layers values |               | SWMM hydrology V<br>nperviousness<br>ydrological Parameters |         |     |   |
|                                                                | Configuration | nperviousness<br>atchment Width                             |         |     |   |
|                                                                | Open Save     |                                                             | Run Clo | ise |   |

Figure 4.65 The start-up dialog of the Catchment Processing wizard



## Model Setup

The first step in catchment processing is selection of type of Model Setup for which parameters shall be calculated, and the parameters to calculate.

For SWMM models, the Model Setup is set to SWMM hydrology.

The wizard can be used for performing the following operations for SWMM hydrological models:

Calculate Imperviousness. Use the tool to derive or set imperviousness values for catchment.

Calculating catchment imperviousness using the tool requires defining additional settings in the succeeding tab pages of the tool dialog.

- **Calculate Catchment Width**. Catchment width for SWMM catchments is computed as Area / MaxLength, where MaxLength is:
  - If the catchment is connected to a node, this is the distance from the connected node to the farthest point in the catchment.
  - If the catchment is connected to another catchment, the length is the maximum length across the catchment between two opposite points along the border.

Calculating only catchment width using the tool requires no further steps after selection of the option from the Model Setup tab page.

Note that when running the tool, processing is performed only for selected elements if selections are made prior to clicking on the Run button.

#### Imperviousness Source

The Imperviousness Source tab page is active for when the tool is used for deriving or setting catchment imperviouness values.

The second step in the calculation of imperviousness is specification of the source of imperviousness values during processing.

Imperviousness for MIKE+ catchments can be calculated as a constant value or as a weighted average of imperviousness of multiple polygon layers. The layers should be pre-loaded in the project to be selectable in the wizard.



|                              | Imperviousness calculation |                             |
|------------------------------|----------------------------|-----------------------------|
| Imperviousness source        | Fixed Value                |                             |
| Imperviousness layers values | Imperviousness[%] 30       |                             |
|                              | Process Polygon Layers     |                             |
|                              | Available Layers           |                             |
|                              |                            | gs_Town.shp<br>_Town.shp Up |
|                              | = =>                       | Down                        |
|                              | ->                         |                             |
|                              | <-                         |                             |
|                              | <= =                       |                             |
|                              |                            |                             |
|                              |                            |                             |

Figure 4.66 Polygon layer selection for calculation of imperviousness

#### Imperviousness Layers Values

If polygon layers are to be used in deriving catchment imperviousness with the tool, the next step is specification of imperviousness values for the source polygon layers.

Please note that the list order of the layers is important. If some of the polygons are overlapping, the value from the uppermost overlapping layer (i.e. higher on the list) is prioritized.

| Model Setup Imperviousness source | Imperviousness layers values<br>Set values for each layer |                    |                   |   |  |  |  |
|-----------------------------------|-----------------------------------------------------------|--------------------|-------------------|---|--|--|--|
| Imperviousness layers values      |                                                           | Layer              | Imperviousness[%] | ] |  |  |  |
|                                   | •                                                         | Buildings_Town.shp | 90                |   |  |  |  |
|                                   |                                                           | Roads_Town.shp     | 100               |   |  |  |  |
|                                   |                                                           |                    |                   |   |  |  |  |
|                                   |                                                           |                    |                   |   |  |  |  |
|                                   |                                                           |                    |                   |   |  |  |  |
|                                   |                                                           |                    |                   | - |  |  |  |

Figure 4.67 Specification of values for calculation of imperviousness

### Running the Tool

The final step is to execute the tool using the 'Run' button at the bottom of the wizard.



## Configuration

A section for saving or loading a Catchment Processing configuration \*.XML file. Use the **Save** button to save the current processing configuration into an \*.XML file. The **Open** button loads a previously-saved processing \*.XML configuration file.

| C | onfiguration — |      |
|---|----------------|------|
|   | Open           | Save |

### 4.9.3 Catchment Slope and Length

As part of hydrological modelling, the catchment slope and length must be estimated for some rainfall-runoff models.

Based on delineated catchments, a DEM, and lines for the flow path inside a catchment, the slope and length can be automatically estimated for each catchment using the Catchment Slope and Length tool.

#### Slope Line Layer

To calculate the slope and length, the typical flow path within the catchment must be digitized (i.e. the slope lines). These can be drawn from the load point or towards the load point but a consistent methodology should be used in a project. A multiple number of slope lines can be defined for each catchment. The slope lines must be a line feature in MIKE+ either from a background layer or an existing (unused) layer in the database.

The slope and length are calculated as an average slope and length of the lines that are completely contained within the catchment.

An example of slope lines are shown in Figure 4.68.

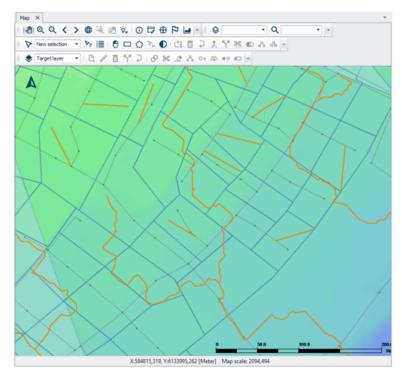



Figure 4.68 Example of slope lines (solid yellow lines) following surface flow paths overlaying catchments (broken blue lines) and the DEM (coloured surface), which are used in catchment length and slope derivation.

### Slope in Direction Towards

When the tool is opened, the slope line layer must be specified together with the direction the lines were digitized to obtain the correct sign for the slope.

### Minimum Slope

A minimum slope is also specified that will be assigned to all catchments with smaller slopes.

### DEM

Define the DEM layer based on which the slope and length derivation will be made. The DEM and slope line layers must be added as background layers in the MIKE+ project to be available in the tool, see Figure 4.69.



| Catchment slope and length    |                                                                 |        | × |
|-------------------------------|-----------------------------------------------------------------|--------|---|
| Slope line layer:             | C: \Users \mikeadmin \Documents \Odense \LandUse \FlowPaths 250 | ) ~    |   |
| Slope line direction towards: | Downstream                                                      | ~      |   |
| Minimum slope:                | 2 [‰]                                                           |        |   |
| DEM:                          | C: \Users \mikeadmin \Documents \Odense \DEM \dem.dfs2          | $\sim$ |   |
| Overwrite existing values.    |                                                                 |        |   |
|                               | OK Cancel                                                       |        | ] |
|                               |                                                                 |        |   |

Figure 4.69 Catchment Slope and Length Tool

#### Running the Tool

Click on the **OK** button to run the tool. The tool will calculate the length and slope for all selected catchments.

If no catchments are selected, the length and slope will be calculated for all catchments containing slope lines.

Activate the **Overwrite Existing Values** option if derived catchment slopes and lengths for selected catchments shall replace existing values, if any.

### 4.9.4 Connection Tool

The (catchment) Connection Tool is a generic wizard which can be used to connect catchments to the network.

The wizard automatically connects all selected catchments to nodes based on a number of principles, e.g. to the nearest node. For places where it is desired to connect catchments differently, the connections can be moved easily using graphical editing tools.

| Connection tool                                                                                  |                                                      |                            |        | × |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------|--------|---|
| Item Type                                                                                        | Catchments                                           |                            | $\sim$ |   |
| Target scope:                                                                                    | All                                                  |                            | $\sim$ |   |
| Target Network Type:                                                                             | All                                                  |                            | $\sim$ |   |
| Connection method                                                                                |                                                      |                            |        |   |
| To nearest Node                                                                                  |                                                      |                            |        |   |
| <ul> <li>Connect only within co</li> </ul>                                                       | ontaining catchment                                  |                            |        |   |
| 🔵 To node by nearest P                                                                           | Pipe                                                 |                            |        |   |
| 🔵 To node by Pipe ID                                                                             |                                                      |                            |        |   |
| O To nearest Pipe or Riv                                                                         | rer                                                  |                            |        |   |
| Connection setting<br>Maximum distance from<br>Maximum Pipe Diameter<br>Item can only connect if |                                                      | 10.00 ♀ [m]<br>10.00 ♀ [m] |        |   |
| Node parameter                                                                                   | Condition Item Parameter<br>= V User-defined value V | User-defined value         |        |   |
| Configuration file:                                                                              | Save                                                 |                            |        |   |
| opentin                                                                                          | ouve m                                               |                            |        |   |

Figure 4.70 The (catchment) Connection Tool dialog

Use of the Connection Tool requires first defining the **Item Type** to be connected. I.e. Catchments for SWMM models.

The tool can only connect SWMM catchments to nodes and not to other catchments. If catchments shall be connected to other catchments for a SWMM model, this should be done manually through the Catchments editor SWMM Catchment Connections tab page.

Then, define the Target Scope or to which the items should be connected:

- All. All the appropriate model items.
- Current Selection. Only currently selected model items.

Define the **Target Network Type** to only consider target network element of certain Network Types in the processing. The target network type acts as a filter to select which items on the network may be connected. Note that catchments will not connect to nodes which have undefined Network Type when applying to a specific target network type (other than ALL). Therefore, the CS network type must be appropriately set for the network items before applying a specific target network type.

| Connection tool      |                               |  | 2 |
|----------------------|-------------------------------|--|---|
| Item Type            | Catchments ~                  |  |   |
| Target scope:        | All ~                         |  |   |
| Target Network Type: | All ~                         |  |   |
|                      | All                           |  |   |
|                      | 1: Wastewater                 |  |   |
|                      | 2: Storm Water                |  |   |
|                      | 3: Combined<br>4: Rising main |  |   |
|                      | 5: Overland flow              |  |   |
|                      | River                         |  |   |
|                      |                               |  |   |



### **Connection Method**

Define the Connection Method to use:

- To Nearest Node. Connect to node nearest the item location or centroid.
- To Node by Nearest Pipe. Connect to the nearest end node of the nearest pipe to an item location/centroid.

| Connection method                                            |  |
|--------------------------------------------------------------|--|
| To nearest Node                                              |  |
| <ul> <li>Connect only within containing catchment</li> </ul> |  |
| 🔿 To node by nearest Pipe                                    |  |
| 🔿 To node by Pipe ID                                         |  |
| O To nearest Pipe or River                                   |  |

Figure 4.72 Selection of Connection Method

### **Connection Settings**

Connection Settings are optional and may be used to include extra criteria for connecting to the network.

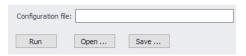
- **Maximum Distance from Item to Network Element**. Maximum search distance to find nearest node element from the item location/centroid.
- Maximum Pipe Diameter. Maximum pipe diameter to involve in the search for nearest pipe element from the item location/centroid. E.g. for Method = To Node by Nearest Pipe.
- Item Can Only Connect If. Option for setting a user-defined condition in search for nearest node elements.
  - Node Parameter. Node parameter to use for additional filter criterion.
  - **Condition**. Mathematical condition for filter criterion.
  - Item Parameter. Item parameter to use for building the conditional statement for the filter criterion.



 User-defined Value. If a user-defined value instead of an item parameter value shall be used in building the condition. I.e. Item parameter = User-defined value.

| Connection setting                                      |                    |
|---------------------------------------------------------|--------------------|
| Maximum distance from Item to Network Element           | 10.00 🔶 [m]        |
| Maximum Pipe Diameter                                   | 10.00 🚖 [m]        |
| ☑ Item can only connect if                              |                    |
| Node parameter Condition Item Parameter                 | User-defined value |
| Diameter $\checkmark$ > $\checkmark$ User-defined value | .1 [m]             |

Figure 4.73 The Connection Tool Connection Settings section


### Running the Tool

Finally, click on the **Run** button to run the Connection Tool.

#### Configuration

The Configuration File input box shows the file name for a saved or loaded/opened connection configuration \*.XML file. The path and file name for a new configuration may also be specified in the input box. Note that only specifying a file name will save the file in the user's Documents folder by Default.

Use the **Save** button to save the current processing configuration into an \*.XML file. The **Open** button loads a previously-saved processing \*.XML configuration file.



### 4.9.5 Spatial Processing

The Catchment Toolbox also offers specialised tools for Spatial Processing. These are accessed via 'Special Tools' on the Catchments menu ribbon.

| Ô                     | ð                    |                               |                         | ርኃ                 | थ्*                |
|-----------------------|----------------------|-------------------------------|-------------------------|--------------------|--------------------|
| Catchment delineation | Catchment processing | Catchment slope<br>and length |                         | Connection<br>tool | Special<br>tools ▼ |
|                       | Ca                   | tchment to                    | to 🕥 Spatial processing |                    |                    |

Figure 4.74 Spatial Processing tool for Catchments



Spatial analysis tools allow the user to perform several GIS-processing operations on various polygon and line layers available in the project. These layers are either model element layers, or shapefile layers loaded into the project.

| Spatial pro | ocessing                  |                                                            |        | х |
|-------------|---------------------------|------------------------------------------------------------|--------|---|
| Polygon     | Line                      |                                                            |        |   |
|             |                           |                                                            |        |   |
| Targe       | t layers                  | C: \Users \mikeadmin \Documents \Odense \LandUse \Green.sh | $\sim$ |   |
| Refere      | ence <mark>l</mark> ayers | C:\Users\mikeadmin\Documents\Odense\LandUse\Catchmer       | ~      |   |
| Keep p      | properties                | Target                                                     | $\sim$ |   |
| Metho       | d                         | Join                                                       | $\sim$ |   |
| Outpu       | it path                   | :eadmin\Documents\Odense\LandUse\GreenJoinExtent.s         |        |   |
|             |                           | Run                                                        |        |   |

Figure 4.75 The Spatial Processing dialog

#### Polygon

Operations such as Merge and Clip may be performed between various polygon layers. The analysis results are saved in a new shapefile and automatically loaded into the project as a new layer. It may also be imported as a model element feature.

Define the following parameters when using the tool for polygon features:

- **Target Layers**. Polygon feature to be modified (i.e. to which the operation will be done).
- Reference Layers. The second polygon layer used to modify the target layer.
- **Keep Properties**. Information on the feature attributes to keep for the resulting layer.
- Method. Dropdown menu for selecting spatial operation to use:
  - Clip. Extracts from target the areas intersecting the reference. Features in target not intersecting the reference are also kept.
  - **Erase**. Removes from target the areas intersecting the reference.
  - Merge. Features in both layers combined, where intersecting features are fused in new features.
  - **Join**. Extracts from target the areas intersecting the reference.
- **Output Path**. Use the ellipsis button "..." to specify the path and file name for the resulting feature layer from the operation.
- **Run**. Button for executing the spatial processing.

#### Line

Operations such as Buffer and To Polygon may be performed for line layers. The analysis results are saved in a new shapefile and automatically loaded into the project as a new layer. It may also be imported as a model element feature.

- **Target Layers**. Line layer to be modified (i.e. to which the operation will be done).
- Method. Dropdown menu for selecting spatial operation to use:
  - **Buffer**. Creates buffer polygons around target layer features according to a buffer distance.
  - To Polygon. Converts the line features to polygons. Note that polyline features must be closed with overlapping start- and end-vertices to be converted to polygons.
- Buffer. Distance around the line features that will be buffered. If Method
   = Buffer.
- **Output Path**. Use the ellipsis button "..." to specify the path and file name for the resulting feature layer from the operation.
- Run. Button for executing the spatial processing.

| Spatial processing |                                                        |        | х |
|--------------------|--------------------------------------------------------|--------|---|
| Polygon Line       |                                                        |        |   |
| Target layers      | C:\Users\mikeadmin\Documents\Odense\LandUse\FlowPath   | ~      |   |
| Method             | Buffer                                                 | $\sim$ |   |
| Buffer             | 5                                                      |        |   |
| Output path        | hin \Documents \Odense \LandUse \FlowpathBuffer 5m.shp |        |   |
|                    | Run                                                    |        |   |

Figure 4.76 Spatial processing for lines

# 5 Boundary Conditions

A model boundary condition is defined as an external interference driving the behaviour of computed variables within the model domain.

Time series data representing rainfall, evaporation, water stages, and the like, are important drivers in model simulations. Boundary conditions describe the loading of these timeseries in the model.

# 5.1 Rain Gauges

Rain Gauges supply precipitation data for one or more catchments in a study area. The rainfall data can be either a user-defined time series (specified in Time Series editor as Type Rainfall) or come from an external file.

Several different popular rainfall file formats are supported, as well as a standard user-defined formats. These are:

- DSI-3240 and related formats which record hourly rainfall at U.S. National Weather Service (NWS) and Federal Aviation Agency stations, available online from the National Climatic Data Center (NCDC) at www.ncdc.noaa.gov/oa/ncdc.html.
- DSI-3260 and related formats which record fifteen minute rainfall at NWS stations, also available online from NCDC.
- HLY03 and HLY21 formats for hourly rainfall at Canadian stations, available online from Environment Canada at www.climate.weatheroffice.ec.gc.ca.
- FIF21 format for fifteen minute rainfall at Canadian stations, also available online from Environment Canada.
- A standard user-prepared format where each line of the file contains the station ID, year, month, day, hour, minute, and non-zero precipitation reading, all separated by one or more spaces. An excerpt from the user-prepared format might look as follows:

STA01200461200000.12STA01200461201000.04STA01200462216000.07

When a file is used as a source of rain gauge data, the user must supply the name of the file and the name of the recording station referenced in the file.

For the standard user-prepared format, the rainfall type (e.g., intensity or volume), recording time interval, and depth units must also be supplied as rain gauge properties.

For other file types these properties are defined by their respective file formats and are automatically recognized by SWMM.



The SWMM Rain Gauge editor organizes the related input data for the rainfall data into the following groups:

- Identification. General identification and location information.
- Rain Gauge Properties. Source data and data format information.

| Raingau            | ige                   |        |                   |              |         |                     |   |                       |         |     | х |
|--------------------|-----------------------|--------|-------------------|--------------|---------|---------------------|---|-----------------------|---------|-----|---|
| - Iden<br>ID       | tification<br>Windsor |        |                   | X<br>Y       |         | 025673.9914725 [ft] |   | Insert<br>Delete      |         |     |   |
| Raing              | auge properties       | ;      |                   |              |         |                     |   |                       |         |     |   |
| Source data format |                       |        |                   |              |         |                     |   |                       |         | ٦   |   |
| ۲                  | FILE                  |        | CSO_1year_Oct     | 1951.dat .   |         |                     |   |                       |         |     |   |
|                    | Station name          |        |                   | 1            |         |                     |   |                       |         |     |   |
|                    | Unit type             |        | 💿 in              | ⊖ mm         |         |                     |   |                       |         |     |   |
| 0                  | TIMESERIES            |        |                   |              |         |                     |   |                       |         |     |   |
| De                 | escription            |        |                   |              |         |                     |   |                       |         |     |   |
| Fo                 | rmat                  |        | VOLUME            | $\sim$       |         |                     |   |                       |         |     |   |
| Tir                | ne interval           |        |                   | 0.25 [h]     |         |                     |   |                       |         |     |   |
| Sn                 | iow catch defici      | ency c | orrection factor, |              |         | 1                   |   |                       |         |     |   |
|                    |                       |        |                   |              |         |                     |   |                       |         | _   |   |
|                    | ID                    |        | ✓ ALL             | ~            | Clear   | Show selected       | d | Show data errors      |         |     |   |
|                    | ID                    | Хсо    | ordinate [ft]     | Y coordinate | [ft]    | Source data format  |   | File                  | Station |     |   |
| 1                  | Bradley               | 101    | 18363.03684814    | 902541.555   | 5205181 | FILE                | • | CSO_1year_Oct1951.dat | 1       |     | - |
| 2                  | MDC-RG-6              | 101    | 15421.96895429    | 841019.870   | 150092  | FILE                | • | CSO_1year_Oct1951.dat | 1       |     | - |
| 3                  | MDC-RG-7              | 101    | 16590.47129129    | 836879.235   | 5831226 | FILE                | • | CSO_1year_Oct1951.dat | 1       |     | - |
| 4                  | Newington             | 10     | 06118.2573537     | 816159.729   | 9426393 | FILE                | • | CSO_1year_Oct1951.dat | 1       | - 1 | • |
| 5                  | MDC-RG-5              | 101    | 14148.60721567    | 846347.268   | 8622272 | FILE                |   | CSO_1year_Oct1951.dat |         |     | - |
| 6                  | WestHartford          |        | 3217.576557224    |              |         |                     | - | CSO_1year_Oct1951.dat |         |     | - |
| 7                  | MDC-RG-4              |        | 25546.38617578    | 831671.767   |         |                     | • | CSO_1year_Oct1951.dat |         |     | • |
| 8                  | MDC-RG-2              | 102    | 23819.10812406    | 850547.276   | 595042  | FILE                | • | CSO_1year_Oct1951.dat | 1       |     | - |
| <                  |                       |        |                   |              |         |                     |   |                       |         |     | > |

Figure 5.1 The SWMM Rain Gauge editor

### Identification

The identification group holds rain gauge ID and location information. Use the Insert or Delete buttons to add or remove records from the editor, respectively.



| Edit field | Description                | Used or<br>required by<br>simulations | Field name in datastructure |
|------------|----------------------------|---------------------------------------|-----------------------------|
| ID         | ID of Rain gauge           | Yes                                   | MUID                        |
| Х          | X coordinate of rain gauge | Yes                                   | GeomX                       |
| Y          | Y coordinate of rain gauge | Yes                                   | GeomY                       |

#### Table 5.1 Edit fields in the Rain Gauge Identification group (mss\_Raingauge)

### **Rain Gauge Properties**

Define the data source for rain gauges under the Rain Gauge Properties tab page of the editor.

| Edit field                                  | Description                                                                                                                                                                         | Used or<br>required by<br>simulations | Field name in datastructure |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Source Data<br>Format<br>Radio but-<br>tons | Radio buttons for defining<br>source data format:<br>FILE<br>TIMESERIES                                                                                                             | Yes                                   | TypeNo                      |
| FILE                                        | Name of rainfall data file                                                                                                                                                          | Yes<br>If TypeNo = 1                  | FileNameSeries              |
| Station<br>Name                             | Station ID in the data file                                                                                                                                                         | Yes<br>If TypeNo = 1                  | StationNumber               |
| Unit Type                                   | Unit type (in or mm)<br>Depth units (IN or MM) for rain-<br>fall values in user-prepared<br>files (other standard file for-<br>mats have fixed units depend-<br>ing on the format). | Yes<br>If TypeNo = 1                  | UnitNo                      |
| TIME-<br>SERIES                             | ID of Time Series item                                                                                                                                                              | Yes<br>If TypeNo = 2                  | TimeSeriesID                |
| Description                                 | Optional rain gauge record description                                                                                                                                              | No                                    | Description                 |
| Format                                      | Rainfall data value format:<br>INTENSITY<br>VOLUME<br>CUMULATIVE                                                                                                                    | Yes<br>If TypeNo = 2                  | FormNo                      |

#### Table 5.2 Edit fields in the Rain Gauge Properties tab page (mss\_Raingauge)

| Edit field                                            | Description                                                                                             | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Time Interval                                         | Time interval between read-<br>ings in the timeseries in deci-<br>mal hours or hours:minutes<br>format. | Yes<br>If TypeNo = 2                  | TimeInterval                |
| Snow Catch<br>Deficiency<br>Correction<br>Factor, SCF | Snow catch deficiency correc-<br>tion factor that corrects read-<br>ings for snowfall.                  | Yes                                   | Scf                         |

#### Table 5.2 Edit fields in the Rain Gauge Properties tab page (mss\_Raingauge)

The following formats are supported when using TIMESERIES for rain gauge data:

- **INTENSITY**. Each value is an average rate (in/h or mm/h) over the recording interval.
- **VOLUME**. Each value is the volume of rain that fell over the recording interval (in or mm).
- CUMULATIVE. Each value represents the cumulative rainfall that has occurred since the start of the last series of non-zero values (in or mm).

# 5.2 Dry Weather Flow

Dry Weather Flows are continuous inflows that typically reflect the contribution from sanitary sewage in sewer systems or base flows in pipes and stream channels. They are represented by an average inflow rate that can be periodically adjusted on a monthly, daily, and hourly basis by applying Time Patterns multipliers to this average value.

The SWMM Dry Weather Flow editor organizes the related input data for each dry weather inflow into the following groups:

- Identification. The Identification group holds Dry Weather Flow setup ID and connectivity information. Use the Insert or Delete buttons to add or remove records from the editor, respectively.
- Flow Data. Define flow values and associated patterns under the Flow Data group.
- **Pollutants.** Define pollutants attached to dry weather flow under the Pollutants group.

| Dry weather flow                                                                        | οx      |
|-----------------------------------------------------------------------------------------|---------|
| Identification                                                                          |         |
| Identification                                                                          |         |
| ID CDM140 Load to CDM140                                                                |         |
| Description                                                                             |         |
|                                                                                         |         |
| Flow data                                                                               |         |
| Average flow 0.0234 [Mgal/d]                                                            |         |
|                                                                                         |         |
|                                                                                         |         |
| Week hourly         ParkEast_HourlyWD          Weekend hourly         ParkEast_HourlyWE |         |
|                                                                                         |         |
| Pollutants                                                                              |         |
| Attach pollutants to dry weather flow                                                   |         |
|                                                                                         | -       |
| Insert Delete 0/0 rows, 0 selected                                                      |         |
| Pollutant data                                                                          |         |
| Pollutant ID Base value Use monthly pattern Monthly pattern Use daily pattern           | ern     |
|                                                                                         |         |
| <                                                                                       | ~       |
|                                                                                         | _       |
| ID V ALL V Clear Show selected Show data err                                            | ors 1/2 |
| Dry weather flow ID Load to Description Average flow [Mgal/d] Monthly Daily Week h      | ourly ^ |
|                                                                                         | ouny    |
| ▶ 1 CDM140 CDM140 0.0234 ParkEas                                                        | _       |
| 2 CDM150 CDM150 0.025532 LowerGu                                                        |         |
| 3 CDM234 CDM234 0.0002 NM2_Ho                                                           | · ·     |
|                                                                                         |         |

Figure 5.2 The SWMM Dry Weather Flow editor

### Identification and Flow Data

The Identification group holds Dry Weather Flow ID and connectivity information. Use the Insert or Delete buttons to add or remove records from the editor, respectively.

Define associated flow values and patterns for the DWF setup under the Flow Data group.

| Edit field  | Description                               | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------|-------------------------------------------|---------------------------------------|-----------------------------|
|             | Identificatio                             | n                                     |                             |
| ID          | ID Dry Weather Flow                       | Yes                                   | MUID                        |
| Load To     | ID of Node ID for DWF load                | Yes                                   | NodelD                      |
| Description | Optional description for the<br>DWF setup | No                                    | Description                 |

| Table 5.3 | Edit fields in the D | ry Weather Flow edito                 | r (mss DWF) |
|-----------|----------------------|---------------------------------------|-------------|
|           |                      | · · · · · · · · · · · · · · · · · · · |             |



| Edit field        | Description                         | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------------|-------------------------------------|---------------------------------------|-----------------------------|
|                   | Flow Data                           |                                       |                             |
| Average<br>Flow   | Average DWF value                   | Yes                                   | FlowValue                   |
| Monthly           | Monthly Pattern ID                  | No                                    | PatternMonthID              |
| Daily             | Daily Pattern ID                    | No                                    | PatternWeekID               |
| Week Hourly       | Hourly Pattern ID for weekdays      | No                                    | PatternWeek-<br>HourlyID    |
| Weekend<br>Hourly | Hourly Pattern ID for week-<br>ends | No                                    | PatternWeek-<br>endHourlyID |

#### Table 5.3 Edit fields in the Dry Weather Flow editor (mss\_DWF)

#### **Pollutants**

Define pollutants attached to dry weather flows under the Pollutants group. Tick on the 'Attach pollutants to dry weather flow' option to include pollutants in the DWF setup. Specify pollutant parameters in the secondary table.

#### Table 5.4 Edit fields in the Dry Weather Flow Pollutants Group (mss\_DWFD)

| Edit field                                       | Description                                                                | Used or<br>required by<br>simulations | Field name in datastructure |
|--------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Attach Pol-<br>lutants to<br>Dry Weather<br>Flow | Option to activate/define a<br>DWF pollutant component for a<br>simulation | Yes                                   | PollutNo                    |
| Pollutant ID                                     | ID of Pollutant                                                            | Yes<br>If PollutNo = 1                | PollutantID                 |
| Base Value                                       | Base value of pollutant                                                    | Yes<br>If PollutNo = 1                | BValue                      |
| Use Monthly<br>Pattern                           | Option to use a monthly pollut-<br>ant pattern                             | Yes<br>If PollutNo = 1                | UseMonthlyPtn               |
| Monthly                                          | ID of Pattern of Monthly type                                              | Yes<br>If UseWeek-<br>endPtn = 1      | PatternMonthID              |



| Edit field               | Description                                                     | Used or<br>required by<br>simulations | Field name in datastructure |
|--------------------------|-----------------------------------------------------------------|---------------------------------------|-----------------------------|
| Use Daily<br>Pattern     | Option to use a daily pollutant pattern                         | Yes<br>If PollutNo = 1                | UseDailyPtn                 |
| Daily                    | ID of Pattern of Daily type                                     | Yes<br>If UseDailyPtn =<br>1          | PatternWeekID               |
| Use hourly pattern       | Option to use an hourly pollut-<br>ant pattern                  | Yes<br>If PollutNo = 1                | UseHourlyPtn                |
| Week hourly              | ID of Pattern of Hourly type                                    | Yes<br>If UseHourlyPtn<br>= 1         | PatternWeek-<br>HourlyID    |
| Use Week-<br>end Pattern | Option to use a different hourly pollutant pattern for weekends | Yes<br>If PollutNo = 1                | UseWeek-<br>endPtn          |
| Weekend<br>hourly        | ID of Pattern of Weekend type                                   | Yes<br>If UseWeek-<br>endPtn = 1      | PatternWeek-<br>endHourlyID |

#### Table 5.4 Edit fields in the Dry Weather Flow Pollutants Group (mss\_DWFD)

### 5.3 Inflows

Direct Inflows are user-defined time series of inflows added directly into a node. They can be used for flow and water quality routing in the absence of runoff computations (as in a study area where no catchments are defined).

A pollutant component can only be defined as inflow to the system if it is attached to a flow component.

The CS SWMM Inflow editor organizes the related input data for each inflow into the following groups:

- Identification. General identification and connectivity information.
- **Time Series**. Associated time series item.
- **Base Flow**. Base flow value and associated variation pattern.
- **Pollutants**. Pollutant attached to the inflow.

| Inflows | 1                                          |               |                |         |             |           |             |           |             |       | х     |
|---------|--------------------------------------------|---------------|----------------|---------|-------------|-----------|-------------|-----------|-------------|-------|-------|
| Ider    | ntification                                |               |                |         |             |           |             |           |             |       |       |
| п       | D                                          | CDM2378596    |                | 1       |             |           |             |           |             |       |       |
| I       | nflow to                                   | CDM2378596    |                |         | k           |           |             |           |             |       |       |
| D       | escription                                 |               |                | ]       |             |           |             |           |             |       |       |
| Time    | e series                                   |               |                |         |             |           |             |           |             |       |       |
| I       | D                                          | ConnRiverFlow | v_MGD          |         | Scale       | factor    |             | 1         |             |       |       |
| Base    | e flow                                     |               |                |         |             |           |             |           |             |       |       |
| В       | ase flow                                   |               | 0 [Mgal/d]     | Patter  | n ID        |           |             |           |             |       |       |
| <b></b> | utants<br>Attach pollutant<br>Isert Delete |               | rs, 0 selected |         | Po          | ollutants | inflows     |           |             |       |       |
|         | Pollutant I                                | ID Format     | Use time se    | eries   | Time series | ID        | Scale facto | or [()]   | Base value  |       | Use   |
| <       |                                            |               |                |         |             |           |             |           |             |       |       |
|         | IC                                         | ) ~           | ALL            | ~ C     | ear 🗌 :     | Show se   | lected      | Show da   | ta errors 1 | /1 ro | ws, ( |
|         |                                            |               |                | _       |             | Inflo     |             |           |             | _     |       |
|         | ID                                         | Inflow to     | Description    | Time se |             | Scale f   |             | Base flow |             | Pat   | tern  |
| ▶ 1     | CDM2378596                                 | CDM2378596    |                | ConnRiv | erFlow_MGD  |           | 1           |           | 0           |       |       |
|         |                                            |               |                |         |             |           |             |           |             |       |       |
| <       |                                            |               |                |         |             |           |             |           |             |       | >     |

Figure 5.3 The SWMM Inflows editor

### Identification, Time Series, and Base Flow

The Identification group holds inflow boundary ID and connectivity information. Use the Insert or Delete buttons to add or remove records from the editor, respectively.

Define a time series to describe the time varying inflow component under the Time Series group.

The Base Flow group is where the base flow component of the inflow is defined.

| Edit field | Description                          | Used or<br>required by<br>simulations | Field name in<br>datastructure |
|------------|--------------------------------------|---------------------------------------|--------------------------------|
| ID         | Inflow boundary ID                   | Yes                                   | MUID                           |
| Inflow To  | ID of node where inflow is<br>loaded | Yes                                   | NodelD                         |

| Table 5.5 | Edit fields in | the Inflows | editor ( | mss | Inflow) |
|-----------|----------------|-------------|----------|-----|---------|
|           |                |             |          |     |         |



| Edit field        | Description                                                                   | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------------|-------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Description       | Optional description for the<br>inflow boundary                               | No                                    | Description                 |
| Time Series<br>ID | ID of flow time series describ-<br>ing time-varying inflows                   | Yes                                   | FlowSeriesID                |
| Scale Factor      | Factor multiplied to time series values                                       | Yes                                   | ScaleFlowFac-<br>tor        |
| Base Flow         | Constant base flow value. If left<br>blank then no base inflow is<br>assumed. | Yes                                   | BaseFlowValue               |
| Pattern ID        | Optional time pattern with fac-<br>tors for adjusting base flows              | Yes                                   | BaselinePat-<br>ternID      |

#### Table 5.5Edit fields in the Inflows editor (mss\_Inflow)

#### Pollutants

Define pollutants attached to inflows under the Pollutants group. Tick on the 'Attach pollutants to inflow' option to include pollutants in the Inflow boundary setup. Specify pollutant parameters in the secondary table.

#### Table 5.6 Edit fields in the Inflows editor Pollutants group (mss\_InflowD)

| Edit field                          | Description                                                 | Used or<br>required by<br>simulations | Field name in<br>datastructure |
|-------------------------------------|-------------------------------------------------------------|---------------------------------------|--------------------------------|
| Attach Pol-<br>lutants to<br>Inflow | Option to activate/define a<br>inflow pollutant setup       | Yes                                   | PollutNo                       |
| Pollutant ID                        | ID of pollutant associated with the inflow boundary         | Yes<br>If PollutNo = 1                | PollutantID                    |
| Format                              | Pollutant data Format:<br>Mass<br>Concentration             | Yes<br>If PollutNo = 1                | FormatNo                       |
| Use Time<br>Series                  | Option to use a time series to describe pollutant variation | Yes<br>If PollutNo = 1                | UseTimeSeries                  |
| Time Series<br>ID                   | ID of pollutograph                                          | Yes<br>If UseTime-<br>Series = 1      | PollutSeriesID                 |
| Scale Factor                        | Multiplier for adjusting time series values                 | Yes<br>If UseTime-<br>Series = 1      | ScalePollut-<br>Value          |



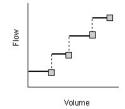
| Edit field   | Description                                                                                                     | Used or<br>required by<br>simulations         | Field name in datastructure |
|--------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------|
| Base Value   | Pollutant base value                                                                                            | Yes<br>If PollutNo = 1                        | BasePollutValue             |
| Use Pattern  | Option to use a time pattern to describe pollutant base value variation                                         | Yes<br>If PollutNo = 1                        | UsePattern                  |
| Base Pattern | Time pattern ID whose factors<br>adjust base pollutant values                                                   | Yes<br>If UsePattern =<br>1                   | BasePatternID               |
| Unit Factor  | A factor for converting the units<br>of pollutant mass flow rate into<br>concentration mass units per<br>second | Yes<br>If PollutNo = 1<br>and FormatNo =<br>2 | ConvFactor                  |

#### Table 5.6 Edit fields in the Inflows editor Pollutants group (mss\_InflowD)

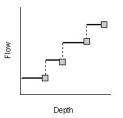


# 6 Tables

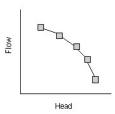
The SWMM Tables Section in MIKE+ holds data for the following tabular data types:


- Curves and Relations
- Materials

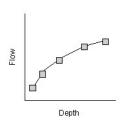
Tabular data are used to describe functional relationships between two quantities.


# 6.1 Curves and Relations

In the Curves and Relations editor, a number of tabular data used in other data dialogs are specified. The following curve types are available for SWMM models:


- **Storage**. Defines the geometry of a Storage Unit node by describing the variation of surface area as a function of water depth
- **Divider**. Defines how the diverted outflow from a Flow Divider node is related to the total inflow.
- **Tidal Curve**. Defines how the stage at an Outfall node varies by the hour of the day.
- **Rating**. Relates flow through an Outlet link to the head difference across the outlet
- **Control**. Sets how the control setting of a pump or flow regulator varies as a function of some control variable (such as water level at a particular node) as specified in control rule. Is also used to adjust the flow from an LID unit's underdrain based on head.
- **Shape**. Describes how the width of a customized cross-sectional shape varies with height for a Conduit link.
- Weir. Defines how a weir discharge coefficient varies with head.
- **Pump curve.** Relates flow through a pump to the depth or volume at the upstream node or to the head delivered by the pump. The following types of pump curves are available:
  - **Pump Curve 1 (Volume-Flow)**. An off-line pump with a wet well where flow increases incrementally with wet well volume




- **Pump Curve 2 (Depth-Flow)**. An in-line pump where flow increases incrementally with inlet node depth



 Pump Curve 3 (Head-Flow). An in-line pump where flow varies continuously with head difference between the inlet and outlet nodes



 Pump Curve 4 (Depth-Flow). A variable speed in-line pump where flow varies continuously with node depth



The Tabular Data (Curves) editor organizes the related input data into the following groups:

- Identification. General identification and type information.
- **Curve Values**. Secondary table containing tabular data values.



|                         | entification                                                     |                                                                                               |        |                                                                                                                         |               |                |                         |                                       |      |                                                             |                                                   |    |
|-------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-------------------------|---------------------------------------|------|-------------------------------------------------------------|---------------------------------------------------|----|
|                         |                                                                  |                                                                                               |        |                                                                                                                         |               | Insert         |                         |                                       |      | S                                                           | jouthMeadowsPond                                  |    |
| 1                       | D SouthMeadows                                                   | Pond Type                                                                                     | Stora  | ge                                                                                                                      | ~             |                |                         | 260000.00                             |      |                                                             |                                                   |    |
|                         |                                                                  |                                                                                               |        |                                                                                                                         |               | Delete         |                         | 240000.00                             |      |                                                             |                                                   | /  |
|                         | cription                                                         |                                                                                               |        | 1                                                                                                                       |               |                |                         | 200000.00<br>180000.00<br>160000.00   |      |                                                             |                                                   | /  |
| Description Add picture |                                                                  |                                                                                               |        | 20000.00<br>150000.00<br>↓ 12000.00<br>± 12000.00<br>± 00000.00<br>± 00000.00<br>40000.00<br>20000.00<br>-20000.00<br>0 |               |                |                         |                                       | 20   |                                                             |                                                   |    |
|                         |                                                                  |                                                                                               |        |                                                                                                                         |               |                |                         | ō                                     |      |                                                             |                                                   | 20 |
|                         | D                                                                | √ ALL                                                                                         | ~      | Clear                                                                                                                   | Show selected | Show data erro | Inser                   | 0                                     | Up   | Down                                                        | Depth [ft]                                        | 20 |
|                         | D                                                                | √ ALL<br>Carves ar                                                                            |        | _                                                                                                                       | Show selected | Show data erro | Insert                  | 0                                     | Up   | _                                                           | Depth [ft]                                        | 20 |
|                         | ID                                                               |                                                                                               | nd rei | _                                                                                                                       |               | Show data erro | Inser                   | 0<br>Delete                           |      | _                                                           | Depth [ft]<br>Area [ft^2]<br>1/7 rows, 0 selected | 20 |
| 1                       |                                                                  | Curves an                                                                                     | nd rei | lations                                                                                                                 |               |                | Inser                   |                                       | Area | Down                                                        | Depth [ft]<br>Area [ft^2]<br>1/7 rows, 0 selected | 20 |
| 1 2                     | ID                                                               | Curves ar<br>Type                                                                             | nd rei | lations                                                                                                                 |               |                |                         | Depth [ft]                            | Area | Down<br>[ft^2]                                              | Depth [ft]<br>Area [ft^2]<br>1/7 rows, 0 selected | 20 |
| 2                       | ID<br>a2<br>a3                                                   | Curves an<br>Type<br>Storage                                                                  | nd rei | lations                                                                                                                 |               |                | ► 1                     | Depth [ft]                            | Area | Down<br>[ft-2]<br>0                                         | Depth [ft]<br>Area [ft^2]<br>1/7 rows, 0 selected | 20 |
| 2                       | ID<br>a2<br>a3                                                   | Curves ar<br>Type<br>Storage<br>Storage                                                       | nd rei | lations                                                                                                                 |               |                | ▶ 1<br>2                | Depth [ft]<br>0<br>4                  | Area | Down<br>[ft^2]<br>0<br>65340                                | Depth [ft]<br>Area [ft^2]<br>1/7 rows, 0 selected | 20 |
| 2                       | ID<br>a2<br>a3<br>SouthMeado                                     | Curves ar<br>Type<br>Storage<br>Storage<br>Storage                                            | nd rei | lations                                                                                                                 |               |                | ▶ 1<br>2<br>3           | Depth [ft]<br>0<br>4<br>8             | Area | Down<br>[ft^2]<br>0<br>65340<br>87120                       | Depth [ft]<br>Area [ft^2]<br>1/7 rows, 0 selected | 20 |
| 2<br>3<br>4             | ID<br>a2<br>a3<br>SouthMeado<br>WPDynSep<br>WPWWPS               | Curves ar<br>Type<br>Storage<br>Storage<br>Storage<br>Pump Curve 1 (Volume-Fl                 | •      | lations                                                                                                                 |               |                | ▶ 1<br>2<br>3<br>4      | Depth [ft]<br>0<br>4<br>8<br>12       | Area | Down<br>[ft^2]<br>0<br>65340<br>87120<br>116160             | Depth [ft]<br>Area [ft^2]<br>1/7 rows, 0 selected | 20 |
| 2<br>3<br>4<br>5        | ID<br>a2<br>a3<br>SouthMeado<br>WPDynSep<br>WPWWPS<br>PUMPCURVEf | Curves an<br>Type<br>Storage<br>Storage<br>Pump Curve 1 (Volume-Fl<br>Pump Curve 1 (Volume-Fl | •      | lations                                                                                                                 |               |                | ▶ 1<br>2<br>3<br>4<br>5 | Depth [ft]<br>0<br>4<br>8<br>12<br>16 | Area | Down<br>[ft^2]<br>0<br>65340<br>87120<br>116160<br>155182.5 | Depth [ft]<br>Area [ft^2]<br>1/7 rows, 0 selected | 20 |



# Identification

The identification groupbox holds curve ID and Type information.

| Identi | fication         |      |         |        | Insert |
|--------|------------------|------|---------|--------|--------|
| ID     | SouthMeadowsPond | Туре | Storage | $\sim$ |        |
|        |                  |      | Storage |        | Delete |

#### Figure 6.2 The Identification groupbox

Use the Insert or Delete buttons to add or remove records from the editor, respectively. Records are added to the primary table on the lower left corner of the editor.

|     | ID             | ~            | ALL            | $\sim$ | Clear      |    | Show selected | Show data erro | rs |
|-----|----------------|--------------|----------------|--------|------------|----|---------------|----------------|----|
|     |                |              | Curves         | and    | relations  |    |               |                |    |
|     | ID 🔺           | Туре         |                |        | Descriptio | on |               |                | ^  |
| ▶ 1 | AirportRdPSDYN | Pump Curve 3 | 3 (Head-Flow)  | -      |            |    |               |                |    |
| 2   | AirpotRdT4     | Pump Curve 4 | 4 (Depth-Flow) | •      |            |    |               |                |    |
| 3   | ArmoryPS       | Pump Curve 3 | 3 (Head-Flow)  | •      |            |    |               |                |    |
| 4   | BushnellPS_1   | Pump Curve 3 | 3 (Head-Flow)  | -      |            |    |               |                |    |
| 5   | BushnellPS_2   | Pump Curve 3 | 3 (Head-Flow)  | -      |            |    |               |                |    |
| 6   | CHURCHSG       | Control      |                | -      |            |    |               |                |    |
| 7   | FishFryBase    | Pump Curve 4 | 4 (Depth-Flow) | -      |            |    |               |                |    |
| 8   | FishFryPSDYN   | Pump Curve 3 | 3 (Head-Flow)  | -      |            |    |               |                |    |
| 9   | FishFryT4      | Pump Curve 4 | 4 (Depth-Flow) | •      |            |    |               |                |    |
| 10  | FishFryTDH     | Pump Curve 3 | 3 (Head-Flow)  | -      |            |    |               |                |    |
| 11  | GBC_Horse10    | Shape        |                | -      |            |    |               |                | v  |



| Table 6.1 | Edit fields in the Curves and Relations Identification and Description |
|-----------|------------------------------------------------------------------------|
|           | groupbox                                                               |

| Edit field  | Description                                    | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------|------------------------------------------------|---------------------------------------|-----------------------------|
| ID          | Curve ID                                       | Yes                                   | MUID                        |
| Туре        | Type of curve                                  | Yes                                   | TypeNo                      |
| Description | User's descriptive information<br>on the curve | No                                    | Description                 |

Add optional descriptive information for a curve on the Description tab page. An option for adding an images is also available.

| Description |             |
|-------------|-------------|
| Description | Add picture |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |



# **Curve Values**

After inserting a new tabular data item, define the corresponding data values under the Curve Values table (i.e. secondary table to the right of primary table). Secondary table parameters/columns that should be filled vary depending on the curve and relation type.

A plot of the tabular data is also shown on the upper right corner of the editor.

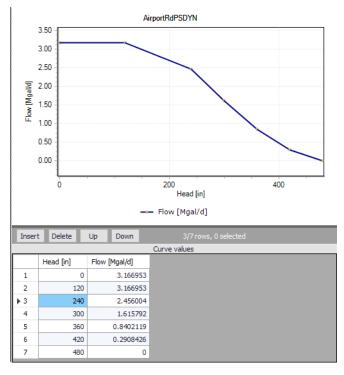



Figure 6.5 Secondary table containing Curves Values on the lower right side of the Curves and Relations editor. Also shown is the tabular data plot above the secondary Curve Values table.

| Table 6.2 | Edit fields in the Curve | Values secondary table | (mss_Tab) |
|-----------|--------------------------|------------------------|-----------|
|-----------|--------------------------|------------------------|-----------|

| Edit field | Description                                                                            | Used or required by simulations | Field name in datastructure |
|------------|----------------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| 'Value1'   | Value1, depend-<br>ent on Type of<br>curve (Depth,<br>Inflow, Hour, Vol-<br>ume, Head) | Yes                             | Value1                      |
| 'Value2'   | Value2, depend-<br>ent on Type of<br>curve (Area, Out-<br>flow, Stage, Flow)           | Yes                             | Value2                      |

# 6.2 Materials

In MIKE+, a link may be characterised by material, which determines the Manning friction coefficient (Manning), the Colebrook-White coefficient (EQ Roughness), or Hazen-Williams coefficient (H-W Coefficient) for the conduit.



It is optional to use either the default roughness values for specific materials or local values.

Specification of the different kind of materials and roughness coefficients is done through the Materials editor.

| lateria                                                                                         | als                                                                                           |                                  |                                  |                    |                                                                           |        |                                                     |                         |        |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------|---------------------------------------------------------------------------|--------|-----------------------------------------------------|-------------------------|--------|
| Ider<br>II                                                                                      | ntification<br>D Cement Mortar                                                                |                                  |                                  |                    |                                                                           |        | Insert<br>Delete                                    |                         |        |
| Initia                                                                                          | al value Description                                                                          | 1                                |                                  |                    |                                                                           |        |                                                     |                         |        |
| Manning (M)         77         [m^(1/3)/s]           EQ roughness         3.28084         [mft] |                                                                                               |                                  |                                  |                    |                                                                           |        |                                                     |                         |        |
|                                                                                                 | H-W coefficient 120                                                                           |                                  |                                  |                    |                                                                           |        |                                                     |                         |        |
|                                                                                                 |                                                                                               |                                  |                                  |                    |                                                                           |        |                                                     |                         |        |
|                                                                                                 |                                                                                               |                                  |                                  |                    |                                                                           |        |                                                     |                         |        |
|                                                                                                 |                                                                                               |                                  |                                  |                    |                                                                           |        |                                                     |                         |        |
|                                                                                                 | ID                                                                                            | ~ ALL                            | ~                                | Clear              | Show se                                                                   | lected | Show da                                             | ta errors               | 1/9 ro |
|                                                                                                 | ID                                                                                            | V ALL<br>Manning (M) [m^(1/3)/s] |                                  | Clear<br>EQ roughn |                                                                           |        | Show da                                             | ta errors<br>Descriptic |        |
| 1                                                                                               |                                                                                               |                                  |                                  |                    |                                                                           |        |                                                     | 1                       |        |
|                                                                                                 | ID                                                                                            |                                  |                                  |                    | ess [mft]                                                                 |        | efficient                                           | 1                       |        |
| 1<br>2<br>3                                                                                     | ID<br>Cement Mortar                                                                           |                                  | 77                               |                    | ess [mft]<br>3.28084                                                      |        | efficient<br>120                                    | 1                       |        |
| 2                                                                                               | ID<br>Cement Mortar<br>Ceramics                                                               |                                  | 77<br>70                         |                    | ess [mft]<br>3.28084<br>8.2021                                            |        | efficient<br>120<br>110                             | 1                       |        |
| 2<br>3                                                                                          | ID<br>Cement Mortar<br>Ceramics<br>Concrete (Normal)                                          | Manning (M) [m^(1/3)/s]          | 77<br>70<br>75                   |                    | ess [mft]<br>3.28084<br>8.2021<br>4.92126                                 |        | efficient<br>120<br>110<br>120                      | 1                       |        |
| 2<br>3<br>4                                                                                     | ID<br>Cement Mortar<br>Ceramics<br>Concrete (Normal)<br>Concrete (Rough)                      | Manning (M) [m^(1/3)/s]          | 77<br>70<br>75<br>68             |                    | ess [mft]<br>3.28084<br>8.2021<br>4.92126<br>9.84252                      |        | befficient<br>120<br>110<br>120<br>100              | 1                       |        |
| 2<br>3<br>4<br>5                                                                                | ID<br>Cement Mortar<br>Ceramics<br>Concrete (Normal)<br>Concrete (Rough)<br>Concrete (Smooth) | Manning (M) [m^(1/3)/s]          | 77<br>70<br>75<br>68<br>85       |                    | ess [mft]<br>3.28084<br>8.2021<br>4.92126<br>9.84252<br>1.64042           |        | pefficient<br>120<br>110<br>120<br>100<br>140       | 1                       |        |
| 3<br>4<br>5<br>6                                                                                | ID<br>Ceramics<br>Concrete (Normal)<br>Concrete (Rough)<br>Concrete (Smooth)<br>Iron (cast)   | Manning (M) [m^(1/3)/s]          | 77<br>70<br>75<br>68<br>85<br>70 |                    | ess [mft]<br>3.28084<br>8.2021<br>4.92126<br>9.84252<br>1.64042<br>8.2021 |        | efficient<br>120<br>110<br>120<br>100<br>140<br>120 | 1                       |        |

#### Figure 6.6 Materials editor

MIKE+ has the following pre-defined Material types with friction loss properties:

- Cement Mortar
- Ceramics
- Concrete (Normal)
- Concrete (Rough)
- Concrete (Smooth)
- Iron (cast)
- Iron (wrought)
- Plastic
- Stone

| Edit field      | Description                                          | Used or required by simulations                                  | Field name in datastructure |
|-----------------|------------------------------------------------------|------------------------------------------------------------------|-----------------------------|
| ID              | Material type ID                                     | Yes                                                              | MUID                        |
| Manning         | Manning roughness<br>value                           | Yes<br>If 'Manning Explicit'<br>or 'Manning Implicit'<br>is used | Manning                     |
| EQ Roughness    | Equivalent rough-<br>ness                            | Yes<br>If 'Colebrook-White'<br>formulation is used               | EQRough                     |
| H-W Coefficient | Hazen-Williams<br>roughness coeffi-<br>cient         | Yes<br>If 'Hazen-Williams'<br>is used                            | HWCoef                      |
| Description     | User's descriptive<br>information on the<br>material | Optional                                                         | Description                 |

#### Table 6.3Edit fields in the Materials editor (ms\_Material)





# 7 Time Series

Time series items are used to describe the variation of parameters over time.

# 7.1 Time Series

Time Series may be user specified or taken from external measured data of e.g. rainfall, evaporation, inflows to nodes of the drainage system, and water stage at outfall boundary nodes.

The following types of SWMM Time Series items may be defined in MIKE+:

- Rainfall
- Temperature
- Inflow hydrograph
- Evaporation
- Outfall stage
- Inflow pollutograph

Define Time Series items via the SWMM Time Series editor. The editor organizes time series data into the following groups:

- Identification. General identification and time series type information.
- Time Series Format. Set source of time series values.
- **Time Series Data Values**. Secondary table where values for internal time series are defined.

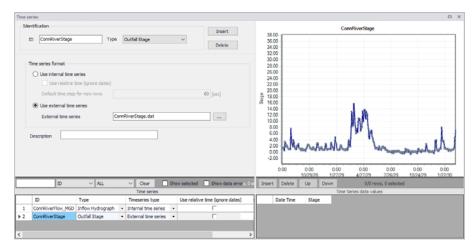



Figure 7.1 The SWMM Time Series editor



The time component of time series data may be defined as:

- Calendar date/time of day
- As elapsed hours since the start of the simulation (i.e. relative time)

For rainfall time series, it is only necessary to enter periods with non-zero rainfall amounts. SWMM interprets the rainfall value as a constant value lasting over the recording interval specified for the rain gage which utilizes the time series. For all other types of time series, SWMM uses interpolation to estimate values at times that fall in between the recorded values.

The SWMM engine supports the following external time series data formats:

- **Date / time / value format**. Dates are entered as month/day/year (e.g., 7/21/2004) and times in 24-hour military time format (e.g. 8:30 pm is 20:30). After the first date, additional dates need only be entered whenever a new day occurs.
- **Time / value format**. Times are entered as hours since simulation start. Time can either be decimal hours or military time since the start of a simulation (e.g., 2 days, 4 hours and 20 minutes can be entered as either 52.333 or 52:20).

Each entry is separated by one or more spaces or tab characters.

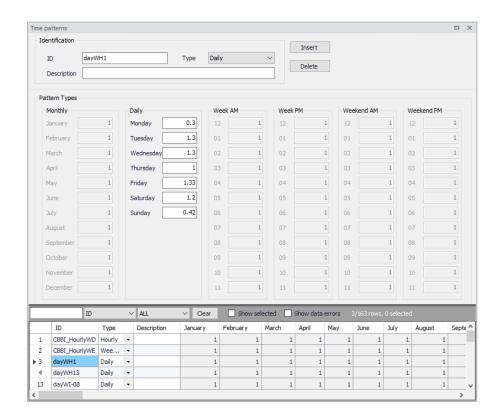
| Edit field                                  | Description                                                                                                                                                                                                     | Used or<br>required by<br>simulations | Field name in<br>datastructure |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|
| ID                                          | ID of Time Series                                                                                                                                                                                               | Yes                                   | MUID                           |
| Туре                                        | Type of Time Series:<br>Rainfall (TypeNo = 1)<br>Temperature (TypeNo = 2)<br>Inflow Hydrograph (TypeNo =<br>3)<br>Evaporation (TypeNo = 4)<br>Outfall Stage (TypeNo = 5)<br>Inflow Pollutograph (TypeNo =<br>6) | Yes                                   | TypeNo                         |
| Use Internal<br>Time Series<br>radio button | Option to define time series values directly on the interface                                                                                                                                                   | Yes                                   | TimeSeri-<br>esTypeNo = 1      |
| Use Rela-<br>tive Time<br>(Ignore<br>Dates) | Option to define time series<br>values with time axis relative to<br>simulation start                                                                                                                           | Yes<br>If TimeSeri-<br>esTypeNo = 1   | UseRelative-<br>Time           |

## Table 7.1Edit fields in the Time Series editor (mss\_Timeseries)



| Edit field                                       | Description                                                                                | Used or<br>required by<br>simulations | Field name in<br>datastructure                                          |
|--------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|
| Default Time<br>Step for new<br>Rows             | Time step between records<br>when inserting time series val-<br>ues in the secondary table | Yes<br>If TimeSeri-<br>esTypeNo = 1   | m_GlobalPa-<br>rame-<br>ter.SWMM.Time<br>Series_Del-<br>taT.ValueDouble |
| Use Exter-<br>nal Time<br>Series radio<br>button | Option to define time series values from an external file                                  | Yes                                   | TimeSeri-<br>esTypeNo = 2                                               |
| External<br>Time Series                          | Name and location of external time series file                                             | Yes<br>TimeSeri-<br>esTypeNo = 2      | ExternalTime-<br>SeriesFile                                             |
| Description                                      | Optional description for the time series item                                              | No                                    | Description                                                             |

#### Table 7.1 Edit fields in the Time Series editor (mss\_Timeseries)


# 7.2 Time Patterns

Time Patterns are used to describe the cyclic behaviour of parameter values and time series. Time patterns may be of the following types:

- Monthly. Defines a multiplier for each month of the year.
- **Daily**. Defines a multiplier for each day of the week.
- Hourly. Defines a multiplier for each hour from 12 AM to 11 PM.
- Weekend (Hourly). Defines hourly multipliers for weekend days.

The SWMM Time Patterns editor organizes the related input data for time patterns into the following groups:

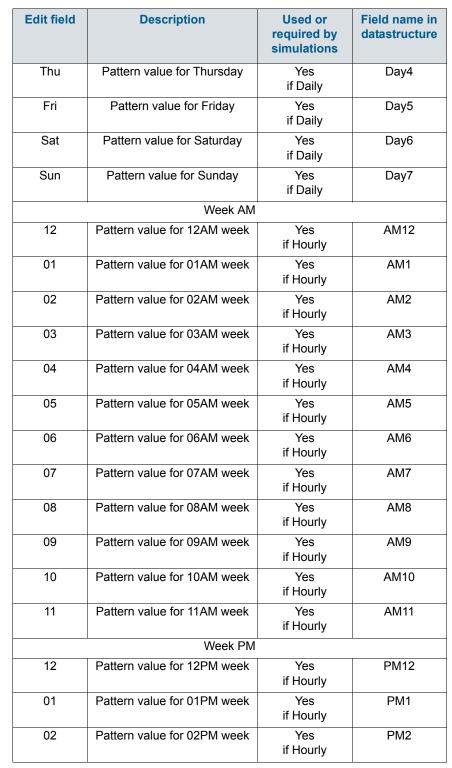
- **Identification**. General identification and pattern type information.
- **Pattern Data**. Pattern adjustment factors.





Identification

| Edit field  | Description                                            | Used or<br>required by<br>simulations | Field name in<br>datastructure |  |
|-------------|--------------------------------------------------------|---------------------------------------|--------------------------------|--|
| ID          | Pattern ID                                             | Yes                                   | MUID                           |  |
| Туре        | Pattern type:<br>Monthly<br>Daily<br>Hourly<br>Weekend | Yes                                   | ТуреNo                         |  |
| Description | Optional description for the<br>pattern                | No                                    | Description                    |  |

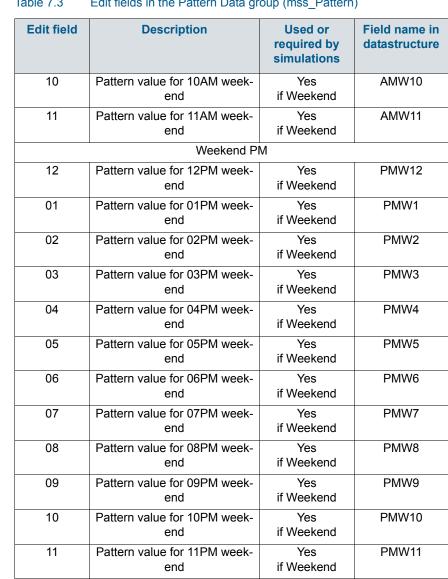

| Table 7.2 | Edit fields in the Time Patterns editor (mss Patterns | ern) |
|-----------|-------------------------------------------------------|------|
|           |                                                       |      |

# Pattern Data

Each pattern consists of a set of adjustment factors used as multipliers to a parameter base value (e.g. DWF, pollutants, catchment infiltration, etc.).

#### Table 7.3 Edit fields in the Pattern Data group (mss\_Pattern)

| Edit field | Description                 | Used or<br>required by<br>simulations | Field name in datastructure |  |  |  |  |  |
|------------|-----------------------------|---------------------------------------|-----------------------------|--|--|--|--|--|
|            | Monthly                     |                                       |                             |  |  |  |  |  |
| Jan        | Pattern value for January   | Yes<br>if Monthly                     | Mdr1                        |  |  |  |  |  |
| Feb        | Pattern value for February  | Yes<br>if Monthly                     | Mdr2                        |  |  |  |  |  |
| Mar        | Pattern value for March     | Yes<br>if Monthly                     | Mdr3                        |  |  |  |  |  |
| Apr        | Pattern value for April     | Yes<br>if Monthly                     | Mdr4                        |  |  |  |  |  |
| Мау        | Pattern value for May       | Yes<br>if Monthly                     | Mdr5                        |  |  |  |  |  |
| Jun        | Pattern value for June      | Yes<br>if Monthly                     | Mdr6                        |  |  |  |  |  |
| Jul        | Pattern value for July      | Yes<br>if Monthly                     | Mdr7                        |  |  |  |  |  |
| Aug        | Pattern value for August    | Yes<br>if Monthly                     | Mdr8                        |  |  |  |  |  |
| Sep        | Pattern value for September | Yes<br>if Monthly                     | Mdr9                        |  |  |  |  |  |
| Oct        | Pattern value for October   | Yes<br>if Monthly                     | Mdr10                       |  |  |  |  |  |
| Nov        | Pattern value for November  | Yes<br>if Monthly                     | Mdr11                       |  |  |  |  |  |
| Dec        | Pattern value for December  | Yes<br>if Monthly                     | Mdr12                       |  |  |  |  |  |
|            | Daily                       |                                       |                             |  |  |  |  |  |
| Mon        | Pattern value for Monday    | Yes<br>if Daily                       | Day1                        |  |  |  |  |  |
| Tue        | Pattern value for Tuesday   | Yes<br>if Daily                       | Day2                        |  |  |  |  |  |
| Wed        | Pattern value for Wednesday | Yes<br>if Daily                       | Day3                        |  |  |  |  |  |




| Table 7.3 | Edit fields in the Pattern | Data group (I | mss_Pattern) |
|-----------|----------------------------|---------------|--------------|
|-----------|----------------------------|---------------|--------------|



| Table 7.5  | Eait lields in the Pattern Data gr  |                                       | ')                          |
|------------|-------------------------------------|---------------------------------------|-----------------------------|
| Edit field | Description                         | Used or<br>required by<br>simulations | Field name in datastructure |
| 03         | Pattern value for 03PM week         | Yes<br>if Hourly                      | PM3                         |
| 04         | Pattern value for 04PM week         | Yes<br>if Hourly                      | PM4                         |
| 05         | Pattern value for 05PM week         | Yes<br>if Hourly                      | PM5                         |
| 06         | Pattern value for 06PM week         | Yes<br>if Hourly                      | PM6                         |
| 07         | Pattern value for 07PM week         | Yes<br>if Hourly                      | PM7                         |
| 08         | Pattern value for 08PM week         | Yes<br>if Hourly                      | PM8                         |
| 09         | Pattern value for 09PM week         | Yes<br>if Hourly                      | PM9                         |
| 10         | Pattern value for 10PM week         | Yes<br>if Hourly                      | PM10                        |
| 11         | Pattern value for 11PM week         | Yes<br>if Hourly                      | PM11                        |
|            | Weekend Al                          | N                                     |                             |
| 12         | Pattern value for 12AM week-<br>end | Yes<br>if Weekend                     | AMW12                       |
| 01         | Pattern value for 01AM week-<br>end | Yes<br>if Weekend                     | AMW1                        |
| 02         | Pattern value for 02AM week-<br>end | Yes<br>if Weekend                     | AMW2                        |
| 03         | Pattern value for 03AM week-<br>end | Yes<br>if Weekend                     | AMW3                        |
| 04         | Pattern value for 04AM week-<br>end | Yes<br>if Weekend                     | AMW4                        |
| 05         | Pattern value for 05AM week-<br>end | Yes<br>if Weekend                     | AMW5                        |
| 06         | Pattern value for 06AM week-<br>end | Yes<br>if Weekend                     | AMW6                        |
| 07         | Pattern value for 07AM week-<br>end | Yes<br>if Weekend                     | AMW7                        |
| 08         | Pattern value for 08AM week-<br>end | Yes<br>if Weekend                     | AMW8                        |
| 09         | Pattern value for 09AM week-<br>end | Yes<br>if Weekend                     | AMW9                        |

#### Table 7.3Edit fields in the Pattern Data group (mss\_Pattern)



#### Table 7.3 Edit fields in the Pattern Data group (mss\_Pattern)



# 8 Water Quality Modelling with SWMM

SWMM models in MIKE+ can model both the quantity and quality of runoff generated within catchments, as well as the flow rates, depths, and water quality in pipes and channels over a simulation period.

Water quality routing within conduits assumes that the conduit behaves as a continuously stirred tank reactor (CSTR). Although a plug flow reactor assumption might be more realistic, the differences will be small if the travel time through the conduit is on the same order as the routing time step. The concentration of a constituent exiting the conduit at the end of a time step is found by integrating the conservation of mass equation, using average values for quantities that might change over the time step such as flow rate and conduit volume.

Water quality modelling within storage unit nodes follows the same approach used for conduits. For other types of nodes that have no volume, the quality of water exiting the node is simply the mixture concentration of all water entering the node. The production and fate of pollutant loads associated with runoff is also modelled.

The following processes can be modelled for any number of user-defined water quality constituents:

- Dry-weather pollutant buildup over different land uses
- Pollutant washoff from each land use during storm events
- Direct contribution of rainfall deposition
- Reduction in dry-weather buildup due to street cleaning
- Reduction in washoff load due to BMPs
- Entry of dry weather sanitary flows and user-specified external inflows at any point in the conveyance system
- Routing of water quality constituents through the pipe/channel network
- Reduction in constituent concentration through treatment at junction nodes or in storage units

# 8.1 Pollutants

The generation, inflow, and fate of any number of user-specified pollutants can be modelled with SWMM models in MIKE+.

Define pollutants via the SWMM Pollutants editor. The editor organizes pollutant data into the following groups:

- Identification. General identification information.
- General. Tab page holding pollutant concentrations and characteristics.



• **Description**. Tab page for optional pollutant item description.

| Pol | lutan      | S                |             |         |      |   |             |             |          |      |               |            |             |      |        |              |         | х      |
|-----|------------|------------------|-------------|---------|------|---|-------------|-------------|----------|------|---------------|------------|-------------|------|--------|--------------|---------|--------|
|     | Iden<br>ID | ification<br>TSS |             |         |      |   |             |             |          |      |               |            | elete       |      |        |              |         |        |
| G   | ener       | al Des           | cription    |         |      |   |             |             |          |      |               |            |             |      |        |              |         |        |
|     | Pol        | utant co         | ncentratior | IS      |      |   |             |             |          | Poll | utant prope   | rties      |             |      |        |              |         |        |
|     | Ur         | it               |             | [       | mg/l |   | ~           | ]           |          | Fi   | rst order de  | cay coeff  | icient      |      |        | 0 [/d        | IJ      |        |
|     | Ra         | in               |             | [       |      |   | 10          | [mg/l]      |          | C    | o-pollutant I | D          |             |      |        |              |         |        |
|     | Gr         | ound wa          | ter         | [       |      |   | 0           | [mg/l]      |          | C    | o-pollutant f | fraction   |             |      |        |              |         |        |
|     | In         | filtration       | and inflow  | flows [ |      |   | 0           | [mg/l]      |          |      | Build up du   | uring snov | v fall only |      |        |              |         |        |
|     | Dr         | y water          | flow        | [       |      |   | 0           | [mg/l]      |          |      |               |            |             |      |        |              |         |        |
|     | In         | tial             |             | [       |      |   | 0           | [mg/l]      |          |      |               |            |             |      |        |              |         |        |
|     |            |                  |             |         |      |   |             |             |          |      |               |            |             |      |        |              |         |        |
| ╞   |            |                  | ID          | _       |      |   | ~           | Clear       |          | Cha  |               | Sho        |             |      | 14     |              | terd (  | _      |
| ┝   | 1          |                  |             |         | ~ A  | _ |             | _           |          | Sho  | w selected    |            | w data erro | _    | ./1 re | ows, 0 selec |         |        |
|     |            | ID               | Rain        | Ground  | wate |   | Infiltratio | n and inflo | ow flows |      | Dry water     |            | Initial     | Unit |        | First order  | / decay | coeffi |
|     | 1          | TSS              | 10          |         |      | 0 |             |             |          | 0    |               | 0          | 0           | mg/l | •      |              |         |        |
|     |            |                  |             |         |      |   |             |             |          |      |               |            |             |      |        |              |         |        |
| <   |            |                  |             |         |      |   |             |             |          |      |               |            |             |      |        |              |         | >      |



# Identification

The Identification group holds pollutant item ID information. Use the Insert or Delete buttons to add or remove records from the editor, respectively.

| Ident | fication | Insert |
|-------|----------|--------|
| ID    | TSS      | Delete |

Figure 8.2 The Pollutants editor Identification group

Table 8.1Edit fields in the Pollutants Identification group and Description tab page<br/>(mss\_Pollutant)

| Edit field  | Description                                    | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------|------------------------------------------------|---------------------------------------|-----------------------------|
| ID          | Unique ID for pollutant compo-<br>nent         | Yes                                   | MUID                        |
| Description | Optional description for the<br>pollutant item | No                                    | Description                 |



Optional descriptive information about the pollutant item may be added via the Description tab page. The page also offers an option for adding images related to the item.

| General Descrip | tion                   |             |
|-----------------|------------------------|-------------|
| Description     | Total suspended solids | ]           |
|                 |                        | Add picture |
|                 |                        |             |
|                 |                        |             |
|                 |                        |             |

Figure 8.3 The Pollutants editor Description tab page

## General

Define pollutant properties on the General tab page of the Pollutants editor.

| General Description           |           |                                      |
|-------------------------------|-----------|--------------------------------------|
| Pollutant concentrations      |           | Pollutant properties                 |
| Unit                          | mg/l 🗸 🗸  | First order decay coefficient 0 [/d] |
| Rain                          | 10 [mg/l] | Co-pollutant ID                      |
| Ground water                  | 0 [mg/l]  | Co-pollutant fraction                |
| Infiltration and inflow flows | 0 [mg/l]  | Build up during snow fall only       |
| Dry water flow                | 0 [mg/l]  |                                      |
| Initial                       | 0 [mg/l]  |                                      |
|                               |           |                                      |

#### Figure 8.4 The Pollutants editor General tab page

Pollutants may be expressed in: milligrams/liter, micrograms/liter, or counts/liter

Co-pollutants can also be modelled, which are pollutants whose runoff concentrations contribute to the runoff concentrations of the active pollutant. For example, pollutant X can have a co-pollutant Y, meaning that the runoff concentration of X will have some fixed fraction of the runoff concentration of Y added to it.

The pollutant buildup and washoff on catchment areas are determined by the Land Uses assigned to those areas.

| Edit field                            | Description                                                                                                            | Used or<br>required by<br>simulations | Field name in datastructure |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Units                                 | Dropdown menu for selecting<br>units for pollutant item:<br>mg/L<br>μg/L<br>#/L                                        | Yes                                   | ТуреNo                      |
| Rain                                  | Concentration of the pollutant<br>in rain water                                                                        | Yes                                   | Crain                       |
| Groundwater                           | Concentration of the pollutant<br>in groundwater                                                                       | Yes                                   | Cgw                         |
| Infiltration<br>and Inflow<br>Flows   | and Inflow in any infiltration or inflow                                                                               |                                       | Cii                         |
| Dry Weather<br>Flow                   | Concentration of the pollutant<br>in DWF                                                                               | Yes                                   | Cdwf                        |
| Initial                               | Concentration of the pollutant throughout the network at the start of the simulation                                   | Yes                                   | Cinit                       |
| First Order<br>Decay Coef-<br>ficient | First order decay coefficient of the pollutant                                                                         | Yes                                   | Kdecay                      |
| Co-pollutant<br>ID                    | ID of the co-pollutant whose<br>runoff concentration contrib-<br>utes to the concentration of the<br>current pollutant | Yes                                   | CoPollut                    |
| Co-pollutant<br>fraction              |                                                                                                                        |                                       | CoFract                     |
| Buildup dur-<br>ing snowfall<br>only  | Option to allow buildup only when there is snow cover                                                                  | Yes                                   | SnowFlag                    |

#### Table 8.2 Edit fields in the Pollutants General tab page (mss\_Pollutant)

# 8.2 Land Uses

Land Uses are categories of activities or land surfaces that are assigned to catchment areas. Examples of land use activities are residential, commercial, industrial, and undeveloped. Land surface characteristics might include roof tops, lawns, paved roads, undisturbed soils, etc. Land uses are used solely to allow spatial variation in pollutant buildup and washoff rates.



There is complete freedom in defining land uses and assigning them to catchment areas. One approach is to assign a mix of land uses to each catchment, in which case all land uses in the catchment will have the same pervious/impervious characteristics. If this is not appropriate then it is possible to create catchments that have just a single land use classification along with a set of pervious/impervious characteristics reflecting the classification.

The following processes may be defined for each land use category:

- Pollutant Buildup
- Pollutant Washoff
- Street Sweeping

The SWMM Land Uses editor organizes the land use data into the following groups:

- Identification. Land use item identification information.
- General. Associated street sweeping parameters.
- Buildup. Pollutant buildup characteristics.
- **Washoff**. Pollutant washoff parameters.
- **Description**. Optional descriptive information for land use item.

| Land | luses                                                           |                             |                |               |               |                  |                | х     |
|------|-----------------------------------------------------------------|-----------------------------|----------------|---------------|---------------|------------------|----------------|-------|
| I    | dentification<br>ID Residential_                                | 1                           |                |               |               | Insert<br>Delete |                |       |
| Ge   | eneral Buildup                                                  | Washoff Description         |                |               |               |                  |                |       |
|      | Street sweeping<br>Interval betw<br>Pollutant ava<br>Last sweep | ilability (                 | 0 [d]<br>0 [d] |               |               |                  |                |       |
|      | IC                                                              | → ALL                       | ~              | C.C.C.        | Show selec    | ted 🗌 Show data  | errors 1/3 rov | vs, 0 |
| _    |                                                                 |                             | _              | Land uses     |               |                  |                | _     |
|      | ID                                                              | Interval between sweeps [d] |                | Pollutant ava | lability [()] | Last sweep [d]   | Description    |       |
| ▶1   | Residential_1                                                   |                             | 0              |               | 0             | 0                |                |       |
| 2    | Residential_2                                                   |                             | 0              |               | 0             | 0                |                |       |
| 3    | Commercial                                                      |                             | 0              |               | 0             | 0                |                |       |
|      |                                                                 |                             |                |               |               |                  |                |       |





# Identification

The Identification group box holds land use item ID information. Use the Insert or Delete buttons to add or remove records from the editor, respectively.

| Ident | ification  |        |
|-------|------------|--------|
|       |            | Insert |
| ID    | Commercial | Delete |



# Table 8.3Edit fields in the Land Use Identification group and Description tab page<br/>(mss\_Landuse)

| Edit field  | Description                            | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------|----------------------------------------|---------------------------------------|-----------------------------|
| ID          | Land use item ID                       | Yes                                   | MUID                        |
| Description | Optional description for land use item | No                                    | Description                 |

Add optional descriptive information about land use items via the Description tab page of the editor. The page also includes an option for adding images of the land use item.

| General Buildup | Washoff Description |
|-----------------|---------------------|
| Description     |                     |
|                 |                     |
|                 | Add picture         |
|                 |                     |
|                 |                     |
|                 |                     |
|                 |                     |
|                 |                     |



## General

Define land use parameters related to Street Sweeping, which affects the buildup of pollutants in areas.



| Street sweeping       Interval between sweeps       0       Pollutant availability       0       Last sweep       0 |
|---------------------------------------------------------------------------------------------------------------------|
|                                                                                                                     |
|                                                                                                                     |



#### Table 8.4 Edit fields in the Land Uses General tab page (mss\_Landuse)

| Edit field                    | Description                                                                  | Used or<br>required by<br>simulations | Field name in datastructure |
|-------------------------------|------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| Interval<br>Between<br>Sweeps | Days between sweeping                                                        | Yes                                   | SweepInterval               |
| Pollutant<br>Availability     | Fraction of pollutant buildup<br>available for removal by street<br>sweeping | Yes                                   | Availability                |
| Last Sweep                    | Days since last sweeping at start of the simulation                          | Yes                                   | LastSweep                   |

# Buildup

Pollutant Buildup that accumulates over a category of Land Use is described by either a mass per unit of catchment area or per unit of curb length. The amount of buildup as a function of days of dry weather can be computed using one of the following functions:

## **Power Function**

Pollutant buildup (B) accumulates proportional to time (t) raised to some power, until a maximum limit is achieved:

$$B = Min(C_1, C_2 t^{C_3})$$
(8.1)

where C1 = maximum buildup possible (mass per unit of area or curb length), C2 = buildup rate constant, and C3 = time exponent.

# **Exponential Function**

Buildup follows an exponential growth curve that approaches a maximum limit asymptotically:

$$B = C_1 (1 - e^{-C_2 t})$$
(8.2)

where C1 = maximum buildup possible (mass per unit of area or curb length) and C2 = buildup rate constant (1/days).

#### **Saturation Function**

Buildup begins at a linear rate which proceeds to decline constantly over time until a saturation value is reached:

$$B = \frac{C_1 t}{C_2 + t} \tag{8.3}$$

where C1 = maximum buildup possible (mass per unit area or curb length) and C2 = half-saturation constant (days to reach half of the maximum buildup).

Define pollutant buildup parameters for land uses on the Buildup tab page of the Land Uses editor. The list of pollutants for which to define parameters is based on pollutant items defined in the Pollutants editor. The following options are available for describing buildup processes for land uses:

- No Buildup
- Power
- Exponential
- Saturation
- Time Series. This option allows one to use a Time Series to describe the rate of buildup per day as a function of time. Define Time Series items in the Time Series editor with values expressed as mass per unit area (or curb length) per day.

| General | Buildup      | Washoff Descrip | tion  |            |   |               |               |                   |                    |
|---------|--------------|-----------------|-------|------------|---|---------------|---------------|-------------------|--------------------|
|         |              | 1/1 rows, 0 se  | elect | ed         |   |               | Ľ             | Pollutant buildup |                    |
| Buildup |              |                 |       |            | L | Function type | Exponential ~ |                   |                    |
|         | Pollutant ID | Function type   |       | Normalizer |   | Time exp      | L             |                   |                    |
| ▶1      | TSS          | Exponential     | -     | Curb len   | • |               | L             | Normalizer        | Curb length $\sim$ |
|         |              |                 |       |            |   |               | L             | Maximum buildup   | 0.07391659 [lb/ft] |
|         |              |                 |       |            |   |               | L             | Rate              | 0.5 [/d]           |
|         |              |                 |       |            |   |               | l             | Time exponent     | 0                  |
|         |              |                 |       |            |   |               | L             | Time series       |                    |
|         |              |                 |       |            |   |               |               | Scaling factor    | 1 [()]             |
| <       |              |                 |       |            |   | >             |               |                   |                    |

Figure 8.9 The Land Uses Buildup tab page

## Table 8.5 Edit fields in the Land Uses Buildup tab page (mss\_Buildup)

| Edit field                | Description                                                                                                                                                   | Used or<br>required by<br>simulations              | Field name in datastructure |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|
| Function<br>Type          | Choice of function tpe to use<br>for Buildup computations:<br>No Buildup<br>Power<br>Exponential<br>Saturation<br>Time Series                                 | Yes                                                | FuncTypeNo                  |
| Normalizer                | Choice of normalizer to<br>describe pollutant buildup in<br>either mass per unit catchment<br>area or mass per unit of curb<br>length:<br>Area<br>Curb Length | Yes<br>If Function <><br>No Buildup                | NormalizerNo                |
| Maximum<br>Buildup        | Coefficient C1 (Maximum<br>buildup possible in mass per<br>unit area or curb length)                                                                          | Yes<br>If Function <><br>No Buildup                | C1                          |
| Rate                      | Buildup rate constant                                                                                                                                         | Yes<br>if Function is<br>Power or Expo-<br>nential | C2                          |
| Time Expo-<br>nent        | Time exponent in Power Fuc-<br>tion                                                                                                                           | Yes<br>if Function is<br>Power                     | C3                          |
| Half-Satura-<br>tion Time | Half-saturation constant (days to reach half of the maximum buildup)                                                                                          | Yes<br>if Function is<br>Saturation                | C3                          |

| Edit field          | Description                                                                                                 | Used or<br>required by<br>simulations          | Field name in datastructure |
|---------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|
| Time Series         | Time series containing buildup<br>rates. Define values in mass<br>per unit area (or curb length)<br>per day | Yes, if Function<br>is external time<br>series | ExternalTime-<br>SeriesID   |
| Scaling Fac-<br>tor | A scaling factor used to adjust<br>buildup rates listed in the time<br>series                               | Yes, if Function<br>is external time<br>series | C2_Scalingfac-<br>tor       |

#### Table 8.5 Edit fields in the Land Uses Buildup tab page (mss\_Buildup)

# Washoff

Pollutant Washoff from a given land use category during wet weather periods can be described in one of the following ways:

## **Exponential Washoff**

The washoff load (W) in units of mass per hour is proportional to the product of runoff raised to some power and to the amount of buildup remaining:

$$W = C_1 q^{C_2} B \tag{8.4}$$

where C1 = washoff coefficient, C2 = washoff exponent, q = runoff rate per unit area (inches/hour or mm/hour), and B = pollutant buildup in mass (lbs or kg) per unit area or curb length. Washoff mass units are the same as used to express the pollutant's concentration (milligrams, micrograms, or counts).

#### **Rating Curve Washoff**

The rate of washoff W in mass per second is proportional to the runoff rate raised to some power:

$$W = C_1 Q^{C_2}$$
(8.5)

where C1 = washoff coefficient, C2 = washoff exponent, and Q = runoff rate in user-specified flow units.

## **Event Mean Concentration**

This is a special case of Rating Curve Washoff where the exponent is 1.0 and the coefficient C1 represents the concentration of any and all runoff in mass per liter (the conversion between user-specified flow units used for runoff and liters is handled internally by SWMM).

Note that in each case, buildup is continuously depleted as washoff proceeds, and washoff stops when there is no more buildup available.



Washoff loads for a given pollutant and land use category can be reduced by a fixed percentage by specifying a BMP Removal Efficiency which reflects the effectiveness of any BMP controls associated with the land use.

Define pollutant washoff parameters for land uses on the Washoff tab page of the Land Uses editor. The list of pollutants for which to define parameters is based on items defined in the Pollutants editor. The following options are available for describing washoff processes for land uses:

- No Washoff
- Exponential
- Rating Curve
- Event Mean Concentration

| General              | Buildup      | Washoff | Descripti  | on |                  |                |                          |     |     |
|----------------------|--------------|---------|------------|----|------------------|----------------|--------------------------|-----|-----|
| 1/1 rows, 0 selected |              |         |            |    |                  | L              | Pollutant washoff        |     |     |
| Washoff              |              |         |            |    | Function type    | Event mean c 🗸 |                          |     |     |
| ▶1                   | Pollutant II |         | ction type | •  | Coefficient [()] | ł              | Event mean concentration | 160 |     |
| 7 -                  |              | 2.72    |            |    |                  | I.             | Exponent                 | 0   | [0] |
|                      |              |         |            |    |                  | L              | Cleaning efficiency      | 0   | [%] |
|                      |              |         |            |    |                  | L.             | BMP efficiency           | 0   | [%] |
|                      |              |         |            |    |                  | L.             |                          |     |     |
|                      |              |         |            |    |                  | L.             |                          |     |     |
| <                    |              |         |            |    | >                | •              |                          |     |     |

Figure 8.10 The Washoff tab page on the Land Uses editor

| Table 8.6 | Edit fields in the Washoff tab page (mss_Washoff) |  |
|-----------|---------------------------------------------------|--|
|-----------|---------------------------------------------------|--|

| Edit field       | Description                                                                                                        | Used or<br>required by<br>simulations                   | Field name in datastructure |
|------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|
| Function<br>Type | Option for describing washoff<br>process:<br>No Washoff<br>Exponential<br>Rating Curve<br>Event Mean Concentration | Yes                                                     | FuncTypeNo                  |
| Coefficient      | Washoff coefficient                                                                                                | Yes<br>If Function is<br>Exponential or<br>Rating Curve | C1                          |



| Edit field                       | Description                                                                               | Used or<br>required by<br>simulations                   | Field name in datastructure |
|----------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|
| Exponent                         | Washoff exponent                                                                          | Yes<br>If Function is<br>Exponential or<br>Rating Curve | C2                          |
| Cleaning<br>Efficiency           | Street sweeping removal effi-<br>ciency in percentage                                     | Yes<br>If Function <><br>No Washoff                     | SweepEfficiency             |
| BMP Effi-<br>ciency              | Removal efficiency of BMP<br>controls associated with land<br>use expressed in percentage | Yes<br>If Function <><br>No Washoff                     | BMPEfficiency               |
| Event Mean<br>Concentra-<br>tion | Washoff pollutant concentra-<br>tion in mass per liter                                    | Yes<br>If Function =<br>Event Mean<br>Concentration     | C1                          |

#### Table 8.6 Edit fields in the Washoff tab page (mss\_Washoff)

# 8.3 Initial Loading

Define initial pollutant quantities in catchments via the SWMM Initial Loading editor. The editor organizes data into the following groups:

- Identification. Initial load setup ID information.
- Loading Properties. Initial buildup data.

| Initial loading                                                  |                                                              |       | х |
|------------------------------------------------------------------|--------------------------------------------------------------|-------|---|
| Identification<br>ID<br>Description                              | Loading_1 Delete                                             |       |   |
| Loading proper<br>Catchment I<br>Pollutant ID<br>Initial buildu; | S1            TSS                                            |       |   |
|                                                                  | ID V ALL V Clear Show selected Show data e                   | rrors |   |
| ID                                                               | Catchment ID Pollutant ID Initial buildup [b/ac] Description |       |   |
| ▶ 1 Loading_1                                                    | S1 TSS 100                                                   |       |   |

Figure 8.11 The SWMM Initial Loading editor

| Edit field         | Description                                               | Used or<br>required by<br>simulations | Field name in datastructure |
|--------------------|-----------------------------------------------------------|---------------------------------------|-----------------------------|
| ID                 | Initial loading setup ID                                  | Yes                                   | MUID                        |
| Description        | Optional description of initial<br>loading record         | No                                    | Description                 |
| Catchment<br>ID    | ID of catchment for which initial<br>buildup is specified | Yes                                   | CatchID                     |
| Pollutant ID       | ID of pollutant                                           | Yes                                   | PollutantID                 |
| Initial<br>Buildup | Amount of initial pollutant buildup                       | Yes                                   | InitBuildUp                 |

#### Table 8.7 Edit fields in the Initial Loading editor (mss\_Loading)

# 8.4 Coverage

Define Land Use cover percentages for Catchments on the SWMM Coverage editor. The editor organizes land use coverage data into following groups:

- **Identification**. Holds item ID information. Use the Insert or Delete buttons to add or remove records from the editor, respectively.
- **Connectivity**. Define the land use and catchment components for the coverage setup.
- Landuse Coverage. Specify the size covered by the land use in the catchment.

| overa       | ge            |              |               |                | • •                       |
|-------------|---------------|--------------|---------------|----------------|---------------------------|
| -Iden<br>II | otification   | 0            | ]             |                | Insert                    |
| Con         | nectivity     |              |               |                |                           |
|             | Catchment ID  |              | S1            |                |                           |
|             | Landuse ID    | Resi         | dential_1     |                |                           |
| Land        | duse coverage |              |               |                |                           |
|             | Percentage    |              | 100 [9        | 6]             |                           |
|             | IC            | ) ~ AI       | L ~           | Clear Show     | selected Show data errors |
|             | ID            | Catchment ID | Landuse ID    | Percentage [%] |                           |
| • 1         | Coverage_1    | S1           | Residential_1 | 100            |                           |
| 2           | Coverage_2    | S2           | Residential_1 | 27             |                           |

Figure 8.12 The SWMM Coverage editor



| Edit field      | Description                                                             | Used or<br>required by<br>simulations | Field name in datastructure |
|-----------------|-------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| ID              | Coverage setup ID                                                       | Yes                                   | MUID                        |
| Catchment<br>ID | ID of Catchment                                                         | Yes                                   | SubCatchID                  |
| Landuse ID      | Landuse item ID<br>(see Land Uses editor)                               | Yes                                   | LandUseID                   |
| Percentage      | Percentage of the catchment<br>area covered by this type of<br>land use | Yes                                   | Percentage                  |

#### Table 8.8Edit fields in the Coverage editor (mss\_Coverage)

# 8.5 Local Treatment

Removal of pollutants contained in the flow into a node can be modelled by assigning a set of treatment functions to the node. Treatment functions can be mathematical expression involving:

- Pollutant concentrations at the node inlet (use the pollutant name to represent a concentration)
- Removals of other pollutants (use R\_ prefixed to the pollutant name to represent removal)
- Process variables which include:
  - FLOW for flow rate into node (user's flow units)
  - DEPTH for water depth above node invert (ft or m)
  - AREA for node surface area (ft<sup>2</sup> or m<sup>2</sup>)
  - DT for routing time step (sec)
  - HRT for hydraulic residence time (hours)

The result of the treatment function can be either a concentration (C) or a fractional removal (R).

One may use the following math functions to build treatment expressions:

- abs(x) for absolute value of x
- sgn(x) which is +1 for x >= 0 or -1 otherwise
- step(x) which is 0 for x <= 0 and 1 otherwise</li>
- sqrt(x) for the square root of x
- log(x) for logarithm base e of x
- log10(x) for logarithm base 10 of x
- exp(x) for e raised to the x power
- the standard trig functions (sin, cos, tan, and cot)
- the inverse trig functions (asin, acos, atan, and acot)



- the hyperbolic trig functions (sinh, cosh, tanh, and coth)
- standard operators +, -, \*, /, ^ (for exponentiation) and any level of nested parentheses

For example, a first-order decay expression for BOD exiting from a storage node might be:

$$C = BOD \cdot e^{-0.05 \cdot HRT}$$
(8.6)

while having the removal of some trace pollutant be proportional to the removal of total suspended solids (TSS) would be written as:

$$\boldsymbol{R} = 0,75 \cdot \boldsymbol{R}_{T} \boldsymbol{T} \boldsymbol{S} \boldsymbol{S} \tag{8.7}$$

Define local treatment conditions on the SWMM Local Treatment editor. The editor organizes data into the following groups:

- Identification. General identification information.
- Treatment Properties. Local treatment parameters.

| Local t | reatment                                            |         |        |         |             |        |              |       |                  |          | ×      |
|---------|-----------------------------------------------------|---------|--------|---------|-------------|--------|--------------|-------|------------------|----------|--------|
| 1       | ntification<br>D<br>Description                     | Trea    | tment  |         |             |        |              | ]     | Insert<br>Delete |          |        |
| F       | atment prope<br>Node ID<br>Pollutant ID<br>Function | rties   | R=0.75 |         | J1<br>Trace |        |              |       |                  |          |        |
|         |                                                     | ID      |        | ~ ALL   | ~           | Clear  | Show sele    | ected | Show data errors | 1/1 rows | , 0 se |
|         | ID                                                  | Descrip | ition  | Node ID | Polluta     | ant ID | Function     |       |                  |          |        |
| ▶ 1     | Treatment                                           |         |        | J1      | Trace       |        | R=0.75*R_TSS |       |                  |          |        |
|         |                                                     |         |        |         |             |        |              |       |                  |          |        |
|         |                                                     |         |        |         |             |        |              |       |                  |          |        |

Figure 8.13 The SWMM Local Treatment editor

| Edit field   | Description                                                                                                                                         | Used or<br>required by<br>simulations | Field name in datastructure |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| ID           | Local treatment setup ID                                                                                                                            | Yes                                   | MUID                        |
| Description  | Optional description for Local<br>Treatment item                                                                                                    | No                                    | Description                 |
| Node ID      | ID of Node where local treat-<br>ment is performed                                                                                                  | Yes                                   | NodelD                      |
| Pollutant ID | ID of locally treated pollutant                                                                                                                     | Yes                                   | PollutantID                 |
| Function     | Treatment expression in terms<br>of pollutant concentration (C)<br>or pollutant removal (R), and<br>using other standard variables<br>and functions | Yes                                   | Function                    |

## Table 8.9 Edit fields in the Local Treatment editor (mss\_LocalTreatment)

# 9 Calibrations

Calibration involves reproducing the observed hydraulics and water quality behaviour of the system with the model. The process should include comparisons between model simulation results and field measurements for, but not limited to, the following:

- Flow
- Water level / Pressure / Hydraulic head
- Velocity
- Water mass balance
- Contaminant concentrations
- Contaminant migration rates
- Degradations rates

Usually, these comparisons are presented in maps, tables or plots. Calibration results must be evaluated by the modeller using engineering professional judgement, and there are no universally accepted 'goodness of fit' criteria that can be applied in all cases. However, it is important that the modeller makes every attempt to minimize the difference between model simulations and measured data.

Comparison plots of simulated and measured values may be set-up and evaluated in MIKE+. Statistical analysis may be performed to calculate goodness of fit measures. Calibration plots and statistics may be written to reports for documentation and further reporting.

# 9.1 Measurement Stations

Measurement stations representing locations of flow gauges, pressure meters, and the like may be defined in MIKE+.

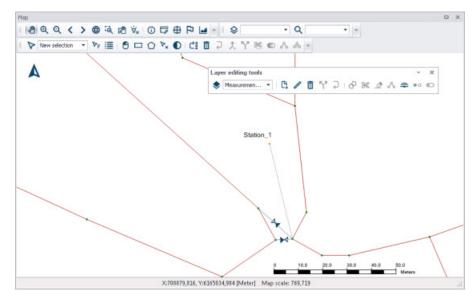
One may graphically add a measurement station on the Map as well as via the Measurement Stations editor (Calibrations | Measurement Stations) (Figure 9.1).



| leasu            | urement station                           | D                |                             |                     |                            |                   |                            |      |                    |                                                                                                                 |                         |          |   |
|------------------|-------------------------------------------|------------------|-----------------------------|---------------------|----------------------------|-------------------|----------------------------|------|--------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|----------|---|
|                  | entification<br>ID <mark>Station 1</mark> |                  |                             | ×<br>Y              | e                          |                   | 2,886005698<br>44,98065347 | -    |                    |                                                                                                                 | elete                   |          |   |
| Mod              | el connection                             | Meas             | urements                    | Descri              | iption                     |                   |                            |      |                    |                                                                                                                 |                         |          |   |
|                  | Model element                             | type             | Nodes                       |                     |                            | -                 |                            |      |                    |                                                                                                                 |                         |          |   |
| Model element ID |                                           |                  |                             | Olsbae              | k_5225                     |                   |                            |      |                    |                                                                                                                 |                         |          |   |
| Chainage Do      |                                           |                  | Downstrea                   |                     |                            |                   |                            |      |                    |                                                                                                                 |                         |          |   |
|                  | ich de logo                               |                  | Downstree                   | IM                  |                            | *                 |                            |      |                    |                                                                                                                 |                         |          |   |
|                  | Change.                                   |                  | Downstree                   | m                   |                            | *                 |                            |      |                    |                                                                                                                 |                         |          |   |
| (                |                                           |                  | DownBirtes                  | 111<br>111          |                            |                   |                            |      |                    |                                                                                                                 |                         | •        |   |
|                  |                                           | ID               |                             |                     |                            | Clear             | Sh                         | DW S | elected            | Shov                                                                                                            | w data erro             | ors      |   |
|                  |                                           |                  |                             | III<br>ALL          | oordinate (n               |                   | Sh pocation type           | ow s | elected<br>Locatio | a de la d | w data erro<br>Chainago |          |   |
|                  |                                           | X coord          | •                           | TII<br>ALL<br>Y co  |                            | n] La             |                            | ow s | Locatio            | a de la d |                         | e        |   |
| <                | ID                                        | X coord<br>70882 | •<br>inate [m]              | 111<br>ALL<br>98 61 | oordinate [n               | n] Lu<br>55347 No | cation type                | •    | Locatio<br>Olsba   | n ID<br>aek_5225                                                                                                | Chainag                 | e<br>eam | ÷ |
| €                | ID<br>Station_1                           | X coord<br>70882 | -<br>nate [m]<br>2,88600565 | 111<br>ALL<br>98 61 | oordinate [n<br>65044,9806 | n] Lu<br>55347 No | ocation type<br>odes       | •    | Locatio<br>Olsba   | n ID<br>aek_5225                                                                                                | Chainag<br>Downstre     | e<br>eam |   |

Figure 9.1 The Measurement Stations editor

The stations are added to the Map as a data layer providing the user an overview of monitoring locations in the model domain. Additional descriptive information about the station may also be provided on the editor.


Graphically add a measurement station on the Map using the 'Create' tool from the Edit Features toolbox on the CS Network menu ribbon, specifying 'Measurement stations' as the Target layer.

| File Project  | t | Мар             | CS net   | work   | Cat        | chments  | Simul  | ation | Tools                 | Results              |                            |                    |
|---------------|---|-----------------|----------|--------|------------|----------|--------|-------|-----------------------|----------------------|----------------------------|--------------------|
| 🖍 Undo        | ۲ | Target la       | ayer:    |        | <b>C</b> ‡ | ľ        |        | 57    | $\overline{\bigcirc}$ |                      | ক্ষ্ণি                     | 24                 |
| 🞢 Redo        |   | Measur<br>Nodes | reme     | •      | Create     | Edit     | Delete | Split | Reverse<br>links      | Open layer<br>editor | Network<br>editing tools ▼ | View WD<br>network |
| Undo / Redo 🔒 |   |                 | rement s | tatior | ns         | Edit fea | tures  |       |                       | 4                    | CS toolbox 🔒               | WD network         |
|               |   | Condui          | ts       |        |            |          |        |       |                       |                      |                            |                    |
|               |   | Weirs           |          |        |            |          |        |       |                       |                      |                            |                    |
|               |   | Pumps           |          |        |            |          |        |       |                       |                      |                            |                    |
|               |   | Orifices        | s        |        |            |          |        |       |                       |                      |                            |                    |
|               |   | Outlets         | 5        |        |            |          |        |       |                       |                      |                            |                    |

#### Figure 9.2 The Edit Features toolbox on the CS Network menu ribbon

Alternatively, use the layer editing tool from the Map toolbar. As with other feature layers, the 'Create', 'Edit', and 'Delete' tools are available for measurement stations.







The various parts of the Measurement Stations editor are described in succeeding sections.

# Identification

The Identification group box holds information on the measurement station ID and location. Use the 'Insert' button to add new measurement station records directly on the editor.

|             | X: | 711477,237785518 [m] | Insert |
|-------------|----|----------------------|--------|
| D Station 2 |    |                      |        |
| D Stadion_2 | Y: | 6166506,63159307 [m] |        |
|             | 1. | 0100000,00105007 [m] | Delete |



One may also graphically add a measurement station on the Map as previously mentioned.

# Model Connection

Measurement stations must be associated with elements of the model network to link the station with a model result item.

Associate measurement stations with specific model elements via the Model Connection tab page on the Measurement Stations editor (Figure 9.5).



| Identification           |            |             |                  | i i<br>Terrez |        |
|--------------------------|------------|-------------|------------------|---------------|--------|
| ID Station_2             |            | X:          | 711477,237785518 | [m]           | Insert |
|                          |            | Y:          | 6166506,63159307 | [m]           | Delete |
| Nodel connection Mea     | surements  | Description |                  |               |        |
| Model element type Nodes |            |             | •                |               |        |
| Model element ID         |            | KystRe      | enden_960 🕨      |               |        |
| Chainage                 | Downstream | n           | -                |               |        |
|                          |            |             |                  |               |        |
|                          |            |             |                  |               |        |
|                          |            |             |                  |               |        |
|                          |            |             |                  |               |        |



## Model Element Type

Define the model element type to be associated with a measurement station by selecting an element type from the dropdown menu. SWMM model element types that may be linked to stations are:

- Nodes
- Conduits
- Orifices
- Pumps
- Weirs
- Outlets

#### Model Element ID

Define the ID for the model element to associate with a station.

Use the ellipsis button to select the ID from a list.

Alternatively, use the cursor button to graphically select the element from the Map.

#### Chainage

This option is not available/used for SWMM models as there is only one calculation point along SWMM conduits.

Note that connection lines between stations and the network are displayed on the Map after model connections are specified.

Also, on the Map View, the 'Connect station' tool from the 'Layer editing tools' toolbar may be used to connect stations to network elements. Activate the tool, click on a station feature to connect on the Map, and then select the network element to which to connect.

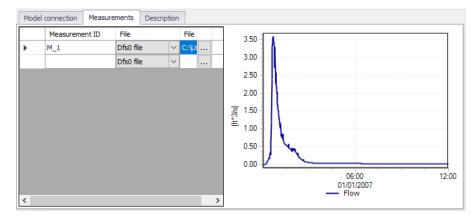



Figure 9.6 Layer editing tools on the Map

## Measurements

Define measured data time series at a station on the Measurements tab page of the editor (Figure 9.7).

Define external time series item(s) via the secondary table. Specify the time series file location under the 'File' column. A plot of the specified time series is shown to the right of the secondary table. Multiple measurement items and time series data may be defined for a station.



#### Figure 9.7 The Measurements tab page on the Measurement Stations editor

The Measurements secondary table has the following data columns:

#### Measurement ID

The unique identifier for the measurement time series.

#### File

Measurement time series data may be in \*.DAT or \*.DFS0 file formats.

#### Item

The item to use from the time series file.

## Unit

Displays the units for the selected time series item.

## Start

Displays the start date and time for the time series.



Displays the end date and time for the time series.

#### Action (Edit)

Launches the Plots and Statistics editor wherein comparisons of the measured data with simulation results may be configured.

# Description

The Description tab allows the modeller to add descriptive information for the Measurement Station. An image may also be added using the 'Add picture' button.

| Measurement station            | 5            |             |   |                              |                  | × |
|--------------------------------|--------------|-------------|---|------------------------------|------------------|---|
| Identification<br>ID Station_2 |              | X:<br>Y:    |   | 37785518 [m]<br>63159307 [m] | Insert<br>Delete |   |
| Model connection               | Measurements | Description |   |                              |                  |   |
| Description                    | Basin        |             |   |                              |                  |   |
| Data source                    | Utiky        |             |   |                              |                  |   |
| Asset ID                       | Basin 1      |             |   |                              | Add picture      |   |
| Status                         | 4: Inserted  |             | • |                              |                  |   |
| Network type                   | 3: Combined  |             | - |                              |                  |   |
| Bottom level                   |              |             | 0 | [m]                          |                  |   |
| Model                          | 1: Overal    |             | • |                              |                  |   |



Table 9.1 below shows an overview of the various parameters on the Measurement Stations editor.

| Table 9.1 | Edit fields in the Measurement Stations editor (m_Station) |  |
|-----------|------------------------------------------------------------|--|
|           |                                                            |  |

| Edit field            | Description                     | Used or required | Field name in data structure |
|-----------------------|---------------------------------|------------------|------------------------------|
| ID                    | Station identified              | Yes              | MUID                         |
| X                     | X coordinate of the station     | Yes              | -                            |
| Y                     | Y coordinate of the station     | Yes              | -                            |
| Model Element<br>Type | Type of connected model element | Yes              | LocationType                 |
| Model Element ID      | ID if connected model element   | Yes              | LocationID                   |



| Edit field   | Description                                                 | Used or required                           | Field name in data structure |
|--------------|-------------------------------------------------------------|--------------------------------------------|------------------------------|
| Chainage     | Model element grid<br>point associated<br>with measurements | Yes<br>If Model Element<br>Type = Conduits | Chainage                     |
| Description  | Free text description<br>of the measure-<br>ment station    | Optional                                   | Description                  |
| Data Source  | Source of data                                              | Optional                                   | DataSource                   |
| Asset ID     | Station ID in asset<br>database                             | Optional                                   | AssetName                    |
| Status       | Information on data<br>status                               | Optional                                   | Element_S                    |
| Network Type | Information on the type of network                          | Optional                                   | NetTypeNo                    |
| Bottom Level | Bottom level at measurement point                           | Optional                                   | BottomLevel                  |
| Model        | Model group under<br>which the station is<br>categorised    | Optional                                   | SubModelNo                   |

#### Table 9.1Edit fields in the Measurement Stations editor (m\_Station)

# 9.2 Plots and Statistics

The Plots and Statistics editor allows the user to make comparison plots of measured data and simulation results at measurement stations (Figure 9.9). Multiple plots and statistics setups may be created in a project.

|    | nd statist  |               |                     |       |                |                  |        |             |                      |                  |                          |      |
|----|-------------|---------------|---------------------|-------|----------------|------------------|--------|-------------|----------------------|------------------|--------------------------|------|
|    | ntification |               |                     |       |                |                  |        |             | Calibration plot     | Correlation plot | t Mean comparisons       |      |
| IC | )           | 1             | M_2                 |       |                | Insert           | Sta    | tistics     |                      | Head             | Elevation: Level Station |      |
| Se | ensor ID    |               | Level St            | ation | 🖹              | Delete           | Re     | port        | 4958.65              | ٨                |                          |      |
| Me | asured D    | ata           |                     |       |                |                  |        |             | 4958.60              | Λ                |                          |      |
| F  | ile type    | Dfs0 file     | ~                   |       |                |                  |        |             | 4958.55<br>4958.50   |                  |                          |      |
| F  | ile         |               |                     |       | Exar           | nple8\Level.dfs0 |        |             | 4958.45              |                  |                          |      |
| I  | tem         | Head          | ~                   |       |                |                  |        |             | 4958.40<br>4958.35   |                  |                          |      |
| s  | tart        | 1/1/2007 0:0  | 11:00               | End   | 1/1/2007 12:01 | :00              |        |             | 4908.30<br>= 4958.30 |                  |                          |      |
|    | Juantity    | Head Elevati  |                     | Unit  |                |                  | 1      |             | 4958.25              | 0                |                          |      |
|    |             |               |                     | Onic  |                |                  | _      |             | 4958.20<br>4958.15   |                  |                          |      |
|    | sult Data   |               |                     |       |                |                  |        |             | 4958.10              | / 1              |                          |      |
| F  | ile         | Network_Ex8   | B_Base.out          |       |                | ~                |        |             | 4958.05              |                  | <b>~</b>                 |      |
| It | tem         | SWMM_NOD      | E_HEAD ~            |       |                |                  |        |             | 4958.00 -            |                  | 06:00                    | 12:0 |
| S  | tart        | 1/1/2007 0:0  | 05:00               | End   | 1/1/2007 12:00 | :00              |        |             |                      |                  | 01/01/2007               | 12:0 |
|    |             |               |                     |       |                |                  |        |             |                      | — c              | omputed — Measured       |      |
| -  |             | ID            | ~ ALL               | ~ c   | lear Sho       | ow selected S    | now da | ita errors  | 2/2 rows, 0 select   | ted              |                          |      |
|    | ID          | Sensor ID     | Measurement file    | Measu | rement item    | Result file      |        | Result item |                      |                  |                          |      |
| 1  | M_1         | Flow Station  | Example8\Flow.dfs0  | Flow  |                | Network_Ex8_Bas  | e.out  | SWMM_LINK   | _FLOW;Discharge;     | ;100001          |                          |      |
| 2  | M_2         | Level Station | Example8\Level.dfs0 | Head  |                | Network_Ex8_Bas  | e.out  | SWMM_NOD    | E_HEAD;Hydraulic     | head; 100372     |                          |      |
| -  |             |               |                     |       |                |                  |        |             |                      |                  |                          |      |



# Identification

The Identification group box contains ID and associated measurement station information for a plot and statistics setup item.

| Identification |              |        |            |
|----------------|--------------|--------|------------|
| ID             | M_1          | Insert | Statistics |
| Sensor ID      | Flow Station | Delete | Report     |

#### Figure 9.10 The Identification groupbox

The following button functionalities are available on the editor:

#### Insert

Inserts a new Plot and Statistics item.

#### Delete

Deletes the active Plot and Statistics item.

#### Statistics

Displays various statistics parameter values, such as Mean error and RMS error, used for evaluating the comparison between simulated values and measurements.

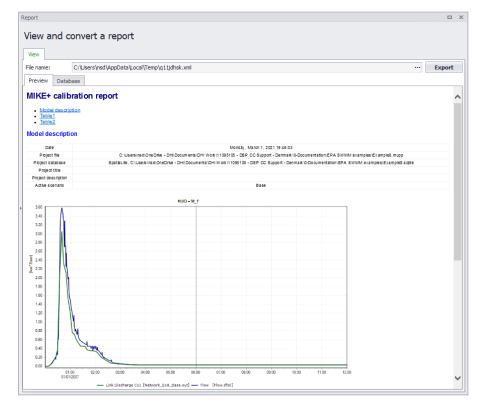

|   | Measurement | Station       | Number of | Observed<br>mean value | Computed mean value | Mean      | RMS       |
|---|-------------|---------------|-----------|------------------------|---------------------|-----------|-----------|
| • | M_1         | Flow Station  | 715       | 0.1979536              | 0.1632942           | 0.0346594 | 0.0048143 |
| , | M_2         | Level Station | 715       | 4958.1035              |                     |           | 0.0006346 |

Figure 9.11 Example Statistics for Plots and Statistics setup items generated from the editor

#### Report

Option for exporting a report about the time series comparisons in various file formats.







## Measured and Result Data

Define the measured data item and model result item to compare for a Plot and Statistics setup.

| easured Da | ita                  |   |      |                    |
|------------|----------------------|---|------|--------------------|
| File type  | Dfs0 file            | ~ |      |                    |
| File       |                      |   |      | Example8\Flow.dfs0 |
| Item       | Flow                 | ~ |      |                    |
| Start      | 1/1/2007 0:01:00     |   | End  | 1/1/2007 12:01:00  |
| Quantity   | Discharge            |   | Unit | ft^3/s             |
| esult Data |                      |   |      |                    |
| File       | Network_Ex8_Base.out |   |      | ×                  |
| Item       | SWMM_LINK_FLOW       | ~ |      |                    |
|            |                      |   | End  | 1/1/2007 12:00:00  |



## Plots

Various plots comparing measured and model result data are presented on the right side of the editor.

## **Calibration Plot**

The Calibration Plot tab page shows a time series plot of measurements against simulation results.

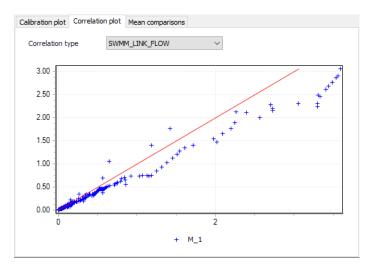




Figure 9.14 Example calibration plot

# **Correlation Plot**

The correlation plot shows the deviation of simulated results from observed data.







#### Mean Comparisons

A bar chart plots mean measurement values against mean simulation result values for all Plots and Statistics setups on the Mean Comparisons tab page.

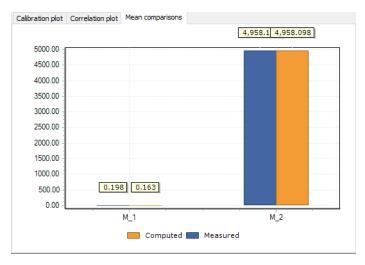



Figure 9.16 Example mean comparison plots



| Edit field | Description                                                                                                      | Used or required | Field name in data<br>structure |
|------------|------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------|
| ID         | ID for the Plot and<br>Statistics setup item                                                                     | Yes              | MUID                            |
| Sensor ID  | The ID of the asso-<br>ciated Measure-<br>ment Station                                                           | Yes              | MeasurementSta-<br>tionID       |
|            | Measure                                                                                                          | ed Data          |                                 |
| File Type  | Measurement time<br>series data may be<br>in .DAT or .DFS0 file<br>formats.                                      | Yes              | -                               |
| File       | External file name<br>and path for meas-<br>ured time series<br>linked to the meas-<br>urement station           | Yes              | TSFileName                      |
| Item       | Item to compare<br>from the measured<br>time series                                                              | Yes              | TSItemName                      |
| Start      | Auto filled with the<br>time series file start<br>time.<br>Used to control the<br>Start time for com-<br>parison | Yes              | -                               |
| End        | Auto filled with the<br>time series file end<br>time. Used to con-<br>trol the End time for<br>comparison        | Yes              | -                               |
| Quantity   | Displays item name<br>for selected item<br>from measurement<br>time series                                       | Yes              | -                               |
| Unit       | Displays units used<br>for selected item<br>from measurement<br>time series                                      | Yes              | -                               |
|            | Resul                                                                                                            | t Data           |                                 |
| File       | Result file name<br>and path                                                                                     | Yes              | ResFileName                     |

## Table 9.2 Edit fields in the Plot and Statistics editor (m\_Measurement)

| Edit field | Description                                                     | Used or required | Field name in data structure |
|------------|-----------------------------------------------------------------|------------------|------------------------------|
| Item       | The result file item<br>being compared to<br>measurements       | Yes              | ResItemName                  |
| Start      | Displays simulated<br>result time series<br>start date and time | Yes              | -                            |
| End        | Displays simulated result time series end date and time         | Yes              | -                            |

### Table 9.2 Edit fields in the Plot and Statistics editor (m\_Measurement)



# 10 Scenarios

Water distribution and collection system models are commonly used for system performance analysis and planning studies. The complexity of the involved systems, the various uncertainties about future conditions, and usually huge costs associated with maintenance, rehabilitation, and development necessitate a thorough investigation of alternative system configurations in the search for a technically feasible, environmentally sound, and economically efficient solution.

These alternative configurations - scenarios - may differ by system physical layout, loading conditions, operational strategies, etc. Various projects, such as development of a Sewerage Master Plan, Wastewater Transportation Strategy, an Overflow Abatement Strategy, and the like, would typically result in a large number of scenarios, either representing alternative system configurations at a given time and/or representing the system at various development stages. Testing of each scenario against the prescribed legislation or the standards of service that the authorities provide requires a numerical model each.

These scenarios are always related to each other through the common origin ('Existing Case' or 'Base') and the differences typically involve only a part of the total data. Moreover, scenarios representing a development of the system through time are subject to the dependencies propagating along the time line.

Analysis of the scenarios as separate projects creates major inconveniences, such as:

- Large number of models, even when differences between them are minor
- Missing an efficient overview over the entire set of solutions
- Inability to maintain the existing dependencies between the individual scenarios automatically. Thus, the updating of the models with additional information requires editing of multiple files to change the same element, e.g. if a pipe diameter is found to have been incorrectly registered in the GIS database, it will have to be updated multiple times in each of the scenario project file
- Unable to easily visualise differences between scenarios

In other words, working with the scenarios as separate projects is inefficient and cumbersome.

Instead, the MIKE+ Scenario Manager provides an easy way of managing multiple scenarios within a single MIKE+ project (i.e. a single database).



# 10.1 What is Scenario Manager?

The MIKE+ Scenario Manger is accessed via the Scenarios sections on the Setup tree.

The Scenario Manager enables the definition, organisation, management and reporting of alternative model scenarios, such as:

- Augmentation of existing trunk sewer mains
- Increased wastewater loading from increased population
- Increased water demands from increased population
- Alternative design loads, e.g. rainfall-runoff of different return period
- Alternative/new alignment of water, sewer and storm mains
- Building of a new sewer trunk and water supply mains in order to cater for a new development area

all within the same MIKE+ project.

With the MIKE+ Scenario Manager, a user can work with an unlimited number of scenarios in a single MIKE+ project.

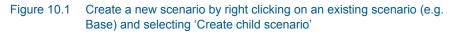
# 10.2 Design of the MIKE+ Scenario Manager

# 10.2.1 Data Groups, Alternatives, and Scenarios

The MIKE+ Scenario Manager is based on the concept of Data Groups, Alternatives and Scenarios.

In this context, a Data Group is a set of database tables comprising a model component. For example, all database tables containing collection system network data belong to the data group Network Data. Every database table relevant for the scenario manager is included in one of the Data Groups.

Each Data Group can appear in the MIKE+ project in any number of Alternatives. The initial alternative is named 'Base' by default. Any further alternatives are created upon user request and can have a user-specified name. The Alternatives for a certain data group are organised in a tree-like structure, where dependencies propagate along the branches - from the "parent" to all the "heirs" i.e. "child" alternatives.


A scenario contains a collection of one alternative from each Data Group. Individual alternatives are used as building blocks for constructing scenarios. For example, modelling a new development area could have new alternatives for Network, Loads and boundaries and Catchments and hydrology data groups, while the remaining data groups remain as the base case. A moderate number of data groups (6 for SWMM, 7 for CS, 5 for WD) allows for a manageable structure of scenarios while ensuring a high level of flexibility.

The initial 'Base' scenario consists of the 'Base' alternative of each data group. Any further scenarios are created upon user request and can have a



user-specified name. The scenarios can be organised in a tree-like structure of "parents" and "children". A new scenario is created in the Setup menu by right clicking on a scenario (e.g. Base) and selecting 'Create child scenario' from the context menu. Select the new scenario and tick on the relevant alternatives for the selected scenario.

| Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # ×                                                                                         | Map Scenarios 🗙                                                                                         |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------|
| Seneral set     General set     Module     Descrip     Seneral     Map config     Seneral     Sen | es<br>otion<br>juration<br>s                                                                | Scenario Base                                                                                           | Activate         |
| <ul> <li>⊕- x Tables</li> <li>⊕- x Real time c</li> <li>⊕- x Calibrations</li> <li>⊕- x Scenarios</li> <li>⊕- x Bayes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             | Alternatives                                                                                            | Insert<br>Delete |
| Result :     Simulat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Activate scenario<br>Rename scenario                                                        | Loads and boundaries data                                                                               | Delete           |
| - Simulat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Create child scenario                                                                       | Catchments and hydrology data                                                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Duplicate scenario<br>Delete scenario<br>Show difference on map<br>Remove difference on map | WQ data<br>Base Alternative<br>RTC(operational) data<br>Base Alternative<br>TS data<br>Base Alternative |                  |
| Setup Lavers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and symbols Results                                                                         | Profiles and curves Base Alternative                                                                    | Comment          |



Click on the Activate button to modify the database for this collection of alternatives.

# 10.2.2 Alternatives

As described in the previous section, alternatives represent components of scenarios. The various alternatives contain the actual data belonging to a certain data group. Each subsequent alternative only contains information on the differences relative to its immediate "parent", while the rest of the data is inherited from the "parent" through the principles of inheritance.

Grouping of various alternatives belonging to different data groups into scenarios is sometimes subject to limitations because the data groups have not been formed on the basis of data dependency but rather following the logical data grouping, recording differences according to hierarchy. E.g. An alternative of the Catchment connections CS data group, which specifies a catchment connection to node 'A', cannot be used with the alternative of the Network data data group where node 'A' has been renamed or deleted. Obviously, the catchment would remain disconnected. It is therefore prudent to plan the scenarios and alternatives before commencing a project, where possible.

# SWMM Network Alternatives

For SWMM Networks, the following data groups are available for creating scenarios:

- Network data
- RTC (operational) data
- Loads and boundaries data
- Profiles and Curves
- WQ data
- Catchments and hydrology data

# **CS Network Alternatives**

For CS Networks, the scenarios are composed of the following data groups:

- Network data
- Loads and boundaries data
- Catchments and hydrology data
- WQ data
- RTC (operational) data
- LTS data
- Profiles and Curves

## WD Network Alternatives

For Water Distribution Systems input data for scenarios are grouped in the following way:

- Network data
- Water demands
- Control data
- WQ data
- Patterns and Curves



| Scenarios    |                                  |                               | • x |
|--------------|----------------------------------|-------------------------------|-----|
| Scenario     | Base                             | Activate                      |     |
| Comment      |                                  |                               |     |
|              |                                  |                               |     |
|              |                                  |                               |     |
| Alternatives |                                  |                               |     |
|              | < data                           | Insert                        |     |
|              | lase Alternative                 |                               |     |
| <u> </u>     | FutureBaseline                   | Delete                        |     |
|              | - FutureBaselineTunnel           |                               |     |
|              | ⊕ · □ 7abc<br>⊕ · □ Schedule_1-5 |                               |     |
| PTC(op)      | erational) data                  |                               |     |
|              | nd boundaries data               |                               |     |
|              | and curves                       |                               |     |
| ⊕ WQ dat     | a                                |                               |     |
| . Catchme    | ents and hydrology data          |                               |     |
|              |                                  | Comment                       |     |
|              |                                  | mss_Node                      | ~   |
|              |                                  | mss_Link                      |     |
|              |                                  | mss_Orifice<br>mss_Outlet     |     |
|              |                                  | mss_Pump                      |     |
|              |                                  | mss_Weir<br>mss Transect      |     |
|              |                                  | mss_transect<br>mss_transectD |     |
|              |                                  |                               |     |
|              |                                  |                               | ~   |
|              |                                  |                               |     |

Figure 10.2 Click on a Data Group to see the relevant database tables on the bottom right of the screen. E.g. Network data for SWMM networks

Simply select an alternative and click on the button Insert in the scenario manager to create a new alternative that is a "child" of the alternative directly above it.

# 10.2.3 Base Data vs. Child Data

When the scenario manager is activated for the first time, the system automatically provides 'Base' alternatives for each data group. The 'Base' data contains the original model database and is the "trunk" for all the alternative branches.

A 'Base' alternative for any data group can be empty if no data are specified in any of the tables belonging to this data group. E.g. no operational data may be specified thus leaving the RTC (operational) data 'Base' alternative empty. So, although the RTC (operational) data is a part of the 'Base' scenario, it does not necessarily mean that any operational data are specified. It is possible to add a 'child' to the RTC (operational) data 'Base' alternative containing operational data and include this alternative in a new scenario. This way, the scenario containing operational data can be tested and the reports of the changes will reflect that the operational data have been changed in the 'child'.

There may be many reasons for adding child alternatives. E.g. it can be for testing the performance of the system if the diameters for certain pipes are

increased, testing the effects of population growth, or testing the effects of applying different real time control strategies.

After making a scenario active (click on the Activate button on the editor) all the alternatives that are a part of the scenario are automatically activated and the scenario may be edited. Changes made to the database will be recorded within the alternative for each data group as differences to the parent alternative. If a base alternative is active, the main database will be modified (not recorded as a difference).

## 10.2.4 Inheritance Principles

With the inheritance from 'parent' alternatives to 'child' alternatives, some considerations must be kept in mind.

- Making a change to an alternative will affect all descendent ('child') alternatives of that alternative. This means that it will impact all the scenarios where either the alternative or the children of that alternative are applied. The benefit of this feature is that it ensures that if one value needs updating it will be updated in all the scenarios where the alternative is applied (e.g. if a pipe diameter is found to have been incorrectly registered in the GIS data during the course of a project then the pipe diameter can be changed one place only, regardless of the number of scenarios and alternatives that reference to this alternative).
- The chain of inheritance for a certain data record stops where any change (or deletion) of that element has occurred in earlier work. E.g. if a bottom level of a node 'A' has been edited in a child alternative, a later update of the bottom level in the 'Base' will only propagate through the alternative tree until it reaches the alternative containing the first change.
- Adding an element (e.g. a node) in the 'parent' with an ID that already exists in one or more of its descendants ('children') will overwrite the content of the 'child' element
- If adding an element (e.g. pump) in the parent that cannot be added to all the children (because some parts may have been deleted/changed there), the element is added where possible and omitted elsewhere.

# 10.2.5 Data not Specific to any Alternative/Scenario

There are some data tables which are not included in the Scenario Manager.

These are typically tables containing data of general usability, i.e. data without a reference to the current network. For example, in MIKE+ CS these include cross sections, parameter sets, etc. These data should be understood as belonging to a general project database.



There are some single record tables containing various parameters (e.g. water quality parameters) that are not part of the Scenario Manager in order to allow the application of various parameters within the same project.

The data not included in the Scenario Manager can be accessed from any scenario regardless of the alternatives that make up that specific scenario.

Please note that the computed values are not part of Scenario Manager (all fields ending with \_C) and are not automatically re-computed after switching scenarios.

# 10.3 Managing Scenarios and Alternatives

The Scenario Manager involves:

- The Scenarios section in the Setup tree view
- The Alternatives section on the Scenarios editor

| Setup # x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenarios 🗶 💌                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General settings<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Scenario Base Activate                                                                                                                                                                           |
| Catchments | Comment Alternatives Alternatives  Alternatives  Alternatives  Alternatives  Insert  Insert  Delete  Delete                                                                                      |
| └── □ Simulation setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gorment     Gorment     Gorment     Gorment     Gorment     Sold     Sold     Sold     mss_Link     mss_Orifice     mss_Outlet     mss_Outlet     mss_Transect     mss_Transect     mss_Transect |
| Setup Layers and symbols Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                  |
| Database validation done.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                  |

Figure 10.3 The Scenarios section in the Setup tree on the left panel and the Alternatives window on the Scenarios editor.

## 10.3.1 Scenarios

The scenarios section is used for creating, editing, and managing scenarios. There is one built-in scenario, i.e. the Base scenario, by default. The Base scenario cannot be edited nor deleted.



But an unlimited number of additional scenarios can be added.

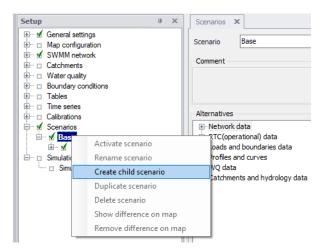



Figure 10.4 Scenario options are visible via the context menu

The context menu (i.e. right click) on a scenario offers various options for creating scenarios.

#### Activate Scenario

The activate scenario option will load the scenario, i.e. the project data is manipulated so that all editors contain the appropriate data corresponding to the collated alternatives for the scenario. Depending on the size of the project this may take some time.

#### **Rename Scenario**

The rename scenario button will make the scenario name active so it can be easily renamed.

#### Create Child Scenario

The create child scenario option adds a scenario that is a child of the selected scenario (not to be confused with the active/current scenario), i.e. to begin with, the alternatives of a new scenario will be that of the selected scenario. A name for the new scenario is suggested by default. The name can be changed by using the rename scenario option.

#### **Duplicate Scenario**

The duplicate scenario option will make a copy of the selected scenario. This means that all the alternatives that make up the original scenario will be transferred to also be applied to the new scenario. Once the new scenario has been made, the original and the duplicate scenario are edited independently of one another.



#### Delete Scenario

The delete scenario option will remove the selected scenario. The Base scenario cannot be deleted. Note that deleting a scenario will not delete any data as the alternatives hold the data (the scenarios just refer to alternatives). The comments for the scenario being deleted, however, will also be deleted.

#### Show Difference on Map

The show difference on map option is very useful to graphically display differences between scenarios. Differences are shown on the map view with a color code and will show differences between the activated scenario and the selected scenario.

## 10.3.2 Alternatives

Alternatives can be edited only once the corresponding scenario is activated.

Alternatives can, however, be added to the tree view in the manager regardless of the active scenario. When a scenario is loaded, the project data is manipulated so that all editors contain the appropriate data corresponding to the alternatives for the scenario.

| Setup a x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Map Scenarios X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setup         a         ×           B - M General settings         Model         -           B - M Reconfiguration         -         Network           - Depes and coulds         -         -           - Depes and coulds         -         -           - Offices         -         -           - Otoparty         -         -           - Dependences         -         -           - Dependences         -         -           - Dependences         -         -           - Dependences         -         -           - Otoparative         -         -           - Otoparative         -         -           - Dependences         -         -           - Otoparative         -         -           - Scop.p | Scenario New_Dv(pmt_1 Activate Comment Population 2560 with the development option 2  Alternatives  Network data Base Alternative Base Alterna |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comment Commen |



The alternatives part of the dialog has two buttons: Insert and Delete on the right side.

The alternatives that correspond to the selected scenario are ticked in the alternatives tree. The alternatives available for editing in the MIKE+ tables are displayed in bold.

#### Insert

The insert button adds an alternative that is a child of the selected alternative (not to be confused with the active/current alternative). A name for the new alternative is suggested per default. Rename an alternative by clicking on the alternative name.

#### Delete

The delete button will remove the highlighted alternative. The alternatives must be deleted by starting at the end of the trees until the root is reached (the alternatives can only be deleted one by one starting from the latest child). The Base alternative cannot be deleted. Remember: Deleting an alternative will delete the changes made to that alternative.

## 10.3.3 Scenario Simulation

To run a simulation for a particular scenario, it is necessary to:

- Activate the relevant scenario. This is done by selecting the scenario in the Setup view, scenarios section, and then clicking the Activate button available in the Scenarios editor.
- Insert a new simulation. Define a new simulation setup via the Simulation Setup editor. Click on the Insert button to insert a new simulation setup item. The active scenario will automatically be the Scenario for the new simulation setup.
- Define the required fields for the simulation setup.
- Run the simulation. Once a simulation setup is created, it can be run for the Scenario, even when the active scenario is changed. i.e. when the simulation is run, MIKE+ will automatically activate the relevant scenario and run the model. In this way, multiple scenario simulations can be set up and run.

## 10.3.4 Example

To investigate how upsizing certain pipes and adding some real time control can affect the performance of the system, start by making two child alternatives: one for the network data (as the pipes are a part of this alternative) and one for the RTC (operational) data (as the real time control is a part of that alternative).

Then, create a scenario that applies the new network alternative and the new operational data alternative and then activate this scenario. Start editing the data in the MIKE+ tables (e.g. upsizing the pipes and adding real time control).

Once the data is edited, insert a new simulation to correspond to the active scenario. Run the model and compare the results to the original setup to see the effect of the changes.



You can also choose to make a new scenario that contains e.g. the network alternative (but not the operational data alternative), to see what change in performance the pipe upgrades alone will have.

# 10.3.5 Reporting Changes

When setting up multiple alternatives and scenarios, it is important to keep track of the changes that have been done. The Model and Result Report tool can be used to track and document changes made between scenarios.



Figure 10.6 The Model and Result Report tool on the Tools menu ribbon

Access the Model and Result Report tool from the MIKE+ Tools menu ribbon.

On the Model and Result Report tool dialog, create a New template.

On the Content tab page of the dialog, select the items to be compared under the Scenario section. Click on Run to perform the comparison.

| Report                              |                                                                                                                                                                                                                                                                                                                           |                                | ×          |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|
| Run Configure                       | Template setup: Definition of cont                                                                                                                                                                                                                                                                                        | ent                            |            |
| Customized templates v              | Content Output options View                                                                                                                                                                                                                                                                                               |                                |            |
|                                     | ▶ Wodel description         ↓ Tables         Charts         Images         ✓ Scenario         △ Alternative hierarchy         ▲ Alternative hierarchy         ✓ Scenario #1         ✓ Scenario #2         ⊂ Comments         ▶ Ø Groups         ○ Ny include changed values that differ         ▶ Alternative differences | Base<br>FutureBaselineTunnel V | Add<br>Add |
| Name<br>New reporting template      |                                                                                                                                                                                                                                                                                                                           |                                |            |
| File name                           |                                                                                                                                                                                                                                                                                                                           |                                |            |
| Comment                             |                                                                                                                                                                                                                                                                                                                           |                                |            |
| 🔒 New 🗍 Copy 💾 Save 💥 Delete 📊 Load |                                                                                                                                                                                                                                                                                                                           |                                |            |

Figure 10.7 The Model and Result Reporting tool can be used to keep track of scenarios and alternatives.

All reports can be produced in color or in black/white. The reports are in XML format but can be imported into a Word document. (Refer to the MIKE+ Model Manager User Guide chapter on *Reports* for further details.)

The table can be exported to a variety of formats. E.g. Word, Excel, \*.PDF, \*.XML ,etc. The report style may be the default 'MUReport' format, or an imported style.

Within a report, color coding is used to signify the origin/status of the record:

- White: Original record, no changes
- Green: Record added
- Yellow: Record has been changed (updated)
- Red: Record has been deleted

#### Scenario hierarchy

Will create a table with scenario IDs, active scenario, parent of the scenario and comments.

#### Alternative hierarchy

Will create tables for each data group with alternative IDs, active alternative, the parent alternative, a comment, and the scenario to which the alternative is associated.

#### Scenario differences

Scenarios #1 and #2 are compared to each other, selected from a drop-down list of all the scenarios in the model. Comments in the scenario specification can be included in the comparison as an option. To limit the comparison, specific data groups may be selected and whether or not to present a comparison of everything in a report or 'Only include changed values that differ' between scenarios.

#### Alternative differences

When comparing two different alternatives, the data group to be compared must be chosen from a drop-down list of all data groups. Then two alternatives from within the specified data group can be selected to be compared to each other, selected from a drop-down list of all the alternatives within the data group. Comments in the alternative specification can be included in the comparison as an option and a choice can be made whether or not to present a comparison of everything in a report or 'Only include changed values that differ' between alternatives.



| Run Configure                  |      | Template setup: Definition of c                             | ontent                 |       |
|--------------------------------|------|-------------------------------------------------------------|------------------------|-------|
| Predefined templates           | ~    | Content Output options View                                 |                        |       |
| Customized templates           | ~    |                                                             |                        |       |
|                                |      | Model description                                           |                        |       |
|                                |      | ► 🗹 Tables                                                  |                        |       |
|                                |      | Charts                                                      |                        | 🕀 Add |
|                                |      | Images                                                      |                        | 🕀 Add |
|                                |      | 🚽 🗹 Scenario                                                |                        |       |
|                                |      | Scenario hierarchy                                          |                        |       |
|                                |      | Alternative hierarchy                                       |                        |       |
|                                |      | Scenario differences                                        |                        |       |
|                                |      | <ul> <li>Alternative differences</li> </ul>                 |                        | 1     |
|                                |      | Group                                                       | Network data           |       |
|                                |      | Alternative #1                                              | Base Alternative       |       |
|                                |      | Alternative #2                                              | FutureBaselineTunnel 🔻 |       |
|                                |      | Comments                                                    |                        |       |
|                                |      | <ul> <li>Only include changed values that differ</li> </ul> |                        |       |
| Name                           |      |                                                             |                        |       |
| New reporting template         |      |                                                             |                        |       |
| File name                      |      |                                                             |                        |       |
|                                |      |                                                             |                        |       |
| Comment                        |      |                                                             |                        |       |
|                                | _    |                                                             |                        |       |
| 🕞 New 🗍 Copy 💾 Save 💥 Delete 🔒 | Load |                                                             |                        |       |
| 🛞 New 🗇 Copy 🗖 Save 🚜 Delete 🚺 | LOau |                                                             |                        |       |

Figure 10.8 Reporting differences between Alternatives using the Model and Result Report tool

## 10.3.6 Show Differences on the Map

The 'Show difference on Map' option, accessed by right clicking on a Scenario ID in the Setup view is useful to graphically display the differences between two scenarios.

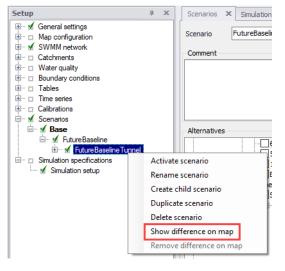



Figure 10.9 Option to show scenario differences on the Map



Color coding is used to signify the origin/status of the record:

- White: Original record, no changes
- Green: Record has been changed (updated)
- Yellow: Record added
- Red: Record has been deleted

The example below presents network differences between scenario '2060' (active scenario) and the 'Base' (font in light green).

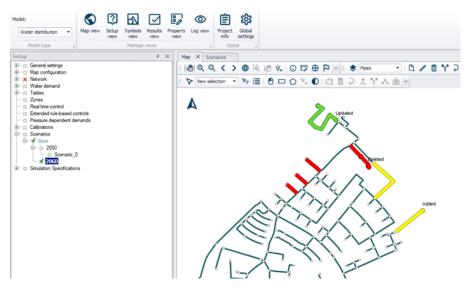
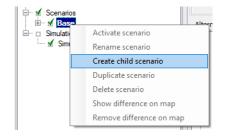
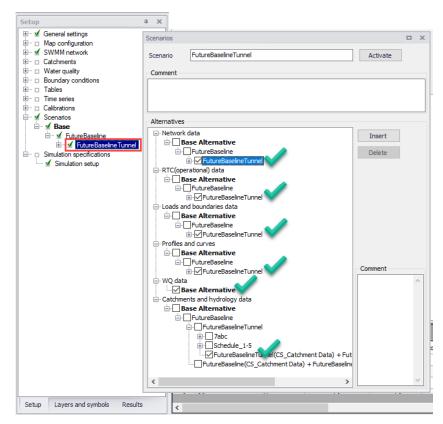




Figure 10.10 Graphical display presenting the differences between scenarios

# 10.4 Step-by-Step Guide to Creating Scenarios

- 1. Go to the Scenarios section on the Setup tree.
- 2. Create a child scenario by right clicking on an existing scenario and selecting the 'Create child scenario' option from the context menu.




3. On the Scenarios editor, select the alternative group to which to add an alternative and click on the 'Insert' button.



| Scenarios           |                    |   | х |
|---------------------|--------------------|---|---|
| Scenario<br>Comment | Base Activate      |   |   |
| Alternatives        |                    | 1 |   |
|                     | ase Alternative    |   |   |
|                     | nd boundaries data |   |   |
| 🗄 · WQ dat          |                    |   |   |
|                     | Comment            |   |   |
|                     |                    |   | Ç |

- 4. You may rename it and/or continue to make alternatives.
- 5. Once you have created all the alternatives that you need, highlight the scenario you created and tick on the alternatives that you wish to include in the scenario, one for each data group.



6. Activate the scenario that you wish to work with (right click on the scenario ID in the Setup view and select 'Activate scenario' or click on the 'Activate' button next to the ID of the selected scenario in the Scenario editor window). The activated scenario is displayed in bold font. All the

alternatives that relate to the active scenario are also displayed in bold in the list of alternatives.

| Scenarios |                               | х |
|-----------|-------------------------------|---|
| Scenario  | FutureBaselineTunnel Activate |   |
| Comment   |                               |   |
|           |                               |   |

- 7. Edit the model, making sure to edit only data from tables associated with the new activated alternatives.
- 8. Create a new simulation for the active scenario in the Simulation Setup editor.
- 9. Run the new scenario and compare results from other scenarios.



# 11 SWMM Simulation Specifications

SWMM model simulations are launched from the Simulation Setup editor, where combinations of different types of simulations may be defined.

The Simulation Setup editor has several tabs, which are relevant depending on the features and functionalities defined in the project:

- **General**. Includes general parameters, such as definition of the simulation period, selection of simulation types, and free text description of the simulation setup.
- **Catchments**. Includes parameters specific for Runoff simulation.
- **HD**. Includes parameters specific for HD simulation.
- Dynamic Wave. For defining parameters specific for Dynamic Wave flow routing computations.
- Water Quality. Includes parameters specific for water quality simulations.
- Reporting. Used for specifying results (output) to be generated by the simulation.

| Simulati | on setup                                                                                                             |                               |                        |             |                              |                        |                | • ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|-------------|------------------------------|------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID       | itification<br>enario                                                                                                | Simulation 1<br>Base          | ~                      |             |                              | Insert<br>Delete       | Copy<br>RUN    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | al Catchr<br>ss Models<br>Rainfall runo<br>Rainfall depe<br>Snow melt<br>Groundwater<br>Flow routing<br>Water qualit | ff<br>endent I/I<br>r<br>(HD) | Simu<br>St<br>Du<br>En | uration 742 | Reporting<br>1/1949 0::<br>0 | 00:00                  | [ss]           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                      | ID                            | ∼ ALL                  | ~ Clear     | 🗌 Sh                         | ow selected 🗌 Show dat | a errors 1/4 r | ows, 0 selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | ID                                                                                                                   | Scenario                      | Active simulatio       | n Rainfall  | runoff                       | Rainfall dependent I/I | Snow melt      | Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ▶ 1      | Simulation 1                                                                                                         | Base                          | <b>v</b>               |             | ~                            | Г                      | V              | <ul> <li>Image: A second s</li></ul> |
| 2        | Sim 12                                                                                                               | Base                          | V                      |             | ~                            | Г                      | V              | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <        |                                                                                                                      |                               |                        |             |                              |                        |                | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### Figure 11.1 The SWMM Simulation Setup editor

The Identification group at the top and the scrollable grid table at the bottom of the editor are common across all tabs.



| Edit field | Description                                                                                | Used or required by simulations | Field name in<br>datastructure |
|------------|--------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|
| ID         | User-specified ID of<br>simulation. ID will<br>be reflected in the<br>name of result files | Yes                             | MUID                           |
| Scenario   | Dropdown menu for<br>selecting ID of<br>related Scenario for<br>the simulation             | Yes                             | ScenarioName                   |

#### Table 11.1 Edit fields in the Simulation Setup Identification group (mss\_Project)

The following buttons are also located at the top of the editor with the Identification group:

#### Insert

Inserts a new record in the Simulation Setup editor with a default unique MUID.

#### Copy

Duplicates an existing (currently active) simulation setup record.

#### Delete

Deletes a currently active simulation record.

#### RUN

Triggers export of the current simulation job and execution of the simulation.

# 11.1 General

The General tab page presents parameters relevant for the simulation setup. The following parameters are specified in the General tab:

- Process Models. Define the process models to be included in the simulation.
- **Simulation Period**. Period covered by the simulation.
- **Description**. Optional description for the simulation setup.



| General | Catchments                                          | HD  | Dynamic wave | Water quality            | Reporting                                      |
|---------|-----------------------------------------------------|-----|--------------|--------------------------|------------------------------------------------|
| Rain    | nfall runoff<br>nfall dependent I                   | I/I |              |                          | / 1/1949 0:00:00                               |
| Flow    | w melt<br>undwater<br>v routing (HD)<br>ter quality |     |              | Duration 742<br>End 10/1 | 2 0 0 0 (dddd][hh][mm][ss]<br>/13/1951 0:00:00 |
|         |                                                     |     |              | escription               |                                                |

#### Figure 11.2 The SWMM Simulation Setup editor General tab

An overview of the editor fields and corresponding database attributes is provided in Table 11.2 below.

#### Table 11.2 Edit fields in the Simulation Setup General tab page (mss\_Project)

| Edit field                | Description                                               | Used or required by simulations | Field name in<br>datastructure |
|---------------------------|-----------------------------------------------------------|---------------------------------|--------------------------------|
| Rainfall Runoff           | Surface runoff                                            | Yes                             | UseRRNo                        |
| Rainfall Dependent<br>I/I | Infiltration modelling                                    | Yes                             | UseRDNo                        |
| Snowmelt                  | Snowmelt as part of<br>surface runoff mod-<br>elling      | Yes                             | UseSMNo                        |
| Groundwater               | Groundwater mod-<br>elling                                | Yes                             | UseGWNo                        |
| Flow Routing (HD)         | Network flow routing through conduits                     | Yes                             | UseFRNo                        |
| Water Quality             | Water quality rout-<br>ing through conduits               | Yes                             | UseWQNo                        |
| Start                     | Specifies start date<br>and time for the sim-<br>ulation. | Yes                             | ComputationBegin               |

| Edit field  | Description                                                                                                                                                                                                                      | Used or required by simulations | Field name in datastructure |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| Duration    | Displays the dura-<br>tion of the simula-<br>tion in days, hours.<br>minutes and sec-<br>onds.<br>Automatically<br>adjusted based on<br>Start and End<br>time/date. May be<br>edited, adjusting<br>End date/time<br>accordingly. | Yes                             | -                           |
| End         | Specifies end date<br>and time for the sim-<br>ulation. Adjusted<br>automatically<br>according to user's<br>specification of<br>duration.                                                                                        | Yes                             | ComputationEnd              |
| Description | Free text description<br>of the simulation<br>setup                                                                                                                                                                              | Optional                        | Description                 |

#### Table 11.2 Edit fields in the Simulation Setup General tab page (mss\_Project)

# 11.2 Catchments

The following parameters can be specified on the Catchments tab page:

- **Runoff Time Step**. Runoff simulation time step.
- **Infiltration Model**. Infiltration method to use for the simulation.
- **Runoff Interface Files**. Options for specifying the use or saving of Interface Files for the simulation.

| General Catchments HD Dyr                               | namic wave Water quality | Reporting                                                                                            |
|---------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------|
| Time Step Runoff step: Days Dry weather 0 Wet weather 0 | Hr:Min:Sec 01:00:00      | Infiltration Model<br>Horton<br>Green Ampt<br>Curve Number<br>Modified Horton<br>Modified Green Ampt |
| Runoff interface files                                  |                          |                                                                                                      |
| Rainfall data                                           | Use                      |                                                                                                      |
| Save runoff data                                        |                          |                                                                                                      |
| Save RDII data                                          |                          |                                                                                                      |

## Figure 11.3 The SWMM Simulation Setup Catchments tab page

| Edit field                               | Description                                                                                                                                                                                                                                  | Used or required by simulations | Field name in datastructure |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|
|                                          | Time                                                                                                                                                                                                                                         | Step                            |                             |
| Dry Weather<br>Days Runoff Step          | Time step length in<br>days used for runoff<br>computations (con-<br>sisting essentially of<br>pollutant buildup)<br>during periods when<br>there is no rainfall<br>and no ponded<br>water at junctions                                      | Yes                             | RS_DryDay                   |
| Dry Weather<br>Hr:Min:Sec Runoff<br>Step | Time step length in<br>hours/minutes/sec-<br>onds during periods<br>with no rainfall nor<br>ponded water at<br>junctions                                                                                                                     | Yes                             | RS_DryTime                  |
| Wet Weather<br>Days Runoff Step          | Time step length in<br>days used to com-<br>pute runoff from<br>catchments during<br>rainfall, or when<br>ponded water still<br>remains on the sur-<br>face, or when LID<br>controls are still infil-<br>trating or evaporat-<br>ing runoff. | Yes                             | RS_WetDay                   |

## Table 11.3 Edit fields in the Simulation Setup Catchments tab page (mss\_Project)



|                                          | elds in the Simulation s                                                                                                                                                                                                                                           | -                                   |                               |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------|
| Edit field                               | Description                                                                                                                                                                                                                                                        | Used or required by simulations     | Field name in datastructure   |
| Wet Weather<br>Hr:Min:Sec Runoff<br>Step | Time step length in<br>hours/minutes/sec-<br>onds used to com-<br>pute runoff from<br>catchments during<br>rainfall, or when<br>ponded water still<br>remains on the sur-<br>face, or when LID<br>controls are still infil-<br>trating or evaporat-<br>ing runoff. | Yes                                 | RS_WetTime                    |
|                                          | Infiltratio                                                                                                                                                                                                                                                        | on Model                            |                               |
| Horton                                   | Horton infiltration<br>method                                                                                                                                                                                                                                      | No                                  | InfiltrationModelNo           |
| Green Ampt                               | Green-Ampt Infiltra-<br>tion method                                                                                                                                                                                                                                | No                                  | InfiltrationModelNo           |
| Curve Number                             | SCS Hydrology - or<br>curve number<br>method                                                                                                                                                                                                                       | No                                  | InfiltrationModelNo           |
| Modified Horton                          | Modified Horton<br>infiltration method                                                                                                                                                                                                                             | No                                  | InfiltrationModelNo           |
| Modified Green<br>Ampt                   | Modified Green-<br>Ampt infiltration<br>method                                                                                                                                                                                                                     | No                                  | InfiltrationModelNo           |
|                                          | Runoff Inte                                                                                                                                                                                                                                                        | erface Files                        |                               |
| Rainfall Data                            | Option to use or<br>save rainfall data<br>file                                                                                                                                                                                                                     | No                                  | RainfallFileNo                |
| Use                                      | Option to read infor-<br>mation from already<br>created rainfall data<br>file                                                                                                                                                                                      | Yes<br>If RainfallFileNo = 1        | RainfallFileUseSav<br>eNo = 1 |
| Save                                     | Option to a Rainfall data file                                                                                                                                                                                                                                     | Yes<br>If RainfallFileNo = 1        | RainfallFileUseSav<br>eNo = 2 |
| (Rainfall data file input box)           | Rainfall data file name                                                                                                                                                                                                                                            | Yes<br>If RainfallFileNo = 1        | RainfallFileName              |
| Save Runoff data                         | Option to save run-<br>off data file                                                                                                                                                                                                                               | No                                  | RunoffFileSaveNo              |
| (Runoff data file input box)             | Runoff data file<br>name                                                                                                                                                                                                                                           | Yes<br>If RunoffFileSav-<br>eNo = 1 | RunoffFileSave-<br>Name       |

# Table 11.3 Edit fields in the Simulation Setup Catchments tab page (mss\_Project)



| Edit field                    | Description                      | Used or required by simulations | Field name in<br>datastructure |
|-------------------------------|----------------------------------|---------------------------------|--------------------------------|
| Save RDII Data                | Option to save RDII<br>data file | No                              | RDIIFileSaveNo                 |
| (RDII data file input<br>box) | RDII data file name              | Yes<br>If RDIIFileSaveNo =<br>1 | RDIIFileSaveName               |

 Table 11.3
 Edit fields in the Simulation Setup Catchments tab page (mss\_Project)

# 11.3 HD

The HD tab page holds parameters related to hydrodynamic network computations. The parameters are organized into the following groups:

- **Routing Model Settings**. Parameters related to method for routing flows through the network.
- Network Interface Files. Options for specifying the use or saving of Interface Files for the network HD simulation.

| General Catchments HD Dynamic wave | Water quality Reporting      |
|------------------------------------|------------------------------|
| Routing Model                      | Steady Flow Periods          |
| ○ Steady flow                      | Skip steady flow periods     |
| C Kinematic wave                   | System flow tolerance 5 [%]  |
| Oynamic wave                       | Lateral flow tolerance 5 [%] |
| Time Step                          | Routing Options              |
| Routing step 15 [sec]              | Allow ponding                |
| Control rule step 00:00:00         | Minimum conduit slope 0 [%]  |
| Network interface files            |                              |
| Save hotstart data                 | Save outflow data            |
|                                    |                              |
| Use hotstart data                  | Use RDII data                |
|                                    |                              |
| Use inflow data                    | Use runoff data              |
|                                    |                              |

Figure 11.4 The SWMM Simulation Setup editor HD tab page



| Edit field                  | Description                                                                                                                                                                                                                                                                                                 | Used or required by simulations           | Field name in datastructure |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|
| Routing Model               | Choice of model to<br>use for flow routing<br>through the net-<br>work:<br>Steady Flow<br>Kinematic Wave<br>Dynamic Wave                                                                                                                                                                                    | Yes                                       | RoutingModelNo              |
| Routing Step                | Flow routing time<br>step                                                                                                                                                                                                                                                                                   | Yes                                       | RoutingStep                 |
| Control Rule Step           | Time step length<br>used for evaluating<br>control rules. A<br>value of 0 means<br>controls are evalu-<br>ated every routing<br>time step.                                                                                                                                                                  | Yes<br>If Controls are used               | ControlRuleStep             |
| Skip Steady Flow<br>Periods | Option to make<br>SWMM keep using<br>the most recently<br>computed convey-<br>ance system flows<br>during identified<br>steady flow periods<br>instead of comput-<br>ing a new flow solu-<br>tion. Using this<br>feature can help<br>speed up simula-<br>tion run times at the<br>expense of accu-<br>racy. | Yes                                       | SkipSteadyFlow-<br>PeriodNo |
| System Flow Toler-<br>ance  | Threshold for per-<br>cent difference<br>between total sys-<br>tem inflow and total<br>system outflow used<br>to identify steady<br>flow periods                                                                                                                                                            | Yes<br>If SkipSteadyFlow-<br>PeriodNo = 1 | SysFlowTolerance            |

## Table 11.4 Edit fields in the Simulation Setup HD tab page (mss\_Project)

| Edit field                  | Description                                                                                                                                                                                                                 | Used or required by simulations           | Field name in<br>datastructure |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|
| Lateral Flow Toler-<br>ance | Threshold for per-<br>cent differences<br>between the cur-<br>rent lateral inflow<br>and that from the<br>previous time step<br>for all points in the<br>conveyance system<br>used to identify<br>steady flow periods       | Yes<br>If SkipSteadyFlow-<br>PeriodNo = 1 | LatFlowTolerance               |
| Allow Ponding               | Option to allow<br>excess water to col-<br>lect atop nodes and<br>re-enter the net-<br>work when hydraulic<br>capacity is<br>regained. The size<br>of the surface area<br>for ponding is a<br>parameter for the<br>junction | Yes                                       | AllowPondingNo                 |
| Minimum Conduit<br>Slope    |                                                                                                                                                                                                                             |                                           | MinConduitSlope                |
|                             | Network Int                                                                                                                                                                                                                 | erface Files                              | I                              |
| Save Hotstart Data          | Option to create a<br>hotstart file from the<br>simulation                                                                                                                                                                  | No                                        | HotstartFileSaveN              |
| Use Hotstart Data           | Option to read infor-<br>mation from an<br>existing hotstart file                                                                                                                                                           | No                                        | HotstartFileUseNc              |
| Use Inflow Data             | Option to read infor-<br>mation from Inflow<br>file                                                                                                                                                                         | No                                        | InflowFileUseNo                |
| Save Outflow Data           | Option to create<br>Outflow interface file<br>from the simulation                                                                                                                                                           | No                                        | OutflowFileSaveNo              |
| Use RDII Data               | Option to read infor-<br>mation from exist-<br>ing RDII interface<br>file                                                                                                                                                   | No                                        | RDIIFileUseNo                  |
| Use Runoff Data             | Option to read infor-<br>mation from exist-<br>ing Runoff interface<br>file                                                                                                                                                 | No                                        | RunoffFileUseNo                |

#### Table 11.4 Edit fields in the Simulation Setup HD tab page (mss\_Project)



Define parameters that control how the dynamic flow routing computations are made in the Dynamic Wave tab page of the Simulation editor. These parameters are only relevant if the Routing Model is set to Dynamic Wave on the HD tab page of the editor (see Chapter 11.3 HD (*p. 247*)).

| General Catchments HD          | Dynamic wave   | Water quality | Reporting |
|--------------------------------|----------------|---------------|-----------|
|                                |                |               |           |
| Inertial terms                 | Partial        | $\sim$        |           |
| Normal flow criterion          | Slope & Froude | $\sim$        |           |
| Force main equation            | Hazen-Williams | $\sim$        |           |
| Surcharge method               | Extran         | $\sim$        |           |
| Use variable time steps ad     | justed by      | 75 [%]        |           |
| Minimum variable time step     |                | 0.5 [sec]     |           |
| Time step for conduit lengthen | ing            | 15 [sec]      |           |
| Minimum nodal surface area     |                | 19.64 [ft^2   | 2]        |
| Maximum trials per time step   |                | 8             |           |
| Head convergence tolerance     |                | 0.005 [ft]    |           |
|                                |                |               |           |
|                                |                |               |           |

#### Figure 11.5 The SWMM Simulation Setup editor Dynamic Wave tab page

| Table 11.5 | Edit fields in the Dynamic Wave tab page of the Simulation Setup editor |
|------------|-------------------------------------------------------------------------|
|            | (mss_Project)                                                           |

| Edit field               | Description                                                                                                            | Used or<br>required by<br>simulations | Field name in<br>data structure |
|--------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|
| Inertial<br>Terms        | Indicates how the inertial terms<br>in the St. Venant momentum<br>equation will be handled:<br>None<br>Partial<br>Full | Yes                                   | InertialTermNo                  |
| Normal Flow<br>Criterion | Basis used to determine when<br>supercritical flow occurs in a<br>conduit:<br>Slope<br>Froude<br>Slope & Froude        | Yes                                   | NormalFlow-<br>CritNo           |



| Edit field                                     | Description                                                                                                                                                                                                                                                                                                                                                                                           | Used or<br>required by<br>simulations | Field name in<br>data structure |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|
| Force Main<br>Equation                         | Equation for computing friction<br>losses during pressurized flow<br>for conduits that have a Circu-<br>lar Force Main cross section:<br>Darcy-Weisbach<br>Hazen-Williams                                                                                                                                                                                                                             | Yes                                   | ForceMainEqNo                   |
| Surcharge<br>Method                            | Method for handling surcharge<br>conditions:<br>Extran<br>Slot                                                                                                                                                                                                                                                                                                                                        | Yes                                   | Sur-<br>chargeMethodN<br>o      |
| Use Varia-<br>ble Time<br>Steps<br>Adjusted By | Option to use an internally<br>computed variable time step at<br>each routing time period.<br>Define the adjustment factor in<br>the input box beside the check-<br>box.                                                                                                                                                                                                                              | Yes                                   | VarTSAdjustBy                   |
| Minimum<br>Variable<br>Time Step               | The smallest time step allowed when variable time steps are used                                                                                                                                                                                                                                                                                                                                      | Yes                                   | MinVarTS                        |
| Time Step<br>for Conduit<br>Lengthening        | Time step used to artificially<br>lengthen conduits so that they<br>meet the Courant stability crite-<br>rion under full-flow conditions<br>(i.e., the travel time of a wave<br>will not be smaller than the<br>specified conduit lengthening<br>time step). As this value is<br>decreased, fewer conduits will<br>require lengthening. A value of<br>0 means that no conduits will<br>be lengthened. | Yes                                   | ConduitLenTS                    |
| Minimum<br>Nodal Sur-<br>face Area             | Minimum surface area used at<br>nodes when computing<br>changes in water depth. If 0 is<br>entered, then the default value<br>of 12.566 ft <sup>2</sup> (i.e., the area of a<br>4-ft diameter manhole) is used                                                                                                                                                                                        | Yes                                   | MinNodalSur-<br>faceArea        |

# Table 11.5Edit fields in the Dynamic Wave tab page of the Simulation Setup editor<br/>(mss\_Project)



| Edit field                         | Description                                                                                                                                                                                                                                      | Used or<br>required by<br>simulations | Field name in data structure  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|
| Maximum<br>Trials per<br>Time Step | Maximum number of trials that<br>SWMM uses at each time step<br>to reach convergence when<br>updating hydraulic heads at<br>the conveyance system's<br>nodes. The default value is 8.                                                            | Yes                                   | MaxTrialPerTS                 |
| Head Con-<br>vergence<br>Tolerance | When the difference in com-<br>puted head at each node<br>between successive trials is<br>below this value the flow solu-<br>tion for the current time step is<br>assumed to have converged.<br>The default tolerance is 0.005<br>ft (0.0015 m). | Yes                                   | HeadConver-<br>genceTolerance |

# Table 11.5Edit fields in the Dynamic Wave tab page of the Simulation Setup editor<br/>(mss\_Project)

The available options for how inertial terms in the St. Venant momentum equation are handled are:

- **None**. Drops the inertial terms from the momentum equation, producing what is essentially a Diffusion Wave solution.
- **Partial**. Reduces the inertial terms as flow becomes critical and ignores them when flow is supercritical.
- Full. Maintains inertial terms at their full value under all conditions.

When setting how supercritical flow is identified in a conduit, the choices are:

- Slope. Water surface slope only (i.e. water surface slope > conduit slope)
- **Froude**. Froude number only (i.e., Froude number > 1.0)
- Slope & Froude. Both water surface slope and Froude number

Methods for handling surcharge conditions are:

- **Extran**. Uses a variation of the Surcharge Algorithm from previous versions of SWMM to update nodal heads when all connecting links become full.
- Slot. Uses a Preissmann Slot to add a small amount of virtual top surface width to full flowing pipes so that SWMM's normal procedure for updating nodal heads can continue to be used.

Further details on other parameters are also found in the EPA SWMM Help document.



# 11.5 Water Quality

The Water Quality tab page of the Simulation editor presents options for defining parameters related to pollutant buildup/washoff processes when simulating water quality.

| General Catchments HD D | mamic wave Water quality | Reporting |
|-------------------------|--------------------------|-----------|
| Start sweeping on 30/   | 9                        |           |
| End sweeping on 01/     | 4                        |           |
| Antecedent dry days     | 0                        |           |
|                         |                          |           |



| Table 11.6 | Edit fields in the Water Quality tab page of the Simulation Setup editor |
|------------|--------------------------------------------------------------------------|
|            | (mss_Project)                                                            |

| Edit field             | Description                                                                                                                                                       | Used or<br>required by<br>simulations | Field name in data structure |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|
| Start Sweep-<br>ing On | Day of the year (day/month)<br>when street sweeping opera-<br>tions begin                                                                                         | Yes                                   | StartSweep                   |
| End Sweep-<br>ing On   | Day of the year (day/month)<br>when street sweeping opera-<br>tions end                                                                                           | Yes                                   | EndSweep                     |
| Antecedent<br>Dry Days | The number of days with no<br>rainfall prior to start of the sim-<br>ulation.<br>Value used to compute an ini-<br>tial buildup of pollutant load on<br>catchments | Yes                                   | AntecedentDry-<br>Day        |

# 11.6 Reporting

The Reporting tab page presents options for saving detailed time series results in individual subcatchments, nodes, and links. The dialog organizes information into the following groups:

- **Reporting Period**. For defining the period over which reporting of simulation results is done.
- **Summary Specification**. For defining items to be included in a simulation summary.



- **Subcatchments Detailed Report**. Option for generating detailed results for all/selected catchments.
- **Nodes Detailed Report**. Option for generating detailed results for all/selected nodes.
- Links Detailed Report. Option for generating detailed results for all/selected links.

| General Ca                               | itchments     | HD       | Dynamic wave         | Water quality | Reporting  |                                                 |
|------------------------------------------|---------------|----------|----------------------|---------------|------------|-------------------------------------------------|
| Reporting pe<br>Report tin<br>Report sta | ne step       | 0/ 7/19  | 0 Days 00:15         | 00 •••        | Hr:Min:Sec | Summary specification                           |
| Sub-catchme                              | ents detailed |          | t<br>f subcatchments |               |            | Average summary Flow statistics Control actions |
| None Nodes detaile                       | ed report     |          |                      |               |            | ✓ Continuity check                              |
|                                          | C             | ) List o | fnodes               |               |            |                                                 |
| ○ None                                   |               |          |                      |               |            |                                                 |
| Links detailed                           | d report —    |          |                      |               |            |                                                 |
|                                          | C             | ) List o | flinks               |               |            |                                                 |
| O None                                   |               |          |                      |               |            |                                                 |

Figure 11.7 The SWMM Simulation Setup Reporting tab page

## Reporting Period

Define the reporting frequency and period under the Reporting Period group.

#### Table 11.7Edit fields in the Reporting Period group (mss\_Project)

| Edit field           | Description                                                              | Used or<br>required by<br>simulations | Field name in data structure |
|----------------------|--------------------------------------------------------------------------|---------------------------------------|------------------------------|
| Report Time<br>Step  | Report saving time step (in<br>Days and Hr:Min;Sec)                      | Yes                                   | Report_Time-<br>step         |
| Report Start<br>Time | Date and time of day when<br>reporting of simulation results<br>commence | Yes                                   | Report_Start-<br>Time        |

# **Summary Specification**

# Table 11.8 Edit fields in the Reporting tab page Summary Specification group (mss\_Project)

| Edit field           | Description                                                                                                                                                                                   | Used or<br>required by<br>simulations | Field name in<br>data structure |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|
| Input Sum-<br>mary   | To include a summary of input data in the output report                                                                                                                                       | No                                    | ReportInputNo                   |
| Control<br>Summary   | To include a summary of the control data in the output report                                                                                                                                 | No                                    | ReportCon-<br>trolNo            |
| Average<br>Summary   | To report the average of the<br>results for all routing time steps<br>in a reporting time step instead<br>of the instantaneous results<br>that occur at the end of the<br>reporting time step | No                                    | ReportAver-<br>ageNo            |
| Flow Statis-<br>tics | Specifies whether or not sum-<br>mary flow statistics should be<br>reported or not                                                                                                            | No                                    | FlowStatsNo                     |
| Control<br>Actions   | Specifies whether or not sum-<br>mary of control actions taken<br>during simulation should be<br>listed or not                                                                                | No                                    | ControlsNo                      |
| Continuity<br>Check  | Specifies whether or not sum-<br>mary of continuity checks<br>should be reported or not                                                                                                       | No                                    | ContinuityNo                    |

# Subcatchments Detailed Report

| Table 11.9 | Edit fields in the Reporting tab page Subcatchments Detailed Report group (mss_Project) |
|------------|-----------------------------------------------------------------------------------------|
|            |                                                                                         |

| Edit field                                 | Description                                                 | Used or<br>required by<br>simulations | Field name in data structure |
|--------------------------------------------|-------------------------------------------------------------|---------------------------------------|------------------------------|
| All, None, or<br>List of Sub-<br>catchment | Options for which catchments detailed results are generated | Yes                                   | SubCatch-<br>mentsNo         |
| List of Sub-<br>catchments                 | Specify a catchment selection list                          | Yes<br>If SubCatch-<br>mentsNo = 2    | SubCatchments-<br>FileName   |



# Nodes Detailed Report

# Table 11.10 Edit fields in the Reporting tab page Nodes Detailed Report group (mss\_Project)

| Edit field                     | Description                                            | Used or<br>required by<br>simulations | Field name in data structure |
|--------------------------------|--------------------------------------------------------|---------------------------------------|------------------------------|
| All, None, or<br>List of Nodes | Options for which nodes detailed results are generated | Yes                                   | NodesNo                      |
| List of Nodes                  | A nodes selection list is<br>expected                  | Yes<br>If NodesNo = 2                 | NodesFileName                |

# Links Detailed Report

# Table 11.11 Edit fields in the Reporting tab page Links Detailed Report group (mss\_Project)

| Edit field                     | Description                                            | Used or<br>required by<br>simulations | Field name in<br>data structure |
|--------------------------------|--------------------------------------------------------|---------------------------------------|---------------------------------|
| All, None, or<br>List of Links | Options for which links detailed results are generated | Yes                                   | LinksNo                         |
| List of Links                  | Define a links selection                               | Yes<br>If LinksNo = 2                 | LinksFileName                   |

# **INDEX**



# С

| Catchment delineation     |
|---------------------------|
| <b>F</b><br>Flow Dividers |
| l<br>Imperviousness       |
| <b>J</b><br>Junctions     |
| O<br>Outfalls             |
| S Storage Units           |