

MIKE URBAN+

Collection System

User Guide

The expert in **WATER ENVIRONMENTS**

MIKE 2020

PLEASE NOTE

COPYRIGHT	This document refers to proprietary computer software which is pro- tected by copyright. All rights are reserved. Copying or other repro- duction of this manual or the related programs is prohibited without prior written consent of DHI A/S (hereinafter referred to as "DHI"). For details please refer to your 'DHI Software Licence Agreement'.
LIMITED LIABILITY	The liability of DHI is limited as specified in your DHI Software Licence Agreement:
	In no event shall DHI or its representatives (agents and suppliers) be liable for any damages whatsoever including, without limitation, special, indirect, incidental or consequential damages or damages for loss of business profits or savings, business interruption, loss of business information or other pecuniary loss arising in connection with the Agreement, e.g. out of Licensee's use of or the inability to use the Software, even if DHI has been advised of the possibility of such damages.
	This limitation shall apply to claims of personal injury to the extent permitted by law. Some jurisdictions do not allow the exclusion or limitation of liability for consequential, special, indirect, incidental damages and, accordingly, some portions of these limitations may not apply.
	Notwithstanding the above, DHI's total liability (whether in contract, tort, including negligence, or otherwise) under or in connection with the Agreement shall in aggregate during the term not exceed the lesser of EUR 10.000 or the fees paid by Licensee under the Agreement during the 12 months' period previous to the event giving rise to a claim.
	Licensee acknowledge that the liability limitations and exclusions set out in the Agreement reflect the allocation of risk negotiated and agreed by the parties and that DHI would not enter into the Agree- ment without these limitations and exclusions on its liability. These limitations and exclusions will apply notwithstanding any failure of essential purpose of any limited remedy.

CONTENTS

Gene 1.1 1.2	Pral Settings 1 Modules 1 Description 1
Map 2.1 2.2	Configuration 1 Coordinate System 1 Background Map 1
Hydra	aulic Network Modelling
3.1	
3.2	Definition of a MIKE 1D Network
	3.2.1 Modelling real network elements
3.3	Nodes and Structures
	3.3.1 Identification group
	3.3.2 MIKE 1D model data group
	3.3.3 Q-H relations for nodes 2 3.3.4 Outlet head loss 2
	3.3.5 Model Concept of Soakaway
34	Pipes and Canals
	3.4.1 Identification group
	3.4.2 Geometrical properties
	3.4.3 Hydraulic friction losses
	3.4.4 Flow Regulation
3.5	Weirs
	3.5.1 Identification and connectivity
0.0	3.5.2 Model data
3.0	Orifices 4 3.6.1 Identification and connectivity
	3.6.2 Model data 4
	3.6.3 Defining a gate or a weir in an orifice
3.7	Valves
3.8	Curb Inlets
3.9	Pumps
	3.9.1 Pump types
	3.9.2 Identification and connectivity
	3.9.3 Model data
3.10	Generic CRS & Topography
	1.1 1.2 Map 2.1 2.2 Hydr 3.1 3.2 3.3 3.3 3.4 3.5 3.6 3.6

4	Rainf	all-Rund	off Modelling
	4.1	Catchme	ents
		4.1.1	Geometry
		4.1.2	Description
	4.2	· · ·	gical Models
		4.2.1	Time-Area Method (A)
		4.2.2	Kinematic Wave (B)
		4.2.3	Linear Reservoir (C1 and C2)
		4.2.4	Unit Hydrograph Method (UHM)
		4.2.5	RDI and Additional Flow
		4.2.6	RDI - Guidelines for Application
	4.3		ent Connections
		4.3.1	Catchment Connections Overview
		4.3.2	Catchment Connections Editor
	4.4		act Development (LID) 127
		4.4.1	Bioretention Cells
		4.4.2	Infiltration Trenches
		4.4.3	Porous Pavement
		4.4.4	Rain Barrels 132
		4.4.5	Vegetative Swales
		4.4.6	Rain Garden 133 Crean Deef 124
		4.4.7 4.4.8	Green Roof 134 LID Properties Editor 135
		4.4.0	1
_			LID Deployment
5		elling Sto	ormwater Quality (SWQ)
5	5.1	elling Sto Introduc	Drmwater Quality (SWQ) 157 tion 157
5	5.1 5.2	elling Sto Introduc SWQ Mo	Drmwater Quality (SWQ) 157 tion 157 odel Setup 161
5	5.1 5.2 5.3	elling Sto Introduc SWQ Mo SWQ GI	Drmwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161
5	5.1 5.2	elling Sto Introduc SWQ Mo SWQ GI SWQ Mo	ormwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161 ethods 162
5	5.1 5.2 5.3	Introduct SWQ Ma SWQ GI SWQ Ma 5.4.1	ormwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161 ethods 162 Identification 164
5	5.1 5.2 5.3	elling Sto Introduc SWQ Ma SWQ GI SWQ Ma 5.4.1 5.4.2	ormwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161 ethods 162 Identification 164 Surface Loads 165
5	5.1 5.2 5.3	elling Sto Introduc SWQ Ma SWQ GI SWQ Ma 5.4.1 5.4.2 5.4.3	ormwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161 ethods 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167
5	5.1 5.2 5.3 5.4	elling Sto Introduc SWQ Ma SWQ GI SWQ Ma 5.4.1 5.4.2 5.4.3 5.4.3 5.4.4	ormwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161 ethods 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 EMC 169
5	5.1 5.2 5.3	elling Ste Introduct SWQ Ma SWQ GI SWQ Ma 5.4.1 5.4.2 5.4.3 5.4.4 Boundar	ormwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161 ethods 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 EMC 169 y Conditions for SWQ 170
5	5.1 5.2 5.3 5.4	elling Ste Introduc SWQ Ma SWQ GI SWQ Ma 5.4.1 5.4.2 5.4.3 5.4.3 5.4.4 Boundar 5.5.1	brmwater Quality (SWQ) 157 tion 157 bodel Setup 161 obal Data 161 obal Data 161 othods 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 EMC 169 y Conditions for SWQ 170 SWQ Boundary Condition Types 171
5	5.1 5.2 5.3 5.4	elling Sto Introduc SWQ Mo SWQ GI SWQ Mo 5.4.1 5.4.2 5.4.3 5.4.4 Boundar 5.5.1 5.5.2	ormwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161 ethods 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 EMC 169 y Conditions for SWQ 170 SWQ Boundary Condition Types 171 Spatial Extent 172
5	5.1 5.2 5.3 5.4	elling Sto SWQ Mo SWQ GI SWQ Mo 5.4.1 5.4.2 5.4.3 5.4.4 Boundar 5.5.1 5.5.2 WQ Bou	brmwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161 othods 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 FMC 169 y Conditions for SWQ 170 SWQ Boundary Condition Types 171 Spatial Extent 172 ndary Properties for SWQ 173
5	5.1 5.2 5.3 5.4	elling Sto Introduc SWQ Mo SWQ GI SWQ Mo 5.4.1 5.4.2 5.4.3 5.4.4 Boundar 5.5.1 5.5.2 WQ Bou 5.6.1	brindling 157 tion 157 bodel Setup 161 obal Data 161 obal Data 161 othods 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 EMC 169 y Conditions for SWQ 170 SWQ Boundary Condition Types 171 Spatial Extent 172 ndary Properties for SWQ 173 Boundary Condition Selector 175
5	5.1 5.2 5.3 5.4	elling Sto Introduc SWQ Ma SWQ GI SWQ Ma 5.4.1 5.4.2 5.4.3 5.4.4 Boundar 5.5.1 5.5.2 WQ Bou 5.6.1 5.6.2	brmwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161 obal Data 161 othods 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 EMC 169 y Conditions for SWQ 170 SWQ Boundary Condition Types 171 Spatial Extent 172 ndary Properties for SWQ 173 Boundary Condition Selector 175 Identification 175
5	5.1 5.2 5.3 5.4	elling Sto Introduc SWQ Mo SWQ GI SWQ Mo 5.4.1 5.4.2 5.4.3 5.4.4 Boundar 5.5.1 5.5.2 WQ Bou 5.6.1 5.6.2 5.6.3	brmwater Quality (SWQ) 157 tion 157 bodel Setup 161 obal Data 162 Identification 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 EMC 169 y Conditions for SWQ 170 SWQ Boundary Condition Types 171 Spatial Extent 172 ndary Properties for SWQ 173 Boundary Condition Selector 175 Identification 175 Water Quality 176
5	5.1 5.2 5.3 5.4 5.5	elling Sto Introduc SWQ Mo SWQ GI SWQ Mo 5.4.1 5.4.2 5.4.3 5.4.4 Boundar 5.5.1 5.5.2 WQ Bou 5.6.1 5.6.2 5.6.3 5.6.4	brmwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161 obal Data 161 ethods 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 EMC 169 y Conditions for SWQ 170 SWQ Boundary Condition Types 171 Spatial Extent 172 ndary Properties for SWQ 173 Boundary Condition Selector 175 Identification 175 Water Quality 176 Temporal Variation 176
5	5.1 5.2 5.3 5.4	elling Sto Introduc SWQ Mo SWQ GI SWQ Mo 5.4.1 5.4.2 5.4.3 5.4.4 Boundar 5.5.1 5.5.2 WQ Bou 5.6.1 5.6.2 5.6.3	brmwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 161 obal Data 161 ethods 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 EMC 169 y Conditions for SWQ 170 SWQ Boundary Condition Types 171 Spatial Extent 172 ndary Properties for SWQ 173 Boundary Condition Selector 175 Identification 175 Water Quality 176 Temporal Variation 176
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	elling Sto Introduc SWQ M SWQ GI SWQ M 5.4.1 5.4.2 5.4.3 5.4.4 Boundar 5.5.1 5.5.2 WQ Bou 5.6.1 5.6.2 5.6.3 5.6.4 Workflow	brmwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 EMC 169 y Conditions for SWQ 170 SWQ Boundary Condition Types 171 Spatial Extent 172 ndary Properties for SWQ 173 Boundary Condition Selector 175 Identification 175 Water Quality 176 remporal Variation 176 w 179 nditions 183
	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	elling Sto Introduc SWQ M SWQ GI SWQ M 5.4.1 5.4.2 5.4.3 5.4.4 Boundar 5.5.1 5.5.2 WQ Bou 5.6.1 5.6.2 5.6.3 5.6.4 Workflow	brmwater Quality (SWQ)157tion157bodel Setup161obal Data161obal Data161ethods162Identification164Surface Loads165Build-Up/Wash-Off167EMC169y Conditions for SWQ170SWQ Boundary Condition Types171Spatial Extent172ndary Properties for SWQ173Boundary Condition Selector175Identification175Water Quality176Temporal Variation176V179
	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Bourn 	elling Sto Introduc SWQ M SWQ GI SWQ M 5.4.1 5.4.2 5.4.3 5.4.4 Boundar 5.5.1 5.5.2 WQ Bou 5.6.1 5.6.2 5.6.3 5.6.4 Workflow	brmwater Quality (SWQ) 157 tion 157 odel Setup 161 obal Data 162 Identification 164 Surface Loads 165 Build-Up/Wash-Off 167 EMC 169 y Conditions for SWQ 170 SWQ Boundary Condition Types 171 Spatial Extent 172 ndary Properties for SWQ 173 Boundary Condition Selector 175 Identification 175 Water Quality 176 remporal Variation 176 w 179 nditions 183

		6.1.3 Spatial extent 187 6.1.4 Temporal variation 189 6.1.5 Limited interval 189 6.1.6 Scaling factor 189 6.1.7 Distributed weights 189 6.1.8 Description 190
	6.2	Water Quality Boundary Condition Properties1916.2.1Water quality1916.2.2Temporal Variation1926.2.3Scaling factor193
	6.3	6.2.4 Description 194 Load Point 194 6.3.1 Geometry 195 6.3.2 Load point connection 195 6.3.3 Description 196
	6.4	Repetitive Profiles1976.4.1Diurnal patterns1986.4.2Cyclic profiles1986.4.3Profiles calendar1996.4.4Special days202
	6.5	Boundary Overview
~	7.2 7.3 7.4	Curves and Relations 205 7.1.1 Capacity Curves 208 7.1.2 Pump Acceleration Curve 208 7.1.3 Regulation Curves Qmax(H) and Qmax(dH) 208 7.1.4 QH Relation 208 7.1.5 Valve Rating Curve 208 7.1.6 Time-Area Curve 208 7.1.7 Removal Efficiency 209 7.1.8 Curb Inlet DQ and QQ Relations 209 7.1.9 Capacity Curve QdH & Power 210 7.1.11 Basin Geometry 211 7.1.12 RTC 211 7.1.13 RTC Time 211 7.1.14 Undefined Type 211 7.1.4 Undefined Type 211 Outlet Head Loss 213 213 On Grade Captures 216 213
8	Real 8.1 8.2 8.3 8.4 8.5	Time Control219RTC in Urban Drainage and Sewer Systems219Architecture of RTC Systems220MU+ Control vs. Real Life221Sensors222RTC Settings225

	8.6 8.7	8.5.1Identification8.5.2Type8.5.3Actions8.5.4Rules8.5.5DescriptionPID Settings8.6.1Calibration of the PID ConstantsRTC Computations	231 236 240 241 242
9	Long	-Term Statistics (LTS)	247
	9.1	Data Input9.1.1LTS Job List9.1.2Job List Criteria9.1.3Initial Conditions for Simulated Events9.1.4Generating and editing Job Lists9.1.5Run Time Stop Criteria9.1.6LTS Global Parameters - Event Definitions	248 248 249 252 255 258 264
	9.2	LTS outputs	271
		 9.2.1 Standard TS result files 9.2.2 Statistics Result File 9.2.3 Specification of Statistics and Result Files 9.2.4 Applicability of LTS statistics to various types of model elements 9.2.5 Specifying location for LTS statistics results 9.2.6 Continuous LTS TS Outputs 	272 273 277 278
	9.3	LTS Computations	
		 9.3.1 Starting an LTS computation	282 283 284
	9.4	LTS Statistics Presentation9.4.1Displaying Yearly/Monthly Statistics Bar Charts9.4.2Displaying Extreme Events Statistics Probability Plots9.4.3User-specified "Observation Period"9.4.4Displaying Extreme Events Statistics in Longitudinal Profiles9.4.5Calculating exceedance values for specified recurrence intervals9.4.6Displaying Extreme Events Statistics on the Map9.4.7Generating Reports on LTS Statistics	285 285 286 287 288 289 290 292
	9.5	LTS Workflows	297
		9.5.1 Preparation of an LTS setup	298 300
	9.6	Controlling the LTS computations9.6.1INCLUDE_DTMINMAX_IN_JOBLIST9.6.2LTS_DISCHARGE_THRESHOLD9.6.3LTS_FAILED_JOB_MAX_REDO_COUNT9.6.4LTS_FAILED_JOB_TIME_STEP_REDUCTION_FACTOR9.6.5LTS_JOBLIST_CREATOR_TYPE (0/1)9.6.6LTS_JOB_LIST_DFS0 (Off/On)9.6.7LTS_JOB_LIST_INFLOW_TIMESERIES (Off/On)9.6.8LTS_TIME_BEFORE_JOB_CATCHMENT_DISCHARGE	308 309 310 311 312 312 312 312 313 313

		9.6.9 9.6.10 9.6.11	LTS_TIME_BEFORE_JOB_SURFACE	315 315 316
10	Wate 10.1 10.2 10.3	Advection Biologic	on-Dispersion (AD) 3 al Processes (BP) 3 Quality (MIKE ECO Lab Template) 3 MIKE ECO Lab State Variables 3 MIKE ECO Lab Forcings 3 MIKE ECO Lab Forcings 3 MIKE ECO Lab Constants 3 Running MIKE ECO Lab simulation 3 The Sediment Transport Models 3 The Transport Formulae - Short Description 3	 319 319 323 324 326 328 330 331 333 334 336
11	 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 	Types o 11.1.1 11.1.2 The Tra 11.2.1 11.2.2 11.2.3 11.2.4 Main Pa 11.3.1 Specifyi The Flow tion") 3 11.5.1 11.5.2 11.5.3 Remova sins") 3 Remova Sedimen	f Sediment Transport Analyses The explicit sediment transport model The morphological analyses nsport Formulae - Short Description The Ackers-White formulae The Engelund-Hansen formula The Engelund-Fredsøe-Deigaard formulae The van Rijn formulae	344 344 344
		11.10.1 11.10.2	Analysis of hydraulic effects of sediment deposits	351 352
12	Calib 12.1		ement Stations	355 355 357 357

	12.2	12.1.3 Measurements 359 12.1.4 Description 360 Plots and Statistics 360	0
13	Resu 13.1 13.2	It Specifications 36 Result Files 36 13.1.1 Identification 37 13.1.2 Location 37 13.1.3 Items 37 13.1.4 Combining various result items in one file 39 Network Summary 39	7 0 3 8 2
14	Scen 14.1 14.2 14.3 14.4	arios 399 What are Scenarios 399 Design of the MIKE URBAN+ Scenario Manager 400 Managing Scenarios and Alternatives 400 How to Start Working with Scenarios 400	9 0 3
15	Simu	lation Validation	7
16	Simu 16.1 16.2 16.3	lation Specifications 41 Simulation Setup 41 16.1.1 General 41 16.1.2 Catchments 41 16.1.3 HD 41 16.1.4 AD and WQ 42 16.1.5 LTS 422 16.1.6 Results 422 Hotstart Files 422 Batch Simulation 424	1 3 7 9 1 2 3 7
Inde	x		1

1 General Settings

The General Settings section contains the 'Modules' and 'Description' editors.

1.1 Modules

The 'Modules' editor provides an 'at a glance' view of which MU+ CS computation modules are active.

The Hydrodynamic modules include:

- Hydrodynamic (HD)
- Real Time Control (RTC)
- Long Term Statistics (LTS)
- Water Quality (AD)
- Water Quality (MIKE ECO Lab)

The Rainfall Runoff modules include:

- Rainfall Runoff (RR)
- Stormwater Runoff Water Quality (SWQ)
- Catchment Discharge
- Catchment Discharge WQ

These modules indicate which type of analysis can be used within the existing project.

Model type	2					
Model:	Collection system	~	Unit system:	MU_CS_US	∽ Edit	
Collection	system					
🗹 Hyd	rodynamic (HD)					
\checkmark	Real time control (RTC)					
	Long term statistics (LTS)				
🗹 Wat	ter quality <mark>(</mark> AD)					
	Water quality (MIKE ECC) Lab)				
Sed Sed	iment transport (ST)					
🗹 Rair	nfall runoff (RR)					
	Stormwater runoff WQ ((SWQ)				
Cat	chment discharge					
	Catchment discharge W0	Q				
2D overlar	nd					
Hyd	rodynamic (HD)					
Wat	ter quality (AD)					

Figure 1.1 The Modules Editor

Please refer to the section 'Selecting an Appropriate Unit Environment' in the Model Manager User guide to select units used in the project.

1.2 Description

The General Settings section contains the Description editor. This editor allows addition of information about the project and a free text description of the model. It may also be used as a model build log to make notes on updates and amendments.

□ ×

2 Map Configuration

The Map Configuration section contains information on the coordinate system used in the MIKE URBAN+ project and presents options for customising the background image.

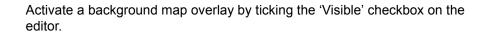
2.1 Coordinate System

The Coordinate System dialog (Figure 2.1) displays the Projection system used in the project.

rdnate system		
Coordinate sys	tem	
Projection	ETRS09 / UTM zone 32N	

Figure 2.1 The Coordinate System dialog showing information on the projection system used in the project

The Projection system shown matches the specified Projection in the 'New Module Setup' window when the MIKE URBAN+ project was created (Figure 2.2).


It is currently not possible to modify the projection system for a project in MIKE URBAN+.

Module selection	Coordinate sys	tem	
	Projection	Local Coordinates	-
Coordinate system		Local Coordinates	
system		Google Maps - Mercator ETR589 / UTM zone 32N	
		RGF_1993_Lambert_93	
Description		WG5_1984_UTM_Zone_32N	
States Transie		WGS 84 / UTM zone 32N	
		UTM-1 UTM-2	
		UTM-3	
		UTM-4	
		UTM-5 <browse></browse>	

2.2 Background Map

The Background Map editor allows the user to select a background image to show on the Map View in MIKE URBAN+ (Figure 2.3).

Background map		□ X
Visible		
Background map overlay		
🔘 None		
Open street map		
🔘 Google map		
Google map type	StreetMap 👻	
Countries/Coastline shap	pefile(network connection not required)	

Figure 2.3 The Background Map Editor

The following background map overlay options are available:

- None
- Open Street Map
- **Google Map**. Select the Google map type to display (i.e. Street map, Satellite image, Terrain, or Hybrid).
- Countries/Coastline Shapefile. Polygon features that demarcate coastline or country boundaries. Tick on the 'Color ramp' option to distinguish among features by colour.

An internet connection must be available for Open Street Map and Google Map overlays (Figure 2.4).

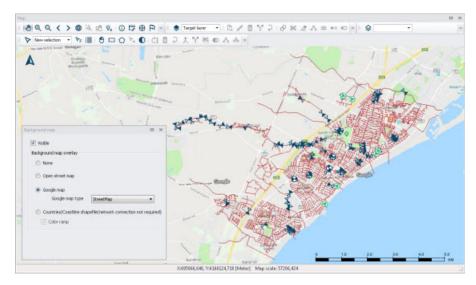


Figure 2.4 An example Google Map background on the Map View in MU+

3 Hydraulic Network Modelling

3.1 Introduction

MIKE 1D allows for the hydrodynamic simulation of flows and water levels in urban storm drainage and wastewater collection networks, thus providing an accurate information about the network functionality under a variety of boundary conditions. The hydrodynamic simulations can be extended with pollution, sediment transport and water-quality simulations. The model can also be enhanced by the variety of real-time control functions. The simulations can be carried out for single events or as efficient long-term simulations for longer historical periods.

This chapter provides a comprehensive guideline for the preparation of the basic MIKE 1D hydrodynamic simulation models. Information related to Control, Long Term Statistics, Water Quality etc. can be found in respective chapters of this manual.

Modelling of network hydrodynamics in MIKE 1D requires understanding of the information requirements. On the other hand, detailed knowledge of the computational theory is not essential.

The modelling process consists of the following distinct steps:

- Definition of the network data
- Specification of the boundary conditions
- Adjustment of the computation parameters and running the simulations
- Result analysis.

Furthermore, an important part of successful modelling is related to the model calibration and verification, which must ensure that the computed results fit reasonably well with the flow observations. These are important engineering activities in the modelling process.

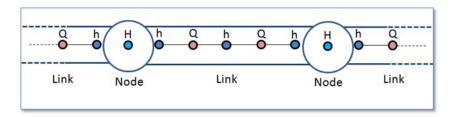
3.2 Definition of a MIKE 1D Network

A MIKE 1D network within MIKE URBAN+ can be defined in one of the following ways:

- Import of existing MIKE URBAN+ CS Project
- Import of a backed up MIKE URBAN+ Classic project saved as a ".mdb" file
- Import of external data (e.g. GIS) into MIKE URBAN+ CS network
- Graphically digitizing and manual data typing within MIKE URBAN+

The last option is frequently used in a combination with one of the previous options as means for achieving a full consistency of the MIKE URBAN+ model.

The following paragraphs provide a comprehensive information on the MIKE 1D network data model and the associated editors.


A model consists of the following hydraulic elements:

- Nodes and Structures
- Pipes and Canals
- Weirs
- Orifices
- Curb Inlets
- Pumps
- Valves

3.2.1 Modelling real network elements

When setting up a model some knowledge of the principles used in the numerical solution of the flow equations is useful. This section will provide some information, for further please refer to the "MIKE 1D Reference Manual".

In all pipes and canals the computational grid is set up in an alternating sequence of h- and Q-points. In these grid points the discharge Q and water level h, respectively, are computed at each time step. The links (pipes and canals) will always be setup with h-grid points at each end where the link connects to nodes in the network. This means that links will always have an odd number of computational grid points with three points (h - Q - h) as the minimum configuration.

Figure 3.1 The computational grid

The nodes will only have a single computational point where the water level H is computed. The nodes are typically circular manholes in the sewer network. But it can also be basins or tanks with a significant volume. Still only a single water level computational point is located at the node. Based on the com-

puted water level and the description of the geometry of the node the computation keeps track of the volume of water stored in the node.

It is of importance to notice that only a water level is computed at the nodes. In the simple case with one incoming pipe to a node and one outgoing pipe it may seem simple to compute a "flow through" the node. But think of the more complex situations with more than two pipes connected and also external flow entering the node. Defining a "flow through the node" is in the general situation not possible.

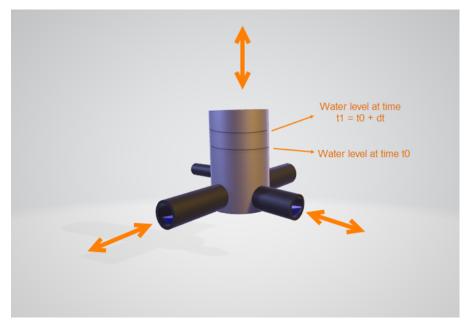
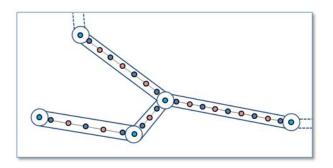



Figure 3.2 Water flowing through a node

At the nodes the water level is computed based on the water level at the previous time step and the flow contributions during the time step from each connected pipe and external connected flow like a catchment runoff discharge. When the computational grid is set up for a network of links and nodes it will end up like shown in Figure 3.3.

Figure 3.3 The computational grid for a given network

MIKE1D is able to handle various "devices" which basically are related to manholes, basins, soakaways or other constructions in the sewer network. These devices are: pumps, weirs, orifices, valves and storm water inlets. Typically these elements are placed at locations which in the real system could be manholes, basins or other structures. It is also characteristic for all mentioned elements that there will be a discharge computed for the device: pump discharge, discharge over weir, flow through orifice and flow through valve.

The main point to realize is the conflict between computing a discharge for these elements and the fact that only a water level is computed at nodes.

This is why the pump, weir, orifice, valve and storm water inlet elements from the computational and numerical point of view are links and not an element placed in one node. All the elements are links forming a connection between two nodes.

In MIKE URBAN+ we have five functional elements which from the model building point of view are related to nodes like manholes or basins. These are pumps, weirs, valves, orifices and storm-water inlets. The concept of elements related to nodes is reflected in the design of the dialog for editing the parameters for these elements. Here you find a field named "From" for all of the elements. The field takes the ID of a node as input. All elements also have a field for "To:" which also takes a node ID as input.

Seen from the computational solution point of view the five elements are actually connections from one node to another node. This is similar to how pipes are defining the link for flow between nodes as reflected in the dialog where you find fields for entering "From node:" and "To node:".

3.3 Nodes and Structures

The editor makes it possible to define the elements used to model manholes, outlets and basins in a storm and sewer collection system.

The editor organizes the related input data into the following groups:

- ID and position general identification and location information
- Geometry allows the user to select the "Node Type", define diameters, levels and basin geometry volume curves.
- Cover defining the type of cover for a manhole type node.
- Flow regulation maximum inflow; in/exfiltration;
- Head loss information on the head loss approach and coefficients
- Pressure node used for tail nodes of pressurized branches.
- Soakaway defining parametrization of the soakaway element
- Description Descriptive field

Мар	NOO	es X									
	ntification			x		8,7294921	8 75 [m]] Inser	t		
I	D Node_3	3		Y	3,	3760986328	125 [m]] Delete			
Georr	netry Co	over	Flow regulation	Head los	s Press	ure node	Soakawa	ay Description			
N	Node type	[Manhole	~	0	Ground level		10,0	0 [m]		
0	Diameter	[5,00 [m]] 6	Bottom level		8,0	0 [m]		
E	Basin geom	etry		\sim	Edit						
				(Carro	the Cla	~ □	Chaura	alastad 🔲 Sh	2/4	roug 0 colorited	
		_		 Search 			_	elected She		rows, 0 selected	
	ID Node 1	Х соо	rdinate [m]	Y coordina	te [m]	Node type	D	Nameter [m]	Ground level [m]	Bottom level [m]	Basin geo
1	Node_1	X coor 4,68	rdinate [m] 072509765625	Y coordina 0,566711	te [m] 42578125	Node type Manhole	•	Nameter [m] 8,00	Ground level [m] 10,00	Bottom level [m] 8,00	Basin geo
2	Node_1 Node_2	X coor 4,68 7,30	rdinate [m] 072509765625 108642578125	Y coordina 0,566711 4,20227	te [m] 42578125 05078125	Node type Manhole Manhole	•	Nameter [m] 8,00 6,00	Ground level [m] 10,00 10,00	Bottom level [m] 8,00 8,00	Basin geo
2 ▶ 3	Node_1 Node_2 Node_3	X coor 4,68 7,30	rdinate [m] 072509765625 108642578125 8,7294921875	Y coordina 0,566711 4,20227 3,37609	te [m] 42578125 05078125 86328125	Node type Manhole Manhole Manhole	• D	Nameter [m] 8,00 6,00 5,00	Ground level [m] 10,00 10,00 10,00	Bottom level [m] 8,00 8,00 8,00	Basin geo
2	Node_1 Node_2	X coor 4,68 7,30	rdinate [m] 072509765625 108642578125	Y coordina 0,566711 4,20227 3,37609	te [m] 42578125 05078125	Node type Manhole Manhole Manhole	•	Nameter [m] 8,00 6,00	Ground level [m] 10,00 10,00	Bottom level [m] 8,00 8,00	Basin geo
2 ▶ 3	Node_1 Node_2 Node_3	X coor 4,68 7,30	rdinate [m] 072509765625 108642578125 8,7294921875	Y coordina 0,566711 4,20227 3,37609	te [m] 42578125 05078125 86328125	Node type Manhole Manhole Manhole	• D	Nameter [m] 8,00 6,00 5,00	Ground level [m] 10,00 10,00 10,00	Bottom level [m] 8,00 8,00 8,00	Basin geo
2 ▶ 3	Node_1 Node_2 Node_3	X coor 4,68 7,30	rdinate [m] 072509765625 108642578125 8,7294921875	Y coordina 0,566711 4,20227 3,37609	te [m] 42578125 05078125 86328125	Node type Manhole Manhole Manhole	• D	Nameter [m] 8,00 6,00 5,00	Ground level [m] 10,00 10,00 10,00	Bottom level [m] 8,00 8,00 8,00	Basin geo
2 ▶ 3	Node_1 Node_2 Node_3	X coor 4,68 7,30	rdinate [m] 072509765625 108642578125 8,7294921875	Y coordina 0,566711 4,20227 3,37609	te [m] 42578125 05078125 86328125	Node type Manhole Manhole Manhole	• D	Nameter [m] 8,00 6,00 5,00	Ground level [m] 10,00 10,00 10,00	Bottom level [m] 8,00 8,00 8,00	Basin geo

MIKE 1D distinguishes between four types of nodes: circular manholes, basins, soakaway and outlets. The same dialog is used for all four node categories, but the dialog adapts according to the selected node type.

Manholes and basins are per default considered open at the top (Cover type equal to 'Normal'). This means, that when the water level in a node reaches the ground level, the water spills on the ground surface. In that case, MIKE 1D introduces an artificial basin on the top of the node, with a surface area 1000x larger than the node's surface. The surcharged water is stored in the basin, to be returned back into the sewer.

Alternatively, the option of "Use non-standard cover" enhances the possibility to specify a sealed/locked node (Cover type equal to 'Sealed'), i.e. a node with a fixed lid on the top - at the ground level - so water cannot escape although the pressure still builds up inside.

On the other hand, a node can be specified as a 'spilling' node (Cover type equal to 'Spilling'). In a spilling node, water escapes irreversibly from the model, if the water level reaches and exceeds the node's ground level (optionally set off by a 'buffer pressure level). The rate of spill is approximated as a free overflow over the crest at a given level and with a "conceptual" crest length. For further details, see the MIKE 1D Reference Manual.

In the tables given below each data variable is described shortly and if it is required as input.

3.3.1 Identification group

Each node is geographically determined by 'x' and 'y' co-ordinates. The coordinates may be specified in any local coordinate system.

The options Insert and Delete allows addition and deletion of network elements directly in the editor.

Edit field	Description	Used or required by simulations	Field name in data structure
Asset ID	Reference to an ID used in external data sources	No	AssetName
Data source	Reference to an external data source (table ID) where the record has been imported from	No	DataSource
Node ID	A unique name for the node. Up to 40 characters (letters, numbers, blank spaces and underscore characters)	Yes	MUID
Model	Associates the current node to a spec- ified submodel	No	SubModelNo
Description	User's descriptive information related to the node	No	Description
Status	Data status for the entire record, serves for keeping track on the source of information	No	Element_S

Table 3.1The edit fields in the Identification group (Table msm_Node)

Edit field	Description	Used or required by simulations	Field name in data structure
Network type	Attributes the link to a certain type of network. Used in cases when two or more different networks are included in the same project	No	NetTypeNo
X coordi- nate	X coordinate of the node position	Yes	Shape_X
Y coordi- nate	Y coordinate of the node position	Yes	Shape_Y
Links	Number of links going to or from the node. Non-editable value.	-	-

Table 3.1 The edit fields in the Identification group (Table msm_Node)

3.3.2 MIKE 1D model data group

Edit field	Description	Used or required by simulations	Field name in data structure
Node type	 MIKE 1D Node Types: 1. Manhole - node with shaft and chamber storage 2. Basin - node with a more complex geometry 3. Outlet - node where water leaves the system (no storage) 4. Soakaway - node with a similar geometric complexity as a basin but with the features of infiltration and internal porosity. 	Yes	TypeNo
Diameter	Diameter of the manhole - not enabled for any other node types	Yes	Diameter
Ground level	Ground level of the node	Yes	GroundLevel
Bottom level	The bottom level of the manhole	Yes	InvertLevel

Table 3.2 The edit fields in the MIKE1D model data group (Table msm_Node)

Table 5.2			
Edit field	Description	Used or required by simulations	Field name in data structure
Critical level	User defined critical level. Used in result presentations and in the Pipe Design module	Yes	CriticalLevel
Use maxi- mum flow [Tickmark]	Activates the inlet delimiter function	Yes	InletCon- trolNo
Max. Inflow	Value of maximum possible inflow into the node from runoff	Yes	MaxInlet
Use QH relation [Tickmark]	Switch for choice of the comp. method for hydraulic conditions at the outlet, in a manhole or basin. When toggled on uses Q-H tabulated function, toggled off calculates on the basis of water level (see note below this table)	Yes	QHTypeNo
[Text string]	Reference to a tabulated Q-H relation	Yes	OutletQHID
Use non- standard cover [Tickmark]	Activates the use of non-standard cover	Yes	Cover- TypeNo
Туре	Choose among available types: 1. Normal 2. Sealed 3. Spilling	Yes	Cover- TypeNo
Buffer pres- sure	Buffer pressure is only active for type = spilling. Equal to the pressure above the ground level needed to cause spills from the manhole	Yes	BufferPres- sure
Spill coeff.	Spill coefficient is only active for type = spilling. Controls the spill capacity	Yes	SpillCoeff
Geometry ID	Reference to a tabulated area-eleva- tion function for the basin geometry. The H-column for the basin geometry can start at any value, e.g. 0.0 for interpretation of H as depth in the basin. The MIKE 1D Engine will asso- ciate the first H-value to the bottom level of the node.	Yes	GeometryID

Table 3.2 The edit fields in the MIKE1D model data group (Table msm_Node)

Table 3.2	The edit fields in the MIKE1D model d	ata group (Tab	le msm_Node
Edit field	Description	Used or required by simulations	Field name in data structure
ID	Reference to a head loss parameter set	Yes	LossParID
Method	Method selected for the actual head loss parameter set	-	-
Use local parameters [Tickmark]	Switch for use of local head loss data	Yes	LossParNo
Coeff.	Locally defined interpretation of head- loss coefficient. Km="shape coeffi- cient", Cont. HLC= outlet contraction head losshead loss coeff. (relative to velocity head), Total HLC = outlet total head losshead loss (relative to velocity head)	Yes	LossTypeNo
[Field next to coeff field]	Local value of loss coefficient	Yes	LossCoeff
Eff. flow area	Locally defined choice of method for the calculation of wetted area 1.Full Node Area 2. Calculated Effective Area 3. Reduced calculated Effective Area	Yes	EffAreaNo
Pressur- ized tail node	Definition of the node's role in the pressure main as the downstream point of the pressure main's connec- tion to the network. Manholes and basins can be declared as a "Tail Node". Please refer to the MIKE 1D Reference Manual.	Yes	PMTypeNo
Tail level	Water level (absolute elevation) in the "receiving node", used as lower boundary for permanently pressurized parts of the system. Please refer to the MIKE 1DReference Manual for further on pressure mains.	Yes	PMLevel
Porosity of fill material	Porosity of filling material	Yes	Porosity of fil material
Kfs, bottom	Conductivity of soil	Yes	Kfs, bottom

Table 3.2The edit fields in the MIKE1D model data group (Table msm_Node)

Edit field	Description	Used or required by simulations	Field name in data structure
[Tickmark]	Activates the bottom conductivity function	Yes	
Infiltration method	Method of infiltration	Yes	Infiltration method
Infiltration rate	Defines the infiltration rate	Yes	Infiltration rate
Initial water level	Initial water level in soakaway	Yes	Waterlevel

Table 3.2 The edit fields in the MIKE1D model data group (Table msm_Node)

3.3.3 Q-H relations for nodes

Specifying a Q-H relation for an outlet controls the flow at the outlet. The flow (Q) value in the Q-H relation should be given as a positive value when water enters the node and a negative value for specifying a loss of water from the network model.

3.3.4 Outlet head loss

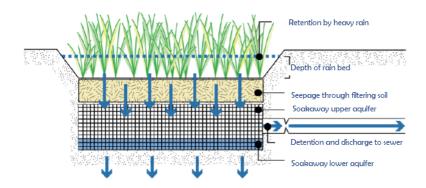
If you wish to make changes to the head loss parameter set that you have made a reference to, you can change this by accessing the Tables| Outlet Head Losses tab. The editor is shown in Figure 3.5.

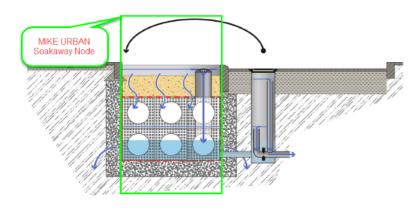
	entification				1			_	
	ID	No Head Losses			Metho	No Head Losses		\sim	Insert
	Effective node area	Full Node Area							Delete
	Loss coefficient	Km							
	ALL	×	1	Search Clear	🗌 Sh	ow selected 🗌 Show (data (errors	1/2 rows, 0 selected
	ID I	Method		Coefficient type	Coeffic	ient Effect area			
	ID I	method		Coemcient type	Coerno	bent Effect area			
▶ 1	No Head Losses		•		•	Full Node Area	*		
▶ 1 2		lo Head Losses		Km					
	No Head Losses	lo Head Losses		Km	•	Full Node Area			
	No Head Losses	lo Head Losses		Km	•	Full Node Area			
	No Head Losses	lo Head Losses		Km	•	Full Node Area			
	No Head Losses	lo Head Losses		Km	•	Full Node Area			
	No Head Losses	lo Head Losses		Km	•	Full Node Area			
	No Head Losses	lo Head Losses		Km	•	Full Node Area			

Figure 3.5 Outlet head loss editor

3.3.5 Model Concept of Soakaway

Detailed hydraulic modelling of the green solutions can be done by means of the network point node type in MIKE URBAN+ - named soakaway. The soakaway can be connected to the pipe network as any other node elements for detailed hydraulic studies. With this implementation in MIKE URBAN+ the soakaway represents a generic type of LID control as it can represent a number of different WSUD controls. The soakaway can be digitized graphically and it has its own feature layer which can be viewed in the horizontal plan view.




Figure 3.6 Conceptual drawing of a soakaway

A schematic drawing of a soakaway (Bioretention cell) is illustrated in Figure 3.6. The stormwater drains of the surface and enters the soakaway at the upper vegetated layer. Then the stormwater infiltrates vertically through the soakaway and infiltrates out of the sides and bottom of the soakaway.

In some cases the soakaway is not connected to any drainage network and captured runoff to the soakaway is infiltrated and in case of extreme rainfall and exceedance of its infiltration and storage capacity storm water is surcharged to the surface.

In other cases the soakaway is connected to the drainage network by a flow controlled outlet pipe as illustrated in Figure 3.6. During extreme rainfall causing exceedance of its infiltration, storage and outlet flow capacity, the soakaway also surcharges to the surface.

A Soakaway will be represented in MIKE URBAN+ as a node (point) as shown in Figure 3.7.

Since a Soakaway is defined as a node type then the remaining configuration is unlimited in terms of

- Inlet pipe(s) + Flow Regulation
- Outlet pipe (s) + Flow Regulation
- Weirs (s) or Orifice (s)

Connection to the existing drainage system can be configured to match the various types of soakaway installations. Soakaway nodes can i.e. be coupled in series to support the modelling of constructed infiltration trenches.

The soakaway can be added graphically and/or imported from any Asset GIS system hence existing soakaways can be illustrated in the plan view of MIKE URBAN+.

The Soakaway node has the following attributes:

- NodeTypeNo = 5 (Soakaway node)
- Invert Level
- Ground Level
- Geometry defined as basin geometry

The inflow to the Soakaway can be provided as:

- Direct Inflow (constant, time series)
- Inflow from Rainfall Runoff (Runoff model A, B, C, Unit Hydrograph).
- Various infiltration rate options

- No infiltration
- Qinf constant or as time series through boundary condition system
- Qinf, side function of wetted side area. This is calculated by MIKE 1D based on basin geometry
- Qinf, bottom function of bottom area
- Saturated hydraulic conductivity [m/s]
- Porosity of the soakaway material []

The soakaway is modelled as a regular basin in MIKE URBAN+, and it is also MIKE URBAN+ that calculates the water level based on the inflow (runoff), outflow to the drainage network (via overflow pipe, weir, orifices etc.) and the infiltration. The soakaway has, unlike a basin, a porous filling material that affects the water level calculations, this is accounted for in the MIKE 1D and the basin geometry is defined as a usual basin geometry description.

The overflow pipe, weir or orifice is modelled in MIKE URBAN+. Make sure that the up level of the pipe, weir or orifice is set correctly, and not at the bottom of the basin which will be the case if no invert level is specified. If the pipe is placed at the bottom then make sure that flow regulation is applied to the out-going pipe. The inflow pipe is generally not modelled; instead the catchment that generates the runoff to the soakaway (e.g. a road section, a roof) is connected directly to the basin via the catchment connection facility in MIKE URBAN+.

A new point feature layer has been created to illustrate the soakaway in the plan view and to be used for graphical digitization and graphical connection of soakaway to existing drainage network.

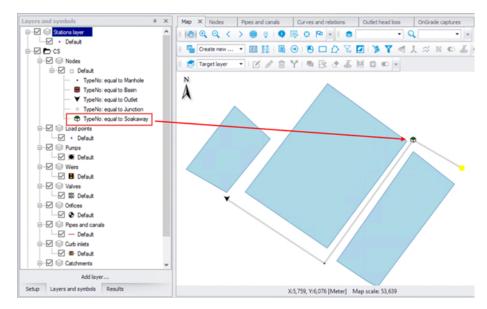


Figure 3.8 Soakaway shown in Feature layer

At the 'Geometry' tab in the dialog the type of node is selected in the Node type combobox and the following attributes are set:

- Ground Level
- Invert Level
- Basin Geometry

The geometry of the soakaway is defined as a standard basin.

Soakaway

At the 'Soakaway' tab in the Node dialog the type of infiltration, porosity and initial water level is selected.

The following types of infiltration are available:

- No Infiltration
- Constant Infiltration
- Infiltration

Geometry Cover Flow regulation Head loss Pressure node Soakaway Description Infiltration method Infiltration ✓	Nodes Identifica ID No	tion de_2			X Y	7,301086425 4,20227050		Insert Delete	
Infiltration method Infiltration	Geometry	Cover	Flow regu	lation	Head loss	Pressure node	Soakaway	Description	
Kfs, bottom	Infiltrat Porosit Initial v Kfs, sid	tion rate y of fill ma vater level	terial			[mr]	/h]		

Figure 3.9 Node Editor

The option 'No Infiltration' is used in cases when the there is no infiltration out of the soakaway. The initial water level can be set.

The 'Constant Infiltration' option provides the functionality of defining a constant infiltration rate out of the soakaway. The input required for this option is the Infiltration rate, the porosity of the fill material and the initial water level.

The 'Infiltration' option provides the functionality of having a variation in the infiltration based in the water level in the soakaway. A schematic drawing of the soakaway is provided in Figure 1.5 and Equation 1 describes the water balance of the model. Equation 2 and Equation 3 describe how the infiltration rate is calculated. Parameters and variables are listed and explained and how they are used in MIKE 1D.

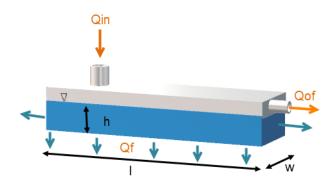


Figure 3.10 Schematic of the soakaway model

The 'Infiltration' option is based on the infiltration rate calculated by Equation (3.1) and Equation (3.2):

$$\frac{dh}{dt} = \frac{1}{I \cdot w \cdot \theta} (Q_{in}(t) - Q_{f}(t) - Q_{of}(t))$$
(3.1)

$$Q_f = K(l \cdot w + 2h(l + w))$$
 (3.2)

where θ is the soakaway porosity and h the calculated water level.

In MIKE 1D the infiltration rate calculated by Equation (3.2) is rewritten to Equation (3.3) to be based on the basin geometry definition in MIKE URBAN+ as well as to support different hydraulic conductivity at the side and at the bottom.

$$Q_{f} = K_{fs, bottom} \cdot A_{s, h=0} + K_{fs, side} \cdot \left(2A_{c} + 2\frac{Vol}{A_{c}}\right)$$
(3.3)

where $K_{fs,bottom}$ is the field-saturated hydraulic conductivity at the bottom, $K_{fs,side}$ is the field-saturated hydraulic conductivity at the side, A_s is the surface area and A_c the cross-sectional area.

The infiltration from the bottom can be turned off by a flag. However the infiltration from both side and bottom can be shut off by setting the field-saturated hydraulic conductivity to zero.

The porosity of the fill material is used to calculate the water level in the soakaway and the initial water level is used to set the initial water level in the soakaway. Table values of hydraulic conductivity, K_{fs} , for different soil classes are provided in Table 3.3. Within each soil type the hydraulic conductivity varies significant why it is important to the measure the hydraulic conductivity at the site.

Soil classification	Hydraulic Conductivity [m/s]
Gravel	0.001 to 0.1
Sand	10 ⁻⁵ to 10 ⁻²
Silt	10 ⁻⁹ to 10 ⁻⁵
Clay	Below 10 ⁻⁹ to 10 ⁻²
"Moræneler"	10 ⁻¹⁰ to 10 ⁻⁶

Table 3.3 Hydraulic conductivity for different soil classes

3.4 Pipes and Canals

Pipes an	d canals									• ×
Ident ID	tification			om node Nod node Nod	-		k	Ξ		
Geome	etry F	low regulation	Friction loss	Pressurized	Grid point	Description				
Lin	k type	Circular	\sim	🗹 Enable	ed					
Dia	meter		5 [m]	Length			[m]	1071	,58 [m]	
Hei	ight		[m]	Upstream	n level		[m]		75 [m]	
Wie	dth		[m]	Downstre	am level		[m]		57 [m]	
Cro	oss secti	on	 ✓ Edi 	t Slope		1,679	763 [%]	Calculate		
To;	poID			Max dx			[m]			
-	_	ID	✓ ALL	~ (Clear	Show selected		v data errors		0 selected
	ID	From node	To node	Enabled	Type	Height [m]	Width [m			Length [m]
▶1	Link_1	Node_1			Circular				5	congot (n)
<										>

Figure 3.11 Pipes and Canals editor

A link is specified as a conduit between two nodes. A link is considered as either a straight line or a drawn polyline between two nodes and per default is assumed to connect the adjacent nodes at bottom levels.

Pipes permanently running under pressure are specified by setting the tickmark in "Pressure main" in the "Pressurized" tab. Please refer to the MIKE1D Reference Manual (Pipe Flow) for further information on pressure main branches.

In case of a step-wise connection (but not allowed below node bottom level), the elevations of both the upstream and downstream connection must be specified in the editable "UpLevel" and "DwLevel" fields.

Specification of nodes as 'upstream' and 'downstream' does not have any impact on the computations, apart that positive flow is considered from upstream to downstream. Therefore, it is recommended to specify the upstream and downstream in the direction of predominant flows.

Depending on the selected type, a link may take the form of one of the 'standard' pipes (Circular, Rectangular, O Shaped, Egg-Shaped), or any closed or open cross section shape (CRS) and Natural Channels. The CRS and Natural Channels are defined in the Generic CRS and Topography Editors.

Standard pipes are defined by diameter (or cross section width and height for non-circular pipes), the geometry of special cross sections is as mentioned specified under the cross section editor. In this dialog, only the reference to the CRS ID.

The topography is specified through a Cross Section file (.xns) file. This type of file offers the possibility to store several measurement data from different campaigns (e.g. from different years or before and after the construction of infrastructure in the channel).

A link is characterised by material, which determines the Manning friction coefficient (Manning), the Colebrook White coefficient (Equivalent roughness) or Hazen-Williams coefficient. It is optional to use either the default roughness values for specific materials or local values.

Specification of the different kind of materials and roughness coefficients is done through the 'Tables | Materials' in the TOC

Materia	als							×
Ider II	ntification					elete		
Initial	I value Desc	ription						
м	fanning		70,00	000000 [m^(1/3)/s]				
E	EQ roughness		0,00	032500 [m]				
н	I-W coefficient		110,00	000000				
		ALL	∽ Search	Clear	Show selected	Show data errors	1/3 r	ows
	ID		Manning [m^(1/3)/s]	EQ rough [m]	HW coefficient	Description		
▶ 1	Cera	amics	70,0000000	0,0032500	110,0000000			
2	Concrete (No	rmal)	75,0000000	0,0015000	120,0000000			
3	Cement M	ortar	77,0000000	0,0010000	120,0000000			

Figure 3.12 Materials Editor

The length of a link is calculated from the shape of the line in MIKE URBAN+. The length is displayed in the 'Geometric length' field, and it is updated when the geometric reference is modified. If a user defined length is specified this will overwrite the calculated one during simulation.

3.4.1 Identification group

-			
Edit field	Description	Used or required by simulations	Field name in data structure
Asset ID	Reference to an ID used in external data sources	No	AssetName
Data source	Reference to an external data source (table ID) where the record has been imported from	No	DataSource
Link ID	A unique name for the node. Up to 40 characters (letters, numbers, blank spaces and underscore characters)	Yes	MUID

Table 3.4The edit fields in the Identification group (Table msm_Link)

Edit field	Description	Used or required by simulations	Field name in data structure
Status	Data status for the entire record, serves for keeping track on the source of information	No	Element_S
Description	User's descriptive information related to the link	No	Description
Network type	Attributes the link to a certain type of network. Used in cases when two or more different networks are included in the same project	No	NetTypeNo
From node	Upstream Node	Yes	MUID
To node	Downstream Node	Yes	MUID
Pressure main	Defines a link as pressure main. A link connected to a manhole or basin, can only constitute a pressure main if the manhole/basin is declared to be "tail node". Please refer to the MIKE1D Reference Manual (Pipe Flow) for fur- ther on pressure mains.	No	PMApprNo
Use speci- fied Preiss- mann slot ratio	Rising main conversion factor	No	SlotNo

Table 3.4 The edit fields in the Identification group (Table msm_Link)

3.4.2 Geometrical properties

Table 3.5	Geometry	(Table	msm	Link)
10010 0.0	Coomony	(10010		<u> </u>

Edt field	Description	Used or required by simulations	Field name in data structure
Shape	Shape of pipe	Yes	TypeNo
Diameter	Nominel size of pipe (diameter of cir- cular pipe, height of Egg-shape pipe and width for O-shaped)	Yes, if Shape = Circular, Egg-Shape and O- Shaped	Diameter

	··· — ·		
Edt field	Description	Used or required by simulations	Field name in data structure
Width	Width of rectangular shape	Yes, if Shape = Rectangu- lar	Width
Height	Height of rectangular shape	Yes, if Shape = Rectangu- lar	Height
Cross Sec- tion	ID of cross section	Yes, if shape = CRS	CrsID
Topography	ID of topography	Yes, if Shape = natural channel	Topogra- phyID
Max Dx	Max distance between gridpoints	Yes, if Shape = natural channel	Maxdx
Length	Length of link	Yes	Length
UpLevel	Upstream invert level of link	Yes	UpLevel
DwLevel	Downstream invert level of link	Yes	DwLevel

Table 3.5 Geometry (Table msm_Link)

3.4.3 Hydraulic friction losses

3.4.4 Flow Regulation

Edit field	Description	Used or required by simulations	Field name in data structure
Material	Material of link	Yes	MaterialID
Formula- tion	Formula for calculation of the friction loss (Manning Explicit, Manning Implicit, Colebrook White, Hazen-Wil- liams)	Yes	FricTypeNo
Use local data	Determines if roughness values from the material are overwritten by local values	Yes	FricNo
Manning	Manning roughness value	Yes, if 'Man- ning Explicit' or 'Manning Implicit' is chosen	Manning
Eq. rough- ness	Equivalent roughness	Yes, if 'Cole- brook White' formulation is chosen	Rough
H-W coef	Hazen-Williams roughness coefficient	Yes, if 'Hazen-Wil- liams' is cho- sen	HWCoef
Use depth- dependent friction loss	pendent on the depth		FricNo
Тор	Depth-variable Manning number on Top	Yes, if depth- dependent friction is selected	ManTop

Table 3.6 Hydraulic friction losses (Table msm_Link)

Edit field	Description	Used or required by simulations	Field name in data structure
Bottom	Depth-variable Manning number on Bottom	Yes, if depth- dependent friction is selected	ManBott
Exponent		Yes, if depth- dependent friction is selected	ManExp

Table 3.6 Hydraulic friction losses (Table msm_Link)

The 'Regulation' tab provides access to inserting a regulation in the selected link. This regulation does not require the Control module. The regulation can be either a maximum discharge as a function of the water level in a user specified node (Ctrl. Node A) or a maximum discharge as a function of the water level difference between two user specified nodes (Ctrl. Node A and Ctrl. Node B).

Table 3.7Flow regulation (Table msm_Link)

Edit field	Description	Used or required by simulations	Field name in data structures
Use flow regulation [Tickmark]	Allows the option to regulate flow to a given link	Yes, if flow regula- tion is chosen	FlowRegNo
Regulation type	Select the type of function desired to regulate the flow	Yes, if flow regula- tion is chosen	RegulaitonTypeNo
Function ID	Select the function that regulates the flow	Yes, if flow regula- tion is chosen	FunctionID
Non return valve [Tickmark]	Allows flow through the link in one direc- tion only.	No	NonReturnNo

3.5 Weirs

A weir is actually a functional relation, which connects two nodes of a MIKE 1D urban network (two-directional flow and submerged flow possible), or is associated with only one node (free flow 'out of the system'). The latter case is achieved if the 'To' field is left empty.

Real urban sewer systems configure a weir to be located in a manhole or a similar construction which you normally would define as a node in the digital model. The numerical solutions for the flow equations, however, need a model configuration with two nodes where the weir is defined as the connection between the nodes. The weir will then be placed between the two nodes as the flow connection.

It is possible to define several weirs between the same two nodes if this is required. This is similar to the possibility of having more than one pipe as the link between nodes. The generation of the computational grid shown in Figure 3.14 for the orifice is also applied for pumps, weirs and valves. The numerical solution of the flow equations will depend on the selected device. Please refer to the reference manual on more on this.

It is recommended not to place the two nodes in the same spot, instead place the nodes a short distance apart. The reason is that the node head loss computation will have a component from change of flow direction. If the two nodes surrounding the device are placed exactly at the same location then the computational engine cannot determine the direction of the flow from the coordinates of the nodes and a default direction will be applied. This may unintentionally introduce a change in direction and therefore also an unexpected head loss.

By using a small displacement of the nodes the change in flow direction will be determined based on the coordinates and angles between the connected pipes. Therefore consider carefully the placement of the nodes with respect to the actual construction.

Weirs										X
	ntification								_	2
п	ID Weir_1 From node To node			Node_1 Node_2			Insert Delete			
Geon	netry R	egulation	Description							
(Computatio	onal method	Weir Formula		∼ Kc	= 0,25				
(Crest level	l.			[m]					
(Discharge	coeff.		þ,	403					
(Crest widt	h			0,8 [m]					
(Orientation	n	Side overflow		\sim					
(Q-H table				~ E	idit				
(Crest geon	metry			~ E	idit				
<									>	- 1
		ID	~ ALL	~	Clear	Show selec	ted 🗌 Show da	ata errors 1/1 r	ows, 0 selected	
	10	From node	To node	Type		Crest level [m]	Coefficient	Crest width [m]	Orientation	n
	ID	110mmode.								

Figure 3.13 Weirs editor

A weir is characterised by the computational method, weir type, crest level, crest width, and orientation. If the Q-H relation is specified, only the crestlevel and a DataSetID are specified. With the built-in weir formula, the results are affected by the specified parameters. The computational method for the weir can be set as "Weir Formula", "Energy loss coefficient", "Q-H relation" and "CRS Weir Formula"

The parameter 'Orientation ('degrees') plays an important role (as long as the head loss coefficient is undefined), since depending on the specified orientation, kinetic energy of the flow is included (90°) or is not included (0°) in calculations of the weir flows.

The dimensionless head loss coefficient is optional. If the coefficient is specified, it will overwrite the default and change the computation mode (so that the effect of 'orientation' will not be included) during the simulation.

Weirs are per default static (No Control) but can be controlled through real time control (RTC). Flagging the "Controlled through real time control" gives quick access to the "Control rules" specification dialog.

There are no limitations on the number of weirs specified at one location.

3.5.1 Identification and connectivity

Edit field	Description	Used or required by simulations	Field name in data structure
Description	User's descriptive information related to the weir	No	Description
Data source	Reference to an external data source (table ID) where the record has been imported from	No	DataSource
Asset ID	Reference to an ID used in external data sources	No	AssetName
Status	Data status for the entire record, serves for keeping track on the source of information	No	Element_S
Network type	Attributes the weir to a certain type of network. Used in cases when two or more different networks are included in the same project	No	NetTypeNo
Weir ID	A unique name for the weir. Up to 40 characters (letters, numbers, blank spaces and underscore characters)	Yes	MUID
From node	ID of Node where Weir is located	Yes	MUID
To node	ID of Node where Weir is discharging to. If field left empty, then water is dis- charging out of the system	Yes	MUID

Table 3.8 Description (Table msm_Weir)

3.5.2 Model data

Table 3.9 Weir Geometry and Regulation (Table msm_Weir)

Edit field	Description	Used or required by simulations	Field name in data structure
Computa- tional method	Selection of computation Method	Yes	MethodNo
Crest level	Crest level of weir	Yes	CrestLevel

Table 5.9	Well Geometry and Regulation (Table		
Edit field	Description	Used or required by simulations	Field name in data structure
Discharge coeff.	Discharge coefficient	Yes, if weir formula is chosen	Coeff
Crest width	Width of rectangular weir	Yes, if weir formula is chosen	CrestWidth
Orientation	Weir orientation relative to the main flow direction. "0" is Side weir, "90" is a transversal weir	Yes, if dis- charge coeff. is not speci- fied	AngleNo
Q-H table	Reference to tabulated Q-H funtion	Yes, if Q-H is chosen	QHID
Crest Geometry	Reference to tabulated variation of the weir crest along the weir, CRS geometry	Yes	WeirCrestID
Non return flap	Flap indicating a flap-gate built-in weir (i.e. no return flow possible)	Yes	FlapNo
Controlled through real time control	No control or RTC controllable weir	Yes, if RTC control is selected	Con- trolTypeNo
Max level	The maximum elevation of a movable weir crest	Yes, if RTC control is selected	Max- CrestLevel
Min level	The minimum elevation of a movable weir crest. The fixed weir is not used for RTC weir	Yes, if RTC control is selected	Min- CrestLevel
Max speed up	The maximum velocity for movement of the weir in upward direction	Yes, if RTC control is selected	Max- CrestLevelIn- creaseSpeed
Max speed down	The maximum velocity for movement of the weir in downward direction	Yes, if RTC control is selected	Max- CrestLevel- decreaseSpe ed

Table 3.9 Weir Geometry and Regulation (Table msm_Weir)

3.6 Orifices

An orifice is actually a functional relation, which connects two nodes of a MIKE 1D urban network or is associated with only one node (free flow 'out of the system'). The latter case is achieved if the 'To node' field is left empty.

In real urban systems a flow restriction in the form of an orifice may be located in a manhole or a similar construction which you normally would define as a node in the model configuration. The numerical solutions for the flow equations, however, need a model configuration with two nodes where the orifice is defined as the connection between the nodes. The orifice will then be placed between the two nodes as the flow connection.

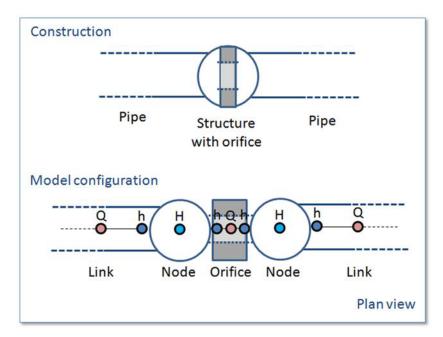


Figure 3.14 The difference between real world orifice and model configuration of orifice

It is possible to define several orifices between the same two nodes if this is required. This is similar to the possibility of having more than one pipe as the link between nodes. The generation of the computational grid shown in Figure 3.14 for the orifice is also applied for pumps, weirs and valves. The numerical solution of the flow equations will depend on the selected device. Please refer to the reference manual on more on this.

It is recommended not to place the two nodes in the same spot, instead place the nodes a short distance apart. The reason is that the node head loss computation will have a component from change of flow direction. If the two nodes surrounding the device are placed exactly at the same location then the computational engine cannot determine the direction of the flow from the coordinates of the nodes and a default direction will be applied. This may unintentionally introduce a change in direction and therefore also an unexpected head loss. By using a small displacement of the nodes the change in flow direction will be determined based on the coordinates and angles between the connected pipes. Therefore consider carefully the placement of the nodes with respect to the actual construction.

An orifice is specified by a type; circular, CRS or rectangular, and the corresponding diameter, height and width.

A discharge coefficient can be specified (default = 1.0) and a non-return flap can be specified.

Orifices are per default static (No Control) but an orifice can be controlled through Real Time Control (RTC). Clicking on the "RTC" button to the right gives quick access to the RTC specification dialog.

Orifices								
Ider ID	Orifice_1	L		From node To node	1		··· k	Insert Delete
Geom] Non retur	rn flap	escription	[m] Max	it RTC c speed up c speed down	n		
<		ALL	×	Search	Clear	Show selected	Show data errors	1/1 rows, 0 se
▶ 1 <	ID Orifice_1	From node	To node	e Type Rectar	ngular 👻	Invert level [m] 114,0000000	Discharge Coeff. 1,0000000	Diameter [m]

Figure 3.15 Orifice editor

3.6.1 Identification and connectivity

Edit field	Description	Used or required by simulations	Field name in data structure
Description	User's descriptive information related to the orifice	No	Description
Data source	Reference to an external data source (table ID) where the record has been imported from	No	DataSource
Asset ID	Reference to an ID used in external data sources	No	AssetName
Status	Data status for the entire record, serves for keeping track on the source of information	No	Element_S
Network type	Attributes the link to a certain type of network. Used in cases when two or more different networks are included in the same project	No	NetTypeNo
Orifice ID	A unique name for the orifice. Up to 40 characters (letters, numbers, blank spaces and underscore characters)	Yes	MUID
From node	ID of Node where orifice is located	Yes	MUID
To node	ID of Node where orifice is discharg- ing to. If field left empty, then water is discharging out of the system	Yes	MUID

Table 3.10 Description (Table msm_Orifice)

3.6.2 Model data

Edit field	Description	Used or required by simulations	Field name in data structure
Туре	Type of orifice according to shape, being rectangular, circular orCRS	Yes	TypeNo
Diameter	Diameter of circular orifice	Yes	Diameter
Height	Height of rectangular orifice	Yes	Height
Width	Width of rectangular orifice	Yes	Width

Table 3.11 Geometry (Table msm_Orifice)

Edit field	Description	Used or required by simulations	Field name in data structure
Discharge coeff	Calibration coefficient. Value = 1 results in the flow as determined by orifice algorithm	Yes	Dis- chargeCoeff
Invert level	Absolute elevation of the orifice invert	Yes	InvertLevel
CRS Geometry ID	Reference of a cross-section ID for irregularly-shaped orifice	Yes, if CRS type is cho- sen	CrsID
Non return flap	Flap indicating a flap-gate built-in (i.e. no return flow possible)	Yes	FlapNo
Oper. mode	No control or RTC controllable orifice	Yes	Con- trolTypeNo

Table 3.11 Geometry (Table msm_Orifice)

3.6.3 Defining a gate or a weir in an orifice

The orifice itself is just an opening with a static shape. In real constructions orifices are often equipped with a controlled gate or weir which can be used in real time control for regulating the flow through the orifice. The gate device will move from the top of the orifice opening and downwards until the orifice is fully closed. The weir moves from the bottom of the orifice upwards and closes fully when the weir crest reaches the top of the orifice opening (see Figure 3.16 for an illustration). It is possible to apply both types of movable devices in the computations. In both cases the device is "added" to a defined orifice. This is done from the "Control Rules" dialog.

See more on this in Real Time Control Chapter of the Collection System User Guide.

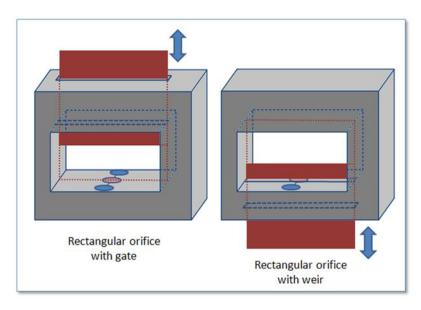


Figure 3.16 Examples on a rectangular orifice with a gate and a weir

3.7 Valves

A valve is a functional relation which connects two nodes of a MIKE 1D urban network.

- Iden ID	ntification								
	Valve_1			om node	1 Node_2		··· k	Insert Delete	
Geome	etry Reg	ulation Desc	ription					Deletie	
Dr	escription	Example of	a Valve						
Da	ata source	Model create	ed						
A	sset ID	Choose a Na	ame here				Add pictur	e	
St	tatus	2: GIS			~		ride preter	-	
N	etwork type	3: Combined	d		~				
		ALL	∼ Se	sarch	Clear	Show selected	Show data er	rrors 1/1 rows, () s
		rom node	To node	Bottom	level [m]	Area [m^2]	Diameter [m]	Opening [%]	
	ID F	Tommode							F

Figure 3.17 Valve dialog

In the real world a valve may be located in a manhole or a similar construction which you normally would define as a node in the model configuration. The numerical solutions for the flow equations, however, need a model configuration with two nodes where the valve is defined as the connection between the nodes. The valve will then be placed between the two nodes as the flow connection.

It is possible to define several valves between the same two nodes if this is required. This is similar to the possibility of having more than one pipe as the link between nodes. The generation of the computational grid shown in Figure 3.14 for the orifice is also applied for pumps, weirs and valves. The numerical solution of the flow equations will depend on the selected device. Please refer to the MIKE 1D Reference Manual for more details about this.

It is recommended not to place the two nodes in the same spot, instead place the nodes a short distance apart. The reason is that the node head loss computation will have a component from change of flow direction. If the two nodes surrounding the device are placed exactly at the same location then the computational engine cannot determine the direction of the flow from the coordinates of the nodes and a default direction will be applied. This may

unintentionally introduce a change in direction and therefore also an unexpected head loss.

By using a small displacement of the nodes the change in flow direction will be determined based on the coordinates and angles between the connected pipes. Therefore consider carefully the placement of the nodes with respect to the actual construction.

A valve is specified by a diameter, flow area (by default calculated on the basis of the diameter, but it is possible to overwrite this value) and an invert level.

It is possible to specify a valve to be a non-return valve and thereby preventing flow in the negative flow direction. A rating curve is specified to define the relation between the valve opening (%) and resistance (k). The rating curve is specified under "Tables| Curves & Relations".

The valve is by default static, in which case the valve opening must be specified. It is also possible to define a valve to be the RTC controlled and then the valve opening will be controlled by any specified control rules.

Edit field	Description	Used or required by simulations	Field name in data structure
Description	User's descriptive information related to the valve	No	Description
Data source	Reference to an external data source (table ID) where the record has been imported from	No	DataSource
Asset ID	Reference to an ID used in external data sources	No	AssetName
Status	Data status for the entire record, serves for keeping track on the source of information	No	Elements
Network Type	Attributes the valve to a certain type of network. Used in case where two or more different networks are included in the same project	No	NetTypeNo
Valve ID	A unique name for the valve. Up to 40 characters (letters, numbers, blank spaces and underscore characters)	Yes	MUID
From node	ID of Node where valve is located	Yes	FromNodeID

Table 3.12 Identification and connectivity edit fields of the MIKE URBAN+ valve editor (Table msm_Valve)

Edit field	Description	Used or required by simulations	Field name in data structure
To node	ID of Node where valve is discharging to	Yes	ToNodeID
Valve Type	Specification of type of valve, this information is not used in the simula- tion engine	No	TypeNo

Table 3.12 Identification and connectivity edit fields of the MIKE URBAN+ valve editor (Table msm_Valve)

Table 3.13 Geometrical and hydraulic properties, edit fields of the MIKE URBAN+ valve editor (Table msm_Valve)

Edit field	Description	Used or required by simulations	Field name in data structure
Diameter	The default value of the area (the field "Flow Area") is calculated on the assumption of a circular valve, with the diameter specified in this field. Furthermore, the transition to a pres- surized valve is defined by the invert level plus the diameter.	Yes	Diameter
Invert Level	The invert level defines the minimum water level, which generates flow through the valve	yes	InvertLevel
Flow Area	A user specified flow area overwrites the default valve area computed on the basis of a circular cross section.	Yes	Area
Valve Opening	Defines the opening of the valve in percentages (value between 0 and 100). For an RTC controlled valve, this value is not applied, the opening is controlled by the MIKE URBAN+ build in RTC algorithm	Yes	Opening
Rating Curve	Reference to the tabulated k-opening function	Yes	RatingCur- veID
Non return flap	Indicating a flap-gate built-in valve (i.e. no return flow possible)	Yes	FlapNo
Controlled through Real Time Control	No control or RTC controllable valve	Yes	Con- trolTypeNo

Edit field	Description	Used or required by simulations	Field name in data structure
Max open- ing	Maximum opening condition of the valve during Real Time Control	Yes, if RTC is selected	
Min open- ing	Minimum opening condition of the valve during Real Time Control	Yes, if RTC is selected	
Max speed	The maximum velocity for movement of the flap	Yes, if RTC is selected	

Table 3.13 Geometrical and hydraulic properties, edit fields of the MIKE URBAN+ valve editor (Table msm_Valve)

3.8 Curb Inlets

The connections between pipe systems and overland flow networks to simulate the capture capacity (and surcharge) of side inlet pits and grates can be approximated in MIKE 1D using a combination of orifices and weir geometry. However, a method has been developed to incorporate the geometry of the inlet structure (Curb Inlet) via a network element which allows user input of the empirical relationship governing the structure capacity.

A typical Curb Inlet/grate configuration is shown below. Flow into the pit chamber is via both a grate and side weir (operates as an orifice for deeper flow depths).

Standard curves have been developed in Australia for "ON-GRADE" type (using a $Q_{approach}/Q_{capture}$ relationship where flow can bypass the structure) and "SAG" type (using a Depth/Q relationship at locations/low points where water collects). However the formulation with MIKE 1D allows for non-specific and user defined relationships. An example of the empirical curves devel-

oped for the ON-GRADE type is shown below, with the flow captured represented as a proportion of the approach flow, and varying with approach slope.

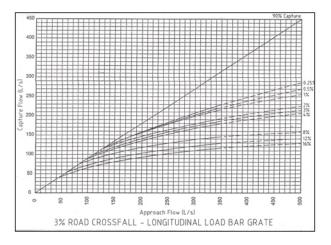


Figure 3.19 Example of empirical curves for On-Grade type

A Curb Inlet (Lintel) is a connection between two nodes of a MIKE 1D urban network (two-directional flow and submerged flow possible), describing the transfer of flow at a grate or inlet from an overland flow network to the subsurface pipe network. The Curb Inlet dialog is accessed via the "TOC | Network | Curb Inlets" menu.

There are two types of Curb Inlet:

- SAG Type, where the connection node on the overland flow network is located at a sag or low point where water will collect. Transfer capacity of the connection is specified as a DQ-relation (tabular data type).
- ON-GRADE Type, where flow in the overland flow network can continue past the connection node. Transfer capacity of the connection is dependent on the slope of the overland flow network, and specified as a Capture ID (collective of QQ-relations defining the capture rate as a proportion of approach flow).

Curb in	lets							• X
Ide	ntification -		From	n node 1 node Node	_4		Insert Delete	
Geom	etry Hydra	aulic properties	Description					
v	lumber of inle Vidth Height	ts		1	L [m] [m] 113,	0000	107,0000	
		ALL	✓ Seard	h Clear	Show selecte	ed 🔲 Show data	errors 1/2 row	s, 0 selected
	ID	From node	To node	Туре	Number of inlets	Width [m]	Height [m]	Invert level [m]
▶ 1	CurbInlet_2				•	1 1	-	11
2	CurbInlet_1	Node_6	Node_5	Sag	•	1 1	0,1	10
<								>

	nlets										• •
1	_	on CurbInk	et_1	From V To n	_	ode_6 ode_5			··· k	Insert Delete	
Geon	netry	Hydra	ulic properties	Description							
F	Freeboar	rd		0,1 [m]			DQ relation	Table	_1	 ✓ Edit 	
1	Invert le	vel		109,5 [1]	9		Capture ID			 Edit 	
I	Slope	e		[0]						
I	Block	age		[%]						
		_	411	V Search	Clear	- [Chau cal	ected	C Show data	2/2 100	us 0 selected
_	ID		ALL Erom pode	 Search To node 		_		_	1	errors 2/2 rov	
1	ID CurbIn	let_2	ALL From node	To node	Type On-Grade		Show sele	_	Show data	errors 2/2 rov Height [m] 0,5	Invert level [m]
1 2		-	From node	To node Node_4	Type On-Grade			ts	Width [m]	Height [m]	Invert level [m]

Figure 3.21 The Curb Inlet Hydraulic Parameters data

User defined parameters in the Curb Inlet dialog include:

 Invert level (m) defining the point at which spilling starts (similar to weir crest level). The user is shown a system calculated invert level which is the same as the invert of the connection node in the overland flow network. As with weir flow, a crest level at least 0.01 m higher than the connection node invert level is recommended for initial condition stability.

- Freeboard (m), defining a critical water level (Invert Freeboard) at the connection node in the pipe network below which the defined DQ and QQ-relations apply. For submerged and reverse flow (surcharge), the transfer capacity of the connection reverts to a standard orifice relationship.
- Slope (%), representing the slope of the steepest link in the overland flow network entering the connection node (only applies to ON-GRADE Type). The system calculated slope is used in the calculation unless a user defined slope is specified.
- Blockage factor (%) which can be used to account for debris blockage at the grate/inlet. This linear factor is applied to the tabular data sets defining the transfer capacity of the connection.
- Number of Curb Inlets, allowing multiple curb inlets of the same specified geometry (transfer capacity) applied at the same location within a single connection.
- Default rectangular orifice geometry, applies to those flow cases (submerged and reverse flow) were the defined DQ and QQ-relations do not apply. This generally applies when water levels at the connection node in the pipe network exceed the critical level defined by the Freeboard, including reverse flow (surcharge).

There are no limitations on the number of curb inlets specified at one location; however, the connectivity **must** be 'From' a node in the overland flow network 'To' a node in the pipe network, for correct automatic calculation of slope. *Note: Link slopes must be calculated in the link dialog for automatic calculation of slope to operate.*

The On-grade Capture dialog allows the user to group together QQ-relations (tabular data) that comprise a single On-grade Curb Inlet geometry (similar in function to the Topography dialog). As the transfer capacity for an On-grade Curb Inlet is dependent on the slope in the overland flow network, a number of QQ-relations can apply.

OnGrade captures			• ×
Identification	Insert Delete	QQ relation Capture_1 Slope 0,25 [%]	
ALL V Search Clear	Show selected	Insert Delete Up Down Sort 1/1 rows, 0 selected	
D 1 Capture_1		QQ-relation ID Stope [%] 1 Capture_1 0,25	

Figure 3.22 The On-Grade Capture data dialog (On-Grade Type)

For calculated or user defined slopes in the Curb Inlet dialog that are outside the range of slopes specified in the On-grade Capture dialog, the closest slope curve will be used. For intermediate calculated or user defined slopes (lying between slope curves in the On-grade Capture dialog), linear interpolation is applied.

In the case of an On-grade Curb Inlet capacity that is not dependent on slope of the overland flow network, the user needs to define the On-grade Capture with a single QQ-relation. *Note: In this case, the calculated or user defined slope in the Curb Inlet dialog for ON-GRADE Type will be ignored.*

Capacity curves

Two curve types specified in the tabular data (Curves & Relations) can be used with the two different types of Curb Inlets.

- Capacity Curve, DQ (depth/discharge relation specified in the Curb Inlets dialog)
- Capacity Curve, QQ (Q_{approach},Q_{capture} relation specified in the On-grade capture dialog).

The DQ relation specifies the depth based capacity curve for a SAG Type Curb Inlet. Values must be monotonously increasing in depth and discharge and starting at (0,0). For depths in excess of the maximum value specified in the last row of the table, the last corresponding discharge value is used.

The QQ relation specifies the relationship between approach flow in the overland flow network (Q_{app}) and the captured flow at the connection node for an ON-GRADE Type Curb Inlet (Q_{cap}). Values must be monotonously increasing and starting at (0,0). For approach discharges in excess of the maximum value specified in the last row of the table, the last corresponding capture discharge value is used.

3.9 Pumps

A pump is a functional relation, which connects two nodes of a MIKE 1D urban network or is associated with only one node (free flow 'out of the system'). The latter case is achieved if the 'To' field is left empty.

In the collector systems a pump may be located in a manhole or a similar construction which you normally would define as a node in the model configuration. The numerical solutions for the flow equations, however, need a model configuration with two nodes where the pump is defined as the connection between the nodes. The pump will then be placed between the two nodes as the flow connection.

It is possible to define several pumps between the same two nodes if this is required. This is similar to the possibility of having more than one pipe as the link between nodes. The generation of the computational grid shown in Figure 3.14 for the orifice is also applied for pumps, weirs and valves. The numerical solution of the flow equations will depend on the selected device. Please refer to the reference manual on more on this.

It is recommended not to place the two nodes in the same spot, instead place the nodes a short distance apart. The reason is that the node head loss computation will have a component from change of flow direction. If the two nodes surrounding the device are placed exactly at the same location then the computational engine cannot determine the direction of the flow from the coordinates of the nodes and a default direction will be applied. This may unintentionally introduce a change in direction and therefore also an unexpected head loss.

By using a small displacement of the nodes the change in flow direction will be determined based on the coordinates and angles between the connected pipes. Therefore consider carefully the placement of the nodes with respect to the actual construction. For pumps the distance between the nodes will often be larger.

3.9.1 Pump types

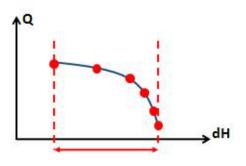
Several pump types can be specified in MIKE URBAN+.

Constant flow pumps

This is the simplest way of modelling pumps. In this case the pump will discharge the same constant flow Q at any time when the pump is switched on. Eventually with the variation as defined during acceleration or deceleration periods.

When specifying a constant flow pump, set the Speed to 'Constant' and choose 'Constant' in the pump type field. In the Capacity tab type the constant flow value set for

Notice: 'Constant flow' pump is different from 'Constant speed' pump. The later may have varying discharge.


Constant speed pumps

When defining pumps in MIKE URBAN+ models for sewer and drainage systems it will most commonly be pumps with a pump curve of type "Q, dH". The actual pump discharge Q will be a function of the actual pressure difference dH between the pump wet well and the receiving point in the model. The pump curves for this type of pumps will in general be as shown in the figure below.

Figure 3.23 Typical example of pump curve

Pump curves are defined in MIKE URBAN+ by tabulating the curve under Curves and Relations. This can be done by selecting representative points on the pump curve as shown in the next figure. Information about pump curves are typically provide by the manufacturer of the pumps.

When a pump curve is tabulated like this and used in the simulations executed with the MIKE 1D Engine, then the pump is allowed to operate within the range of the dH values in the table. At any time during the simulation the MIKE 1D Engine will compute the actual dH and determine the corresponding Q value from the table, resulting in the actual duty point position for the pump.

As a standard feature the MIKE 1D Engine will stop the simulation with an error message if the hydrodynamic conditions result in an actual dH value outside the range of the pump curve table.

Variable speed pumps

When applying variable speed pumps the manufacturer typically provides a set of pump curves describing the pump capacity at various percentages of maximum rotation speed or maximum power input. You may have a set of curves available as show in the figure below.

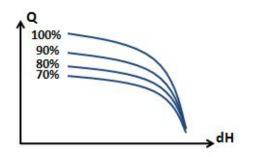


Figure 3.25 Pump curves at various percentages of maximum rotation speed or maximum power input

It is also found that variable speed pumps cannot be regulated over the full range between 0% and 100%. Instead the regulation may be in the range of 70% to 100% as indicated in the figure above. Search for specific information available for the pumps applied at the pumping stations being modelled.

For simplicity in the modelling the actual method of varying the pump capacity is not considered. It is not directly related to the actual number of rotations per minute (RPM) or the actual electrical power input. In the modelling we only consider the pump capacity as varying between a pump curve corresponding to the minimum speed and a pump curve corresponding to the maximum speed.

For variable speed pumps the two pump curves are defined as 'RPMmin' and 'RPMmax' pump curves. For constant speed pumps only the 'RPMmax' pump curve is applied.

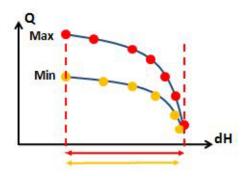
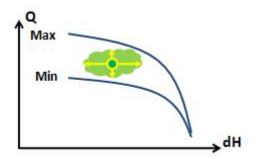


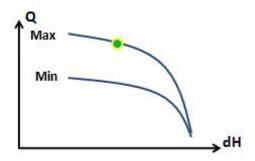
Figure 3.26 The RPMmax and RPMmin pump curves

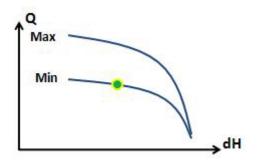

When the MIKE 1D simulation is executed it is the standard condition that the simulation will stop and give an error message if the conditions exceed the range for the dH value in the pump curve table. This applies both for the 'RPMmax' and the 'RPMmin' pump curve.

Operation of variable speed pumps

In the Regulation tab it is possible to regulate the pump to maintain a water level in the wetwell. The corresponding 'Wetwell WL Setpoint' must be specified when using this option.

When a variable speed pump is in operation during the simulation with the MIKE 1D Engine the duty point will move between the two pump curves depending on the actual conditions. The actual flow is determined by using a PID function which will attempt to control the water level at the wet well to stay at the specified set point value.


The discharge Q determined by the PID function and the dH found by the actual hydraulic conditions defines the duty point. This may vary in the area between the two pump curves.


Eventually the conditions may result in the duty point ending up on one of the pump curves. If the PID regulation sets the discharge Q to a value higher

than the limitation by the 'RPMmax' pump curve at the given dH condition, then the discharge will be defined by the pump curve. As a consequence the water level in the wet well will rise above the defined set-point value.

Figure 3.28

If the inflow to the pumping station is low, then the operation of the pump may result in an actual duty point located at the 'RPMmin' pump curve. In this case the water level at the wet well will drop below the defined set-point value. Eventually the water level will reach the stop level defined for the pump and the operation is switched off

Figure 3.29

The MIKE 1D engine will pump as much flow available to discharge in the structure, which means that the pump works continuously during the simulation if there is lack of water in the pump wet well then the pump will discharge a flow of zero during those lapses but will not be forced stop.

The hydrodynamic network simulation provides a simulation summary report at the end of the computation. The summary for the pumps will show the number of pump starts during the simulation.

Pumps - Discharge

Pump ID	From Node	To Node	Minimum [m^3/s]	Maximum [m^3/s]	Total discharge [m^3]	Time of Minimum	Time of Maximum	Pump starts [count]	Speed	Acti [hh:
Pump_2_3	Node_02	Node_3	0,000	1,775	141.876,6	16-05- 1953 00:00:10	16-05- 1953 06:39:59	1	Variable	2.05
Pump_2a_3	Node_02A	Node_3	0,000	2,000	146.063,3	16-05- 1953 00:00:10	16-05- 1953 03:01:38	138	Variable	1.05


Figure 3.30 Summary of pump starts during simulation

The pump flow continues during the specified deceleration period by a linear decrease to zero flow. During this time interval the water level in wet well may eventually drop to the bottom of the wet well during a single time step

The 'Pumps - Discharge' section is only shown in the summary report if 'pumps' has been selected in the "Network Summary" under Result Specifications.

Pumps														• X
Ider	ntification											_		
					Fr	om node	115				K	I	nsert	
ID	115p1				То	node	55				k		elete	
Geom	etry Ca	apacity	Regula	ation	Descrip	otion								
D	escription]					
D	ata sourc	e]					
A	sset ID]		Add pic	ture		
s	tatus	3: I	mported	ł				~		-				
N	letwork ty	pe						~						
		ID		~	ALL	```		lear	Show :	selected	Show d	lata errors	1/1 rov	ws, 0 selected
	ID	From no	de	To no	de	Cap typ	e	Start	Level [m]	Stop Leve	el [m]	Acc time	[sec]	Dec Time [sec]
▶ 1	115p1		115		55	Qн	-		194	ł	193,35		60	
					_									
<														>

Figure 3.31 Pumps description tab

Figure 3.32 Pump geometry tab

umps												×
- Ider ID		· ·	То		5		 	k		ert lete		
Geom	ionstant f			[m^3/s]	dit	Offset		0 [n	n]			
L												
[y curve RPMmin		∼ E	dit	Offset		0 [n	n]			
[ty curve										
[Capacit	ID	V ALL	~	Clear	Show set	elected	Show da	ta errors		vs, 0 selecte	-
1		ty curve	To node		Clear		Stop Level [Show da			vs, 0 selecte Dec Time [s	-

Figure 3.33 Pump Capacity tab

Pumps								□ X
IC		apacity Regula	То	om node 115 o node 55 ption		k		
		able speed	Wetwell Setpo	int	193,4 [m] Wetwell Setpoint [Min time ON [Min time OFF [193,4	[m] [min] [min]	
		ID	~ ALL	~ _ c	lear Show s	elected 🗌 Show d	ata errors 1/1 ro	ws, 0 selected
▶ 1	ID 115p1	From node 115	To node 55	Cap type Q-H •	Start Level [m]	Stop Level [m] 193,35	Acc time [sec] 60	Dec Time [sec]
<								>

Figure 3.34 Pump regulation tab

A pump is characterised by the 'Start Level' and 'Stop Level', acceleration and deceleration time, an offset and a capacity curve. The capacity curve is specified in the Curves and Relations section. The capacity curve can be specified as a 'Capacity Curve QH' relation (for screw pumps) or as 'Capacity Curve QdH' relation (for differential head pumps), where 'H' is the absolute water level in the pump's wet well (at 'Location'), and 'dH' is the water level difference between the 'To node' and the 'From node' location.

A pump type with a 'Capacity Curve QH' relation is named a *screw pump*, while a pump type with a 'dH-Q' relation is named a *differential head pump*.

If an offset is specified this will be added to the capacity curve relation.

Pumps are per default static (No Control) but can be regulated through Real Time Control (RTC). Checking the "RTC" radio button enables the setting of start and stop levels and minimum time ON and OFF.

3.9.2 Identification and connectivity

Edit field	Description	Used or required by simulations	Field name in data structure
Pump ID	A unique name for the pump. Up to 40 characters (letters, numbers, blank spaces and underscore characters)	Yes	MUID
From node	ID of Node where pump is located	Yes	FromNodeID
To node	ID of Node where Pump is pumping to.	Yes	ToNodeID
Description	User's descriptive information related to the pump	No	Description
Data source	Reference to an external data source (table ID) where the record has been imported from	No	DataSource
Asset ID	Reference to an ID used in external data sources	No	AssetName
Status	Data status for the entire record, serves for keeping track on the source of information	No	Element_S
Network type	Attributes the pump to a certain type of network. Used in cases when two or more different networks are included in the same project	No	NetTypeNo

Table 3.14 Identification & Description (Table msm_Pump)

3.9.3 Model data

Table 3.15 Overview of the Pumps editor attributes (Table msm_Pump)

Edit field	Description	Used or required by simulations	Field name in data structure
Pump Type	Type of flow variation, constant or based on a capacity curve. "QH Curve" is applicable for archimed Screw, the "QdH Curve" is applicable for all rotodynamic pumps	Yes	CapTypeNo
Start level	Water level in pump sump which trig- gers the pump to start	Yes	StartLevel

	Overview of the Fullips cultor attribute		i unp)
Edit field	Description	Used or required by simulations	Field name in data structure
Stop level	Water level in pump sump which trig- gers the pump to stop	Yes	StopLevel
Acc. time	Pump acceleration time. Used to dampen sudden increase of flow at the pumps START events	Yes	AccTime
Dec. time	Pump decceleration time. Used to dampen sudden decrease of flow at the pumps STOP events	Yes	DecTime
Constant flow	Regards to the pump capacity, flow set for a pump in steady state	Yes	DutyPoint
Capacity curve RPMmax	Capacity curve for the nominal (max) rotation speed	Yes	QMaxSetID
Capacity curve RPMmin	Capacity curve for the minimum speed. Applies only for variable speed pumps	Yes	QMinSetID
Offset	Offset of the capacity curve. Applies to Q-H types, which may be specified relative to different datums	Yes. if Q-H type	Offset1
Offset	Offset of minimum capacity curve. Applies only for variable speed pumps	Yes, if varia- ble speed pump	Offset2
Use regula- tion	Checkbox enabling the option to regu- late the pump operation	Yes, if regula- tion is desired	RegNo
Wetwell WL set- point	Absolute water level in the pump sump (i.e. wet well) which the pump is supposed to maintain	Yes	WetWellSet- Point
Variable Speed	Allows the option to set variable speed pumps. Only variable speed pumps can be used for PID control	Yes	SpeedNo
RTC	Activate Real Time Control (RTC) operation. "Wet-well set point" is a special RTC control, which is accessi- ble also without RTC add-on module	Yes	Con- trolTypeNo

Table 3.15 Overview of the Pumps editor attributes (Table msm_Pump)

3.10 Generic CRS & Topography

The Generic CRS & Topography editors allows the definition of the conduit cross-sections.

Generic CRS support open and closed cross sections. The X, Z types are appropriate for irregular cross sections, while H, W are best for symmetric cross sections.

Cross sections are classified in seven types: three of them are closed cross sections, and four of them are open cross sections. Each of the types has three sub-types, defined by the way how the CRS geometry is described. Thus, the following CRS types are supported:

- X, Z open: The CRS geometry is described by points defined by co-ordinate pairs (x, z), where 'x' is a horizontal axis, and 'z' a vertical axis. The points are specified in a counter-clockwise direction.
- X, Z closed: The CRS geometry is described by points defined by coordinate pairs (x, z), where 'x' is a horizontal axis, and 'z' a vertical axis. The points are specified in a counter-clockwise direction. The first and last points are connected to close the cross section.
- H, W open: The CRS geometry is described by pairs (h, w), where 'h' is relative height, and 'w' is the corresponding cross section width. The pairs are specified in an upward direction.
- H, W closed: The CRS geometry is described by pairs (h, w), where 'h' is relative height, and 'w' is the corresponding cross section width. The pairs are specified in an upward direction. The last specified (h, w) pair defines the top of the closed cross section.
- X-Z-R-M open: The CRS geometry is described by points defined by coordinate pairs (x, z), where 'x' is a horizontal axis, 'z' a vertical axis, the relative resistance (R) and the marker (M). The points are specified in a counter-clockwise direction.

This cross section type allows to specify open channel systems to have variable roughness across a cross section (common in urban and drainage studies).

Cross sections can be edited and shown graphically in the *Map View* and in the *tabular view*. The data created will be stored as a external cross section file with the extension xns11.

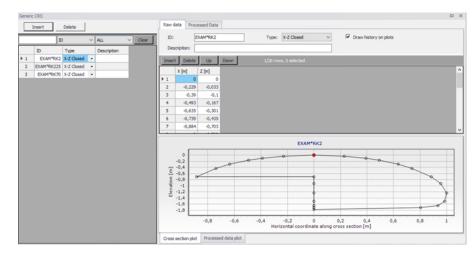


Figure 3.35 The Generic CRS Tabular view

Cross section tree

The cross section tree window in the tabular view shows the list of all cross sections in the setup. The data are stored in an external cross section file with the extension *xns11*.

In the tabular view it is possible to see all the cross section in the setup. In the first column, cross sections are identified by their branch name, topo ID and chainage.

Clicking a cross section in the tree view will show the details of this cross section on the right-hand side of the Tabular view.

Right-clicking in the first column gives access to options to edit the cross sections. The options offered in the contextual menu depend on where you clicked in the tree view. For instance clicking on a single chainage allows editing the corresponding cross section only, whereas clicking on the topo ID or on the branch name allows editing all or a selection of cross sections.

The "Move..." feature allows to move cross sections to different locations, by changing either the branch name, topo ID and/or chainage. When selecting the "Move..." feature, a dialogue will be displayed. Where the "From" groupbox indicates with cross sections are being moved and where the "To" groupbox indicates the final destination which has been specified by the user.

A Move	×
Cross section type	
Include all cro	ss sections
C Include select	ed cross sections only
From	
Branch	Draco
Topo ID	Draco Channel
Chainage	0
ID	0
To	
Branch	Draco 🗸
Topo ID	Draco Channel 🗸 🗸
Chainage	0
ID	0
L	OK Cancel

Figure 3.36 Dialogue for moving a cross section

The "From" groupbox shows the original chainage only when moving a single cross section. It shows the topo ID only when moving a single cross section or a group of sections from a given topo ID.

The upper part of the dialogue is only active when selecting 'Move...' from a branch name or a topo ID. It allows selecting between moving all the cross sections of the branch / topo ID, or only the selection. These options are therefore not relevant for moving a single cross section.

The 'Copy...' feature is similar to the 'Move...' one except that the original cross sections are kept at their original location.

To insert a cross section, it is possible to use the 'Insert blank cross section' feature, which allows creating a cross section on any branch and for any topo ID, which therefore have to be specified as shown in Figure 3.37

Insert cross section					
Branch	North River				
Topo ID	Торо-95				
Chainage	2479				
ID					
	OK Cancel				

Figure 3.37 Insert a blank Cross Section

Alternatively, right-clicking on the branch name or topo ID allows inserting a cross section respectively in the corresponding branch or the corresponding

topo ID. In that case the branch name and eventually the topo ID are automatically filled, as illustrated in Figure 3.38

Insert cross section					
Branch	Riverdale				
Topo ID	River South				
Chainage					
ID					
	OK Cancel				

Figure 3.38 Dialogue for inserting a cross section in a selected topo ID

It is possible to insert an interpolated cross section, by right-clicking and selecting 'Insert interpolated cross sections'. This opens up the dialogue illustrated in Figure 3.39, where the branch name and Topo ID where the interpolation is to be conducted must be selected. It is possible to interpolate a single cross section at a given chainage or multiple cross sections. In the latter case a maximum distance between the interpolated cross sections must be specified, along with the range of chainages.

Similarly there are multiple options for deleting cross sections. Right-clicking on a single cross section gives access to the 'Delete this cross section' feature. Clicking on the topo ID allows deleting either all cross sections under this topo ID (using the feature 'Delete topo ID') or only the selected sections under this topo ID (using the feature 'Delete selected in this topo ID'). Finally, clicking on the branch name allows deleting either all cross sections under this branch (using the feature 'Delete river') or only the selected sections under this branch name (using the feature 'Delete selected in this river').

• • •

Insert interpolate	d cross sections		×
Insert interpolated	cross sections on		
Branch:	Riverdale		\sim
Topo ID:	River South		\sim
Option			
Insert single	cross section		
Chainage		90	
C Insert multipl	e cross sections		
From lowes	t chainage	0	\sim
To highest	chainage	150	\sim
With maxim	um spacing	100	
		ОК	Cancel

Figure 3.39 Dialogue for inserting an interpolated cross section

Similarly there are multiple options for deleting cross sections. Right-clicking on a single cross section gives access to the 'Delete this cross section' feature. Clicking on the topo ID allows deleting either all cross sections under this topo ID (using the feature 'Delete topo ID') or only the selected sections under this topo ID (using the feature 'Delete selected in this topo ID').

Cross section properties

General

The General tab contains options and data which relevant for all or part of all the cross sections.

Recompute all. The 'Recompute all' button recomputes processed data for all the cross sections.

Recompute selected. The 'Recompute selected' button recomputes processed data for the selected cross sections (those having the 'Select' checkbox checked) only.

Cross-section filename. Cross sections are stored in a cross section file, with the xns11 file extension. Click the '...' button to either select an existing file, create a new one or refresh the content of the file.

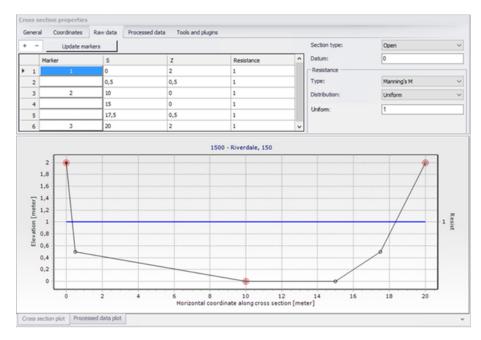
Draw history on plots. When this option is checked, watermarks are added as a history of previous cross sections drawn on the 'Cross section plot' and the 'Processed data plot'. This feature allows comparison of multiple cross sections on a single scale.

Coordinates

The 'Coordinates' tab provides the list of vertices defining the location of the cross section (i.e. the polyline shown on the map). Each row describes a point identified with its X and Y coordinates expressed in the coordinate sys tem used for features in the setup. The 'S' column provides the horizontal distance of each vertex along the polyline from its left end. These vertices don't have to match the list of points provided in the 'Raw data' tab.

When cross sections have been created from the *Map* view, the table is automatically filled with all vertices defining the location of the polyline and one point at the intersection with the branch.

Apply. When coordinates are provided in the table, the 'Apply' option can be checked. When it's checked, cross sections are displayed on the map based on the defined coordinates otherwise the cross section is displayed perpendicular to the branch at the specified chainage.


Raw data

The 'raw data' tab provides the list of points defining the topography of the river bed along the cross section. These points don't have to match the list of vertices provided in the 'Coordinates' tab.

The 'S' column provides the horizontal distance of each point along the cross section, from the left end of the cross section. The 'Z' column provides the elevation of the points.

The '+' button above the table can be used to insert a new line at the bottom of the table, while the '-' button can be used to delete the active line.

Markers. Markers may be assigned to points in the 'Marker' column of the table. Markers can be assigned in two different manners: the first one is to click an element in the 'Marker' column, which opens a marker dialogue as shown in Figure 3.40 from which a requested marker number can be assigned for the selected point.

Select markers	×
(1) Left levee bank	(3) Right levee bank
(4) Left low flow bank	(5) Right low flow bank
(2) Lowest point	/River alignment
User marker	OK Cancel

Figure 3.41 Selection of markers

A number of markers may be set in this dialogue:

Left and right levee mark (Markers 1 & 3): defines the extent or the active part of the cross section used for the calculations. Default placement of marker 1 and 3 is to apply marker 1 in the very first point in the raw data and marker 3 at the very last point of the raw data. Placing any of these markers at different locations will limit the extent of the active part of the cross section such that only the part of the cross section in between markers 1 and 3 is included in the simulation (that is, Processed data are only calculated for cross section data in between these markers).

Left and right low flow bank (Markers 4 & 5): defines the extent of the low flow channel. The markers influence the calculation of the processed data. If defined, the section is internally divided into three major 'slices' at markers 4 and 5 positions and the resulting processed data for such a section is a sum of integration results of three sub-parts of the section instead of calculating a result from one single, large section. Additionally, markers 4 and 5 can be used to define the extent of the low flow channel which is used with the 'High/low flow zones' description of the resistance distribution in the raw cross section data.

Lowest point/River alignment (Marker 2): marker 2 typically define the lowest point of the river section, or the location of the intersection with the branch. Marker 2 settings does not affect the calculations at all. Instead, it serves primarily the Map view for placement of cross sections which have no coordinates defined. It is therefore recommended to define the correct position of marker 2 in all sections.

User marker: any number above 7 may be used as a user marker. User markers do not impact the simulation results. They are an option for indicating a specific point in a cross section e.g. the location of a measurement gauge.

Marker locations must be defined such that marker 1 is defined to the left of marker 3 in the raw data table.

Update markers: This button updates markers 1, 2 and 3 in the current cross section, which are respectively placed at the left end point, lowest point and right end point.

Section Type. The type of cross section is set here. Four options are available:

- Open section: the typical setting for river cross sections.
- Closed irregular: closed sections with arbitrary shape.
- Closed circular: closed circular section shape where the geometry is only

defined by the diameter.

 Closed rectangular: closed rectangular section shape where the geometry is only defined by the width and height.

Datum. A datum value may be entered here. The datum is normally used for adjusting the levels of the cross sections such that they conform to a specific reference datum in the model area. The datum value is added to all elevations in the 'Raw data' tab. The datum is also used for circular and rectangular sections, to set the elevation of the bottom level of the cross section.

Resistance – Type. Multiple options exist for defining the desired type of resistance method in the cross sections. The following types are available

Relative resistance: the resistance is given relative to the resistance number specified in the 'Bed resistance' menu. The resistance value specified in the cross section for this resistance type is therefore a coefficient.

A coefficient higher than 1 will increase the actual roughness of the channel (river) bed, whereas a coefficient lower than 1 will decrease the actual roughness. So when the resistance type is Manning (M) in the 'Bed resistance' menu, then the Manning's M value is divided by this coefficient.

When the resistance type is Manning (n), then the Manning's n value is multiplied by this coefficient.

- Manning's n: the resistance number is specified as Manning's n in the unit s/m(1/3).
- Manning's M: the resistance number is specified as Manning's M in the unit m(1/3)/s (Manning's M = 1/Manning's n).
- Chezy number: the resistance number is specified as Chezy number in the unit m(1/2)/s.
- Darcy-Weisbach (k): the resistance is specified in the form of an equivalent grain diameter.

Resistance – Distribution. This distribution type defines the description of the transversal resistance across the cross section. Three options are available:

- Uniform: a single resistance number will be applied uniformly throughout the cross section.
- High/Low flow zones: three resistance numbers are to be specified. The 'Left high flow' number applies between markers 1 and 4, the 'Right high flow' number applies between markers 5 and 3, and the 'Low flow' number between markers 4 and 5. If marker 4 and 5 do not exist the low flow resistance number will apply uniformly throughout the cross section.
- Distributed: the resistance number is to be specified for each point, in the raw data table in the 'Resistance' column. The value specified for a given point applies uniformly between this point and the previous one.

Processed data. The 'Processed data' tab displays the hydraulic characteristics of the cross section which are used during the simulation. These processed data provide the values of cross section area, radius, width, bed resistance and conveyance as a function of the water level. The details of these variables are provided below:

• Level: levels for which processed data are calculated in the cross section.Default levels definition range from the lowest z-value and up to the highest z-value in the raw data table.

- Cross section area: effective cross sectional flow area calculated from the raw data. Effective area is determined from the total flow area adjusted by eventual relative resistance values different from 1 in the raw data tab (see MIKE 1D Reference manual).
- Radius: a resistance or hydraulic radius depending on the selected type in the 'Radius type' drop-down list.
- Storage width: width of the water surface for the given water level.
- Resistance: this factor can be used to apply a level dependent, variable resistance in the cross section. The resistance factor can contain the following two types of values depending on the Resistance Type definition in the raw data tab:
 - Resistance type defined as relative resistance factor: in this case, the resistance value is interpreted as a factor by which the resistance numbers defined in the 'Bed resistance' menu will be multiplied or divided during the calculation, in order to establish a level dependent resistance in the section. That is, the resistance factor works as a level dependent resistance scaling factor in the current section. It is important to notice in the case of relative resistance type, that a factor higher than 1 will increase the actual roughness of the river bed, whereas a factor lower than 1 will decrease the actual roughness. So when the resistance type is Manning (M), then the Manning's M value is divided by this factor. When the resistance type is Manning (n), then the Manning's n value is multiplied by this factor.
 - Resistance type defined as absolute resistance number (Manning's n, Manning's M or Chezy number): in this case, the resistance column contains the actual resistance number applied in the simulation. The resistance column can therefore have values of either Manning's M, Manning's n or Chezy numbers in this case.
- Conveyance: the conveyance values are not used in the simulation but is
 primarily displayed as part of the processed data for the purposes of
 checking that the conveyance is monotonously increasing with increasing water level, which is one of the key assumptions for the open water
 hydraulics.

Additionally, an additional storage area may also be defined manually, again as a function of the water level. The purpose of the additional storage area is to include an additional volume of storage in the cross section, which is not represented by the geometry in the raw data. The calculated water level in this additional storage remains strictly the same as in the cross section. This is useful for representing small storage's associated with the main branch such as a lakes, bays and small inlets. The additional storage area values describe the area of the water surface for a given water level. Additional storage areas are always user-defined: they will never be given a value from the automatic processing of the raw data. During the simulation, the processed data will be interpolated in order to cover the full range of water levels encountered during the simulation.

Note: Processed data are essentials in the simulation, as they describe the hydraulic aspects of the cross sections. Hence, it is important to inspect processed data and make sure that accurately describe these hydraulic parameters.

It is for example important to make sure that their plots are smooth in order to correctly reproduce the progressive changes with changing water levels. If the plots show abrupt changes, it may be necessary to edit the levels at which processed data are computed. Additionally, a situation where the conveyance column is not monotonically increasing with water levels can relatively easily occur, especially in the case of some closed sections or in situations where the section geometry includes a sudden width increase and the radius type has been selected to 'Hydraulic radius'. Should this situation occur, then it is strongly recommended (not to say a strict requirement) that time is spent on adjusting the section characteristics such that a monotonically increasing conveyance curve is obtained. If not, there is a very significant risk of obtaining instabilities in the simulation for water levels in the range where the non-increasing conveyance values are present.

Typical options for optimising the cross section characteristics in the situation of an open section is to use the 'Resistance radius' type instead. Alternatively, an option using the 'Hydraulic radius' type is to manually subdivide the section into several 'slices' by adjusting the relative resistance numbers in the raw data at locations where the section's shape significantly changes (e.g. changing a relative resistance value from 1.000 to 1.001 'forces' the processed data calculator to divide the integration of the processed data into several slices and the non-monotonically increasing conveyance curve can normally be resolved from this.

It is important to notice that the conveyance numbers presented in the conveyance column are actually not the 'True' conveyance values. Depending on the choice of resistance type in the 'Processed data' tab, the 'True' conveyance may depend on the resistance values specified in the 'Bed resistance' menu. However it has been decided to present conveyance values which does not include these resistance number. Consequently, the conveyance shown in the processed data does not reflect the true conveyance, but is primarily offered as a possibility for analysing the 'conveyance trend' as a function of water levels in the cross sections. And these should be monotonically increasing with water levels to secure a healthy output from the simulations.

The '+' button above the table can be used to insert a new line in the table, while the '-' button can be used to delete the active line.

Allow for recalculation. When this option is checked, the table may be automatically recomputed. Data are recomputed when changes are applied to the

cross section's properties, when the 'Recompute' button in the current window is pressed. In case the processed data have been manually adjusted, it may be necessary to uncheck this option in order to make sure to keep them unchanged afterwards.

Processed data are also recomputed when the setup is saved when 'Allow for recalculation' is checked.

Recompute. This button is only active when the option 'Allow for recalculation' is checked. Pressing this button recomputes all the processed data in the table.

Radius type. The radius type may be chosen between the three following options:

- Resistance radius: a resistance radius formulation is used.
- Effective area, hydraulic radius: a hydraulic radius formulation where the area is adjusted to the effective area according to the relative resistance variation.
- Total area, hydraulic radius: a hydraulic radius formulation where the total area is equal to the physical cross sectional area.

Number of levels. The desired number of processed data levels. The automatic level selection method may not use the full number of level specified. This will occur when a smaller number of levels is sufficient to describe the variation of cross sectional parameters.

Angle correction. An angle correction may optionally be applied to the cross section. The correction may be used for situations where the cross section profile isn't perpendicular to the center line of the river. To activate the correction, the 'Apply' checkbox must be checked, and the angle must be manually specified.

The correction applied is simply a projection of the cross sectional profile on the normal to the thalweg of the river i.e. the correction reads

 $x_{cor} = x \cos \theta$

Where $\,\theta\,$ is illustrated below

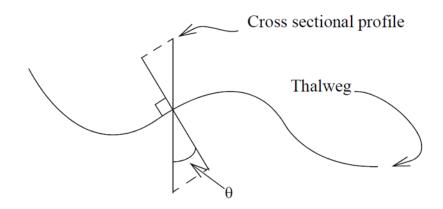
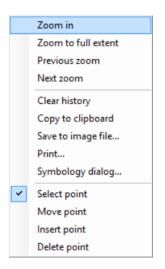


Figure 3.42 Definition sketch of the correction angle

Please note that the correction of X-coordinates is not reflected in a change of S values in the raw data table, but only in the processed data table.


Cross section plot

The graphical view presents either a single plot for the current cross section, or eventually a number of plots from different sections if the 'Draw history on plots' option in the 'General' tab is active. The curve represents the values defined in the raw data table, with the X axis describing the S values and the Y axis describing Z values plus the datum value.

Points shown with red circles on the plot indicate the locations of markers 1, 2 and 3.

The blue curve describes the resistance value for the current cross section.

To control the settings and appearance of the plot, a number of facilities are available through a contextual menu. To open the pop-up menu point to the graphical view with the mouse cursor and press the right mouse button. A pop-up menu as presented in figure below will appear.

Figure 3.43 Contextual menu for the cross section plot

The pop-up menu includes the following three feature groups:

- The first group of features relates to the zooming facilities: from here the zoom in, zoom to full extent and the previous / next zoom facilities are available.
- The second group of features relates to the appearance and export of the graphical view. From here you can therefore export the image to the clipboard or to an image file on the disk, and you can also print it. Additionally the symbology dialogue allows changing the display settings of the plot.
- The third group of features relates to editing the active cross section's raw data on the plot. The following functions are available:
 - Select: when this mode is active, it is possible to select a cross section's point on the plot, which makes this point active in the raw data table.
 - Move points: when this mode is active, it is possible to move a point graphically from the plot. The raw data table will be updated accordingly.
 - Insert: when this mode is active, new cross section's point may be added. Inserted points are interpolated between two existing points, and may be moved afterwards.
 - Delete: when this mode is active, points may be deleted from the plot.

Processed data plot

The graphical view presents either the data for the current cross section only, or eventually for a number of cross sections if the 'Draw history on plots' option in the 'General' tab is active. The curve represents the values defined in the processed data table, with the Y axis describing the level values and the X axis describing one of the other items from this table (either area, radius, width, additional storage area, resistance or conveyance). The plotted item is controlled by the drop-down list above the plot.

To control the settings and appearance of the plot, a number of facilities are available through a contextual menu.

4 Rainfall-Runoff Modelling

MIKE URBAN+ provides a versatile set of tools and computational models for modelling surface storm runoff and infiltration on urban and semi-rural catchments. The User can quickly prepare a precipitation-runoff model setup of desired level of detail (in terms of spatial discretization and input data) and use the computed runoff as a load to the collection network.

This Chapter provides a comprehensive guide for the preparation of hydrological models.

Modelling of urban storm runoff and infiltration requires understanding of information requirements and the involved processes. This understanding is supported by the illustration in Figure 4.1. Note that MU+ can model rainfall-dependent infiltration (RDI). This is specifically discussed within the Parameters RDI section, and is not visually represented in Figure 4.1.

Although runoff computation and its subsequent use as a network load are, in principle, two distinct steps in the modelling process, MIKE URBAN+ has the facility to simulate the two processes simultaneously.

Runoff modelling engages the following:

- Catchments
- Optionally (only if network computations will follow), definition of the catchment connection, i.e. specification of the point of runoff inflow into the network.
- Definition of the hydrological models
- Precipitation (optionally, temperature and evapotranspiration)
- Runoff computations

The runoff is typically used as a hydraulic load to the collection network. This requires:

- Declaration of the computed runoff as a network hydraulic load
- Execution of the network computation.

Runoff and hydrodynamic network computations are run simultaneously in MIKE URBAN+. Nevertheless, they can also be launched in two distinct steps, if needed.

Furthermore, an important part of successful modelling is related to model calibration and verification, which ensure that the computed results fit reasonably well with the flow observations. The calibration and verification are important engineering activities in the modelling process, and they must be paid due attention.

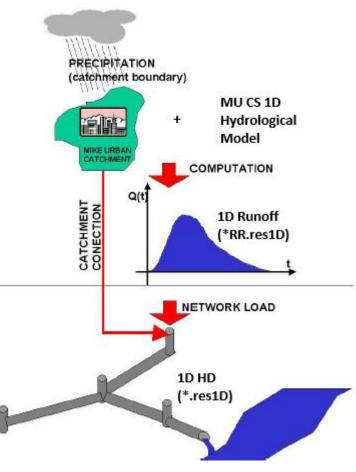


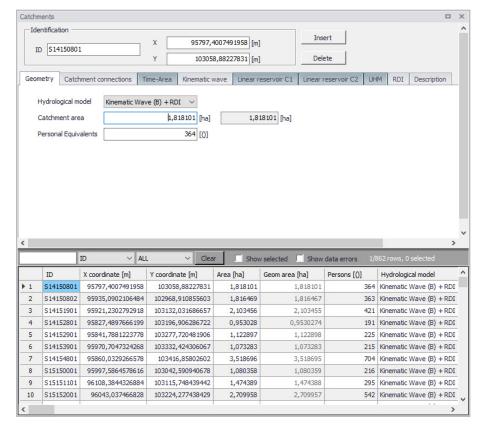
Figure 4.1 Illustrated flow of information in hydrological modelling

4.1 Catchments

Catchments are essential for any hydrological model. MIKE URBAN+ catchments are geographical polygon features which represent hydrological urban catchments or wastewater drainage areas. As such, catchments may be used for hydrological modeling or as wastewater sources.

In the context of hydrological modelling, MIKE URBAN+ catchments are treated as hydrological units where storm runoff and infiltration are generated based on a single set of model parameters and input data. Catchments represent the level of spatial discretization of the hydrological model.

Catchments are featured as a single data layer in MIKE URBAN+. After the definition of the catchments' connections to a model network, the catchments become a source of loads for a network model.


Catchments can be managed both graphically on the map and through the Catchments Editor. The two modes complement each other, and efficient management of catchment data can be achieved through joint application of both modes.

The graphical mode (i.e. Edit Features functionality) allows digitisation of catchment extent by tools like Create, Edit, Delete, and Split. Descriptions of graphical catchment tools are found in the Model Manager User Guide.

The Catchments Editor is used for:

- Editing catchment attributes. It is possible to insert catchments through the Editor; these are given a schematised quadratic shape.
- Editing connections to model networks and hydrological data for Rainfall-Runoff models.
- Editing catchment hydrological model attributes. It is possible to edit catchment attributes in relation to various hydrological runoff models available in MIKE URBAN+.

The Catchments Editor can be accessed via Catchments|Catchments.

Figure 4.2 The Catchments Editor

The Catchments Editor has a general Identification Group containing information on catchment identifier and geographic location.

Identification		x	95797,400749	91958 [m]	Insert	
			Y	103058,8822	27831 [m]	Delete
Geometry	Catchment o	onnections	Time-Area	Kinematic wave	Linear reservoir C1	Linear reservoir
Hydrolo	gical model	Kinematic \	Vave (B) + RE	~ IC		
Catchm	ent area		1,8	18101 [ha]	1,818101 [ha]	
	al Equivalents	[364 [0]		

Edit field	Description	Usage	Attribute Table Field
ID	Unique catchment identifier	Yes	MUID
X	X coordinate of the catchment geome- try centroid	Calculated (read- only)	-Derived-
Y	Y coordinate of the catchment geome- try centroid	Calculated (read- only)	-Derived-

Table 4.1 Overview of the Catchments Editor Identification Group attributes (Table msm_Catchment)

Other catchment attributes related to hydrological modelling and connections to model networks are organized in Tabs within the Catchments Editor and are described in succeeding Sections.

4.1.1 Geometry

General catchment attributes related to geometry and Person Equivalents are specified in the Geometry Tab of the Catchments Editor.

In MIKE URBAN+, the geographical extent of a catchment is determined by the catchment polygon perimeter. MIKE URBAN+ provides information on the total catchment area based on polygon geometry.

In some cases, the geographical boundaries of a catchment do not coincide with the actual drainage area. A catchment extent may be defined based on some administrative division, while the drainage network is present only in some parts of the catchment. In such cases, the User may specify the Catchment Area value, which overwrites the actual geometric area in all hydrological computations.

Catchments					□ ×
Identification			95797,400749		Insert
Geometry Catchment co	onnections	Time-Area	Kinematic wave	Linear reservoir C1	Linear reservoir C2
Hydrological model Catchment area Personal Equivalents	Kinematic N	Wave (B) + RE	21 ✓ 118101 [ha] 364 [0]	1,818101 [ha]	

Table 4.2 Overview of the Catchments Editor Geometry attributes (Table msm_-Catchment)

Edit field	Description	Usage	Attribute Table Field
Hydrological Model	Dropdown menu for selecting the hydro- logical runoff model to use for a catch- ment	Yes	HydrologicalMod- elNo
Catchment Area	The catchment area of relevance for the project (<= Geom Area)	Optional	Area
(Geom. Area)	Program-calculated geometric area of the catchment poly- gon	Calculated (read- only)	-Derived-
Person Equivalents	Unit per capita load- ing for the catch- ment	Yes, Used as a method for wastewater load definition	Persons

4.1.2 Description

The Catchments Editor Description Tab allows the User to provide additional information for a catchment record.

Catchments								х
Identification ID S14150802	2	X V	95935,09021 102968,9108		Insert Delete			
Geometry Catch	nment connections	Time-Area	Kinematic wave	Linear reservoir C1	Linear reservoir C2	UHM RDI	Descriptio	n
Description Data source Asset ID Status Network type	Catchment descrip Source Catchment 1 3: Imported 2: Storm water	bion	×		Add picture			

Figure 4.5 The Catchments Editor Description Tab

Table 4.3	The Catchments Editor Description Tab attributes (Table msm_Catch-
	ment)

Edit field	Description	Usage	Attribute Table Field
Description	Free text description related to the catch- ment	Optional	Description
Data source	Reference to an external data source (e.g. table ID) from where the record was taken	Optional	DataSource
Asset ID	Reference to an ID used in external data sources	Optional	AssetName
Status	Data status for the record for keeping track of information source	Optional	Element_S

Edit field	Description	Usage	Attribute Table Field
Network Type	Attributes the catch- ment to a certain type of network. Used in cases where different net- work types are in the same project.	Optional	NetTypeNo
Add picture button	Facility for defining an image file for the catchment record. Accepts .PNG, .JPG, and .BMP image files.	Optional	-

Table 4.3 The Catchments Editor Description Tab attributes (Table msm_Catchment)

4.2 Hydrological Models

Catchment records include information related to hydrological modelling. Such information are shown in separate tabs--one tab for each model.

Hydrological models for urban catchments include two distinct classes of models:

- Surface runoff model: These are the most common types in urban runoff analysis. The common characteristic of all the models in this class is that only surface runoff is computed. This implies discontinuous runoff hydrographs where flow starts as a result of rainfall and reduces to zero again after the end of rainfall. As such, these models are suitable for relatively densely urbanized catchments with dominant amount of runoff generated on impervious surfaces, and for single-event analyses (e.g. design rainfall of certain recurrence interval). These models fail to provide realistic results in dominantly rural catchments and for long-term analyses involving multi-event rainfall series.
- Continuous hydrological models: These models treat the precipitation volume balance without any truncation through complex concepts. As a result, the generated runoff includes both the overland and subsurface runoff components. Due to longer time scales involved, the runoff hydrographs appear practically continuous. An important property of continuous hydrological models is hydrological memory, i.e. the ability to simulate the catchment reaction to certain rainfall dependent on previous rainfalls. This type of model is essential for any long-term analysis and for dominantly rural catchments. On the other hand, these models are usually incapable of simulating extremely fast response of heavily impermeable urban catchments.

MIKE URBAN+ includes a series of surface runoff models and one continuous hydrological model. The surface runoff models available are:

- Time-Area Method (A)
- Kinematic Wave (B)
- Linear Reservoir (C1 and C2)
- Unit Hydrograph Method (UHM)

The continuous hydrological model included is Rainfall Dependent Infiltration (RDI).

Any of the surface runoff models can be used on their own, or in combination with RDI.

Combining different models for individual catchments in one runoff computation is also possible in MIKE URBAN+.

Detailed descriptions of the models are available in the following Sections and in the MIKE 1D Reference Manual.

4.2.1 Time-Area Method (A)

The Time-Area Method is a simple surface runoff model with minimum data requirements. The runoff computation is based on a simple treatment of hydrological losses and the runoff routing by the so called Time-Area curve. Technical details on the method can be found in the MIKE 1D Reference Manual.

Model Data

A full overview of the editor fields and corresponding attributes is provided in the Table 4.4.

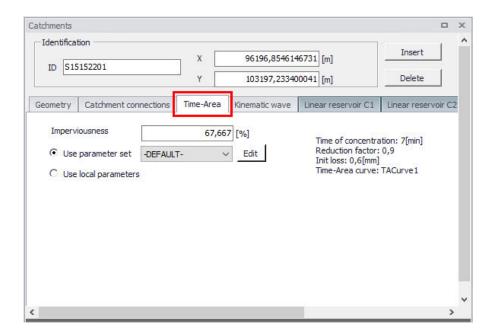


Figure 4.6 The Time-Area Model Tab

Table 4.4	Overview of the	Time-Area Model attributes	(Table msm_	Catchment)
-----------	-----------------	----------------------------	-------------	------------

Edit field	Description	Used or required by simulations	Field name in datastructure
Imperviousness	Impervious catch- ment area, as per- cent of the actual model area	Yes	ModelAImpArea
Use Parameter Set	Reference to a set of model parame- ters to be used for the current catch- ment	Yes	ModelAParAID
Use Local Parame- ters	Allows for local use of individual param- eters	Optional	ModelALocalNo

Parameters Time-Area

The Time-Area model uses several parameters. For practical reasons, these parameters have been grouped in parameter sets, which can be associated with certain catchments. This means the entire model setup can be established with a very small amount of information, while still allowing for full spa-

tial variation of model parameters for individual catchments through the application of local values.

New parameter sets can be inserted and values of individual parameters can be edited in the Parameters Time-Area Editor.

MIKE URBAN+ comes with a Default parameter set (-DEFAULT-). The User can insert any number of parameter sets and edit them as needed.

Param	eters Time-Are	ea					п x
	entification — Parameter set	t ID				Inser	
-Pa	arameters —					Delet	e
	Time of conce	entration		7	[min]		
	Initial loss			0.6	[mm]		
	Reduction factor			0,9 [0]			
	Time-Area curve TACurve1 Edit						
	C Time-Are			1			
					1		_
		ID	~	ALL ~	Clear Show:	selected 🗌 Show data	errors
	ID	Red Fact	or [0]	Init Loss [mm]	Conc Time [min]	TA Method	TA C
▶ 1	-DEFAULT-		0,9	0,6	7	Time-Area Curve No.	-
<							>

Figure 4.7 The Time-Area Parameter Sets Editor (Catchments|Parameters Time-Area)

A full overview of the editor fields and corresponding database attributes is provided in the Table 4.5.

Edit field	Description	Used or required by simulations	Field name in datastructure
Parameter Set ID	Parameter set iden- tifier	Yes	MUID
Time of Concentra- tion	Concentration time	Yes	ConcTime
Initial Loss	Initial loss (wetting, interception, local depressions)	Yes	InitLoss
Reduction Factor	Hydrological reduc- tion factor	Yes	RedFactor
Time-Area curve/coefficient radio buttons	Switch for use of predefined tabu- lated T-A curves or analytically com- puted T-A relation	Yes	TAMethodNo
Time-Area Curve	Predefined T-A curve ID	Optional, alternates with TACoeff	TACurveID
Time-Area Coeff.	Value of the analyti- cal T-A curve coeffi- cient	Optional, alternates with TACurveID	TACoeff

Time-Area Curve Editor

The Time-Area model uses (except if analytical curve is applied) predefined tabulated time-area curves. A Time-Area curve represents the contributing part of the catchment surface as a function of time. Implicitly, the Time-Area curve accounts for the shape of the catchment in relation to the outlet point.

MIKE URBAN+ comes with three Default Time-Area curves: TACurve1, TACurve2, and TACurve3, applicable for rectangular, divergent and convergent catchments, respectively (see the figures below).

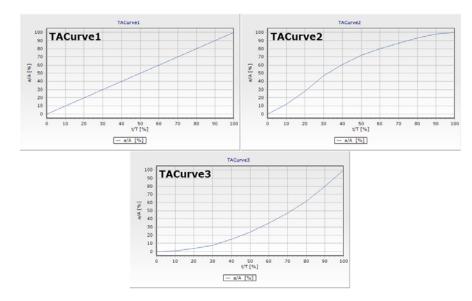
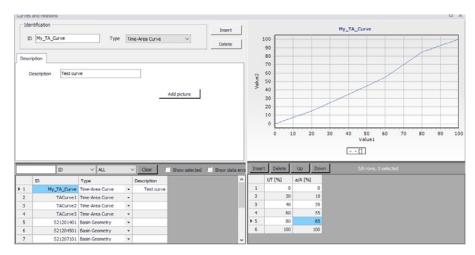



Figure 4.8 Three Default Time-Area curves

You can define any number of custom Time-Area curves. These can be inserted and edited in the editor for Curves and relations (Tables|Curves and Relations). Each Time-Area table must start with a pair of values (0,0) and must end with a pair of values representing the whole (per Default, MIKE URBAN+ maintains T-A curves in percent (%), i.e. the last pair of values in the table must be (100,100).

4.2.2 Kinematic Wave (B)

The Kinematic Wave (Model B) is a surface runoff model with moderate data requirements. The runoff computation is based on a comprehensive treatment of hydrological losses (including infiltration) and the runoff routing by the Kinematic Wave (Manning) formula. Technical details can be found in the MIKE 1D Reference Manual.

Model Data

Catchments					•	×
Identification ID S15154301		6313,2875758357 [m] 03360,339234728 [m]				^
Geometry Catchment conne	ections Time-Area Kine	matic wave Linear reservoir	C1 Linear reservoir C2	UHM RDI Description		
Length [m]	Slope 0,01 Impervious		✓ Edit	Pervious		
	Steep	Flat	Low	Medium	High	
Contributing area	29,811 [%]	37,856 [%]	0 [%]	32,333 [%]	0 [%]	
Use local manning	80 [m^(1/3)/s]	70 [m^(1/3)/s]	30 [m^(1/3)/s]	30 [m^(1/3)/s]	12 [m^(1/3)/	s
<						~

Figure 4.10 The Kinematic Wave Model Tab

A full overview of the editor fields and corresponding attributes is provided in the Table 4.6.

Table 4.6 Overview of the Kinematic Wave model attributes (Table ms_Catchment)

Edit field	Description	Used or required by simulations	Field name in datastructure
Length	Characteristic length of the catch- ment	Yes	ModelBLength
Slope	Representative slope of the catch- ment	Yes	ModelBSlope

Edit field	Description	Used or required by simulations	Field name in datastructure
Parameter Set	Reference to a set of model parame- ters to be used for the current catch- ment	Yes	ModelBParBID
Contributing Area (five fields)	Fraction of the actual model area for each surface category	Yes	ModelBAISteep, ModelBAIFlat, Mod- elBAPSmall, Model- BAPMedium, ModelBAPLarge
Use Local Manning	Allows for local use of individual param- eters	Optional	ModelBLocalNo
Manning Number (five fields)	Local value of the Manning number for various types of catchment surfaces	Optional	ModelBMISteep, ModelBMIFlat, Mod- elBMPSmall, Mod- elBMPMedium,Mod elBMPLarge

Table 4.6 Overview of the Kinematic Wave model attributes (Table ms_Catchment)

Parameters Kinematic Wave

The Kinematic Wave model uses a relatively large number of parameters. For practical reasons, these parameters have been grouped in parameter sets, which, in turn, can be associated with certain catchments. The entire model setup can thus be established with a very small amount of information, while still allowing for full spatial variation of model parameters for individual catchments through the application of local values.

New parameter sets can be inserted and values of individual parameters can be edited in the Parameters Kinematic Wave Editor. This can be activated at Catchments|Parameters Kinematic Wave.

MIKE URBAN+ comes with a Default parameter set (-DEFAULT-). The User can insert any number of parameter sets and edit them as needed.

arameters Kinema	tic Wave					
- Identification -				Insert	1	
Parameter se	t ID			Delete		
Parameters -						
		Impervious		Pervious		
	Steep	Flat	Low	Medium	Height	
Vetting	0,05 [mm]	0,05 [mm]	0,05 [m	m] 0,05	[mm] 0,05	5 [mm]
Storage		0,6 [mm]	1 [m	m] 1	[mm]	2 [mm]
Horton's in	filtration capacity					
Maximum			3,6 [m	ım/h] 36	[mm/h] 72	2 [mm/h]
Minimum			1,8 [m	m/h] 3,6	[mm/h] 18	3 [mm/h]
Horton's in	filtration exponent —					
Wet conditi	on		0,0015 [/s	s] 0,0015	[/s] 0,0015	5 [/s]
Dry condition	on		5E-6 [/s	;] 1E-5	[/s] 5E-5	5 [/s]
Manning	80 [m^(1/3)/	/s] 70 [m^(1	1/3)/s]30 [m	1^(1/3)/s] 30	[m^(1/3)/s] 12	2 [m^(1/3
	ID v A	ALL V C	Clear 🗌 Show se	elected 🔲 Show data	errors 1/1 rows, 0 s	elected
ID	Wet Steep [mm]	Wet Flat [mm]	Wet Small [mm]	Wet Medium [mm]	Wet Large [mm]	Storage
1 -DEFAULT-	0,05	5 0,05	0,05	0,05	0,05	

Figure 4.11 The Kinematic Wave Parameter Sets Editor (Catchments|Parameters Kinematic Wave)

A full overview of the editor fields and corresponding database attributes is provided in the Table 4.7.

Table 4.7Overview of the Kinematic Wave Parameter Set Attributes (Table
msm_HParB)

Edit field	Description	Used or required by simulations	Field name in datastructure
Parameter set ID	Parameter set iden- tifier	Yes	MUID
Wetting (five fields)	Wetting initial loss on various types of surfaces	Yes	WetSteep, WetFlat, WetSmall, WetMe- dium, WetLarge
Storage (four fields)	Storage initial loss on various types of surfaces	Yes	StorageFlat, Storag- eSmall, StorageMe- dium, StorgaeLarge

Edit field	Description	Used or required by simulations	Field name in datastructure
Maximum (three fields)	Horton's maximum infiltration capacity on various types of surfaces	Yes	InfMaxSmall, Inf- MaxMedium, Inf- MaxLarge
Minimum (three fields)	Horton's minimum infiltration capacity on various types of surfaces	Yes	InfMinSmall, InfMin- Medium, InfMin- Large
Wet Condition (three fields)	Horton's exponent for wet conditions on various types of surfaces	Yes	InfExpWetSmall, InfExpWetMedium, InfExpWetLarge
Dry Condition (three fields)	Horton's exponent for dry conditions on various types of sur- faces	Yes	InfExpDrySmall, Inf- ExpDryMedium, Inf- ExpDryLarge
Manning (five fields)	Manning number for various types of catchment surfaces	Yes	ManningSteep, ManningFlat, Man- ningSmall, Man- ningMedium, ManningLarge

Table 4.7Overview of the Kinematic Wave Parameter Set Attributes (Table
msm_HParB)

4.2.3 Linear Reservoir (C1 and C2)

The Linear Reservoir model (Model C) is a surface runoff model with minimum data requirements. The runoff computation is based on a comprehensive treatment of hydrological losses (including infiltration) and runoff routing by the linear reservoir principle. Technical details can be found in the MIKE 1D Reference Manual.

MIKE URBAN+ includes this model in two versions: C1 and C2. These are variants of the same model, and are used as national standards in the Netherlands and France, respectively.

Linear Reservoir C1 Model Data

Catchments					• x
Identifica	ation 5154601	X _	96648,09872 103391,6060		Insert Delete
Geometry	Catchment connection	ons Time-Area	Kinematic wave	Linear reservoir C1	Linear reservoir C
🖲 Us	ve area	EFAULT-	60,45 [%]	Time constant: Initial loss: 0,5	
<					×

Figure 4.12 The Linear Reservoir C1 Model Tab

A full overview of the editor fields and corresponding attributes for the Linear Reservoir C1 model is provided in the Table 4.8.

Edit field	Description	Used or required by simulations	Field name in datastructure
Effective Area	Contributing area	Yes	ModelC1Effec- tiveArea
Use Parameter Set	Reference to a set of model parame- ters to be used for the current catch- ment	Yes	ModelC1ParCID
Use Local Parame- ters	Allows for local use of individual param- eters	Optional	ModelC1LocalNo

Edit field	Description	Used or required by simulations	Field name in datastructure
Time Constant	Local value of the time constant	Optional	ModelC1TimeConst
Init. Loss	Local value of the initial loss	Optional	ModelC1Iloss

Table 4.8 Overview of the Linear Reservoir C1 attributes (Table msm_Catchment)

Linear Reservoir C2 Model Data

atchments								×
Identification		X	96066,40137		Insert Delete		^	
Geometry	Catchment conr	nections	Time-Area	Kinematic wave	Linear reservoir C1	Linear reservoir C2	UHM RDI	D
Length			49,8	6679 [m]	Slope		3,748835 [o/od)]
Impervi	iousness		67,667 [%]		Reduction factor: 0,9 Initial loss: 0,5[mm]			
Use	e parameter set	-DEFAUL	т-	 ✓ Edit 	Lag time: 5[mi			
C Use	e local parameters							
								~

Figure 4.13 The Linear Reservoir C2 Model Tab

A full overview of the editor fields and corresponding Linear Reservoir C2 model attributes is provided in the Table 4.9.

		-	
Edit field	Description	Used or required by simulations	Field name in datastructure
Length	Characteristic length of the catch-	Yes	ModelCLength

Yes

ment

Representative

slope of the catchment

Table 4.9	Overview of the Linear Reservoir C2 attributes (Table msm_C	Catchment)
-----------	---	------------

Slope

ModelCSlope

Edit field	Description	Used or required by simulations	Field name in datastructure
Imperviousness	Impervious area as a fraction of the actual model area	Yes	ModelC2Impervi- ousArea
Use Parameter Set	Reference to a set of model parame- ters to be used for the current catch- ment	Yes	ModelC2ParCID
Use Local Parame- ters	Allows for local use of individual param- eters	Optional	ModelC2LocalNo
Reduction Factor	Local value of the hydrological reduc- tion factor	Optional	ModelC2RedFactor
Init. Loss	Local value of the initial loss	Optional	ModelC2IIoss
Lag Time	Local value of the lag time	Optional	ModelC2LagTime

Table 4.9 Overview of the Linear Reservoir C2 attributes (Table msm_Catchment)

Parameters Linear Reservoir

The Linear Reservoir model uses a number of parameters. For practical reasons, these parameters have been grouped in parameter sets, which, in turn, can be associated with certain catchments. This means the entire model setup can be established with a very small amount of information, while still allowing for full spatial variation of model parameters for individual catchments through the application of local values.

New parameter sets can be inserted and values of individual parameters can be edited in the Parameters Linear Reservoir Editor. This can be activated via Catchments|Parameters Linear Reservoir.

MIKE URBAN+ comes with a Default parameter set (-DEFAULT-). The User can insert any number of parameter sets and edit them as needed.

Ider	ntification												
												I	nsert
P	arameter set	ID										D	elete
Par	ameters —												
•	C1 C C	2											
1	initial loss				0,5 [mm]	Time	const	ant			12 [/ł	n]	
F	Reduction fa	tor			0,9 [()]	Lag t	me				5 [m	nin]	
2	Infiltration												
	orton's infiltra	ation cap	acity —			Time c	onsta	nts					
	Maximum				2 [mm/h]	Wet	condit	ion			3 [/ł	1	
	Minimum				0,5 [mm/h]		condit	ion .			0,1 [/ł	87.5 E	
					eve [innvi)	Dry	condit				0,1 [/r	ני	
		ID	~	ALL	. ×	Clear	□ s	how selected	□ :	Show data	errors	1/1 rows, 0 s	elected
	ID	Max Ca	p (mm/h)		R factor [()]	I loss [mm]	e.	Lag time [min]	(Infiltr	Min C	ap [mm/h]	Wet Co
	-DEFAULT-			2	0,9		0,5		5			0,5	
													3

	eters linear re	servoir										D X
Ide	ntification —			_							Ir	nsert
P	arameter set	t ID									D	elete
Pa	rameters —											
C	°C1 € C	2										
	Initial loss			0,5 [m	n]	Time const	ant			12	[/h]	
	Reduction fa	ctor		0,9 [0]		Lag time				5	[min]	
~	Infiltration											
гн	lorton's infiltr	ation capa	city			Time consta	nts					
	Maximum			2 [m	n/h]	Wet condit	ion			3	[/h]	
	Minimum			0,5 [m	n/h]	Dry condit	ion			0,1	[/h]	
					_					_		
		ID	~ A	ш 💉	C	lear 🗌 S	how selected	<u> </u>	Show data e	rrors	1/1 rows, 0 s	
	ID	Max Cap	[mm/h]	R factor [()]	I	loss [mm]	Lag time [min]		Infiltr	Min	Cap [mm/h]	Wet Co
1	-DEFAULT-		2		0,9	0,5		5	V		0,5	

Figure 4.15 The Linear Reservoir C2 Parameter Sets Editor (Catchments|Parameters Linear Reservoir) - French version

A full overview of the editor fields and corresponding database attributes is provided in the Table 4.10.

Table 4.10 Overview of the Linear Reservoir Parameter Set attributes (Table msm_HParC)

Edit field	Description	Used or required by simulations	Field name in datastructure
Parameter Set ID	Parameter set iden- tifier	Yes	MUID
C1/C2	Toggle for editor setting for model C1 and C2, respectively	Yes	-
Initial Loss	Local value of the initial loss	Yes	lloss
Time Constant	Local value of the time constant	Optional, model C1 only	CTime
Reduction Factor	Local value of the hydrological reduc- tion factor	Optional, model C2 only	RFactor
Lag Time	Local value of the lag time	Optional, model C2 only	LagTime
Infiltration	Toggle for switching ON and OFF calcu- lation of infiltration	Optional	InfitrNo
Maximum Horton's Infiltration Capacity	Maximum infiltra- tion capacity	Optional, if infiltration included	MaxCap
Minimum Horton's infiltration capacity	Minimum infiltration capacity	Optional, if infiltration included	MinCap
Wet Condition Time Constant	Infiltration time con- stant for wet condi- tions	Optional, if infiltration included	WetCond
Dry Condition Time Constant	Infiltration time con- stant for dry condi- tions	Optional, if infiltration included	DryCond

4.2.4 Unit Hydrograph Method (UHM)

The Unit Hydrograph Method (UHM) is a simple linear surface runoff model used to derive hydrographs for any amount of excess precipitation. The runoff computation includes a comprehensive treatment of hydrological losses (i.e. calculation of excess precipitation) and runoff routing through creation of a composite hydrograph. Technical details can be found in the MIKE 1D Reference Manual.

Catchments							×
Identification ID S15154101	X Y	96066,40137 103366,5580		Insert Delete			^
Geometry Catchment connections	Time-Area	Kinematic wave	Linear reservoir C1	Linear reservoir C2	UHM	DI Description	
Area adjustment factor 0,9 Loss model Model Constant Loss Initial loss			Hydrograph SCS Triangular ag time method	Slope		[%]	

Figure 4.16 The Unit Hydrograph Model Tab

An overview of the editor fields and corresponding UHM Model attributes is provided in the Table 4.11.

Edit field	Description	Used or required by simulations	Field name in datastructure
Area Adjustment Factor	Relative size of con- tributing area	Yes	UHMAreaFactor
Ср	Hydrograph peak factor	Optional, SUH Standard method only	UHMCp
Hydrograph	Method for hydro- graph computation	Yes	UHMMethodNo
Slope	Representative catchment slope	Optional, SUH Alameda method only	UHMSuhSlope
Loss Model	Method for comput- ing hydrological losses	Yes	UHMLossModelNo
Initial Loss	Initial loss	Optional, Constant Loss method only	UHMInitLoss
Constant Loss	Constant loss	Optional, Constant Loss method only	UHMConstLoss

Table 4.11 Overview of the UHM Model attributes (Table msm_Catchment)

	Description	lined on months of	Field acres in
Edit field	Description	Used or required by simulations	Field name in datastructure
Runoff Coefficient	Runoff coefficient	Optional, Proportional Loss method only	UHMRunoffCoeff
Curve Number	Standard hydro- graph curve number	Optional, SCS and SCS Gen- eralized loss meth- ods only	UHMCurveNum
Initial AMC	Antecedent mois- ture condition	Optional, SCS loss method only	UHMAMC
Initial Abstr. Depth	Initial abstraction depth	Optional, SCS Generalized loss method only	UHMInitAbstract- Depth
Lag Time Method	Method for lag time computation	Yes	UHMLagTi- meMethodNo
Lag Time	User-specified lag time	Optional, User specified lag time method only	UHMLagTime
Hydraulic Lengt	Hydraulic length of the catchment	Optional, SCS Formula lag time method only	UHMHydrauli- cLength
LT Curve No.	CSC Curve number used for computing lag time	Optional, SCS Formula lag time method only	UHMLagCurveNum
LT Slope	Average catchment slope	Optional, SCS Formula lag time method only	UHMSlope
L	Length of the main stream from outlet to the divide	Optional, SUH Standard and Alameda lag time methods only	UHMSuhL
Ct	Watershed (catch- ment) coefficient	Optional, SUH Standard lag time method only	UHMSuhCt
LC	Length of the main stream from the out- let to the point clos- est to the catchment centroid	Optional, SUH Standard and Alameda lag time methods only	UHMSuhLc

Table 4.11 Overview of the UHM Model attributes (Table msm_Catchment)

Edit field	Description	Used or required by simulations	Field name in datastructure
Stream Slope	Average Overland Slope	Optional, SUH Alameda lag time method only	UHMStreamSlope
Basin Factor	Basin factor	Optional, SUH Alameda lag time method only	UHMBasFactor

Table 4.11	Overview of the UHM Model attributes	(Table mem Catchmont)	
14016 4.11			

4.2.5 RDI and Additional Flow

Continuous runoff from MIKE URBAN+ catchments can be modelled at two distinct levels: either as a simple specification of a constant additional flow or as an RDI computation.

The latter option involves a continuous hydrological model Rainfall Dependent Infiltration (RDI). RDI provides detailed, continuous modelling of the complete land phase of the hydrologic cycle, providing support for urban, rural, and mixed catchments analyses. Precipitation is routed through four different types of storage: snow, surface, unsaturated zone (root-zone) and groundwater. This enables continuous modelling of the runoff processes, which is particularly useful when long-term hydraulic and pollution load effects are analyzed.

Instead of only performing hydrological load analysis of the sewer system for short periods of high intensity rainstorms, a continuous, long-term analysis is applied to look at periods of both wet and dry weather, as well as inflows and infiltration to the sewer network. This provides a more accurate picture of actual loads on treatment plants and combined sewer overflows.

When studying the real flow conditions in sewer systems, flow peaks during rain events are often found to exceed the values that can be attributed to the contribution from participating impervious areas. This is a consequence of the phenomenon, usually named Rainfall Induced Infiltration. This differs from the Rainfall Induced Inflow by the fact that it does not only depend on the actual precipitation, but is heavily affected by the actual hydrological situation, i.e. the memory from earlier hydrological events. For a certain rainfall event, the increase in flow will therefore differ, depending on hydrological events during the previous period. The Rainfall Induced Infiltration is also distinguished by a slow flow response, which takes place during several days after the rainfall event.

From a hydrological point of view, parts of the infiltration behave in the same way as the inflow. Therefore, classification of total hydrological loads to infiltration and inflow is not suitable for modelling approach. Rather, to describe

appropriately the constitutive components of flow hydrographs distinguished by their hydrological behaviour, the following concept is used instead:

- FRC Fast Response Component: comprises the rain induced inflow and fast infiltration component;
- SRC Slow Response Component: comprises slow infiltration component.

Distinctive for the FRC component is that it is not influenced by the previous hydrological situation, i.e. high or low soil moisture content. It occurs as a direct consequence of a rainfall. The FRC component consists of the inflow to the sewer system and the fast flow component of the infiltration, not dependent on previous hydrological conditions.

On the other hand, characteristic of the SRC component is that it is highly dependent on previous hydrological conditions and usually responds slowly to a rainfall. The SRC component consists of the rest of the precipitation-induced infiltration and dry weather infiltration/inflow.

When combined with any of the surface runoff models, RDI provides a platform for accurate and reliable computation of urban runoff free from the limitations inherent to standard urban runoff modelling.

Figure 4.17 shows an example illustrating the influence of previous hydrological conditions for the two components and their response to a rainfall.

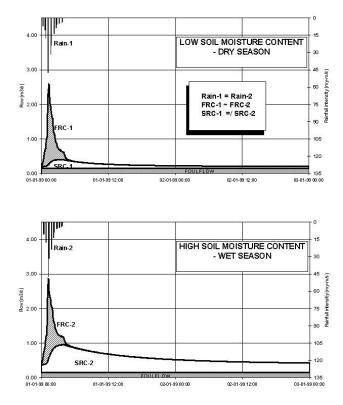


Figure 4.17 Different catchment response under the same rainfall due to different soil moisture conditions at the beginning of the rainfall

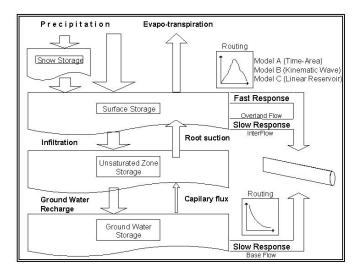


Figure 4.18 Schematics of the RDI Model

Model Data

The model data for additional catchment flow and RDI are in the database table msm_Catchment.

Catchments								х
Identificat	tion 5154601		X Y	96648,098728		Insert Delete		^
Geometry	Catchment cor	nnections	Time-Area	Kinematic wave	Linear reservoir C1	Linear reservoir C2	UHM RDI	
RD:	I				-			
Proport	ion area			Þ [%]				
Parame	eter set -DE	FAULT-		 ✓ Edit 				
🔽 Use	e additional flow							
Addition	nal flow			0 [m^3/s]				
L					1			
								~
<							>	

Figure 4.19 The RDI Model and Additional Flow Tab

A full overview of the editor fields and corresponding database attributes is provided in the Table 4.12.

Table 4.12 Overview of the RDI and Additional Flow attributes (Table msm_Catchment)

Edit field	Description	Used or required by simulations	Field name in datastructure
RDI checkbox	Toggle for activa- tion of RDI	Optional	RdiiNo
Proportion Area	RDI area as a frac- tion of the actual model area	Optional, if RDI activated	RdiiArea
Parameter Set			ParRDiilD

monty			
Edit field	Description	Used or required by simulations	Field name in datastructure
Use Additional Flow checkbox	Toggle for activa- tion of additional flow	Optional	AddFlowNo
Additional Flow	Amount of constant additional flow	Yes, Default value = 0	AddFlow

Table 4.12 Overview of the RDI and Additional Flow attributes (Table msm_Catchment)

Parameters RDI

The RDI Model uses a large number of parameters. For practical reasons, these parameters have been grouped in parameter sets, which can be associated with certain catchments. This means the entire model setup can be established with a very small amount of information.

New parameter sets can be inserted and values of individual parameters can be edited in the Parameters RDI Editor. This can be activated via Catchments|Parameters RDI.

MIKE URBAN+ comes with a Default RDI parameter set (-DEFAULT-). The User can insert any number of parameter sets and edit them as needed.

Parameters-RDI							I X
Identification ID -DEFAULT-				Insert Delete			
Main parameters Th	reshold parameters	Groudwater parameters	Initial conditions				
Surface storage(l	Jmax)	10	[mm] TC	overland flow(CK)		20	[h]
Root zone storag	e(Lmax)	100	[mm] TC	interflow(CKif)		500	[h]
Overland coefficie	ents(CQof)	0,3	[0] TC	baseflow(BF)		2000	[h]
Groundwater coe	fficient(Carea)	1	[0]	Snowmelt		3	
			m				
ID	▼ ALL	▼ Clear	Show selected		1/1 rows, 0 sel		
	rface storage(Umax)			Overland coefficients(C		roundwater	COE
1 -DEFAULT-		10	100	3	0,3		
m							

Figure 4.20 The RDI Parameter Sets Editor Main Parameters Tab (Catchments|Parameters RDI)

The RDI parameters are grouped into Tabs in the editor by:

- Main parameters
- Threshold parameters

- Groundwater parameters
- Initial conditions

A full overview of the editor fields and corresponding database attributes is provided in Table 4.13 to Table 4.15.

Table 4.13	Overview of Parameters RDI Main Parameters Tab attributes (Table
	'msm_HParRDII')

Edit field	Description	Used or required by simulations	Field name in datastructure
ID	Parameter set iden- tifier	Yes	MUID
Surface Storage (Umax)	Capacity of surface storage	Yes	Umax
Root Zone Storage (Lmax)	Capacity of root zone (lower) stor- age	Yes	Lmax
Overland Coefficient (CQof)	Fraction of runoff going to overland flow	Yes	Cqof
Groundwater Coefficient (Carea)	Relative size of groundwater reser- voir	Yes	GwCarea
TC Overland Flow (CK)	Time constant for overland runoff component	Yes	Ck
TC Interflow (CKif)	Time constant for interflow runoff com- ponent	Yes	Ckif
TC Baseflow (BF)	TC Baseflow (BF) Time constant for baseflow runoff component		Ckbf
Snowmelt checkbox	nowmelt checkbox Switch for activa- tion of the snow storage/snowmelt processes		SnowmeltNo
Snowmelt	Snowmelt coeffi- cient	Optional, if snow- melt activated	SnowmeltC

Parameters-RDI							×
Identification ID -DEFAULT-				Insert Delete			
Main parameters Thre	shold parameters	Groudwater parameters	Initial conditions				
Overland(Tof)		0 [()]					
TC interflow(Tif)		0 [O]					
TC baseflow(Tg)		0 [()]					
•			m				+
ID	▼ ALL	← Clear	Show selected	Show data errors			
ID Surfa	ace storage(Umax) [m	m] Root zone stora	ige(Lmax) [mm]	Overland coefficients(CQ	of) [()]	Groundwater	coeffi
▶ 1 -DEFAULT-		10	100		0,3		
<							•

Figure 4.21 The RDI Parameter Sets Editor Threshold Parameters Tab

Table 4.14	Overview of Parameters RDI Threshold Parameters Tab attributes
	(Table 'msm_HParRDII')

Edit field	Description	Used or required by simulations	Field name in datastructure
Overland (Tof)	Fraction of surface storage capacity at which overland flow starts	Yes	Tof
TC Interflow (Tif)	Fraction of surface storage capacity at which interflow starts	Yes	Tif
TC Baseflow (Tg)	Fraction of surface storage capacity at which ground water recharge starts	Yes	Tg

Parameters-RDI							D X
Identification	LT-				Insert Delete		
Main parameters	Threshold para	meters Groudwa	ter parameters	Initial conditions			
Surface stor Root zone m Overland flo Interflow(If) Groundwate	oisture(InitL)		0 [mm] 0 [mm/ 0 [mm/ 0 [mm/ 0 [m]	h]			
•				m			- F
	ID	▼ ALL	▼ Clear	Show selected	Show data errors		
ID	Surface storag	e(Umax) [mm]	Root zone stora	ge(Lmax) [mm]	Overland coefficients(C	Qof) [()]	Groundwater coeffi
▶ 1 -DEFAULT-		10		100		0,3	d.
•							•

Figure 4.22 The RDI Parameter Sets Editor Initial Conditions Tab

'msm_HParRDII')					
Edit field	Description	Used or required by simulations	Field name in datastructure		
Surface Storage (U)	Water depth in the surface storage at the simulation start	Yes	InitU		
Root Zone Moisture (InitL)	Moisture contents in the root zone at the simulation start	Yes	InitL		
Overland Flow (Of)	Overland flow inten- sity at the simulation start	Yes	InitOf		
Interflow (If)	Interflow intensity at the simulation start	Yes	Initlf		
Groundwater Depth (Gwl)	Groundwater depth at the simulation start	Yes	InitGwl		

Table 4.15 Overview of Parameters RDI Initial Conditions Tab attributes (Table 'msm HParRDII')

Parameters-RDI						×
Identification ID -DEFAULT-			Insert Delete			
Main parameters Threshold parameters Grou	udwater parameters	Initial conditions				
Special yield(GwSy)		0,1 [()]				
Min. GW depth(GwLmin)		0 [m]				
Max. GW depth causing baseflow(GWLbf0)		10 [m]				
GW Depth for Unit Capilary Flux(GWLfl1)		0 [m]				
•		III				+
ID 🗸 ALL	▼ Clear	Show selected	Show data errors	1/1 rows, 0	selected	
ID Surface storage(Umax) [mm]	Root zone stora	ge(Lmax) [mm]	Overland coefficients(CC	Qof) [()]	Groundwater	coeffi
1 -DEFAULT-	10	100	12	0,3		
< III						÷

Figure 4.23 The Parameters RDI Groundwater Parameters Tab

Table 4.16 Overview of Parameters RDI Groundwater Parameters Tab attributes (Table 'msm_HParRDII')

Edit field	Description	Used or required by simulations	Field name in datastructure
Specific Yield (GwSy)	Specific yield of the groundwater reser- voir (porosity)	Yes	GwSy
Min. GW Depth (GwLmin)	Top of the ground- water storage (depth from surface)	Yes	GwLmin
Max. GW Depth Causing Baseflow (GWLbf0)	Bottom of the groundwater stor- age (depth from sur- face)	Yes	GWLbf0
GW Depth for Unit Capillary Flux (GWLfl1)	Groundwater depth causing unit capil- lary flux	Yes	Gwlfl1

4.2.6 RDI - Guidelines for Application

Choice of calculation time step

When calculating with RDI, time steps are given separately for the Surface Runoff Model and for the rain dependent infiltration part.

The RDI calculation can often be performed with a relatively long time step (several hours), while calculation with the Surface Runoff Model is typically performed with a time step in the order of several minutes.

The time step for Surface Runoff computations is primarily about the sufficient resolution of the runoff process in time.

Generally, the RDI simulation time step should be chosen in accordance with the resolution of precipitation data, e.g. a time step of 24 hours could be suitable if only daily precipitation data is available. However, in cases when precipitation data with high resolution of e.g. few minutes are available, the RDI time step should be chosen in accordance with the response of the discharge when raining. E.g. an RDI time step of 2-4 hours should be chosen if the time constant CKOF is given a value of 8 hours.

To minimize the calculation time as well as the size of the result files, the RDI calculations are performed according to the following principle:

The RDI simulation is carried out continuously for the whole period specified. On the contrary, the Surface Runoff simulation is carried out only when raining. Thus, the start time for the Surface Runoff calculation is set as the start time for the rain hydrograph. The Surface Runoff calculation continues until all the surface runoff hydrographs are regressed.

The RDI hotstart

There is a HOTSTART facility for RDI, i.e. the initial conditions for the various storages can be automatically taken from a former result file at a simulation start time.

The structure and contents of the result file used as a HOTSTART file requires that the time series in the boundary connection start at least for the maximum specified concentration time Tc earlier than the start time for the HOTSTART is specified. This is required for the correct reconstruction of the surface runoff component (FRC).

The RDI result files

Two result files are generated by a RDI calculation. These are:

- 1. *.RES1D file, containing a maximum of five time series for each subcatchment, namely:
- Discharge, calculated with the Surface Runoff Model (the FRC component)
- Discharge, calculated with the RDI model (the SRC component)
- Total discharge
- Variation of water content in the surface storage for the Surface Runoff Model

 Variation of water content in the snow storage for the Surface Runoff Model

The *.RES1D file is used as input data for a Hydrodynamic calculation.

- 2. *.NOF file (optional), containing detailed information about the processes treated by an RDI model, e.g.:
- Different flow components in the RDI model
- Variation of water content in the different storage in the RDI model

The *.NOF file is used for calibration of the SRC component and for RDI hotstart.

In the *.RES1D file the time series are saved with two intervals; the shorter one for the periods when the Surface Runoff Model is used, and a larger one in the remaining periods. In the *.NOF file the time series are saved with the larger time interval, which is equal to the time step used for the RDI calculation.

RDI Validation

Some of the parameters in RDI (here meaning both for the rain dependent inflow and the infiltration part) are related to actual physical data. However, the final choice of parameter values must be based on a comparison with historical measured discharges since a number of the parameters have an empirical character.

The available period of the measured discharge data and its resolution in time are of major importance for the credibility of the obtained parameter values. Ideally, for good accuracy, a 3-5 years long time series of measured discharge data with daily values is required for the calibration of the RDI parameters. Several months long time series with higher resolution, i.e. minutes or hours, depending on the size of the area, are needed for the calibration of the surface runoff model. Measured time series with shorter duration are also useful, although not securing optimal parameter values. In such case it is important that the time series represents different hydrological situations, i.e. typical wet period or dry period.

An exact correspondence between simulations and measurements can however not be expected and for areas where precipitation data of worse quality is used, a less accurate calibration result must be accepted. In this case it may be preferable to recall the purpose of the actual model application and concentrate on calibrating yearly volumes, flow peaks or base flows, depending on what kind of analysis is to be performed with the model.

It must be remembered that RDI calculates the precipitation-dependent flow component. When comparing with measured discharge data the total measured discharge therefore has to be reduced with the flow components not being precipitation dependent, e.g. foul flow.

RDI calculates the total generated discharge from a catchment, i.e. overflow within the sub-catchment will also be included in the calculated discharge. Therefore, when comparing with measured peak flows and controlling the water balance (total volume) this has to be taken into consideration.

In principle, the model validation is concerned about comparison of the computed and measured hydrographs. As there are almost an infinite number of possibilities to describe level of agreement between two hydrographs, it is recommended to establish some validation criteria, i.e. a measure for accuracy of the model, relevant for the current application. There are several types of criteria, such as numeric criteria based on single values (e.g. peak discharge, volume, etc.), or more complex numeric criteria based on statistical analysis of the computed and calculated time series. Also, there are different types of visual criteria, based on visual inspection, e.g. comparison of graphic presentations of the calculated and measured duration curves. An important issue is to find the most appropriate criteria for the intended application of the model.

The choice of criteria is important since it may affect the final choice of parameter values and by that the behaviour of the calibrated model. Numerical criteria are, however, limited and therefore a visual comparison between the hydrographs is indispensable.

MIKE URBAN+ supports visual comparison of the calculated time series with any time series of the same type contained in the time series database. E.g., when validating the model, the calculated discharge can be plotted on the same graph with the measured discharge and compared.

In the present version of RDI there is no automatic calculation or evaluation of specific numeric validation criteria as mentioned above. If appropriate, analysis of that type can be conducted so that the calculated time series are exported to a spreadsheet or some other program for further processing and comparison with measured time series.

In the example related to the illustrations, overflow occurs within the model area. RDI can not describe this kind of processes, which complicates the choice of validation criteria.

Surface runoff model

When simulating storm sewer systems or fully combined systems, usually a good estimation of the area drained by the FRC component (impervious areas, etc.) can be obtained from physical data (maps, etc.). The final model verification of a FRC should however be based upon comparison with measured discharges during rainfall.

To separate the Afrc component (Surface Runoff Model) and the fast part of the SRC component (Surface Runoff Component in RDI), measured discharge data with fairly high resolution in time (hours) is required.

For calibration of the parameters describing the response of the discharge (e.g. tc and TAtype for model A, or M, L and S for model B), a very high resolution in time is usually required, from minutes to hours.

General hydrological model - RDI

It is not possible to determine the RDI parameters from geophysical measurements, since most of the parameters are of empirical nature. It is therefore necessary that measured discharge from the studied area is available, so that the RDI parameters can be determined by comparison between simulated and measured discharge through the calibration procedure.

The introductory calibration is performed visually by comparing simulated and measured discharge. The final optimization of the parameters is thereafter performed preferably using different numeric and graphical criteria.

The effects of changing each particular parameter are discussed below. Also, the most suitable hydrological periods for calibrating certain parameters are identified, which implies that a certain parameter affects the model behaviour more during periods with specific hydrological conditions. Usually, effects will also be obtained during other periods, why these should also be studied when adjusting a parameter.

The parameters are discussed in the preferable order of adjustment. However, it may be necessary to return to the previous calibration step, as well as repeating the whole process several times. It is recommended, especially for less experienced users, that only one parameter is changed at a time (i.e. for each calculation), so that the effect of the adjustment will appear clearly.

Sometimes, however, the effect of changing one parameter is not sufficient. Then, several parameters controlling similar phenomena can be adjusted together.

In some other cases, undesired secondary effects can be obtained when adjusting certain model parameter. These effects can often be eliminated by simultaneously adjusting other parameters, which do not influence the desired effects, but reduce secondary effects induced by the first parameter.

The following sequence of action is recommended:

 The first step in the RDI calibration is usually to adjust the water balance in the system, i.e. the accuracy between the calculated and measured total volume during the observed period. This is done by correcting the proportion of area, Asrc. An increase of Asrc proportionally increases every flow component at each time step.

The total volume generally also contains the runoff from impervious areas (Surface Runoff Model).

- Next, the overland flow coefficient CQOF is adjusted to obtain a correct distribution of volume between overland flow (peak flows) and baseflow. This is done after wet periods and preferably for a period with low evaporation.

A reduction of CQOF reduces the overland flow and increases the infiltration, i.e. induces increase in the baseflow.

The measured flow peaks generally also contain the runoff from impervious areas (Surface Runoff Model).

• CKBF is adjusted against the response of the baseflow, i.e. the build-up and regression of the baseflow. Adjustment against the build-up of baseflow is done during and after wet periods with low evaporation. Adjustment against regression is done during the start of dry periods with high evaporation, preferably when baseflow is the only flow component.

An adjustment of CKBF does not influence the size of the discharged volume studied for a longer period, but displaces the volumes in time.

 CKOF is adjusted against the response, i.e. the shape of the peak flows. This is done during periods with heavy rainfall, preferably after a wet period.

The measured flow peaks generally also contain the runoff from impervious areas (Surface Runoff Model).

 A reduction of Umax reduces the actual evapotranspiration, the process responsible for reduced discharges during period with high potential evaporation. The effect of reducing Umax will be largest for periods preceded by a wet period. Additionally, an increased overland flow is obtained, as well as more water transported to the groundwater storage resulting in an delayed effect of increased baseflow, because of the long response time of baseflow.

An important behaviour of the RDI model is that the surface storage must be filled-up before overland flow and infiltration, respectively, occur. Therefore, during dry periods with high potential evaporation, Umax can be estimated from how much rainfall is required for filling-up the surface storage, i.e. generating overland flow. The same methodology can also be used for the periods with low potential evaporation, but only if the rain event is preceded by a long dry period.

 CKIF is adjusted against the response of interflow during periods with low potential evaporation. A reduction of CKIF will result in a small increase in volume during these periods.

• The relative water content in the unsaturated zone (i.e. root-zone), L/Lmax controls several of the different water transports in the RDI model. Since the storage capacity, Lmax, influences the velocity of the filling of L towards Lmax, Lmax is adjusted during periods of heavy filling of the root zone storage. This usually occurs during periods with low potential evaporation preferably in combination with a wet period.

A reduction of Lmax increases the discharge, but it may decrease a little during period with very high potential evaporation.

 The threshold values indicate at which relative water content in the root zone, L/Lmax, overland flow, interflow and baseflow respectively will be generated. Therefore, the threshold values can be estimated from the time of filling the root zone storage when each flow component starts discharging.

The threshold values have no effect during periods when the root zone storage is full, L = Lmax.

An increased threshold value reduces the discharge during dry periods and in the beginning of wet periods, i.e. periods with low relative water content in the root zone storage.

TG is adjusted during periods with heavy filling of the root zone storage, preferably in combination with low potential evaporation and preceded by a dry period. TG is therefore an important parameter for adjusting the increase of the groundwater level in the beginning of wet periods.

TOF is adjusted after a dry period at events with heavy filling of the root zone storage. For example adjustment can be done for events where even larger rainfall volumes does not generate overland flow.

TIF is adjusted after a dry period when filling of the root zone storage, preferably in combination with low potential evaporation. However, TIF is one of the less important parameters.

 The degree-day-coefficient, Csnow can be estimated from analysis of the relation between temperature, water content in the snow storage and measured discharge. When temperature is below zero, the precipitation is stored in the snow storage. When temperature is above zero the content in the snow storage is emptied into the surface storage, where the velocity of emptying is controlled by Csnow. An increase of Csnow increases the emptying procedure.

This process should be addressed now and then during the whole calibration procedure. Otherwise, there is a risk that a snow-melting phenomenon is attempted to be described through adjusting other parameters.

• The Carea coefficient establishes the ratio of groundwater catchment and surface catchment (per Default, the two surfaces are equal). By changing the ratio, the ratio between the baseflow and other runoff components is correspondingly changed.

The Default values of the remaining RDI parameters: Sy (specific yield of the groundwater reservoir), GWLmin (minimum groundwater depth), GWLBF0 (maximum groundwater depth causing baseflow) and GWLFL1 (groundwater depth for unit capillary flux) are adjusted only in exceptional cases. Therefore, these parameters have been included into the RDI parameter set dialog in a separate box. The effects of changing the Default values should be well understood prior to adjustment.

Since the variation of water contents in the surface and root zone storage controls many of the other processes, they should be studied continuously throughout the calibration procedure.

Monthly and yearly values for the different processes, e.g. precipitation volume, real evaporation and total discharge, are written to an ASCII file, NAMSTAT.TXT after every RDI calculation. It is recommended that the content of this file is studied now and then during the calibration procedure.

Overflow within the model area

In cases when overflow occurs in the model area, e.g. when simulating the discharge to the treatment plant, this has to be considered when calibrating the peak flows during rainfall. RDI calculates the total generated discharge in the catchment area and is therefore not able to describe hydraulic processes like e.g. overflow (loss of water). Calibration of parameters affecting the volume in the peak flows should therefore be performed for rain events when overflow is unlikely to occur. Model parameters affecting the response of the discharge for rain events when overflow occur can be calibrated against the peak flows base or width.

A well-calibrated RDI model can therefore be used for a rough estimation of overflow volume by studying the difference between calculated and measured discharge for heavy peak flows. The credibility for such estimation is however strongly affected by the quality of measured precipitation and discharge time series.

Non-precipitation dependent flow components

RDI calculates the precipitation dependent flow component. Therefore, both for calibration and validation, other flow components should be treated outside RDI.

Examples of non-precipitation dependent flow components are foul flow and sea water leaking into the sewer system.

The foul flow is preferably estimated through daily values from produced water volumes weighted with yearly charged water volumes. This will however only give a rough estimate, and departure from this methodology may be necessary, e.g. for areas where a large amount of freshwater is used for irrigation.

The amount of leaking sea water is preferably estimated through an iterative procedure between RDI calculation and studies of the difference between the calculated and measured discharge. Only a rough estimation can be achieved, and less accurate calibration results may have to be accepted.

Specially, during the calibration procedure it is very important that non-hydrological errors are generally kept at the lowest level possible in the flow series used. Otherwise, there is a risk of hydrological interpretations of these errors, and the error transmitting in the model and increasing when simulating extreme hydrological situations. A typical example is a rough resolution in time for the foul flow component. The method described above should give a sufficiently correct description for most cases.

4.3 Catchment Connections

In order to transfer the runoff generated on catchment surfaces into the collection network, the model must include information about the connection of the catchment outlet to the collection network. One or multiple catchments can be connected to one node, and a catchment can be connected to multiple nodes.

In order to use Catchments in the context of network modeling, they have to be connected to the network.

MIKE URBAN+ supports the connection of catchments to multiple locations (i.e. nodes or links), as well as separately allocating runoff and catchment discharges to multiple locations.

4.3.1 Catchment Connections Overview

An overview of relevant connections to a pipe network for catchments is available in the Catchments Editor Catchment Connections Overview Tab (Catchments|Catchments). It shows a table summarizing the connections of the catchment to the network model. The data dynamically link and refer to records in the Catchment Connections Editor (Catchments|Catchment Connections).

The summary table shows information on the following:

• Location. To which type of network element the catchment is connected, and the ID of the element.

- Catchment Runoff. Percentage of the Catchment Runoff from the catchment entering a location.
- Catchment Discharge. Percentage of the Catchment Discharge from the catchment entering a location.
- Action. Offers options for editing or adding connections for the active catchment.

Edit. Opens the Catchment Connections Editor, wherein attributes for the existing catchment connection entry can be modified.

Add connection. Adds a connection for the active catchment. The new connection is reflected in the overview table and the Catchment Connections Editor.

S14150801	X [E.G		
netry Catchment cor	nnections Time-Area	Kinematic wave	Linear reservoir (C1 Linear reser
Location	Catchment RunOff	PE discharg	e Acti	on
Node: C14150801	100,000	100,000		Edit
Total	100,000	100,000		Add connection

Figure 4.24 The Catchments Editor Catchment Connections Overview Tab

4.3.2 Catchment Connections Editor

Connect catchments to the pipe network via the Catchment Connections Editor (Catchments|Catchment Connections).

The definition and management of catchment connections is supported both through Editors and by a set of graphical catchment connection tools.

tchme	crite contra									
	ntification :hment ID				k			Inser Delet		
Loc	ation —									_
(Node	Node II)			C1415080	1 k			
6	C Entire	link Link ID								
,	Link d	hainage Chainag	je start/	end			[m]		[m]	
Cat	tchment lo	oad allocation								
L	.oad type	2			Standard	`	-			
	Fraction o	of catchment runoff				10	0 [%]			
						10	1 [70]			
F	Fraction o	of catchment discha	rge			10	0 [%]			
F	Fraction o	of catchment discha	rge ALL		~ (10 Clear	[%] Show selected	Show d	ata errors 1	L/8
F	Fraction o				V C			and the second second	ata errors 1	1/8
F 1		ID	V ALL	•	1 1000	Clear	Show selected	and the second second	and the second	L/80
	ID	ID Catchment ID	V ALL Type Node		Node ID	Clear	Show selected	and the second second	and the second	1/80
1	ID 3453	ID Catchment ID S14150801	V ALL Type Node Node	+	Node ID C14150801	Clear	Show selected	and the second second	and the second	1/80
1 2	ID 3453 3454	ID Catchment ID S14150801 S14152801 S14152801 S14150802	V ALL Type Node Node Node Node	•	Node ID C14150801 C14150801	Clear	Show selected	and the second second	and the second	1/86
1 2 3	ID 3453 3454 3455	ID Catchment ID S14150801 S14152801 S14152801 S14150802 S15150001	V ALL Type Node Node Node Node	• •	Node ID C14150801 C14150801 C14150801	Clear	Show selected	and the second second	and the second	1/80
1 2 3 4 5 6	ID 3453 3454 3455 3455 3456 3457 3458	ID Catchment ID S14150801 S14152801 S14152801 S14152802 S15150001 S14154801	V ALL Type Node Node Node Node Node Node	• • •	Node ID C14150801 C14150801 C14150801 C14150802 C14150802 C14154801	Clear	Show selected	and the second second	and the second	1/8
1 2 3 4 5 6 7	ID 3453 3454 3455 3456 3456 3457 3458 3459	ID Catchment ID S14150801 S14152801 S14152801 S14152802 S15150001 S14154801 S14154901	V ALL Type Node Node Node Node Node Node	• • • •	Node ID C14150801 C14150801 C14150801 C14150802 C14150802 C14154801 C15152001	Clear	Show selected	and the second second	and the second	1/8
1 2 3 4 5 6 7 8	ID 3453 3454 3455 3455 3455 3458 3459 3460	ID Catchment ID S14150801 S14152801 S14152801 S14152801 S14154801 S14154801 S14152901 S14153901	V ALL Type Node Node Node Node Node Node Node Nod	• • • •	Node ID C14150801 C14150801 C14150801 C14150802 C14150802 C14154801 C15152001 C15152001	Clear	Show selected	and the second second	and the second	1/8
1 2 3 4 5 6 7	ID 3453 3454 3455 3456 3456 3457 3458 3459	ID Catchment ID S14150801 S14152801 S14152801 S14152802 S15150001 S14154801 S14154901	V ALL Type Node Node Node Node Node Node Node Nod	• • • •	Node ID C14150801 C14150801 C14150801 C14150802 C14150802 C14154801 C15152001	Clear	Show selected	and the second second	and the second	L/80

Figure 4.25 The Catchment Connections Editor

Create catchment connections through the 'Insert' button. Multiple connections for a single catchment can be set up.

Edit field	Description	Usage	Attribute Table Field
Catchment ID	Unique catchment identifier	Yes	CatchmentID
Location Type radio buttons	Specifies the type of network element to which the catch- ment is connected. Options are: Node Entire link, or Link chainage	Yes	TypeNo
Node ID	Unique identifier for the con- nected node	Yes, If Connection Type = Node	NodelD
Link ID	Unique identifier for the con- nected link	Yes, If Connection Type = Entire link or Link chainage	LinkID
Chainage start/end	Start and end chainages of the connected link	Yes, If Connection Type = Link chainage	StartChain- age/EndCHainage
Load Type dropdown menu	Parameter that defines how the loads from the catchment are allocated to the pipe net- work for a connection. Options are: Standard, Wastewater Total, Stormwater Total, Com- bined Partial, Wastewater Par- tial, and Stormwater Partial. These different Load Types are further explained in the text below.	Yes	LoadTypeNo
Fraction of Catchment Runoff	Fraction of the catchment stormwater runoff to allocate for the connection	Optional, If Load Type = Combined Partial or Stormwater Par- tial	RRFraction
Fraction of Catchment Discharge	Fraction of the catchment dis- charge to allocate for the con- nection	Optional, If Load Type = Combined Partial and Wastewater Partial	PEFraction

Table 4.17 The Catchment Connections Editor attributes (Table msm_CatchCon)

As a catchment can be the source of multiple load types (i.e. stormwater and wastewater), and can be connected to multiple network elements and network types, qualifying a load connection type into clear categories according to pipe network type and connection options is important. These Load Types are described in more detail below:

- Standard: This type of load connection applies to combined systems where all the catchment output is connected to a single location. This is the Default type, which corresponds to the MIKE URBAN Classic Single Node connection type.
- Wastewater Total: This type of load connection applies to fully separated systems, where the catchment is connected to a single location in the wastewater network.
- Stormwater Total: This type of load connection applies to fully separated systems where the catchment is connected to a single location in the stormwater network.
- Combined Partial: This type of load connection applies to combined systems where the catchment is connected to multiple locations in a combined network. This is the fully versatile connection type.
- Wastewater Partial: This type of connection applies to fully separated systems, where the catchment is connected to multiple locations in a wastewater network.
- Stormwater Partial: This type of connection applies to fully separated systems where the catchment is connected to multiple locations in a stormwater network.

The User's choice of Load Type affects the Catchment load allocation Editor fields and the internal data validation.

A facility for data validation checks that for each catchment in the Catchment Connections Editor, the sum of the fractions for Catchment Discharge (i.e. PEFraction) and Runoff Discharge (i.e.RRFraction) is close to 100 (99.9<sum<100.1).

For catchments where this sum is not found to be close to 100%, all specified connections will be reported as faulty and marked in red.

4.4 Low Impact Development (LID)

Water sensitive urban design (WSUD) represents an approach to land development (or redevelopment) that works with nature to manage stormwater as close to its source as possible. It is also known as Low Impact Development (LID).

Low Impact Development employs principles such as preserving and recreating natural landscape features, minimizing effective imperviousness to create functional and appealing site drainage that treat stormwater as a resource rather than a waste product.

Many practices have been used to adhere to these principles such as bioretention facilities, rain gardens, vegetated rooftops, rainwater tanks, and permeable pavements. By implementing LID principles and practices, stormwater can be managed in a way that reduces the impact of impervious built-up areas and supports the natural movement of water within an urban ecosystem or catchment.

Applied on a broad scale, LID can maintain or restore a catchment's hydrologic and ecological functions. LID has been characterized as a sustainable stormwater practice.

The ability to assess the benefit of LID practices installed in urban catchments is required by Water Utilities and other stakeholders responsible for the urban drainage. An essential part of this requirement is the ability to model the various LID practices at both hydrological screening level and at a detailed hydraulic level in order to evaluate the effect of installing LID practices as parts of a stormwater drainage system.

This chapter describes the implementation and development of model support of various LID structures in MIKE URBAN+.

The modelling of LID practices is divided into 2 main approaches:

- Modelling of LID at screening level catchment-based approach
- Detailed hydraulic modelling of individual LID structures drainage network based approach.

This method will provide the User with the option of detailed modelling of individual LID structures hydraulically connected to the stormwater pipe network. This approach is based on the concept of soakaway nodes.

In this Chapter, the MIKE URBAN+ implementation of LID at the screening level - the catchment-based approach - is explained.

The catchment-based methods implemented in MIKE URBAN+ are dominantly based on research published by US EPA, adapted appropriately to the MIKE URBAN+ modelling concept of urban hydrology. In the US, the term Low Impact Development Systems (LIDS) is used for WSUD and the LID concept provides the Users with an overall method for evaluating the various LID controls such as bioretention cells, rain gardens, green roofs, infiltration trenches, permeable pavements, rain barrels/rainwater tanks and vegetative swales.

A user-defined number of LID controls can be deployed and assessed for each individual catchment. This catchment-based approach is used to size

the required infiltration or rainwater harvest by subtraction of flow from the calculated runoff within each catchment.

Please be aware that modelling of LID practices in MIKE URBAN+ is allowed for the Kinematic Wave runoff model (Model B) and runs with the MIKE 1D engine, exclusively.

LIDs are low impact development structures designed to capture or reduce surface runoff from the collecting area by means of a combination of detention, infiltration and evapotranspiration. Low Impact Development controls are conceptual objects that are not displayed on the map visualization of the urban catchment model. Once deployed, they are considered as properties of a given sub-catchment. MIKE URBAN+ can model seven types of LIDs:

- 1. Bioretention Cells
- 2. Infiltration Trenches
- 3. Porous Pavement
- 4. Rain Barrels
- 5. Vegetative Swales
- 6. Rain Garden
- 7. Green Roof

Bioretention cells, infiltration trenches, and porous pavement systems can have optional underdrain systems in their gravel storage beds to convey storage runoff off the site rather than infiltrate it all. They can also have an impermeable floor of liner that prevents infiltration into the native soil. Infiltration trenches and porous pavement systems can also be subject to a decrease in hydraulic conductivity over time due to clogging.

While some LID practices can also provide important pollutant reduction, the current LID implementation in MIKE URBAN+ can only be used to model the LIDS' quantitative hydrologic performance.

4.4.1 Bioretention Cells

Bioretention Cells are terrain depressions that comprise of selected types of vegetation, resistant to the extended periods of high moisture and extreme levels of nutrient concentrations (Nitrogen and Phosphorus) found in stormwater runoff, grown in an engineered soil mixture above a gravel drainage bed. They provide storage, infiltration and evaporation of both direct rainfall and runoff captured from the collecting area surrounding the cell. Rain gardens, street planters, and green roofs are all different types of bioretention cells.

The different structural layers of this feature are:

• Surface

- Soil
- Storage
- Drain (underdrain)

These are illustrated in Figure 4.26. There are one or several relevant hydrological processes associated with each layer.

In the surface occur surface storage, surface infiltration, the collecting area run-on, surface evaporation and overflow.

In the soil layer occur percolation (vertical water movement to the storage layer), evapotranspiration (loss due to the plant root action) and storage in the soil's voids.

In the storage layer, stormwater provided by the percolation through the soil layer is detained in the storage layer's voids. Infiltration (leakage) to the native soil through the storage bottom, controlled by the characteristics of the surrounding soil, restores the storage capacity.

An optional underdrain may be included to empty the storage. The underdrain is activated (with the specified capacity) when the water level in the storage reaches the offset level.

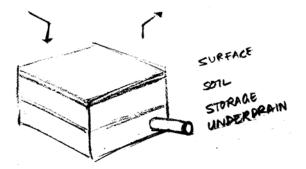


Figure 4.26 Bioretention cell structure layers

4.4.2 Infiltration Trenches

Infiltration Trenches are storage cells filled with gravel that capture runoff from upstream impervious areas. They provide storage capacity and the possibility for captured runoff to infiltrate the soil underneath.

Figure 4.27 illustrates an infiltration trench structure showing the following components:

- Surface
- Storage

• Drain (optional underdrain)

The processes simulated for the infiltration trench are similar as for bioretention cells, except for the missing soil layer; stormwater from the surface enters the storage directly, i.e. without detention in the soil layer.

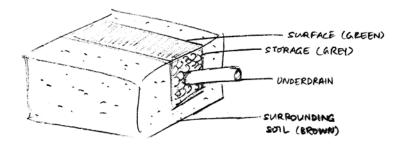


Figure 4.27 Infiltration trench structure layers

4.4.3 Porous Pavement

Porous Pavement systems are excavated areas filled with gravel and paved over with a porous concrete or asphalt mix. Porous pavements are implemented in places where the surface has to provide a firm support for vehicle traffic, such as streets and parking lots.

Normally, all rainfall will immediately pass through the pavement into the gravel storage layer below where it can infiltrate at natural rates into the native soil.

Figure 4.28 shows a porous pavement structure, which has the following components:

- Surface
- Pavement material
- Storage
- Drain (underdrain)

Essentially, hydraulic functionality of the porous pavement is similar to that of the bioretention cell, except that the soil layer (and vegetation) are replaced by some porous asphalt or concrete.

Some types of porous pavements may be subject to clogging by fine sediment particles, which reduces their infiltration capacity.

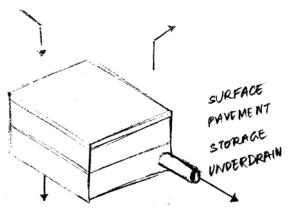


Figure 4.28 Porous Pavement structure layers

4.4.4 Rain Barrels

Rain Barrels are containers that collect roof runoff during storm events and can either release or re-use the rain water during dry periods.

A rain barrel includes:

- Storage (with total porosity, i.e. empty volume)
- Drain (underdrain)

The processes simulated include water detention in the storage, overflow and drainage (i.e. storage recovery). The action of the underdrain is timed; the time offset between the end of rain and the drain activation can be specified. This feature allows for the simulation of rainwater reuse for garden watering, which normally takes place several hours or days after the rain has stopped.

A conceptual sketch of a rain barrel is presented in Figure 4.29.

Figure 4.29 Rain Barrel

4.4.5 Vegetative Swales

Vegetative Swales are waterways or depressed areas with sloping sides covered with grass and other vegetation. They slow down the conveyance of collected runoff and allow it more time to infiltrate to inherent soil beneath it. The only relevant layers regarding vegetative swales are:

Surface (and surrounding soil)

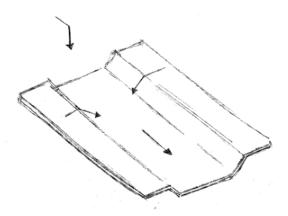


Figure 4.30 Vegetative Swale layer structure

4.4.6 Rain Garden

Rain Garden is a simplified form of bioretention cell, which takes advantage of rainfall and stormwater runoff in its design, simultaneously contributing to the reduction of runoff volume and pollutants released from the site. Typically, it is designed as a small garden with selected types of vegetation resistant to the extended periods of high moisture and extreme levels of nutrient concentrations (Nitrogen and Phosphorus) found in stormwater runoff.

The different layers comprising rain gardens are presented in Figure 4.31. These include:

- Surface
- Soil layers

Surface storage, surface infiltration, the collecting area run-on, surface evaporation, and overflow occur on the surface.

In the soil layer occur storage in the soil's voids, evapotranspiration (loss due to the plant root action) and infiltration (leakage) to the native surrounding soil through the bottom. The infiltration is controlled by the characteristics of the surrounding soil.

Figure 4.31 Rain Garden process layers

4.4.7 Green Roof

Green Roofs are structural components that reduce the negative effects of urbanization on water quality and rainfall runoff by absorbing or detaining, and filtering runoff. They are built of a planted lightweight soil media and a drainage layer, and have the following components:

- Surface
- Soil
- Drainage Mat

Green Roofs may be designed with intensive or extensive vegetation cover. Intensive green roofs are heavy, with soil media layers larger than 15 cm. Extensive green roofs may include a soil layer as thin as 3 cm, affecting the choice of vegetative cover.

Green roofs are equipped with a drainage layer called a drainage mat placed beneath the soil media. The purpose of the drainage mat is to conduct the surplus water percolated through the soil layer from the roof to the drainage system.

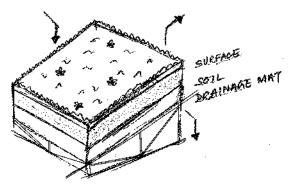


Figure 4.32 Green roof process layers

4.4.8 LID Properties Editor

The MIKE URBAN+ LID Properties editor organizes the data input for the different layers and functional elements of LID structures. The input data is organized into the following group and tabs:

- Identification: This group provides unique identification of the specified LID and definition of its type. Each individual LID is generic and is specified per unit area. As such, it can be replicated and placed in any subcatchment of the study area (i.e. deployed) with different actual sizes and in any number of instances.
- Tabs: Surface, Soil, Pavement, Storage, Drain, and Drainage Mat. These tabs represent different layers and functional elements defining the structure of the LID. The properties of each layer and functional element, which constitute the actual LID type, are entered in these tabs. Only the relevant data fields for a LID type are activated and available for data input.

Identification

Edit field	Description	Used or required by simulations	Field name in data structure
ID	ID of LID	Yes	MUID
Туре	Type of LID 1:Bioretention Cell 2:Porous Pavement 3:Infiltration Trench 4:Rain Barrel 5: Vegetative Swale 6:Rain Garden 7:Green Roof	Yes	LIDTypeNo

Table 4.18 The LID Properties Identification Group (Table msm_LIDcontrol)

LID Properties

Figure 4.33 through Figure 4.38 illustrate the six tabs containing the data for various functional elements of LID structures. The corresponding parameter attributes in the msm_LIDcontrol database table are summarised in subsequent tables divided by component following the tabs.

Surface

A Surface component is used for the following LID structures:

Bioretention Cell

- Porous Pavement
- Infiltration Trench
- Vegetative Swale
- Rain Garden
- Green Roof

LID properties						0	х
Identification ID Bioretention	_1	Туре Ві	o Retention Cel	~		Insert Delete	^
Surface Soil Pav	rement Storage Dr	ain Dra	nage mat				
Storage depth	(0,1 [mm]	Surface rough	ness		10 [m^(1/3)/s	I
Vegetative cover		1	Surface slope			1 [%]	
Swale side slope		0 [%]					
<id< th=""><th>~ ALL</th><th></th><th>Clear</th><th>Show selected</th><th>□ s</th><th>: now data errors</th><th>1/1</th></id<>	~ ALL		Clear	Show selected	□ s	: now data errors	1/1
ID	Туре	Storage	depth [mm]	Vegetative cover	s	urface roughness	[m^(
▶ 1 Bioretention_1	Bio Retention Cell 🝷		0,1		1		
<							>

Figure 4.33 The LID Properties Editor Surface Tab

Edit field	Description	Used or required by simulations	Field name in datastructure
Storage Depth	When confining walls or berms are present, this is the maximum depth to which water can pond above the sur- face before overflow occurs. For LIDs that experience ponding it is the height of any sur- face depression stor- age. For swales, it is the height of its trape- zoidal cross section.	Yes If LIDTypeNo = (1,2,3,5)	StorHt
Vegetative Cover	The fraction of the stor- age area above the sur- face that is filled with vegetation (0 = no veg- etation, 1 = no storage available). NOTE: for infiltration trench, vegetative cover is typically non-existent	Yes If LIDTypeNo = (1,2,3,5)	VegFrac
Swale Side Slope	Slope (run over rise) of the sidewalls of a vege- tative swale's cross section. Used for the calculation of the stored volume and wetted width. This value is ignored for other types of LIDs	Yes If LIDTypeNo=5	Xslope

Table 4.19 LID Properties Surface tab attributes (Table msm_LIDcontrol)

Edit field	Description	Used or required by simulations	Field name in datastructure
Surface Rough- ness	Manning's n or M (used in combination with sur- face slope and width) for routing of overflow from the surface of bioretention cell, rain garden, infiltration trench, porous pave- ment and for flow rout- ing in vegetative swale (see Table 4.25 for typi- cal values). If specified zero (for all types except vegetative swale), no routing of the overflow is applied	Yes If LIDTypeNo = (1,2,3,5 and 6)	Rough
Surface Slope	Slope (used in combi- nation with surface roughness and width) for routing of overflow from the surface of bioretention cell, rain garden, infiltration trench, porous pave- ment and for flow rout- ing in vegetative swale. If specified zero (for all types except vegeta- tive swale), no routing of the overflow is applied	Yes If LIDTypeNo = (1,2,3,5 and 6)	Slope

Table 4.19 LID Properties Surface tab attributes (Table msm_LIDcontrol)

Soil

A Soil component is used for the following LID structures:

- Bioretention Cell
- Rain Garden
- Green Roof

Geometry Thickness [Porosity [Field capacity [n_1 vement Storag	ge Drain 100 0,5 0,2	Drainage	Flow Cap Cap Le	acity based akage capacity filtration capacity nductivity based	Delet	te1,8E9] [mm/h]	
Wilting point		0,1		Co	nductivity nductivity slope ction head		10	[mm/h]] [mm]	
ID	~	ALL	~ (Clear [Show selected	Show o	lata errors 1/1 r	ows, 0 se	elec
ID	Туре	S	torage depth	1 [mm]	Vegetative cover	Surfac	e roughness [m^(1	./3)/s]	
1D									

Table 4.20	LID Properties Soil tab attributes (Table msm_LIDcontrol)
------------	---

Edit field	Description	Used or required by simulations	Field name in datastructure
Thickness	Thickness of the soil layer. Typical val- ues range from 450 to 900 mm for rain gardens, street planters and other types of land-based bioretention units, but only 75 to 150 mm for green roofs	Yes If LIDTypeNo = (1, 6, 7)	SThick
Porosity	Volume of pore space relative to total volume of soil (as a fraction)	Yes If LIDTypeNo = (1, 6, 7)	Por

Edit field	Description	Used or required by simulations	Field name in datastructure
Field Capacity	Volume of pore water relative to total volume held in the soil after excess water has drained away and the rate of downward move- ment has decreased (as a fraction). Verti- cal percolation of water through the soil occurs only when field capacity level is reached or exceeded.	Yes If LIDTypeNo = (1, 6, 7)	FC
Wilting Point	Volume of pore water relative to total volume for a well-dried soil where only bound water remains (as a frac- tion). The moisture content of the soil cannot fall below this limit and wilting point cannot be higher than the Field Capacity level.	Yes If LIDTypeNo = (1, 6, 7)	WP
Leakage Capacity	The rate of water leaving the soil layer into storage. It is characteristic of the soil layer. Leakage starts when soil storage exceeds field capacity, con- tinues at all times while soil storage is above the field capacity.	Yes If LIDTypeNo = (1, 6, 7) AND Flow- Method = 1 (Capac- ity-based)	LeakageCapacity

Table 4.20 LID Properties Soil tab attributes (Table msm_LIDcontrol)

Edit field	Description	Used or required by simulations	Field name in datastructure
Infiltration Capacity	The rate of water moving from surface into the soil. It is characteristics of the surface and the uppermost soil layer (equivalent to Hor- ton's initial infiltra- tion capacity). Infiltration takes place at all times during a rain event and after, as long as there is water avail- able as rainfall, as run on or as water stored in the sur- face.	Yes If LIDTypeNo = (1, 6, 7)	InfiltrationCapacity
Conductivity	Hydraulic conductiv- ity for the fully satu- rated soil. This is equivalent to leak- age capacity	Yes If LIDTypeNo = (1, 6, 7) AND Flow- Method = 2 (con- ductivity based))	Ksat
Conductivity Slope	Slope of the curve of log (conductivity) versus soil mois- ture content (dimen- sionless). Typical values range from 5 for sands to 15 for silty clay	Yes If LIDTypeNo = (1, 6, 7) AND Flow- Method = 2 (Con- ductivity-based)	Kcoeff
Suction Head	The average value of soil capillary suc- tion along the wet- ting front. This is the same parameter as used in the Green- Ampt infiltration model	Yes If LIDTypeNo = (1, 6, 7) AND Flow- Method = 2 (Con- ductivity-based)	Suct

Table 4.20 LID Properties Soil tab attributes (Table msm_LIDcontrol)

Pavement

A pavement component is used for the following LID type:

Porous Pavement

LID pro	operties							• x
	ntification D Pavement1			Type Por	ous Pavement	~		Insert Delete
Surfa	ace Soil Pav	vement Storag	ge Dr	ain Drain	age mat			
	Thickness		10 0,1 100	_	Impervious sur			0
								~
<	1			_		-		>
	ID	~	ALL	~	Clear			Show data errors
	ID	Туре		Storage de	epth [mm]	Vegetative cover		Surface roughness
▶ 1	Pavement1	Porous Paveme	ent 🝷		0,1		1	
2	Bioretention_1	Bio Retention C	cell 🝷		0,1		1	
<								>

Figure 4.35 The LID Properties Editor Pavement Tab

Table 4.21	LID Properties	Pavement tab	attributes	(Table msm_	LIDcontrol)
------------	----------------	--------------	------------	-------------	-------------

Edit field	Description	Used or required by simulations	Field name in data- structure
Thickness	Thickness of the pavement. Typical values are 100 to 150 mm	Yes If LIDTypeNo = 2	PThick
Porosity	The ratio (expressed as a fraction) of the vol- ume of the pores or interstices of a material to the total volume of the pave- ment. Typical values range from 0.11 to 0.17 for pavements Note that porosity = void ratio/(1 + void ratio).	Yes If LIDTypeNo =2	PVPorosity

	· · · · · · · · · · · · · · · · · · ·		
Edit field	Description	Used or required by simulations	Field name in data- structure
Permeability	Permeability of con- crete or asphalt used in continuous systems or hydrau- lic conductivity of the fill material (gravel or sand) used in modular systems. Permea- bility of new porous concrete or asphalt is high (>2450 mm/h), but over time the fine parti- cles in the runoff tend to clog the pavement, reducing the permeability of the structure.	Yes If LIDTypeNo = 2	Perm
Impervious Surface	Ratio of impervious paver material to total area for modu- lar systems; 0 for continuous porous pavement systems	Yes If LIDTypeNo = 2	FracImp
Clogging Factor	Voids that are clogged due to fine particles accumula- tion, as a fraction of total voids area. Use a value of 0 to ignore clogging. Max. value = 1.	Yes If LIDTypeNo = 2	PVClog

Table 4.21 LID Properties Pavement tab attributes (Table msm_LIDcontrol)

Storage

A Storage component is used for the following LID structures:

- Bioretention Cell
- Porous Pavement
- Infiltration Trench
- Rain Barrel

LID prop	erties					
Ident	tification —					Insert
ID	Bioretenti	on 1		Type Bio Retention Cell	~	Insert
						Delete
Surface	e Soil Pa	avement	Storage Dr	rain Drainage mat		
н	eight		250 [mi	m] Conductivity		100 [mm/h]
Pe	orosity		0,75	Clogging factor		0
P(orosity		0,75	Clogging factor		0
	orosity	0	0,75	Clogging factor	Show selected	
<	ID) Type 1 Porous Pa	~ ALL		Show selected	

Figure 4.36 The LID Properties Editor Storage Tab

2

Edit field	Description	Used or required by simulations	Field name in datastructure
Height	The height of the storage layer in case of bioretention cell, porous pave- ment and infiltration trench; the height of a rain barrel (mm or inches). Crushed stone and gravel layers are usually 150 to 450 mm thick while rain barrels vary in height from 600 mm upwards.	Yes If LIDTypeNo = (1,2,3,4)	Height
Porosity	The ratio of the vol- ume of the pores or interstices of a material to the total volume of the layer. Typical values range from 0.30 to 0.45 for gravel beds. Note that porosity = void ratio/(1 +void ratio).	Yes If LIDTypeNo = (1,2,3)	SVPorosity
Conductivity	The maximum rate at which water infil- trates to the sur- rounding soil through the bottom of the freshly con- structed storage layer.	Yes If LIDTypeNo = (1, 2, 3)	Filt
Clogging Factor	Volume of voids that are clogged due to fine particles accu- mulation. Use a value of 0 to ignore clogging.	Yes If LIDTypeNo = (1,2,3)	SVclog

Table 4.22 The LID Properties Storage tab attributes (Table msm_LIDcontrol)

A Drain component is used for the following LID structures:

- Bioretention Cell
- Porous Pavement
- Infiltration Trench
- Rain Barrel

LID prop	perties								×
Ider	Dification	1_1	Type Bio	Retention Cell	~		Insert Delete		^
Surfa	ce Soil Pav	vement Storage Dra	ain Drain	age mat					
De	fset height	0		C Flow	area Dacity area			[mm/h] [m^3/s]	
<									~ ~
	ID	✓ ALL	~	Clear	Show selecte	ed 🗔	Show data error	s 2/2 rows	s, 0 se
	ID	Туре	Storage de	epth [mm]	Vegetative cov	er	Surface roughne	ess [m^(1/3)/	s]
1	Pavement1	Porous Pavement 👻		0,1		1			10
▶ 2	Bioretention_1	Bio Retention Cell 🔹		0,1		1			10
<									>

Table 4.23	The LID Properties Drain tab attributes	(Table msm_LIDcontrol)
------------	---	------------------------

Edit field	Description	Used or required by simulations	Field name in datastructure
Offset Height	Height of any underdrain piping above the bottom of a storage layer or rain barrel	Yes If LIDTypeNo = (1,2,3,4)	HOffset
Delay	The number of dry weather hours that must elapse before the drain in a rain barrel is activated	Yes If LIDTypeNo = 4	Delay

Edit field	Description	Used or required by simulations	Field name in datastructure
Exponent	Exponent n that determines the rate of flow through the underdrain as a function of height of stored water above the drain height.	Yes If LIDTypeNo = (1,2,3,4)	Expon
Capacity Area	Coefficient that determines the rate of flow through the underdrain as a function of height of stored water above the drain bottom. Expressed in terms of flow capacity per area.	Yes If LIDTypeNo = (1,2,3,4) AND Drain Capacity = Per Area	DrainCapacityArea
Capacity Flow	Coefficient that determines the rate of flow through the underdrain as a function of height of stored water above the drain bottom. Expressed in terms of flow capacity.	Yes If LIDTypeNo = (1,2,3,4) AND Drain Capacity = Flow	DrainCapacityFlow

Table 4.23 The LID Properties Drain tab attributes (Table msm_LIDcontrol)

Drainage Mat

A Drainage Mat component is used for the following LID structure:

Green Roof

LID pro	perties					□ X
—Ider II	ntification D GreenRoof	1		Type Green Roof	~	Insert Delete
Surfa	ce Soil Pa	vement Storage	Dr	ain Drainage mat		
	Thickness		10	[mm]		
	Porosity		0,5	j		
	Roughness		10	[m^(1/3)/s]		
						Ū
<						>
	ID	~ AL	L	✓ Clear	Show selected	Show data errors
	ID	Туре		Storage depth [mm]	Vegetative cover	Surface roughness
1	Pavement1	Porous Pavement	-	0,1	1	
▶ 2	GreenRoof1	Green Roof	-	0,1	1	
3	Bioretention_1	Bio Retention Cell	•	0,1	1	
<						>

Figure 4.38 The LID Properties Editor Drainage Mat Tab

Table 4.24	The LID Properties Drainage Mat tab attributes (Table msm_LIDcontrol)

Edit field	Description	Used or required by simulations	Field name in datastructure
Thickness	The thickness of the mat or plate. It typi- cally ranges between 25 to 50 mm	Yes If LIDTypeNo = 7	DMThick

Edit field	Description	Used or required by simulations	Field name in datastructure
Porosity	The ratio of void vol- ume to total volume in the mat. It typi- cally ranges from 0.5 to 0.6	Yes If LIDTypeNo = 7	DMVPorosity
Roughness	Manning's number, used to compute the horizontal flow rate of drained water through the mat. In absence of standard product specifica- tions provided by manufacturers, the roughness must be estimated. Use of n values from 0.1 to 0.4 (M = 2.5 - 10) is sug- gested.	Yes If LIDTypeNo = 7	DMRough

Table 4.24 The LID Properties Drainage Mat tab attributes (Table msm_LIDcontrol)

Table 4.25 shows examples of Manning M values for different types of surfaces. Table 4.26 shows hydraulic conductivity properties for various porous media.

Surface type	Manning M
Smooth asphalt	91
Smooth concrete	83
Ordinary concrete lining	77
Good wood	71
Brick with cement mortar	71
Vitrified clay	67
Cast Iron	67
Corrugated metal pipes	42
Cement rubble surface	42
Fallow soils (no residue)	20
Cultivated soils	50 to 20
Residue cover < 20%	17

Table 4.25 Manning's M of surface for porous pavement or vegetative swale a

Surface type	Manning M
Residue cover > 20%	6
Range (natural)	8
Short, prairie	7
Dense	4
Bermuda grass	2
Woods	10
Light underbrush	2,5
Dense underbrush	1,25

Table 4.25 Manning's M of surface for porous pavement or vegetative swale a

a.Source: McCuen, R. et al. (1996), Hydrology, FHWA-SA-96-067, Federal Highway Administration, Washington, DC

Table 4.26 Hydraulic conductivity and porosity of unconsolidated porous media ^a

Material	Hydraulic conductivity K (cm/s)	Porosity η (%)
Gravel	10 ⁻¹ - 10 ²	25 - 40
Sand	10 ⁻⁵ - 1	25 - 40
Silt	10 ⁻⁷ – 10 ⁻³	35 - 50
Clay	10 ⁻⁹ – 10 ⁻⁵	40 - 70

a. Source: Freeze, R.A., and Cherry, J.A., (1979), Ground-water, Prentice-Hall, Englewood Cliffs, NJ

4.4.9 LID Deployment

The LIDs are assigned to a catchment by means of the LID Deployment Editor. In this Editor, it is possible to specify the size (i.e. area) of the individual LID structure, the size of the catchment's impervious area that is funnelled into it and the number of the current LID units.

The size properties can be specified either directly as surface area, or as a percentage of the catchment's area. The specified total collecting area must not exceed the size of the catchment's impervious area.

Furthermore, level of initial saturation and routing width for overland flow can be specified.

The input data is organized into the following groups:

- Identification
- Deployment Parameters

lent	ification -							
ID	Deploy	_1		Catchme	ent ID	S14	150801	Insert
	Act	Active		LID ID		Biorete	ntion_1	Delete
Nu	oyment pa mber of ur Area	arameters	1] Width	ofcatchment	5 [m]	- Initial water content Surface	0 [%]
Un	it area			[m^2] % unit	area [1 [%]	Soil/pavement	0 [%]
		ID						
	ID /	Catchment ID	~ AL	control ID	Clear Include	Replicate number	Show data errors 1/1 r	ows, 0 selected
-	Deploy_1	S14150		Bioretention_1			Percent of catchment area	+

Figure 4.39 The LID Deployment Editor

Identification

Each deployed LID is linked to a LID Deployment ID. I.e. each deployment represents a LID deployed on a single catchment in a specified number of units. For each LID deployment, a result file can be generated containing time series of relevant variables (fluxes and storages). This result file is in the DFS0 time series format.

A full reference of the attributes related to LID deployment in shown in Table 4.27 and Table 4.28.

Edit Field	Description	Used or required by simulations	Field name in data structure
ID	Unique deployment ID	Yes	MUID
Catchment ID	Identification of the associ- ated catchment	Yes	CatchID
LID ID	Identification of the LID structure to be deployed	Yes	LidID
Active checkbox	Option for activating/deac- tivating deployment of a LID structure	Yes	IncludeNo

Table 4.27The LID Deployment Identification Group (Table msm_LIDusage)

Including or excluding a LID is handled by the Active checkbox. This checkbox is checked by Default.

Deployment Parameters

Table 4.28 The LID Deployment Properties (Table msm_LIDusage)

Edit Field	Description	Used or required by simulations	Field name in datastructure
Number of Units	Number of replicate LID units deployed within the catchment	Yes	ReplicateNumber
Width	The width of the outflow face of each identical LID unit (meter or feet). This parameter is applied for all control units that use overland flow to transport surface runoff off the unit, being these roofs, pave- ment, trenches, and swales for the other con- trol types this parameter can be set as 0	Yes (for porous pave- ment, swales, roofs and trenches)	Width
Area/% of Catchment Area options	Toggle for LID collecting area setting	Yes	CollectingNo
Unit Area	The surface area of each replicate LID unit	Yes If Collect- ingNo=Area	UnitArea
Collecting Area	A LID practice is con- nected to a tributary area whose runoff is treated by the unit. This area includes the LID practice area itself.	Yes If Collect- ingNo=Area	CollectingArea
% Unit Area	The surface area of each replicate LID unit, expressed as a percent- age of the total catch- ment area	Yes If CollectingNo=% of Catchment Area	UnitAreaPercent
% Collecting Area	The tributary area con- nected to the LID unit presented as a percent- age of the catchment	Yes If CollectingNo=% of Catchment Area	CollectingAreaPer- cent
Surface	Initial water content of the surface layer	Yes	InitSatSurface

Edit Field	Description	Used or required by simulations	Field name in datastructure
Soil/Pavement	The degree to which the unit's soil is initially filled with water (0% saturation corresponds to the wilt- ing point moisture.	Yes	InitSatSoil
Storage	Initial water content of the storage layer.	Yes	InitSatStorage

Table 4.28The LID Deployment Properties (Table msm_LIDusage)

LID Deployment Result File

Optionally, for each LID structure deployment, a DFS0 time series file can be created. This file includes time series of relevant variables inside the LID structure in terms of inflow, flow between layers, storage levels in various layers and output from the structure to the native soil.

If the User does not activate this option, the only visible outputs from the runoff simulation including LIDs are the changed (reduced) runoff hydrographs, caused by infiltration loss and storage in the LID structure, and the LID summary table in the simulation summary file.

The contents of the DFS0 file depends on the actual LID type. In Figure 4.40, an example of the DFS0 file for porous pavement is presented. Thirteen columns contain time series for the processes occurring inside the porous pavement.

NOTE: The flow inside the LID structure and the drain flow are reported as intensities based on the LID area. In cases where the collecting area is bigger than the LID area, the reported intensities will not be comparable with rainfall and evapotranspiration intensities, which are given as the model boundary conditions. In order to make the comparison possible, the reported flow intensities must be scaled down by the ratio between the LID area and the collecting area.

	1	2	3	4	5	6	7	8	9	10	11	12	13
	Time	Inflow (mmb)	Rain (mm/b)	Evaporation [mm/h]	Infiltration [mm/b]	SurfaceFlow [mm/h]	DrainFlow [mm/h]	SurfaceDepth [m]	PavementMoisture [0]	StorageDepth [m]	SurfaceToPavement [mm/b]	PavementTo Storage [mm/h]	MassChecksum [m [*] 3]
1	07-08-1994 16:36:00.000	0	1.2	0	0	0	0	0	0	4.444444-005	1.2	1.2	1.734723e-018
2	07-08-1994 16:37:00.000	0	1.2	0	1.2	0	0	0	0	4,444446-005	1.2	1,2	5.20417e-018
3	07-08-1994 16:38:00.000	0	1,2	0	1,2	0	0	0	0	4,444444-005	1,2	1,2	5,204176-018
4	07-08-1994 16:39:00.000	0	1,2	0	1,2	0	0	0	0	4,44444e-005	1,2	1,2	5,20417e-018
5	07-08-1994 16:40:00.000	0	1,2	0	1,2	0	0	0	0	4,444444-005	1,2	1,2	5,20417e-018
6	07-08-1994 16:41:00.000	0	4,8	0	1,2	0	0	0	0	0,0001777778	4,8	4,8	1,214306e-017
7	07-08-1994 16:42:00:000	0	4.8	0	4.8	0		0	0	0.0001777778	4.8	4.8	1.908196a-017
8	07-08-1994 16:43:00.000	0	4.0	6	4.8	0		0	0	0.0001777778	4.0	4.8	1,908196e-017
2	07-08-1994 18:44:00:000	0	4.8						0		4.8	4.8	1.908196e-017
10	07-08-1994 16:45:00.000	0	4.0	0	4.8	0	0	0	0	0,0001777778	4.0	4.0	1,908196e-017
11	07-08-1994 16:46:00.000	0	4.8	0	4.8			0	0	0.0001777778	4.8	4.8	1,908196e-017
12	07-08-1994 16:47:00.000	0.2571431	4.0	0					0	0.0001873016	5.057143	5.057143	2.602085e-017
13	07-08-1994 16:48:00:000	2.057143	4.8		5.057143	0		0	0		6.857143	6.857143	3.9898644-017
14	07-08-1994 18:49:00.000	2.057143	4.8						0	0.0002539683	6.857143	6.857143	3.989864e-017
15	07-08-1994 16:50:00.000	2.057143	4.0			0			0	0.0002539683		6.057143	6.765422e-017
16	07-08-1994 16:51:00.000	0.0857143	0.2	0	6.857143			0	0	1.058201e-005	0.2857143	0,2857143	7.93636e-017
17	07-00-1994 16:52:00.000	0.00571429	0.2					0		1.058201e-005	0.2057143	0,2057143	7.979720e-017
18	07-08-1994 16 53:00:000	0.08571429	0.2	0					0	1 058201e-005	0.2857143	0.2857143	7.979725e-017
19	07-08-1994 16:54:00.000	0.08571429	0.2	0	0.2857143	0		0	8	1.058201e-005	0.2857143	0.2857143	7.979728e-017
20	07-08-1994 16-55-00 000	0.00571429	0.2			0		0		1.058201e-005	0.2057143	0.2857143	7.979726e-017
21	07-08-1994 18:58:00:000	0.08571429	0.2							1.058201e-005	0.2857143	0.2857143	7.979728e-017
22	07-08-1994 16:57:00.000	0.00571429	0.2							1.058201e-005	0.2057143	0.2057143	7.979728e-017
23	07-08-1994 16 58:00.000	0.08571429	0.2							1.058201e-005	0.2857143	0,2857143	7.979728e-017
24	07-08-1994 16:59:00.000	0.08571429	0.2							1.058201e-005	0.2857143	0.2857143	7.979728e-01
25	07-08-1994 17:00:00.000	0.08571429	0.2	6				0	8	1.058201e-005	0.2857143	0.2857143	7,9797284-01
28	07-08-1994 17:01:00:000	0.08571429	0.2								0.2857143	0.2857143	7.979728e-01
27	07-08-1994 17:02:00.000	0.00571429	0.2							1.058201e-005	0,2057143	0.2057143	7,979728e-01
28	07-08-1994 17:03:00.000	0.08571429	0.2		0.2857143			0		1.058201e-005	0.2857143	0,2857143	7.979728e-01
29	07-08-1994 17:04:00.000	0.00571429	0.2							1.058201e-005	0.2057143	0.2857143	7.979728e-017
30	07-08-1994 17:05:00:000	0.08571429	0.2	6				0		1.058201e-005	0.2857143	0.2857143	7.9797284-01
31	07-08-1994 17:06:00:000	0.08571429	0.2							1.058201e-005	0.2857143	0.2857143	7.979728e-017
12	07-08-1994 17:07:00.000	0.00571429	0.2							1.058201e-005	0.2057143	0.2057143	7,979728e-017
33	07-08-1994 17:08:00.000	0.08571429	0.2							1.058201e-005	0.2857143	0.2857143	7.979728e-017
34	07-08-1994 17:09:00.000	0.00571429	0.2							1.058201e-005	0,2057143	0,2057143	7.979728e-017
35	07-08-1994 17 10:00:000	0.08571429	0.2							1.058201e-005	0.2857143	0,2857143	7.979728e-01
36	07-08-1994 17:11:00.000	0.08571429	0.2							1.058201e-005	0.2857143	0.2857143	7.979728e-017
37	07-08-1994 17 12:00:000	0.00571429	0.2	6						1.058201e-005	0.2857143	0.2857143	7.979728e-01
38	07-08-1994 17:13:00.000	0.08571429	0.2								0.2857143	0.2857143	7.979728e-017
39	07-08-1994 17:14:00.000	0.00571429	0.2								0,2057143	0,2057143	7,979728e-017
40	07-08-1994 17 15:00:000	0.08571429	0.2					0		1.058201e-005	0.2857143	0,2857143	7.979728e-017
41	07-05-1994 17:16:00.000	0.00571429	0.2							1.058201e-005	0.2057143	0.2857143	7.979725e-017
42	07-08-1994 17 17:00:000	0.08571429	0.2	6						1.058201e-005	0.2857143	0.2857143	7.9797284-017
43	07-08-1994 17:18:00.000	0.08571429	0.2							1.058201e-005	0.2857143	0.2857143	7.979728e-017
44	07-08-1994 17:19:00.000	0.00571429	0.2							1.058201e-005	0.2057143	0,2057143	7,979728e-017
45	07-08-1994 17 20:00.000	0.08571429	0.2							1.058201e-005	0.2857143	0,2857143	7,979728e-017
45	07-08-1994 17:21:00.000	17,48571			0.2057143							58,28571	3.018419e-016

Figure 4.40 Example of a result report DFS0 file per deployment (a porous pavement control)

- 1. **Time:** calendar time for the simulated time steps.
- Inflow (mm/h): inflow to the LID unit given as a multiple of the rain intensity and the collecting area outside LID/LID area. It is the run-on from the collecting area outside the LID and rain on top of the LID unit. The run on represents the net rain on the impervious collecting area, i.e. with initial losses subtracted.
- 3. **Rain (mm/h):** input rain for the catchment containing the LID unit. This rain loads the LID area directly.
- Evaporation (mm/h): this is a given parameter specified by the User by means of boundary conditions valid for the catchment as well as for the LID unit.
- 5. **Infiltration (mm/h):** infiltration from the LID unit to the surrounding native soil.
- 6. Surface flow (mm/h): surface water flow. Represents overland flow for vegetative swale; overflow for other LID controls
- 7. Drain flow (mm/h): water flow through the drain.
- 8. Surface depth (m): accumulated water on the surface expressed as the water height on the surface. Maximum value is the specified surface storage height.
- 9. **Soil moisture ():** presented as a fraction, relative to the total volume of the soil layer. Corresponds to the water that is held in the spaces between soil particles. Maximum soil moisture (i.e. full saturation) is equivalent to the specified soil porosity.

- 10. **Pavement moisture():** presented as a fraction, relative to the total volume of the porous pavement layer. Corresponds to the water that is held in the pavement's voids. Maximum pavement moisture (i.e. full saturation) is equivalent to the specified pavement porosity.
- 11. Storage depth (m): accumulated water in the storage layer expressed as the water height in the storage. Maximum value is the storage height.
- 12. Surface to soil (mm/h): infiltration from the surface layer to the soil layer expressed in mm/h.
- 13. Surface to pavement (mm/h): infiltration from the surface layer to the pavement layer expressed in mm/h.
- 14. Soil to storage (mm/h):): flow from the soil layer to the storage layer expressed in mm/h.
- 15. Pavement to storage (mm/h): flow from the pavement layer to the storage layer mm/h.
- MassChecksum (m³): regards to the error check in the mass water balance per time step computed, a low value in the order of 1*E-015 indicates an accurate internal flow estimation.

LID Simulation Summary

The LID simulation summary is provided as part of the overall simulation summary HTML file. The summary table reports the volume balance for each LID deployment (see example in Figure 4.41).

10	Inflow/runon [m^3]	Rain [m^3]	Evaporation [m^3]	Infiltration [m^3]	Surface runoff [m^3]	Drain Outflow [m^3]	Initial Storage [m^3]	Final Storage [m^3]
Green_roof3	0,000	19,83	0,000	0,000	0,000	0,000	0,000	19,03
Vegetative_swale1	17,26	1,983	0,000	19,24	0,003	0,000	0,000	0,000
Vogetative_swale2	17.26	1,983	0,000	19,24	0,004	0,000	0,000	0,000
Vegetative_cwale3	17,26	1,983	0,000	19,24	0,001	0,000	0,000	0,000
Bio_retention1	17,26	1,983	0,000	2,956	1,535	10,20	0,000	4,500
Bio_retention2	17,26	1,983	0,000	10,66	0,675	0,000	0,000	7,911
Bio_retention3	17,26	1,983	0,000	11,00	0,000	0,000	0,000	8,242
Bio_retention4	17,26	1,983	0,000	10,82	0,000	0,000	0,000	8,421
Dio_retention5	17,26	1,903	0,000	10,82	0,000	0,000	0,000	0,421
Rain_garden1	17,26	1,983	0,000	11,74	0,000	0,000	0,000	7,500
Rain_garden2	17,26	1,983	0,000	11,74	0,000	0,000	0,000	7,500
Rain_garden3	17,26	1,983	0,000	11,74	0,000	0,000	0,000	7,530
Rain_garden4	17,26	1,983	0,000	11,74	0,000	0,000	0,000	7,500
Porous_pavement1	0,000	19,83	0,000	19,83	0,000	0,000	0,000	0,000
Porous_pavement2	0,000	19,83	0,000	19,83	0,000	0,000	0,000	0,000
Popous_pavement4	0,000	19,83	0.000	19,83	0,000	0,000	0,000	0,000
Porous_pavement3	0,000	19,83	0,000	19,83	0,000	0,000	0,000	0,000
Rain_barrel2	19,18	0,000	0,000	0,000	9,177	9,000	0,000	1,000
Rain_barrel1	19.18	0.000	0.000	0,000	9.177	0,608	0.000	9.392
Infitration_trench1	0,000	19,83	0,000	19,83	0,000	0,000	0,000	0,000
Rain_barrel3	19,18	0,000	0,000	0,000	9,177	0,608	0,000	9,392
Infiltration_trench3	0,000	19,83	0,000	19,83	0,000	0,000	0,000	0,000
Infiltration_trench2	0,000	19,83	0,000	19,83	0,000	0,000	0,000	0,000
Green_roof1	0,000	19,83	0,000	0,000	0,000	0,000	0,000	19,83
Green_roof2	0,000	19,83	0,000	0,000	0,000	0,000	0,000	19,83
Total	264,6	222,1	0,000	269,7	29,80	20,42	0,000	146,8

5 Modelling Stormwater Quality (SWQ)

5.1 Introduction

SWQ - A model associated with urban catchments and rainfall-runoff modelling

The importance of wide-ranging and yet efficient modelling of stormwater quality on urban catchments and the transport of polluted stormwater in the urban drainage networks is growing with increased focus on local handling of stormwater, drainage network separation, stormwater treatment prior to release to recipients, as well as untreated stormwater overflows.

Stormwater pollution associated with urban catchment surfaces includes dissolved matter and suspended particles originating from:

- Soil erosion
- Erosion of construction materials (roofs, roads)
- Air borne pollution (e.g. industrial emissions particles)
- Local biological pollution related to humans and wildlife (various waste, birds droppings)
- Traffic debris
- Etc.

MIKE URBAN+ SWQ simulates stormwater quality as a special model associated with urban catchments and stormwater runoff and infiltration. This is illustrated in Figure 5.1.

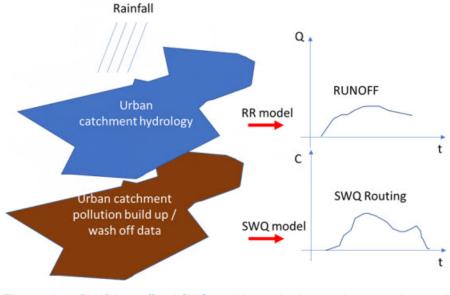


Figure 5.1 Rainfall-runoff and SWQ models act simultaneously on an urban catchment. Both models are driven by the rainfall and by the model parameters controlling the quantities and dynamics of runoff and surface pollution, respectively, being routed towards the catchment outlet.

Spatial and temporal variation of pollution in urban catchments

Model catchments vs. spatial distribution of surface pollution

The amount of surface pollution on urban catchments varies both in space and time, governed by types of pollutants, types of catchment surface and its uses. This variation needs to be captured as correctly as possible in the simulation model in order to achieve realistic model results.

The urban drainage model area is typically delineated into a number of subcatchments, with delineation determined by the drainage network layout, topography or even administrative limits (parcels, urban districts, etc.).

Sometimes, the sub-catchment delineation is done by a simple division (e.g. Thiessen polygons), i.e. is based on purely geometrical reasoning. Only in rare cases, such delineations are appropriate for efficient characterisation of surface pollution loads generated on such sub-catchments.

Therefore, model sub-catchments would typically include different surfaces, such as building roofs made of different material, roads with various traffic intensity and with different paving, green areas with different vegetation, etc.).

Each of these surfaces may have different usage as well. This means that a single model catchment may be a source of various pollutants, differing by:

- Pollutant type:
 - Organic pollution
 - Chemicals
 - Microplastic
 - Heavy metals
 - Etc.
- Pollutant origin and build-up/wash-off mechanism:
 - Airborne (wind, smog)
 - Area use (traffic, people, animals, local industry)
 - Erosion of surface materials (metal roofs, asbestos, PAH...)
 - Soil erosion
- Attachment to surface sediments:
 - Particulate suspended, attached to surface sediments
 - Particulate suspended, on its own
 - Dissolved

These differences get manifested in various pollutants' quantities and their different behaviour on the catchment surface in dry weather (build-up) and when exposed to rainfall (wash-off). The following simple examples illustrates a typical situation.

A catchment has a total area of 2.1 ha. From the point of view of surface pollution, three types of surfaces may be distinguished: building roofs (15% or 0.315 ha), roads (10% or 0.21 ha) and the remaining 75% (or 1.575 ha) is green area. Each of these surfaces may be a source of various pollutants by itself and is exposed to build-up of exogenous pollution by different intensity and dynamics, depending on the surface exposure to external impacts. Further, these pollutants may behave differently in terms of wash-off by action of rainfall.

A MIKE URBAN+ model may contain many - often thousands - of such catchments.

Decomposing catchments to pollution-related layers

In order to capture such situation correctly and efficiently in the model, the catchment (i.e. each sub-catchment in the model) is decomposed to a number of stacked, geographically identical catchments. In the described case, the catchment is represented by three layers, each one representing one of the three surface types. This is illustrated in the following figure:

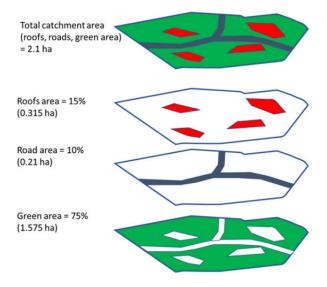


Figure 5.2 A catchment decomposed to three layers, each representing one type of catchment surface.

The upper-most polygon represents the actual catchment. In the model, this catchment is represented by the three polygons below, representing roofs, roads and green areas, respectively.

These three model catchments may inherit the hydrological parameters and connections to the network, but these can also be modified to facilitate a better description of behaviour of the various surface types in the actual catchment.

In any case, the layered catchments will differ by the actual drainage area, which corresponds to the actual area of respective type of surface in the given physical catchment. The sum of the contributing areas for the three sub-catchments must equal to the actual contributing area for the catchment.

Modelling SWQ from multiple surface types as special type of boundary conditions

Surface pollution loads are defined as special types of boundary conditions to the catchments model (SWQ boundary conditions), similarly as rainfall is specified as a boundary for a precipitation-runoff model. Specifying surface pollution loads as boundary conditions, independent of rainfall boundary conditions, is necessary because spatial distributions of rainfall and of surface pollution are fully independent. Treating rainfall and surface pollution through independent boundary conditions implies that the rainfall and surface pollution can each be modelled with its own geographical distribution.

Since every SWQ boundary condition is associated with one definition of geographical location (i.e. reference to one or more catchments: All, List or Individual), and with any number of WQ boundary properties - one for any given pollutant component, each type of catchment surface must be

described by a separate SWQ boundary condition. I.e. as many surface types user wants to simulate, as many stacked catchment layers and SWQ boundary conditions shall be specified.

Each of these boundary conditions shall be connected to a sub-set of catchments representing certain type of surface and would include as many WQ boundary properties as there are pollutant components associated with that type of surface - each with its own quantities (i.e. temporal variation) method.

5.2 SWQ Model Setup

SWQ model setup includes the following components:

- Urban catchments with hydrological parameters for the applied precipitation-runoff model
- Rainfall boundary condition (any type of uniform or spatially distributed rain (dfs0 or dfs2)
- WQ component(s) and/or ST fraction(s)
- SWQ Global data
- SWQ local parameters (applies for Build-up/wash-off and EMC methods only)
- SWQ boundary conditions (Surface and/or RDI): multiple boundary conditions are specified in case when spatial differentiation of SWQ loads is analyzed, e.g. case of different catchment surface types or land uses
- SWQ Boundary properties: for each SWQ boundary condition properties have to be defined for each pollutant component and/or sediment fractions.
- SWQ Output definition
- Simulation setup

In the following sections, SWQ-specific model setup is presented in full detail.

Finally, the workflow sequence is briefly described in Section 5.7.

General issues (urban catchments, rainfall boundary conditions, WQ components, ST fractions, Output definition and Simulation setup) are described elsewhere in the MU+ Collection System User Guide.

5.3 SWQ Global Data

Model parameters included in SWQ Global data (see Figure 5.3) apply for entire model and for SWQ advanced methods only.

General parameters		EMC parameters	
Initial ADWP	240 [h]	Min ADWP	5 [h]
Event threshold	2 [mm/h]		

Figure 5.3 SWQ Global Data Editor

An overview of SWQ Global Data editor attributes is provided in Table 5.1.

Table 5.1Overview of the SWQ Global Data editor attributes (Table
msm_SWQGlobalData)

Edit Field	Description	Usage	Attribute Table Field
Initial ADWP	Duration of anteced- ent dry weather period before the start of the simula- tion [hours]	Build-up /Wash-off and EMC methods	ADWPIni
Event threshold	Peak rainfall inten- sity in a rainfall event, used as a minimum threshold to include the rain- fall event in the SQW computation	EMC method	EventThreshold
Min ADWP	Any two rain inter- vals separated by a dry interval are con- sidered as the con- tinuous rain event if the dry interval between the two wet-weather periods is less than the specified ADWPmin	EMC method	ADWPMin

5.4 SWQ Methods

Similarly as hydrological processes and runoff from urban catchments can be simulated by various runoff models, SWQ supports several methods for simulating processes related to stormwater quality. The available methods are:

- 1. Simple concentration
- 2. Table concentration
- 3. Build-up/Wash-off
- 4. Event mean concentration (EMC)

Method 1 (Simple concentration) applies a pollutant concentration directly to the runoff from a catchment. The applied concentration can be specified as constant or based on an arbitrary time series.

Method 2 (Table concentration) applies a tabulated concentration of pollutant specified as a tabulated function, based on the runoff intensity (i.e. specific runoff).

Note that Method 1 and Method 2 do not consider availability of pollutants. In other words, these methods assume unlimited supply of pollutants on the catchment surface. As such, they should be applied with care and only in appropriate cases.

Method 3. (Build-up/Wash-off) simulates the build-up of pollutants or sediments on the catchment surface and wash-off of this pollution by mechanical action of rainfall events. This method is mass-conservative, i.e. the amount of pollutant washed-off from the catchment surface is limited by the build-up process. This method is appropriate for simulating first flush.

Method 4. (EMC) assumes that the concentration of pollutant in runoff is constant throughout rainfall event. The method simulates the build-up of pollutants or sediments on the catchment surface in the same way as Method 3, but the rain-dependent wash-off process is replaced by a calculated eventmean concentration. This method is mass-conservative, i.e. EMC or amount of pollutant washed-off from the catchment surface is limited by the build-up process.

Both Method 3 and Method 4 are appropriate for simulating multiple, consecutive rainfalls, e.g. in connection with LTS. These methods are also referenced as SWQ advanced methods.

SWQ Advanced Methods

SWQ advanced methods include Build-up/Wash-off and Event-mean Concentration (EMC) methods.

In addition to SWQ global data, computations in these methods are driven by user-specified sets of parameters (SWQ local data), which may be associated with each SWQ boundary property separately. This means that different behaviour of each pollutant and each catchment surface type, in terms of pollutant quantities and build-up/wash-off mechanisms, can be simulated.

Parameter set for modelling SWQ using advanced methods are specified through the SWQ Advanced Methods Editor (Figure 5.4).

Ide										
a de	entification									Insert
	ID Dust_build_up		Surface	load type	Sediment	•	Method	EMC	•	Delete
Surf	ace loads Build-up / W	ash-off E	мс							
	Surface load	Dust			Attached p	ollutants				
		-			Insert	Insert Delete 1/2 rows, 0 selected				
	Attached pollutants	tanks 💟				Attached pollutant				
					P	ollutant ID	RS ratio [%]			
					▶1	BOD •		00		
					2		1	00		
	D.	+ ALL	L	• Clear	Show	selected	Show data erro	xs 1/2 rows, 0	selected	
	ID	+ [ALI	L	• Clear	SWQ advance		Show data erro	ns 1/2 rows, 0	selected	
	D	← [[ALL	Method		the second second			xs 1/2 rows, 0 <. EMC [mg/l]	selected Buildup method	Buildup rat
▶ 1		Method			SWQ advanc	ed methods Sediment atta		<. EMC [mg/l]		Buildup rat
▶ 1 2	ID	Method EMC •	Method	WQC	SWQ advanc	ed methods Sediment atta		<. EMC [mg/l] 500	Buildup method	

Figure 5.4 The SWQ Advanced Methods Editor

The different parts tabs of the editor are described in succeeding sections below.

5.4.1 Identification

The main properties of the SWQ parameter set are defined in the Identification box. Any SWQ parameter set may refer either to a pollutant component or to a sediment fraction (with or without pollutants attached). Also, the set will apply for one of the two SWQ advanced methods only (Build-up/Wash-off or EMC).

Identific	and in the second se							
roenting	Cabori							Insert
ID	Dust_build_up	Surface load type	Pollutant	~	Method	EMC	~	

Figure 5.5 Identification box in the SWQ Advanced Methods Editor

An overview of database attributes and their usage is found in Table 5.2 below.

Edit Field	Description	Usage	Attribute Table Field
ID	Unique name (iden- tifier) for SWQ local parameter set	Build-up/Wash-off and EMC methods	MUID
Surface load type	1 = Pollutant com- ponent 2 = Sediment frac- tion	Build-up/Wash-off and EMC methods	TypeNo
Method	Choice of SWQ computation method 1 = EMC 2 = Build-Up/Wash- Off	Build-up/Wash-off and EMC methods	MethodNo

Table 5.2 SWQ Advanced Methods Identification box attributes (Table msm_SWQPollutant)

5.4.2 Surface Loads

The Surface Loads tab (see Figure 5.6) specifies the pollutant component (or sediment fraction) associated with actual SWQ parameter set.

ID Dust_build_up	_	Surface load type	Pollutant	~	Method	EMC	~	Insert
face loads Build-up / V	Unde off D	мс						Delete
Surface load		~	Attache	i pollutants				
Surface load	BOD		-	Delete	0/0 rows, 0 s	elected		
Attached pollutants					Attached pollu			
				Pollutant ID	RS ratio [%]			

Figure 5.6 Surface Loads Tab in the SWQ Advanced Methods Editor

A description of attributes in the Surface loads tab and their usage is found in Table 5.3 below.

Table 5.3SWQ Advanced Methods editor Surface Loads tab attributes (Table
msm_SWQPollutant)

Edit Field	Description	Usage	Attribute Table Field
Surface Load	Choice of pollutant component (or sedi- ment fraction)	Build-up/Wash-off and EMC methods	ComponentID
Attached pollutants	0 = No pollutants attached (default) 1 = Pollutants attached to sedi- ments	Build-up/Wash-off and EMC methods, TypeNo = 2 (sedi- ment fraction)	SedimentAttachNo

If the actual parameter set relates to a sediment fraction, pollutants may (optionally) be attached to the sediments though inputs in the editor's secondary grid (database table msm_SWQAttachedPollutant (see Figure 5.7).

Inse	rt Delete		1/2 rows, 0 select	
		- 9	Attached pollutant	
	Pollutant ID		RS ratio [%]	
▶ 1	BOD	+	100	
2		-	100	

Figure 5.7 The Attached Pollutants secondary grid in the Surface Loads Tab

The amount of the sediment-attached pollutants is specified as a fraction (percentage) of the sediment mass. The total of the attached pollutants shall not exceed 100%.

When surface load is specified as a pollutant component, the model output is directed into the SWQ pollutants output, which may be used as input into the network advection-dispersion simulation (directly in case of simultaneous catchment and network simulation, or as a WQ boundary property to the run-off load into the network model).

When surface load is specified as a sediment fraction, the model output is directed into the SWQ sediments output, which may be used as input into the network sediment transport simulation (directly in case of simultaneous

catchment and network simulation, or as an ST boundary property to the runoff load into the network model).

Attached pollutants (if any) are directed into the SWQ pollutants output, similarly as in case of a pollutant surface load. The mass of pollutants is calculated as a specified fraction of sediment mass.

A description of attributes in the Attached Pollutants secondary grid (table msm_SWQAttachedPollutant) and their usage is found in Table 5.4 below.

Edit Field	Description	Usage	Attribute Table Field
PollutantID	Duration of anteced- ent dry weather period before the start of the simula- tion [hours]	Build-up/Wash-off and EMC methods, SedimentAttachNo =1	PollutantID
RSRatio	Peak rainfall inten- sity in a rainfall event, used as a minimum threshold to include the rain- fall event in the SQW computation	Build-up/Wash-off and EMC methods, SedimentAttachNo =1	PSRatio

Table 5.4Overview of the Attached Pollutants secondary grid attributes (Table
msm_SWQAttachedPollutant)

5.4.3 Build-Up/Wash-Off

The Build-up/Wash-off tab (see Figure 5.9) provides the local parameters for the Build-up/Wash-off method.

Build-up parameters are:

Method: Linear or Exponential. During dry weather periods pollution or sediments accumulate on the surface of urban catchments. The most common formulations for this process are to assume that the build-up is a linear or an exponential function of time. The choice between the two formulations is not straightforward due to insufficient experimental results.

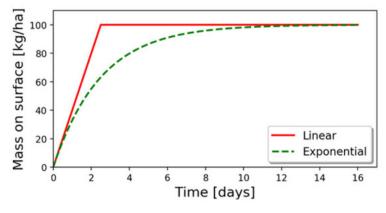


Figure 5.8 Illustration of the linear and the exponential build-up function. For details of mathematical formulation, see MIKE 1D Reference Manual.

Rate: Linear build-up rate of the pollutant component (or sediment fraction) on the catchment surface, given as mass per unit area per unit of time.

Max: Maximum possible amount of pollution (or sediment) on the catchment surface. This represents an equilibrium situation, when removal rate is equal to build-up rate.

Surface loads Build-up / W	ash-off EMC		
Pollutant Build-up		Wash-off	
Rate	2 [kg/ha/d]	Detachment rate	500 [kg/ha/d]
Max.	20 [kg/ha]		
Method Linear	~	Exponent	2

Figure 5.9 The Build-Up/Wash-Off Tab in the SWQ Advanced Methods Editor

Wash-off parameters are related to the applied wash-off formula, which is based on the assumption that the wash-off is exponentially related to the rain intensity.

Detachment rate: Wash-off (detachment) rate at rainfall intensity 25.4 mm/hour (1 inch/hour). This is a calibration factor for the wash-off process: smaller values apply for pollutants firmly attached the catchment surface, higher values apply for loose particles.

Exponent: Default value is 2, which implies that the wash-off is proportional to the kinetic energy of the rain drops.

A description of attributes in the Build-up/Wash-off tab and their usage is found in Table 5.5 below.

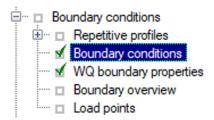
Edit Field	Description	Usage	Attribute Table Field
Pollutant Build-Up/ Rate	Linear build-up rate of pollutant (sedi- ment) on the catch- ment surface (ML ⁻ ² T ⁻¹)	Build-up /Wash-off and EMC methods	BuildUpRate
Pollutant Build-Up/ Max.			MaxBuildUp
Pollutant Build-Up/ Method	1 = Linear 2 = Exponential	Build-up /Wash-off and EMC methods	BuildUpTypeNo
Wash-Off/ Detachment Rate	Pollutant (sedi- ment) detachment rate at rainfall inten- sity 25.4 mm/hour (1 inch/ hour)	Build-up /Wash-off method	DetachRate
Wash-Off/ Exponent	Default value is 2. Larger values increase the wash off non-linear dependency on the rainfall intensity. Value 1 implies a linear dependency	Build-up /Wash-off method	WashOffExp

Table 5.5Overview of the SWQ Advanced Methods Build-up/Wash-off tab attributes (Table msm_SWQPollutant)

5.4.4 EMC

The EMC tab (see Figure 5.10) provides a single local parameter for the EMC (Event Mean Concentration) method.

Surface loads	Build-up / Wash-off	EMC	
Max. EMC		500	[mg/l]


Max. EMC: Is the maximum possible concentration of the pollutant component (or sediment fraction) in the runoff leaving the catchment.

The primary role of this parameter is to prevent unrealistic results i.e. very high values of pollutant EMC in case of long ADWP and/or high build-up rates during small rain events. In such cases, Max. EMC will prevent the full removal of pollutants by a small rain.

Table 5.6Overview of the SWQ Advanced Methods EMC tab attributes (Table
msm_SWQPollutant)

Edit Field	Description	Usage	Attribute Table Field
Max. EMC	Maximum event mean concentra- tion; used to prevent unrealistically high concentrations and full wash-off by a minor rainfall	EMC method	MaxEMC

5.5 Boundary Conditions for SWQ

SWQ boundary conditions define domain of validity for the actual boundary condition (surface runoff or RDII) and the boundary condition spatial extent.

Bound	lary conditio	ns										□ ×
Ide	entification									Insert	1	
	ID Roofs	_pollution		Туре	s	tormwater k	ads(surface	:)	-	Insert	J	
	📝 Apply	Catchmer	nt Loads		A	ainfall ir temperatu vapo-transp	iration			Delete]	
Spat	tial extent	Temporal \	/ariation	Limited interval		atchment dis atchment dis		area	Descrip	tion		
) All		roc	of_catchments	- Ir	atchment dis oad point dis oad point dis offlow to nod offlow to link	charge charge per i e					
	Individ	274 29402	1: Dom	estic WW	. C	nflow from re outlet water l xfiltration fro xfiltration fro tornwater lo	level om node om link	ò				
		ource locatio	n X		S	tormwater lo [m] Y		(i i i i i i i i i i i i i i i i i i i	m]			
_	Grid dis ID	tributed wei		ALL •		Clear I	Show sel		Show da	ta errors Load typ	12.000	ws, 0 selec
	IU	Dele	Rainfall	ry type			Landa	Apply B		Load typ	•	All
1					-					-	19520	Individual
2	-	terLevel120			•				V		•	
• 3				ter loads(surface)	•			-		-	•	List
4	and the second s	-		iter loads(surface)	*				V		•	
5	Infilttratio	op pollution	Stormus		-	Catchment						List
4			Storming	(er loaus(RD11)	-	Caccimone	Loads		1 4		•	List

5.5.1 SWQ Boundary Condition Types

SWQ boundary conditions are of the following types (see Figure 5.11):

- Stormwater Loads (Surface). This type applies for WQ in surface runoff.
- Stormwater Loads (RDII). This type applies for WQ in RDII flows.

Table 5.7 provides an overview of the SWQ methods that are applicable under the two types of stormwater loads (surface runoff and RDII), i.e. with the two types of SWQ boundary conditions.

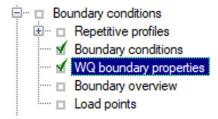
Table 5.7Overview of applicable SWQ boundary condition types and SWQ methods for various hydrological models and their combinations. All surface runoff models support all four SWQ methods, while RDI supports only Method 1 (Simple Concentration) and Method 2 (Tabulated concentration).

Hydrological model/combination	SWQ Boundary condition and SWQ methods				
mode/combination	Stormwater loads (surface)	Stormwater loads (RDII)			
Time-Area	Methods 1, 2, 3, 4	-			
Time-Area + RDI	Methods 1, 2, 3, 4	-			
Kinematic Wave	Methods 1, 2, 3, 4	-			
Kinematic Wave + RDI	Methods 1, 2, 3, 4	Methods 1 ,2			
Linear Reservoir (C1)	Methods 1, 2, 3, 4	-			
Linear Reservoir (C1) + RDI	Methods 1, 2, 3, 4	Methods 1 ,2			
Linear Reservoir (C2)	Methods 1, 2, 3, 4	-			
Linear Reservoir (C2) + RDI	Methods 1, 2, 3, 4	Methods 1 ,2			
UHM	Methods 1, 2, 3, 4	-			
UHM + RDI	Methods 1, 2, 3, 4	Methods 1 ,2			
RDI (solo)	-	Methods 1 ,2			

5.5.2 Spatial Extent

As any other boundary condition, SWQ Boundary Conditions may be specified as uniform for the entire model (i.e. associated with all model catchments), or as spatially distributed through selections of catchments and/or individual catchments.

Figure 5.12 illustrates definition of spatial extent based on a list (selection). Note that selections may refer to different geographical areas as well as to different catchments layers.



ID Roof	s_pollution	Туре	Stormwater lo	ads(surface) 🗸	Insert
Apply	Catchment Loads				Delete
tial extent	Temporal Variation	Limited interval	Scaling factor	Distributed Weights	Description
List	roo	of_catchments			
		_			
		-		how on map	
O Individ	lual				
Geo-co	lual		. 🖹 s		
Geo-co	lual 1: Dom		· 🖹 s	ategory)	

Figure 5.12 Example of a Stormwater Loads (Surface) boundary condition with spatial extent defined by a list (selection) of catchments (roof_catchments)

5.6 WQ Boundary Properties for SWQ

SWQ quantities and computation methods for various pollutants associated with an SWQ Boundary Condition are specified in the WQ Boundary Properties Editor.

WQ bo	oundary propert	ies						□ ×
	Boundary (condition selector: n				variati	stroof_catchmen on:Constant, Val	
Id	entification ID Dust_on	roofs	Туре	Pol	utant concer	ntration	Insert Delete	
Wat	er quality Te	mporal Variation	Scaling fact	or C	escription			
D	WQ componen Sediment fract /pe: Pollutant ecay constant: itial condition: (ion D		BOD				
•		m		8				•
	1	D 🔸	ALL	•	Clear	E Sł	now selected 🛛 📃 🤅	5how data errors
	ID	WQBoundary	type	Trap	o component	ID	Trap fraction ID	Variation No
	and the second se		an hundling	10		0.00		Provide the second s
▶1	Dust_on_roo	fs Pollutant conc	entration •	2		BOD		Constant
▶ 1	Dust_on_roo		entration •	14		T		Constant Constant

Figure 5.13 The WQ Boundary Properties Editor with an example SWQ boundary water quality item (i.e. Roofs pollution with dust)

Normally, one SWQ boundary property should be specified for each pollutant included in an SWQ boundary condition.

Definition of WQ boundary properties follows the same workflow as any other WQ boundary property. For details, see descriptions under the Boundary Conditions Chapter in the manual.

In addition, WQ boundary properties for SWQ include two special types of Temporal variations:

- Table concentration (supports application of SWQ table concentration method)
- SWQ advanced (supports application of SWQ advanced methods: Buildup/Wash-off and EMC).

Definition of WQ boundary properties in the WQ Boundary Properties Editor for all SWQ methods is described in the following sections.

5.6.1 Boundary Condition Selector

boundary properties	
Boundary condition selector:	Spatial extent:Listroof_catchments
Roofs_pollution	
	Description:

Figure 5.14 The Boundary Condition Selector is the step in specifying WQ boundary properties for SWQ

The wanted SWQ boundary condition item to be associated with a water quality boundary property is selected in the Boundary Condition Selector on top of WQ Boundary Properties editor.

5.6.2 Identification

				Insert
ID	Dust_on_roofs	Туре	Pollutant concentration $$	
				Delete

Figure 5.15 Identification information for the WQ boundary property for SWQ

After inserting a new WQ boundary property, it shall be given a proper name (identifier) and a correct (water quality) type shall be selected.

For easier identification, the property name should reflect its contents, i.e. which pollutant (or sediment) and which model area it describes.

Type is selected among available choices filtered according to currently specified WQ components.

5.6.3 Water Quality

Vater quality	Temporal Variation	Scaling factor	Description
WQ compo	nent	BC	D
Sediment f	raction		-
Type: Polluta	nt		
Decay consta	nt: 0		
Initial conditio	n: 0		

Figure 5.16 The Water Quality Tab in the WQ Boundary Properties Editor. Used to define pollutant component (or sediment fraction) associated with the current WQ boundary property.

Depending on the specified (water quality) type, the user selects the relevant WQ component or sediment fraction.

5.6.4 Temporal Variation

6 Constant	© Cycle		Time series		Table concentration	1	SHQ Advanced	
value 100 (ng/)	Value	live(File name	TS_Olfpine_conc.dhi0	Table ID Zinc_com	oritation:	SWQ ID	Dust_build_up
🖾 Gradual stat up	Pattern		Time series ID	Zine_conc				
from [no/]			Data type	Concentration				
True (role)								

Figure 5.17 The Temporal Variation Tab in the WQ Boundary Properties Editor

In the context of SWQ, definition of temporal variation for WQ boundary property is closely connected to the choice of SWQ method, as summarized in the overview in Table 5.8.

	SWQ Method							
Temporal Variation	Method 1 (Simple concentration)	Method 2 (Table concentration)	Method 3 (Build-up/ Wash-off)	Method 4 (EMC)				
Constant	Yes	-	-	-				
Cyclic	-	-	-	-				
Time series	Yes	-	-	-				
Table concentration	-	Yes	-	-				
SWQ advanced	-	-	Yes	Yes				

Table 5.8 Overview of relation between Temporal Variation and SWQ Methods

Method 1: Simple Concentration (Constant)


/ater quality T	emporal Variation	Scaling factor Descriptio	n		
Constant				O Time series	
Value	100 [mg/l]	Value	[mg/l]	File name	
Gradual star	t up	Pattern		Time series ID	
From	[mg/l]			Data type	
Time	[min]				

Figure 5.18 Definition of constant SWQ concentration

A constant value of any WQ component (e.g. concentration, temperature, etc.) is assigned to runoff.

Method 1: Simple Concentration (Time series)

Water quality Temporal Variat	on Scaling factor Description	n	
) Constant	O Cyclic	Time series	
Value 100 [mg	g/i] Value	[mg/l] File name	TS_DB\zinc_conc.dfs0 .
Gradual start up	Pattern	Time series ID	Zinc_conc
From [mg	p/I]	Data type	Concentration
Time [mi	n]		

Application of time series values for SWQ boundary properties implies knowledge or estimates of historical variations of any WQ component, e.g. in the context of a WQ model calibration.

Method 2: Table Concentration


) Constant		O Cyclic		O Time series		Table co	oncentration
Value	100 [mg/l]	Value	[mg/l]	File name	TS_D8\zinc_conc.dfs0	Table ID	Zinc_concentrations
Gradual start up		Pattern		Time series ID	Zinc_conc		
From	[//gm]			Data type	Concentration		
Time	(min)						

Figure 5.20 Table Concentration applies to the SWQ Table Concentration method

A tabular function of the type Runoff pollutants is selected and associated with the WQ boundary property. It establishes a fixed relation between the runoff intensity (specific runoff) and the value of WQ component, e.g. pollutant concentration.

Methods 3 (Build-up/Wash-off) and 4 (EMC): Advanced Methods

O Constant		O Cydic		() Time series		O Table co	ncentration	SWQ Advanced 1	←
Value Gradual start up	100 [mg/]	Value Pattern	[mg,/]	File name Time series ID	TS_D8\pinc_conc.dfs0 Zinc_conc	Table ID	Znc_concentrations	SWQ ID	Dust_build_up
From	(mg/l)			Data type	Concentration				
Time	[min]								

After selecting SWQ advanced, the user must choose one among previously specified SWQ parameter sets for the pollutant or sediment fraction associated with the current WQ boundary property.

The SWQ parameter sets are related to one of the two SWQ advanced methods and contain a definition of the parameters for the chosen method. The actual parameters can be looked up in the SWQ Advanced Methods editor.

5.7 Workflow

Modelling of SWQ is summarised through description of a workflow.

At the outset, it is assumed that a functional MU+ model including one or more catchments is available.

Prepare layered catchments (optional)

If the analysis includes various types of surfaces, and if the catchments delineation does not reflect the surface types, the original sub-catchments shall be cloned into layers. All layers of catchments shall be connected to the network identically. Drainage area for all catchments representing one physical catchment shall be specified. The sum of the drainage area for a catchment must be equal to the full contributing catchment area.

Specify rainfall boundary

A rainfall boundary condition series shall be specified. A single rainfall time series may be associated with all catchments in the model, or the rainfall can be spatially distributed by specifying multiple rain gauges or RADAR rainfall data.

Specify WQ components and sediment fractions

To be included in SWQ computation, any WQ component and/or sediment fraction must be defined in respective editors (WQ Components editor or Sediment Fractions editor, respectively).

Activate SWQ module

Make sure that the Stormwater Runoff WQ (SWQ) module is activated (General Settings | Modules). This will provide access to all relevant editors.

Consider appropriate SWQ method

As shown in Table 5.7, the applicability of the SWQ methods depends on the runoff component, i.e. choice of the runoff model.

Also, not all of the available SWQ methods are applicable to all types of pollutants/sediments. E.g. external pollutants are best simulated by mass-conservative methods (i.e. Methods 3 and 4).

Review Global SWQ parameters

If one of the advanced SWQ methods is to be applied, review and adjust SWQ global parameters (in the SWQ Global Data editor).

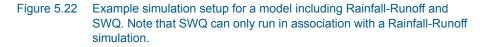
Specify SWQ parameters sets

If one of the advanced SWQ methods is to be applied in the SWQ computation for any of the pollutants or sediment fractions, SWQ parameter sets must be specified for such pollutants or sediment fractions.

Note that several parameter sets may be specified for any pollutant or sediment fraction - each for one type of catchment surface.

Specify SWQ boundary conditions

For each type of catchment surface and for each runoff component, a separate boundary condition can be specified as one of the two available SWQ boundary types. Association of the boundary condition with model sub-catchments representing a specific type of surface is achieved by specifying appropriate selection list.


Specify SWQ boundary WQ properties

For each of the specified SWQ boundary conditions, a number of WQ properties can be specified. Normally, one WQ property is defined for each pollutant (or sediment fraction) assumed to be present on the actual catchment surface type and in the actual runoff component. For details, refer to Section 5.6..

Set up a runoff simulation with SWQ

The SWQ setup is included in the runoff simulation simply by ticking the Storm Water Quality (SWQ) checkbox in the General tab of the Simulation Setup editor.

ID RE Scenario Base	~	Active project	Insert Delete	Copy RUN
General Catchments HD AD and W Simulation Type	VQ Results Simulation Pe	riod		
Catchments Rainfall-Runoff (RR) Storm Water Quality (SWQ) Catchment Discharge (CD) CD Water Quarity Network (HD) Long-Term Simulation (LTS) Pollution Transport (AD) MIKE ECO Lab (WQ)	Start Duration End Description	01/05/2008 18:16:00 200 0 0 0 17/11/2008 18:16:00	▼ (dddd][hh][mm ▼	Boundary Info.][ss] Set max. time

MU+ will automatically include relevant output files. The Default output files can be replaced or complemented by user-specified output files.

Мар	Simula	ation setup ×									
Iden	tification								_		
ID		RR_1		Active pr	oject In	sert		Сору			
So	enario	Base	~		De	dete		RUN			
Genera	al Catch	ments HD AD a	and WQ Results								
Outpu	t folder										
Second S	ave results	in default folder									
O Se	ave results	in this folder									
Collect	tion System	Summary									
								~	Edit summary		
							Pro	ject out	tputs		
	ID		Туре	Format	Save every			Defaul	t save period	Start saving	End saving
F1	Defa	ult_Surface_runoff	Surface runoff	.res1d	60	seconds	*		4	26/02/2019 12:01:26	26/02/2019 14:01:26
			Storm water quality	.res1d		seconds			V	26/02/2019 12:01:26	

Figure 5.23 Default output is automatically provided by the system

6 Boundary Conditions

In broad terms, a model boundary condition can be defined as an external interference, which forces the behaviour of the computed variables within the model domain.

A great part of the boundary conditions represent various types of water loads (rainfall, infiltration, wastewater...). The main characteristic of these 'load' boundary conditions is that they contain a 'transport medium' - water. Water can transport other material (dissolved pollutants, oxygen, sediments), heat (temperature) and organisms (bacteria and parasites), as well as various other properties, such as pH, conductivity, turbidity, etc. Properties of 'water load' boundary conditions (expressed as concentrations, mass flow, temperature, etc.) are also, in strict terms, boundary conditions for e.g. pollution transport model (Advection-Dispersion). However, these are not treated as separate boundary conditions, but items inseparably associated with the water loads. E.g. a lateral inflow is a water load boundary condition for the hydrodynamic process in the network (defined as discharge item), while the temperature, concentration, etc. associated to this particular inflow are specified as pollutant items of that "load" boundary condition. Effectively, pollutant items of that "load" boundary conditions to the AD process in the network.

Boundary conditions other than water loads are 'simple' in a sense that they are fully defined by the boundary condition variable itself, i.e. no additional item is possible to be associated with them. These are water levels, air temperature, evapotranspiration, etc.

In the following the terminology used is:

- Boundary condition: it is defined by its type and model connectivity.
- Boundary item: per definition, it is a property inseparably associated with a boundary condition. A boundary item is fully defined by its type, temporal variation and quantity/quality. Through the link to a boundary condition to which it belongs, connection of a boundary item to a model is ensured.

The variable which defines a boundary condition is a default item of the boundary condition.

There are presently 4 sub-fields under Boundary Conditions:

- Boundary conditions (hydraulic and hydrological loads)
- Water Quality boundary properties (if WQ module is active)
- Load points
- Repetitive profiles

Additionally there is a tool for visualizing the boundary conditions in the model named *Boundary Overview*.

6.1 Hydraulic boundary conditions

The hydraulic boundary conditions tab allows the modeller to control the loads included and applied to the model.

In order to include a boundary in a simulation the "Apply" box must be checked.

In Figure 6.1 it is shown the 'Insert' button, which inserts a new boundary condition to the database. There are 16 boundary condition types:

- Rainfall
- Air temperature
- Evapotranspiration
- Catchment discharge
- Catchment discharge per area
- Catchment discharge per PE
- Load point discharge
- Load point discharge per unit.
- Inflow to node
- Inflow to link
- Inflow from result file
- Outlet water level
- Exfiltration from node
- Exfiltration from link
- Stormwater loads (surface)
- Stormwater loads (RDI)

Мар	Boundary condition	ns X				
Identific	ation					1
ID	BC1		Type	Rainfall	-	Insert
▼ A	pply		Catchme	Rainfall Air temperature		Delete
0 0 0 1	All	1: Dom X		Evapo-transpiration	ts	Description

Figure 6.1 Hydraulic boundary condition types

6.1.1 Catchment boundary conditions

Types of variables associated with catchment boundary conditions are:

- Air temperature
- Evapotranspiration
- Rainfall
- Catchment discharge
- Stormwater loads

Any number of each boundary conditions types can be specified.

Air Temperature is a boundary condition of the type 'air temperature', and always has a temperature (constant or a time series) associated as a default item. This type of boundary condition is used for snow melt calculations.

Evapotranspiration is a boundary condition of the type 'evapotranspiration', and always has potential evapotranspiration (constant or a time series) associated as a default item. This type of boundary is used for RDI hydrological calculations. The dfs0 file needs to be of the type 'Evapotranspiration'. Delete values will be considered equal to 0.0.

Rainfall is a boundary condition of the type 'rainfall', and always has rainfall (constant or a time series) associated as a default item. This type of boundary is used for precipitation-runoff hydrological calculations. When using a time series the dfs0-file needs to be one of the following Item Types: 'Rainfall Intensity', 'Rainfall' or 'Rainfall Depth'. Delete values will be considered equal to 0.0.

Catchment discharge is a boundary condition of the type 'catchment load', and always has discharge (constant, cyclic or a time series) associated as a default item. This type of boundary represents various kinds of hydraulic loads, such as area-based or PE-based dry weather loads, area-based infiltration, etc. The discharge can be associated with any pollutant, sediment or temperature item (constant, cyclic or a time series). In the example above, the default item (Resident WW flow) is associated with pollutants BOD, NH4 and Temperature.

The following describes the work-flow to define a boundary condition for a catchment.

As the first action after inserting a new boundary conditions, a proper name (ID) must be specified. It is recommended to use a descriptive ID.

Next, a type of boundary connection must be selected, among Rainfall, Air temperature, Evapotranspiration and Catchment Discharge.

The **Spatial Extend** determines the connection type of the catchments for which this boundary condition applies. 'Individual' applies for a single catch-

ment, and requires a specification of the catchment ID. 'List' applies for a set of catchments, contained in the catchment selection list. 'All' applies to all catchments.

6.1.2 Network boundary conditions

Types of variables associated with network (i.e node/grid point) boundary conditions are:

- Water level
- Flow (discharge) incl. WQ and sediment properties

The discharge boundary conditions are termed as **Network Loads**. The water level boundary conditions are termed as "Outlet levels" and can only be linked to "Outlet" type nodes.

Network Loads represent all kinds of hydraulic loads, such as DWF pointinflows, individual lateral inflows, infiltration, storm runoff, etc. This type of boundary condition always has discharge (constant, cyclic or a time series) associated as a default item. The discharge can be associated with any pollutant, sediment or temperature item (constant, cyclic or a time series).

Any number of network loads can be specified, independently on the location point.

Only one water level boundary condition is allowed at each network outlet. If nothing is specified for an outlet, the model assumes a constant water level equal to the outlet invert level. I.e. a free outlet is assumed.

This type of boundary condition always has water level (constant or a time series) associated as a default item.

Identification IID WaterLevel 120 Type Outlet water level
ID WaterLevel 120 Type Outlet water level
✓ Apply Outlet Levels Delete
Spatial extent Temporal Variation Limited interval Scaling factor Distributed Weights Description
C Al
C List
Individual 120 Show on map
C Geo-coded 1: Domestic WW (Load category)
C Data source location X [m] Y [m]
Grid distributed weights
ID V ALL V Clear Show selected Show data errors 3/4 rows, 1 selected
ID Boundary type Group No Apply Boundary Connection type
1 BC1 Rainfall Catchment Loads Individual
2 ExfiltrationfromNode Exfiltration from node - Network Loads 🔽 Individual
▶ 3 WaterLevel 120 Outlet water level Outlet Levels ✓ Individual
4 Network loads input file - Runoff_1 Inflow from result file ▼
<

Figure 6.2 Hydraulic Boundary Conditions Dialog

In MIKE URBAN+ there is a single boundary condition editor for all types of loads.

The following describes how to define an boundary condition for the network. This could e.g. be a discharge entering a manhole or pipe infiltration.

As the first action after inserting a new boundary condition, a proper name (ID) must be specified. We recommend that you use a descriptive ID.

6.1.3 Spatial extent

The **Spatial Extent** enables the modeller to define the distribution of the boundary conditions. The distribution ranges from 'All' (catchment based), Individual (specified locations), 'Lists' a selection of elements, 'Geo-coded' locations and "Grid distributed weights".

The application of 'All can be applied to applied to catchment boundaries ('Catchment discharge', 'Catchment discharge per area' and 'Catchment discharge per PE') and meteorological boundaries ('Rainfall', 'Air Temperature' and 'Evapotranspiration')

'**Individual**' applies for a single node or pipe, and requires a specification of the Node ID or Link ID.

Similarly to the lists, boundaries can be assigned to individual locations. In addition to catchment boundaries, meteorological boundaries, inflows to nodes and links, exfiltration to nodes and links, outlet water levels.

If a load is connected to a link, it will be uniformly distributed over all computational grid H-points along the link.

For a node - either an inflow hydrograph can be specified or an infiltration boundary can be specified. If the 'Infiltration' option is chosen the boundary items page allows to specify a positive or negative rate. So either infiltration to the node or loss of water from the node to the surrounding ground can be used.

The loss can be defined for any type of node, but it is primarily intended for use with basins or nodes with geometry representing small ponds. The infiltration can be defined as a constant rate (velocity) which is multiplied by the actual wet area in the node. Note that the rate value should be given as a negative value for specifying a loss of water from the network model. Applying a positive value will result in water being added to the node.

Geo-coded applies for **Load points** (typically DWF) geo-coded to the network nodes. User can select which one of the geo-coded load categories applies for this boundary condition.

Geo-coding can be used to assign 'loads', either load point discharge, or load point per unit. Further information regarding the Geo-coding of loads is discussed specifically under the 'Load Points' help section.

Grid distributed weights, gridded distributed weights can be used to assign spatially varying rainfall data. The application of 2D radar data directly in the urban drainage model using our DHI's *dfs2* format files as input for runoff computations. MIKE 1D will automatically distribute the rainfall to individual catchments and apply it to the runoff computation.

Visualization of boundaries

The different loads are visualized in the map by means of the "Show in map" button.

6.1.4 Temporal variation

The temporal variation is essentially the function of time, related to the condition. The temporal variations which can be applied to a boundary condition are; 'Constant', 'Cyclic' or 'Time Series'.

The temporal variation of a boundary condition can be assigned with a constant, cyclic or a time series temporal variation.

The 3 temporal variations are quite explanatory. Dependent on the boundary condition type, the units are representative units and automatically updated.

If a cyclic temporal variation is variation is to be applied, a pattern is also needed. The help section for 'Repetitive profiles' provides a more detailed description of the design and application patterns and profiles.

The Time-series temporal variation requires a compatible time series file for input. The standard time-series file format is '.DFS0'. The help file for the time series editor provides more detailed information on the types of time series file available, and how they are produced.

For the grid distributed weights spatial extent the temporal variation input file must be of the dfs2 format, files of type "2D Grid file"

6.1.5 Limited interval

The limited interval function allows the a specific time definition of when the boundary item is applied.

If a limited validity interval is to be applied to a boundary, then check 'Use limited validity'. It is then necessary to define the start and end date & time of the validity period.

6.1.6 Scaling factor

The Scaling factor tab is used to apply a scale factor for the hydraulic load. This can be used to add a climate factor.

6.1.7 Distributed weights

In the Distributed Weights tab it is possible to check the distributed weights per catchment and adjust if desired. All catchments connected to the grid (spatially weight distribution) will be presented in the dialogue. Catchments might be presented in several entries if multiple grid points cover its entirety.

There are two text fields which will display the most important data for the loaded boundary condition selected; grid file name and item type.

In the grid all relevant information about data connected to catchments as well as the connected grid points (coordinates i and j) and the engine calculated weight percentage covering the catchment per grid point. These percentages fractions should add up to a 100 per cent for each catchment.

The grid is dynamic and visualises the selected boundary condition data, the grid allows to insert new connecting grid point by right clicking on the dialogue.

The compute button allows the user to compute the weights for either all catchments or a selection of catchments, as well as for the new added grid points (not updated).

ID	RainB	c		Туре	Type Rainfall			Ins	ert	
		Catchment	Loads	. 10-2	- Con train				ete	
patial e	extent	Temporal Va	ariation L	imited interval	Scaling fac	tor Distribu	ted Weights	Description		
				C:\	Users\flt\Desk	ktop\2DBase_1	RAINF	H Water De	pth	
	Catchr	ment ID	I	3	Weight					^
	imp1		234	131	0,0002623	398320650				
	imp1		234	132	0,0002623	398320650				
	imp1 234		133							
	Sub Y		imp1 235							
	imp1		235	111		398320650				
			235	111	0,0002623	398320650 398320650				~
here a	imp1	nents not fully	235		0,000262:	398320650		~	Compute	~
here a	imp1	nents not fully	235	112	0,000262:	398320650 398320650		~	Compute	~
here a	imp1	nents not fully	235	112 y the grid file: i	0,000262:	398320650 398320650 All	elected	Show data e		
	imp1		235 y covered b	112 y the grid file: i	0,000262: 0,000262: imp1, perv1	398320650 398320650 All Show s			rrors 1/2 row	vs, 0

6.1.8 Description

It is possible to provide a description of the boundary condition and load type using the Description tab.

6.2 Water Quality Boundary Condition Properties

This editor is only available if Water Quality module is active. It allows for water quality components such as chemicals, sediment and water age to be added to a hydraulic boundary condition.

6.2.1 Water quality

A Water Quality boundary condition must be connected to a Hydraulic boundary condition. A hydraulic boundary condition can be used with a hydraulic load set to 0 to only add a Pollutant Load or Sediment Load. The **Boundary condition selector** check allows to choose between available Hydraulic Boundary condition IDs.

WQ boundary properties		×
Boundary condition selector: 05DA001	Spatial extent Individual0 utlet: 05DA001 Temporal variation: Constant, Value:0 Description:	ĺ
Identification ID Type [w Delete	
Water quality Temporal Variation Scaling Factor WQ component Sediment fraction	Description	
e in in		•
ID THE ALL ALL ID Boundary ID WQBoundary type	Clear Show selected Show data errors 0/0 rows, 0 selected Trap component ID Trap fraction ID Variation No Constant value Startup	s
« [

Figure 6.4 The Water quality tab in the Water Quality editor.

If the checkbox is not marked, all Water Quality Boundary Conditions are shown. If the box is checked, only WQ Boundary conditions for the selected Hydraulic Boundary Condition in that editor are shown and can be manipulated for in this editor. In that case, any existing WQ Boundary conditions for other Hydraulic bondary conditions will still be used but are hidden.

The Insert and Delete button adds and removes WQ Boundary conditions. Any new items added will be automatically connected to the selected Hydraulic Boundary Condition. Each WQ Boundary Condition will be used for one type of Water Quality Component.

A name (ID) and type is given to the WQ Boundary Condition. The available types are:

Pollutant

The pollutant will be added with the concentration specified on the Temporal Variation tab.

Microorganism

The component is added as a micro-organism load, used for bacteria and pathogens.

Temperature

The component represents the temperature, the unit will be adjust according to the unit system specified for the model

рΗ

The component is related to the water pH, a measure of how acid or basic the water is.

Salinity

The component will reflects the measure of salts dissolved in water,

Water Age

This option allows for water with specified age to enter the network.

Water Blend

This option allows for water with specified mixing ratio to enter the network.

Other Type of AD component

Selects the type of AD Component. A type of water contaminant must be predefined in the Water Quality AD components dialogue.

6.2.2 Temporal Variation

Boundary condition selector: Nework_load	Spatial extent All Temporal variatio Description:	n:Time series, File path.CS_1BaseDefault_Surf	ace_runoff.res1d	
Identification ID 800_dissolved Inter quality Temporal Variation	Type Pollutant concentration Scaling factor Description O Cycle	Delete	C Table concentration	SWQ Advanced
Value 500[[mg,f]] Gradual start up From [mg,f]] Time [min]	Value Pattern	[mp/] Fie name Time series ID Data type	Table 10	SNQ ID

A water quality boundary condition can have a different temporal variation than the hydraulic boundary condition it is connected to. It can be constant, cyclic, a time series temporal variation, table concentration and SWQ.

Dependent on the water quality type, the units are representative and automatically updated.

If a cyclic temporal variation is to be applied, a pattern is also needed.

The Time-series temporal variation requires a compatible time series file for input. The standard time-series file format is '.DFS0'.

The table concentration allows to specify a variation of pollutant loads based on a runoff -concentration varying relation.

The temporal variation can also be defined through a Storm Water Quality method, build-up/ wash-off or EMC, for more details please refer to the Water Quality Module.

6.2.3 Scaling factor

The scaling factor allows to add a global factor to the load. The Default value is 1.

WQ boundary properties		
Boundary condition selector: Nework_load	Spatial extent:All Temporal variation:Time ser Description:	ries, File path:CS_1Ba
Identification ID BOD_dissolved	Type Temperature ~	insert Delete
Water quality Temporal Variation Scale factor	Scaling factor Description	

Figure 6.6 Scaling factor tab in Water Quality editor.

The Description tab allows the user to add text data to the specific WQ boundary condition.

WQ boundary properties		• 3
Boundary condition	selector: Spatial extent:All Temporal variation:Time series, Description:	File path:CS_1Ba
Identification ID BOD_dissolved	Type Pollutant concentration V Delete	
Water quality Temporal Va	riation Scaling factor Description BOD dissolved network global load	

6.3 Load Point

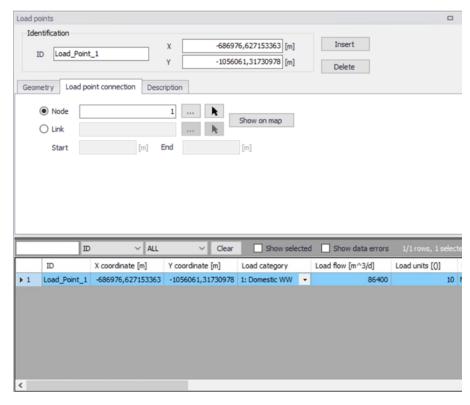
The allocation of geographically determined load points to the nodes and, or links of a collection system model is defined thtrough the Load Points section. The load points are geographical point features, typically representing a categorised wastewater load, such as domestic wastewater, commercial / industrial wastewater and infiltration.

It is possible to modify the additional categories to provide a tailored coding system to replicate the water loadings of the catchment.

The loads can be include into the model database through manual insertion and importation.

Lond and the				_ X
Load points				
Identification ID Load_Point_1		686976,627153363 [m] 1056061,31730978 [m]	Insert Delete	
Geometry Load point connection	Description			
Load category 1: Domestic WW	/ ~			
Flow 1: Domestic WW 2: Industrial WW 3: Public WW				
Units 3: Public WW 4: Infiltration 5: Other	[O]			
6: Commercial W 101: Category1				
102: Category2 103: Category3 104: Category4				
105: Category5 106: Category6				
107: Category7 108: Category8				
ID 109: Category9 110: Category1		Clear Show sele	cted 🗌 Show data errors	1/1 rows, 1 selected
ID 111: Category1 112: Category1] Load category	Load flow [m^3/d]	Load units [()] Loa
▶ 1 Load_Point_1 113: Category1	3 061,3173	0978 1: Domestic WW	• 86400	10 Noc
114: Category 1 115: Category 1				
116: Category 1 117: Category 1				
118: Category 1	8			
119: Category 1 120: Category 2				
120: Category2				
٢.				>

There are 3 sub-tabs within the 'Load point' tab, 'Geometry', 'Load point connection' and Description.


6.3.1 Geometry

Within the Geometry, the load can be categorised and the flow and units can be quantified.

The number of units regards to the "Load point discharge per unit" when the spatial extent is defined as "Geo-coded". The load discharge is specified through "Load flow (m³/s)".

6.3.2 Load point connection

Load points can be connected to the model network through nodes and links, each load will be coupled to a single network element.

Figure 6.9 Load point connection

The connections can be made via the asset ID Selector (grid selection) or by map selection.

If using a link connection for the Load point, it is possible to defined the chainage start and end points.

6.3.3 Description

The description tab enables the modeller to record load point information.

Load points					•
Identification ID Load_Poin	t_1		6,627153363 [m]	Insert	
Geometry Load p	oint connection Descr	Y -10560	61,31730978 [m]	Delete	
Description Data source Asset ID Owner Location Date				Add picture	
<				_	>
I		∨ Clear	Show selected		1/1
ID 1 Load_Point_1	X coordinate [m] -686976,627153363	Y coordinate [m] -1056061,31730978	Load category 1: Domestic WW -	Load flow [m^3/d] 86400	Load
<		,			

Figure 6.10 Load point description tab

6.4 Repetitive Profiles

The 'Repetitive Profile Editors' can be used for generating dimensionless, cyclic time series ('repetitive profiles') with a fixed time resolution of one hour. E.g., it can be applied for defining diurnal profiles that can describe the Dry Weather Flow (DWF) from a specific catchment.An unlimited number of repetitive profiles can be applied to different groups of catchments. For example, an industrial area will have a different dry weather flow (DWF) description to rural or residential area. DWF profiling may also vary according to the time of week and holidays.

There are four discrete parts forming the repetitive profiles:

- Diurnal patterns- used for specifying diurnal patterns
- Cyclic profiles used for coupling of individual diurnal patterns with profile calendar definition
- Profiles calendars used for coupling of individual diurnal patterns with profiles calendar definition
- Special days used for specifying days that are to be considered as exceptions to the calendar (e.g. the 1st of January)

6.4.1 Diurnal patterns

A diurnal pattern consists of the pattern ID, a Delta T (minutes) and non-dimensional coefficients.

Figure 6.11 shows an example of a diurnal pattern editor. A new pattern is created by using the 'Insert' button. It is then required to define the Delta T value (minutes). The DeltaT value represents the interval distribution for the pattern. For example, a DeltaT value of 60min returns 24 hourly intervals. a DeltaT value of 240 will return 6 x 4 hour intervals.

The 'Distribute' button creates the intervals determined by the DeltaT value assigned. The dimensionless coefficient is inserted under the 'Multiplier' column.

The 'Normalize' button adjusts the multiplier values so that the sum of them is equal to 1, but the relative weightings are maintained.

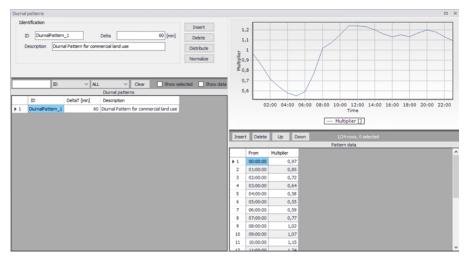


Figure 6.11 Diurnal pattern editor

6.4.2 Cyclic profiles

A cyclic profile links a diurnal pattern with the relevant calendar definition.

Each cyclic profile requires an ID with a defined 'Diurnal Pattern' and 'Calendar'. In addition, the profile requires input regarding the interpolation of the pattern, either by 'linear interpolation', or 'no interpolation'. No interpolation will apply a step function between the diurnal pattern values.

Figure 6.12 shows the Cyclic Profile editor. The visualisation shows at a glance how the profile will look (monthly or weekly) with the diurnal pattern

coupled to the selected profile calendar. The Cyclic Profile example shows a 'Residential' diurnal profile with a 'Weekday' profile calendar.

Cyclic profiles													•
Interpolation:	Profile_1 Linear Interpolation	>	Insert Delete	Value	1,25 1,2 1,15 1,1 1,05 1 0,95 0,9 0,85 0,8								
ID Ir 1 Profile_2 No	ID V ALL Cyn nterpolation v Interpolation v near Interpolation v	Clear disc profiles	Show selected	> hov 199999 199999 199999	0,75 0,7 99999 99999		16-03-20	019	23-03-20	Time	30-03-2019	06-1	04-201
				0	file compos iurnal patti alendar:	em: [DiurnalPatt weekday	ern_1	> >		Profile plotting of Start time: Duration	days 11-03-2 Month	019
				Inser	t Delet	-	Up Do	wn odar	1/i profile data		selected		
				1		Patter	_	weekday					

6.4.3 Profiles calendar

The purpose of the profiles calendar is to specify when the diurnal patterns are to be applied, e.g, only during summer, only February, only on weekdays, only on each first in the month, etc.

Profile calendars specify when the diurnal profile pattern is to be applied, and can be defined in three primary formats, Weekdays, Dates and Months.

There is scope to apply multiple calendar formats to create very specific calendar formats, if required.

Profile	calendars								x
	ntification ID weeker	nds					Insert Delete		
Weel	kdays Dat	tes Months							_
⊠ v	Veekdays	Mon	day						
		Tue:	sday						
		U Weo	Inesday						- 1
		🗌 Thu	rsday						- 1
		Erid	ау						- 1
		🗹 Satı	ırday						- 1
		Sun	day						- 1
		ID	~ ALL	✓ Clear	ar Show :	selected 🗌 S	how data erro	rs 1/2 row	s, 0 se
	ID	Week days	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sun
> 1	weekends	₹	Г	Г	Г	Г	Г	v	
2	weekday	▼	N	V	M	₹	V	Γ	
<									>

Figure 6.13 Profiles calendar weekdays

Identific	ation								
ID	weeken	ds					Insert		
10	meenen						Delete		
Weekdays	s Date	Months							
✓ Dates		1	8 🗹	15		22	29		
	\checkmark	2	9	16		23	30		
	\checkmark	3	10	17	\checkmark	24	31		
	\checkmark	4	11	18	\checkmark	25			
	\checkmark	5	12	19		26			
	\checkmark	6	13	20		27			
	\checkmark	7	14	21		28			
		ID	~ ALL	✓ Clear	r Show s	elected 🗌 S	how data erro	ors 1/2 rows	s, (
ID)	Week days	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	1
1 we	ekends	\checkmark	Г	Г	Г	Г	Г	₹	
2 we	eekday	V	V	v	2				Т

Profile	calendars							0	×
Iden	ntification D weeken	ds					Insert Delete		
Week	days Dat	es Months							
м 1	onths	Janu	Jary		uly				
		Feb	ruary		ugust				
		Mar	ch	⊠ s	eptember				
		🗹 Apri			ctober				
		May			lovember				
		🗹 June	2		ecember				
		ID	√ ALL	✓ Clear	ar Show	selected	Show data err	ors 1/2 rov	vs, 0 se
	ID	Week days	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sur
▶ 1	weekends	▼	Г	Г	Г	Г	Г	₹	
2	weekday	7	N	V	₹	V	N	Г	
<									>

Figure 6.15 Profile calendar months

6.4.4 Special days

The 'Special days' is used for the specification of individual days that should be considered differently than it is given by the profiles calendar.

For example, the 1st January (the New Year day) falls on a different day each year. Typically, holiday days diurnal profiles are more representative of Weekends. The 'special days' function can be used to assign the 1st January with a weekend diurnal pattern.

The special days have two categories, 'Unique date' and 'Every year'. An example of this is Easter day. The date of Easter varies each year, so the 'Unique date' would be more applicable.

ID ()	ification	selected)) O Ever Use as	ry year Sunday	~	Insert Delete	_ x
▶ 1	ID ID Special_Day_1	Vilque date Unique Date	Use as	 ✓ Clear Date 25-04-2019 	Show selected	Show data errors	1/1 rows, 0 se

The date calendar allows the user to select the desired date for a special day. The "Unique date (selected)" and "Every year" checkbox are used to specify the recurrence. Finally "Use as" allows the user to assign the variation pattern, weekday and weekend.

6.5 Boundary Overview

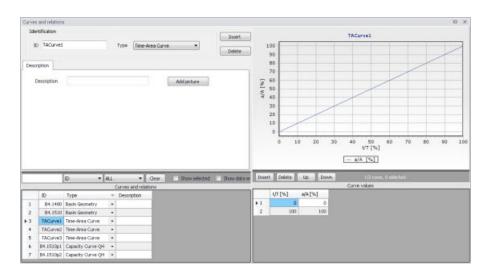
It is possible to visualize the time frame variation of all boundary conditions included in the model by means of the boundary overview dialog.

Marker by type Boundary condition DM (accordant) DM (accordant) description MQ (boundary condition description descriptindescription description	Soundary overview					1	0:00		14.00	0.00		16.00	0:00
Ramfall Rain Rain Rain Rain Rain Rain Rain Rain	loundary type WQ property type	Boundary condition ID WQ boundary component ID	Boundary condition description WQ boundary component description	Apply	Edit								00.00
Inflow to node Cyclick Variation III III Constraints IIII IIII IIII IIIII IIIII IIIIIIIIII	Rainfall			×			0		T	imeseries			4
	Inflow to node	Cyclick Variation		×		*			Cyc	k			•
	Inflow from result.	. Network		×			0		7	imeseries			٩

The overview allow the user to apply boundary conditions and lead the user to the editor by clicking on "Edit". The right side of the panel shows the time frame of the boundary condition.

7 Tables

The Tables Section in MIKE URBAN+ holds data for the following tabular data types:


- Curves and Relations
- Materials
- Outlet Head Loss
- On Grade Captures

7.1 Curves and Relations

In Tables|Curves and Relations (Figure 7.1), a number of tabular data used in other data dialogs are specified. These different types of tabular data are:

- Capacity Curve QH (used for Pumps)
- Capacity Curve QdH (used for Pumps)
- Pump Acceleration Curve (used for Pumps)
- Regulation Qmax(H)
- Regulation Qmax(dH)
- QH Relation (when specifying a QH relation for a node)
- Valve Rating Curve
- Time-Area Curve (used in Time-Area runoff model)
- Removal Efficiency (used for the efficiency curve for removal weirs)
- DQ Relation (used for Curb Inlets)
- QQ Relation (used for Curb Inlets and On Grade Captures)
- Capacity Curve QdH & Power
- Runoff Pollutants (used for SWQ)
- Basin Geometry (used for Basins)
- RTC (used for RTC Action Set Points)
- RTC Time (used for RTC Action Set Points)
- Undefined (general placeholder)

Figure 7.1 Curves and Relations Editor

There are 3 pre-defined Time-Area Curves in the database (TACurve1, TACurve2 and TACurve3), which should not be deleted.

Additional curves and relations are inserted under the Curves and Relations list (i.e. the primary table on the lower left corner of the editor) using the 'Insert' button at the top of the editor (Figure 7.2).

urves	and relations	5								
Iden	ntification								Insert	٦ŕ
ID	TACurve1			Туре [Time-/	Area Curv	e -	•	Delete	
									Delete	=
Descri	iption									_ 1
0	escription					1 2				
U	escription						Add pict	ture		
		40 S								+
	_	ID - A	ULL.	_	•	Clear	Show	selected	Show data	errors
_		ID •	NLL.	Curves			Show	selected	Show data	+ errors
	ID	ID • A	¥LL	Curves Descript	and re		Show	selected	Show data	errors
1		Туре			and re		Show	selected	Show data	errors
1 2	ID	Type Basin Geometry	Ŧ		and re		Show	selected	Show data	errors
	ID B4.1480 B4.1510	Type Basin Geometry	+		and re		Show	selected	Show data	errors
2	ID B4.1480 B4.1510 TACurve1	Type Basin Geometry Basin Geometry	•		and re		Show	selected	Show data	errors
2	ID B4.1480 B4.1510 TACurve1 TACurve2	Type Basin Geometry Basin Geometry Time-Area Curve	• • •		and re		Show	selected	Show data	errors
2 • 3 • 4	ID B4.1480 B4.1510 TACurve1 TACurve2 TACurve3	Type Basin Geometry Basin Geometry Time-Area Curve Time-Area Curve	• • •		and re		Show	e selected	Show data	errors

After inserting a new tabular data item, define the corresponding data values under the Curve Values table (i.e. secondary table to the right of primary table) (Figure 7.3). Secondary table parameters/columns that should be filled vary depending on the curve and relation type.

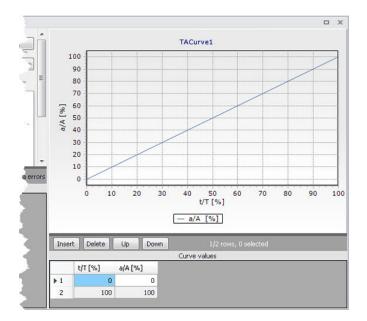


Figure 7.3 Secondary table containing Curves Values on the lower right side of the Curves and Relations Editor. Also shown is the tabular data plot above the secondary Curve Values table.

A plot of the tabular data is also shown on the upper right corner of the editor (Figure 7.3).

Edit field	Description	Used or required by simulations	Field name in datastructure
ID	Tabular data identi- fier	Yes	MUID
Туре	Dropdown menu for selecting tabular data type	Yes	TypeNo
Description	User's descriptive information on the tabular data	Optional	Description

Table 7.1 Overview of Curves and Relations Editor attributes (Table ms Tab)

7.1.1 Capacity Curves

It is possible to define two types of capacity curves in MIKE URBAN+; both are used to define pump operation.

The capacity curve can be a 'Capacity Curve QH' relation (for screw pumps) or 'Capacity Curve QdH' relation (for differential head pumps).

'H' is the absolute water level in the pump's wet well (i.e. From Node), and 'dH' is the water level difference between the (downstream) 'To Node' and (upstream) 'From Node' locations.

If an offset is specified, this will be added to the capacity curve relation.

Also note that one may specify a pump capacity curve with energy consumption (i.e. Capacity Curve QdH & Power).

7.1.2 Pump Acceleration Curve

Pumps may be RTC controlled. For PID-controlled RTC pumps, the acceleration of a pump can be specified as dependent on the actual flow. This pump acceleration curve is then specified as a number of 'dQ, dQ/dt' values.

7.1.3 Regulation Curves Qmax(H) and Qmax(dH)

The regulation curves Qmax(H) and Qmax(dH) are used in the regulation of the maximum discharge in links. The regulation can either be a maximum discharge as a function of the water level in a user-specified node, or a maximum discharge as a function of the water level difference between two user-specified nodes.

7.1.4 QH Relation

QH relations can be used for outlets. Using a QH relation in an outlet means that you specify the discharge out of the outlet based on the water level in the outlet.

7.1.5 Valve Rating Curve

A valve is a functional relation between two nodes of a sewer network. The valve rating curve specifies the relationship between the valve opening (%) and resistance (k).

7.1.6 Time-Area Curve

The Time-Area curve is used in the Time-Area runoff model. A Time-Area curve represents the percentage contributing part of the catchment surface as a function of time.

MIKE URBAN+ comes with three default Time-Area curves - TACurve1, TACurve2 and TACurve3 - applicable for rectangular, divergent and convergent catchments, respectively.

One can define other Time-Area curves. Each Time-Area value table must start with a pair of values (0,0) and must end with a pair of values representing the whole catchment contribution. MIKE URBAN+ maintains T-A curves in percent (%), and the last pair of values in the table must be (100,100).

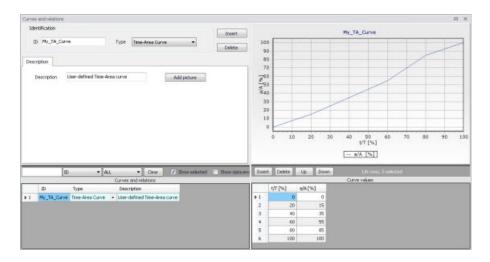


Figure 7.4 Example of user-defined Time-Area curve

7.1.7 Removal Efficiency

There are three methods available for the removal of sediments in weirs. In one of these methods you specify the relation between discharge towards the weir and the removal efficiency, i.e. the efficiency curve. The removal efficiency is hence a function of Q and the efficiency (dimensionless 1/1).

7.1.8 Curb Inlet DQ and QQ Relations

Two curve types can be specified for two different types of Curb Inlets:

- DQ Relation (depth-discharge relation specified in the Curb Inlets dialog)
- QQ Relation (Qapproach-Qcapture relation specified in the On Grade Captures editor)

The DQ relation specifies the depth-based capacity curve for a SAG Type Curb Inlet. Values must be monotonously increasing in depth and discharge and starting at (0,0). For depths in excess of the maximum value specified in the last row of the table, the last corresponding discharge value is used.

The QQ relation specifies the relationship between approach flow in the overland flow network (Qapp) and the captured flow at the connection node for an On Grade Type Curb Inlet (Qcap). Values must be monotonously increasing and starting at (0,0). For approach discharges in excess of the maximum value specified in the last row of the table, the last corresponding capture discharge value is used.

7.1.9 Capacity Curve QdH & Power

If specific power consumption in relation to pump levels is known, it is possible to include this in the model using the 'Capacity Curve QdH & Power' curve type.

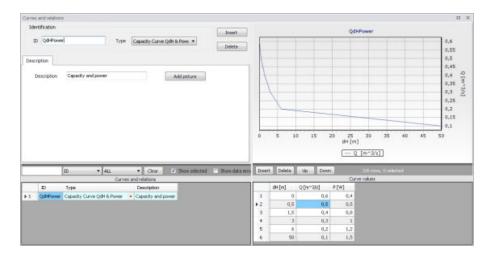


Figure 7.5 Pump capacity curve including power consumption

After the simulation with a 'Capacity Curve QdH & Power' the summary will contain information on the power consumption during the simulation period.

7.1.10 Runoff Pollutants

This type of table is used in surface water quality (SWQ) boundary conditions as a way to define the Temporal Variation of surface stormwater loads as well as RDI stormwater loads.

The table serves as a lookup table for the boundary condition, where corresponding concentration values are determined based on runoff intensity. The

tabular data set shall contain values for runoff intensity (i.e. the runoff divided by the total catchment area) and corresponding concentrations.

7.1.11 Basin Geometry

Basin geometries are tabulated area-elevation functions. One specifies values for the parameters H, Ac, and As.

Ac is the cross-section area perpendicular to the main flow direction in the basin, which is used to calculate the velocity. As is the surface area of the basin (used to calculate the volume). Both parameters are specified as functions of the water level, H, in the basin.

The H-column for the basin geometry can start at any value, e.g. 0 for interpretation of H as depth in the basin. MIKE URBAN+ associates the first Hvalue to the bottom level of the node. This means that the same geometry can be reused in several places in the model.

The maximum level before flooding at a basin is either the highest H value of the geometry or the ground level. If the top of the basin geometry is below the ground level, the specified basin geometry is extended with additional points to allow for flooding.

7.1.12 RTC

RTC tables are lookup tables defining the functional relation between an actual input value (e.g. sensor reading or difference between sensor readings, etc.) and the set point value (or setting). The tabulated values are linearly interpolated between defined relations.

7.1.13 RTC Time

RTC Time tables are lookup tables explicitly defining the set-point value (or setting) for particular time periods (i.e. date/time). The tabulated values are linearly interpolated between defined values.

7.1.14 Undefined Type

The Undefined table type is an extra generic type of table used as a placeholder for potential future functionality.

7.2 Materials

In MIKE URBAN+, a link is characterised by material, which determines the Manning friction coefficient (Manning), the Colebrook-White coefficient (EQ Roughness), or Hazen-Williams coefficient (H-W Coefficient) for the conduit.

It is optional to use either the default roughness values for specific materials or local values.

Specification of the different kind of materials and roughness coefficients is done through the Materials editor (Tables | Materials).

Materi	ials					
	entificatio ID Ceme	ent Mortar	_			Insert Delete
Initia	al value	Description			8	
	Manning			77 [m^(1/3)/s]		
	EQ rough	hness		0,001 [m]		
	H-W coel	fficient		120		
(ID	THE ALL	▼ Clear	Show selected	Show data err
(ID	[ID		Clear EQ rough [m]	Show selected HW coefficient	A REAL PROPERTY AND A REAL PROPERTY.
	-	ID ement Mortar	▼ [ALL			Show data err
< ▶ 1 2	-		▼ ALL Manning [m^(1/3)/s]	EQ rough [m]	HW coefficient	Show data err
▶ 1	Ce	ement Mortar	ALL Manning [m^(1/3)/s] 77	EQ rough [m] 0,001	HW coefficient 120	Show data err
▶ 1 2	Ce	ement Mortar Ceramics	 ✓ ALL Manning [m^(1/3)/s] 77 70 	EQ rough [m] 0,001 0,0025	HW coefficient 120 110	Show data err
▶ 1 2 3	Concr	ement Mortar Ceramics rete (Normal)	 ✓ ALL Manning [m^(1/3)/s] 77 70 75 	EQ rough [m] 0,001 0,0025 0,0015	HW coefficient 120 110 120	Show data err
▶ 1 2 3 4	Concr	ement Mortar Ceramics rete (Normal) rete (Rough)	 ✓ ALL Manning [m^(1/3)/s] 77 70 75 68 	EQ rough [m] 0,001 0,0025 0,0015 0,003	HW coefficient 120 110 120 100	Show data err
▶ 1 2 3 4 5	Concr Concr Concre	ement Mortar Ceramics rete (Normal) rete (Rough) ete (Smooth)	 ✓ ALL Manning [m^(1/3)/s] 77 70 75 68 85 	EQ rough [m] 0,001 0,0025 0,0015 0,003 0,0005	HW coefficient 120 110 120 100 140	Show data err
2 3 4 5 6	Concr Concr Concre	ement Mortar Ceramics rete (Normal) rete (Rough) ete (Smooth) Iron (cast)	 ✓ ALL Manning [m^(1/3)/s] 77 70 75 68 85 70 	EQ rough [m] 0,001 0,0025 0,0015 0,003 0,0005 0,0005	HW coefficient 120 110 120 100 140 120	Show data err

Figure 7.6 Materials Editor

MIKE URBAN+ has the following pre-defined Material types with friction loss properties:

- Cement Mortar
- Ceramics
- Concrete (Normal)
- Concrete (Rough)
- Concrete (Smooth)
- Iron (cast)

- Iron (wrought)
- Plastic
- Stone

Edit field	Description	Used or required by simulations	Field name in datastructure
ID	Material type ID	Yes	MUID
Manning	Manning roughness	Yes	Manning

Table 7.2 Overview of the Materials Editor attributes (Table ms Material)

ID	Material type ID	Yes	MUID
Manning	Manning roughness value	Yes If 'Manning Explicit' or 'Manning Implicit' is used	Manning
EQ Roughness	Equivalent rough- ness	Yes If 'Colebrook-White' formulation is used	EQRough
H-W Coefficient	Hazen-Williams roughness coeffi- cient	Yes If 'Hazen-Williams' is used	HWCoef
Description	User's descriptive information on the material	Optional	Description

7.3 **Outlet Head Loss**

MIKE URBAN+ models outlet head losses at nodes. The general flow equations are valid only for continuous conduits, where the only resistance to flow is bottom and sidewall friction. Hydraulic conditions in nodes, i.e. at manholes and structures, serve as boundary conditions in the computation of flows in conduits. In turn, hydraulic conditions in a node depend on the flows in the inlet and outlet conduits.

These hydraulic conditions, expressed in terms of the energy conservation principle, are calculated as water levels and velocity heads. The calculation is based on the mass continuity and formulation of more or less advanced energy relation between the node and the neighbouring links, including energy losses caused by local flow disturbances at different locations in the node.

The following parameters constitute a definition of head loss calculation option in MIKE URBAN+:

Computation Method

Three different methods are available:

- Classic. This is a simplified computational model for energy losses in junctions based on F.A. Engelund's energy loss formulae. The total head loss comprises of node inlet loss and node outlet loss, including losses due to change in flow direction, due to change in elevation, and due to contraction, if relevant.
- Mean Energy Approach. This is an alternative solution which fully ignores the energy loss at the inlet. For a flow-through manhole, this means that the energy level in the manhole is set equal as at the downstream end of the inlet pipe. For manholes with multiple inlets, the energy level is calculated as the weighted average of the inlet flows (i.e. large flows contribute most to the energy level). In this formulation, the total loss at the manhole is concentrated computationally at the outlet, and can be fully controlled by the user.
- No Head Losses. This option ignores all local losses. Regardless of the shape of the outlets, geometrical set-up of the junction and distribution of flows among inlet and outlet conduits, water levels in the junction and the outlet conduit are set equal as if there is no change of geometry and flow conditions between the junction and outlet conduit. This means that this option should be applied only where there is no change in cross section. Inconsistent results may be generated if inappropriately applied. This option is recommended for an artificial node/junction along a straight section of conduit, where no losses actually occur.

Further details on the various head loss computation methods mentioned above are found in the MIKE 1D Reference Manual.

Effective Node Area

This parameter is only relevant for the Classic head loss computational method. In all other cases, the default total wetted node area is applied. The following choices are available:

- **Full Node Area**. Calculated as product of diameter and water depth for manholes and read from the basin geometry table (Ac) for basins. Typically results in overestimate of local loss in a node.
- **Calculated Effective Area**. The effective area in a manhole is calculated based on an empirical formula (see Section 4.6.2 'Headloss calculation for inflowing water' section in the MIKE 1D Reference Manual). This results in a significantly smaller area than full wetted area and, consequently, with a more realistic flow calculation.
- **Reduced Calculated Effective Area**. The effective area in a manhole is further reduced to 50% of the calculated effective area.

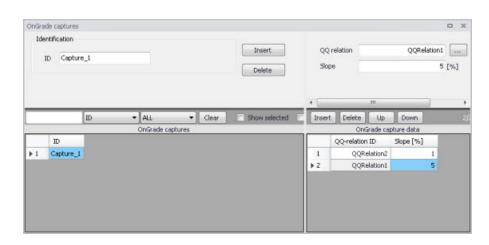
Loss Coefficient

The available loss coefficient types distinguish three different interpretations of the specified head loss coefficient.

- **Km**. Interprets the specified value as the outlet 'shape' coefficient Km (see Equation (4.17) in MIKE 1D Reference Manual).
- Contraction HLC. Interprets the specified value as the outlet 'contraction' coefficient ζcontr(j) (see Equation (4.17) in MIKE 1D Reference Manual). This means that the model ignores the geometrical relations between the node and the outlet links (outlet shape), and applies the specified value directly as the ζcontr. The contraction losses in the outlet links are then computed by multiplying the velocity head in the respective link by the ζcontr. The total head loss for an outlet link is computed as a sum of the contraction, direction and elevation loss.
- Total HLC. Interprets the specified value as the total outlet head loss. This means that the model completely ignores the geometry of the node/links, and applies the specified value (Total HLC) directly as the ζout, the same for all outlet links at the node. The total head losses in the outlet links are then computed by multiplying the velocity head in the respective link by the specified ζout.

Changes to outlet head loss parameter sets used for Nodes are made via the Outlet Head Loss editor (Tables|Outlet Head Loss). Figure 7.7 also lists five pre-defined head loss parameter sets in MIKE URBAN+.

Dutlet	t head loss								
Ide	entification								
ł	Head loss ID	Flow-Through M	anhole	Meth	hod Classic		•	Insert	
ŧ	Effective node area	Calculated Eff. 4	Area 👻					Delete	_
1	Loss coefficient	Km	•			0,2	25	Delete	_
	100	- 144			- et		the data	15	1000
	ID	▼ [ALL	Clear Method		Show selected	ľ	Show data erro	ors 1/5 rows, 0 sek Effect area	ecte
▶ 1	ID	✓ ALL	Method	-				Effect area	
► 1 2	ID Flow	1	Method Classic	• K	Coefficient type		Coefficient 0,25	Effect area	
	ID Flow MOUSE	-Through Manhole	Method Classic Classic	• K	Coefficient type Km	•	Coefficient 0,25 0,25	Effect area Calculated Eff. Area	
	ID Flow MOUSE Classic(E	-Through Manhole Classic(Engelund)	Method Classic Classic Classic	• K • K	Coefficient type Km Km	•	Coefficient 0,25 0,25	Effect area Calculated Eff. Area Full Node Area	•



Edit field	Description	Used or required by simulations	Field name in datastructure
Head Loss ID	Unique head loss parameter set iden- tifier	Yes	MUID
Method	Dropdown menu to select head loss cal- culation method for parameter set: - Classic - No Head Losses - Mean Energy Approach	Yes	OutletShapeNo
Effective Node Area	Choice of method for the calculation of wetted area: - Full Node Area - Calculated Eff. Area - Reduced Calcu- lated Eff. Area	Yes If Method = Classic	EffAreaNo
Loss Coefficient [dropdown menu]	Definition of the interpretation of the head loss coeffi- cient: -Km - Contraction HLC - Total HLC	Yes If Method = Classic or Mean Energy Approach	CoeffNo
[Field next to Loss Coefficient dropdown menu]	Value for the loss coefficient	Yes If Method = Classic or Mean Energy Approach	Coeff

Table 7.3 Outlet head loss parameter set Editor attributes (Table msm_LossPar)

7.4 On Grade Captures

On Grade Captures tabular data are used as hydraulic properties for On Grade Curb Inlets describing the transfer capacity of connections. The On Grade Captures editor allows the user to group together QQ relations (tabular Curves and Relations data) that comprise a single On Grade Curb Inlet geometry (collective of QQ relations defining the capture rate as a proportion of approach flow). The transfer capacity for an On Grade Curb Inlet is dependent on the approach slope in the overland flow network, and a number of QQ relations can apply for a single curb inlet.

Figure 7.8 On Grade Captures Editor

For calculated or user-defined slopes in the Curb Inlet dialog that are outside the range of slopes specified in the On Grade Captures table, the closest slope curve will be used. For intermediate calculated or user-defined slopes (lying between slope curves in the On Grade Captures table), linear interpolation is applied.

In the case of an On Grade Curb Inlet capacity that is not dependent on slope of the overland flow network, the user needs to define the On Grade Capture with a single QQ relation. *Note: In this case, the calculated or user-defined slope in the Curb Inlet dialog for On Grade Type will be ignored.*

8 Real Time Control

The MIKE URBAN+ Control module features advanced Real Time Control (RTC) simulation capabilities for urban drainage and sewer systems. It can describe various controllable devices and makes the definition of complex operational logic for interdependent regulators fully transparent and time efficient. The following controllable devices can be specified:

- Pump
- Weir
- Gate in rectangular orifice (Blade moves from top to bottom)
- Weir in rectangular orifice (Blade moves the bottom to top)
- Valve

The devices may be specified as directly controlled or PID-controlled, with control function evaluation based on a global system analysis. Each regulator or pump operates under the control logic encapsulated into a set of simple logical rules and control functions.

The MIKE 1D Control Module employs an algorithm that reads arbitrary input, not necessarily limited to states of the network itself, and sets the state of the simulation. Network state conditions include measurable and derived hydraulic and water quality variables (e.g. water level, flow, pollutant concentration, level difference), device status (e.g. gate position, pump ON/OFF) and the current control function.

The control functions range from the simplest constants for the operational variables (e.g. constant weir crest setting or constant flow setpoint) to dynamic controlled variables set in a continuous functional relation with any of the measurable variables in the system (e.g. CSO discharge setpoint as a function of flow concentration or a pump START/STOP levels as functions of water level at a strategic location in the system).

8.1 RTC in Urban Drainage and Sewer Systems

Real time control (RTC) is an active control and operation of flow regulators based on real-time information about the system state.

RTC is feasible where it proves that flexible redistribution of water in space and time contributes to the fulfilment of the specified operational objectives based on economically- and technically-sound solutions. Accordingly, application of RTC to urban drainage and sewer systems may be relevant:

• Where the system has substantial transport, storage or treatment capacity not effectively used under passive system operation;

- Where typical rainfall patterns over the catchment area exhibit high degrees of spatial variability resulting in some parts of the system becoming overloaded whilst others are underutilised;
- Where the urban wastewater system includes treatment processes whose performance is amenable to active, short term control;
- Where the assimilative capacity of the receiving waters is variable over time.

Usually, RTC is implemented as an integral part of a rehabilitation/upgrade scheme also involving significant civil upgrading works to increase the transport, treatment or assimilative capacity of the urban wastewater system. In such circumstances, the role of RTC is to optimise the operation of both the new and the existing facilities, thereby maximising the benefit in performance terms. Where the overall objective is to achieve compliance with specified performance targets, RTC serves to minimise the scale and extent of the necessary works.

8.2 Architecture of RTC Systems

An RTC system includes **sensors/monitors**, which generate measurement values characterising states of the system. To be useful for RTC, the measurements must be available with relatively insignificant time lag (delay). The sensors must be accurate and reliable.

The active control is performed by **regulators** - controllable movable devices (weirs, gates and valves) and pumps. Regulators may take various forms and sizes, and the regulation may be continuous within the functional range, stepwise, or discontinuous (e.g. ON/OFF, OPEN/CLOSED). The regulators may be powered mechanically, hydraulically or pneumatically.

Controllers on the basis of a pre-programmed operational strategy determine the regulator movements (the **control actions**). The operational strategy may consist of two parts: the control action(s) and, if more control actions are specified, the control logic (**conditions**) responsible for the selection of an appropriate control action. A control action establishes a relation between a **control variable** and a **controlled variable**. A controlled variable can be a regulator setting (e.g. gate position, pump START/STOP level) or some of the flow variables (e.g. water level, flow).

In the latter case, the control decisions are derived by evaluating (comparing) the current value of the controlled flow variable and the pre-defined **setpoint** value. The control algorithm is based on the numerical solution of the "continuous control problem" equation and is usually termed as **PID** (Proportional-Integral-Differential) control. The actuation signal for the regulator is generated by a PID controller, which usually appears as part of the operational strategy programmed in a Programmable Logical Controller (**PLC**).

Selection of a controlled variable is, however, subject to limits set by the variable's "controllability". Therefore, a controlled variable is usually selected among the flow variables (flow, water level), preferably in the vicinity of the regulator. As a controlled variable becomes more distant from the regulator, it becomes more difficult to control due to time lags, diffusion and uncontrollable interference. Control of relatively distant controlled variables is difficult and often cannot give satisfactory results.

When a regulator setting is used as a controlled variable, the control algorithm is reduced to an explicit functional relation between the control variable and the regulator setting, which controls the system response indirectly. This is much simpler than PID control, but in turn, the control results are in many cases inherently inexact and only a rough flow control can be achieved. This type of control is most suitable for regulators of the ON/OFF (or OPEN/CLOSE) type, while the application to continuously controllable regulators should be carefully considered.

If the operational strategy is based on conditions local to the regulated device (for example the ON/OFF-control of a pump based on the water level in a wet well) it is called **local control**. A PLC receives signals (measurements) from local sensors and sends the control decisions (actuation signals) to the regulators. The usual situation for a sewer system is to have a number of local controllers associated with pumps.

If the operational logic is based on global conditions, it is then called **global control**. In such a situation, a **global controller** is required. A global controller is a computer program that makes the overall system state analysis in real time and provides additional input to the local controllers, which overrides or supplements the local logic with e.g. actuator signals, or by modified setpoint values.

An additional component needed is then a data transmission system to transfer data between sensors, controllers and the global controller. In connection with the global controller function, an RTC system is usually equipped with the data management and storage facilities (databases) and the user interface. This is usually termed as SCADA (Supervisory Control And Data Acquisition) system.

The global control can also be extended to include forecast data in addition to real-time data, which is then called predictive RTC. The most comprehensive way to obtain forecast data is to include a model in the control system. Predictive control brings additional benefits in relatively inert systems, i.e. where the response time of an operational variable is long compared to the change of relevant disturbance (external input or control action).

8.3 MU+ Control vs. Real Life

MU+ RTC simulates reactive local and global RTC systems in urban drainage and sewer networks. The software implementation is inherently a conceptual-

isation of real life, of which the user must be fully aware. Some conceptualisations applied in MU+ RTC are listed below.

- The program does not distinguish explicitly between local and global RTC. Per default, all elements of a modelled RTC system are assumed available for global control.
- Sensors are specified as operational devices with definition of sensor type and position in the sewer network. Sensors with multiple functionality must be specified individually.
- When devices (weirs, gates and pumps) are specified as controllable in the MU+ interface, a number of Regulation parameters about the behaviour of the structure is required to describe e.g. the allowed change rates for the state of the structure.
- The actual controllers are not specified explicitly as physical devices, but their function (i.e. operational logic as a combination of operational conditions and control actions) is associated with the respective devices.
- MU+ RTC uses sampling and actuation (control loop) frequency identical to the simulation time step.
- Sensor readings are simulated as perfectly accurate and with 100% availability.
- Low-level logic of the pump START/STOP operation is built into the program and is controlled by the START and STOP levels.
- The PID control algorithm is built into the program and is controlled by the PID constants and by factors for weighting the terms of the numerical solution of the control equation.

8.4 Sensors

A sensor is a device positioned somewhere in the system providing information on the actual value of a monitored variable.

A sensor can only monitor one variable. If more variables are measured at the same location, a corresponding number of sensors has to be described.

	rs							0	X
Ide	ntification								
	ID Let	vel_02						Insert	
	Type Ex	ternal	• \\\	Q Compone	nt [Delete]
Loca	tion Des	cription							
Lo	cation								
	Туре	Node	5	*					
	ID		Node_		k				
	Time series	item	7.8.94KA	ALI					
	Time series	file C:\Users\mi	eadmin\Doc	um 📖					
_		[ID +	ALL	•	Clear	Show selecte	ed 🔲 Shov	v data errors	1/3 ro
_	ID	ID •	A	•		Show selecte	ed 🗌 Shov Weir ID	v data errors Orifice ID	
▶ 1	ID Level_02	Туре	A		Node ID	Link ID			1/3 ro Val
1 2	and the second s	Type External	Locati	ion type 🔺	Node ID Node_02	Link ID			
	Level_02 Level_12	Type External	Locati	on type	Node ID Node_02 Node_12	Link ID			Val
2	Level_02 Level_12	Type External Concentration	Locati Node Node	ion type	Node ID Node_02 Node_12	Link ID		Orifice ID	Va

Table 8.1 Overview of the Sensors editor attributes (Table msm_RTCSensor)

Edit field	Description	Used or required by simulations	Field name in data structure
ID	Sensor unique iden- tifier	Yes	MUID
Туре	Type of parameter measured by the sensor	Yes	TypeNo
WQ Component	Measured water quality component	Yes If Type = Concentra- tion or Mass flux	ComponentID
Location/ Type	Location type	Yes	LocationNo
Location/ ID	Location ID	Yes	_LocationID (prefix varies with location type)

Edit field	Description	Used or required by simulations	Field name in data structure
Time Series File	Path to external time series file defining sensor val- ues	Yes If Type = External	TSFileName
Time Series Item	Item name for the selected data series from the time series file	Yes If Type = External	TSItemName
Description	Free text description of the sensor	Optional	Description

Table 8.1 Overview of the Sensors editor attributes (Table msm_RTCSensor)

Sensor ID

Each sensor needs a unique ID, which can be used to access the sensor information from other dialogs.

Туре

This parameter defines the type of variable measured by the sensor. The options are:

- Level
- Discharge
- Surface Runoff
- Concentration
- Mass Flux
- Weir/Gate Position
- Pump ON/OFF
- Action Active
- Action Active Time
- Valve Opening
- External (external time series file)

WQ Component

The measured water quality component for the 'Concentration' and 'Mass Flux' sensor types.

Location Type and Location

Depending on the sensor type, there could be one or more location types for a sensor (Table 8.2).

Define the location type and then specify the corresponding location ID. Note that a 'location' may be only indirectly related to a physical location, such as for 'Action Active' and 'External' sensors.

Time Series File and Item

For an 'External' sensor type, an external time series file, which will be used for sensor values, must be defined. Select the appropriate time series Item to use when loading the time series file.

Sensor Type			Lo	cation T	ӯре		
	Node	Link	Weir	Gate	Pump	Action	Valve
Level	Yes	Yes	-	-	-	-	-
Discharge	Yes	-	-	-	-	-	-
Surface Runoff	Yes	Yes	-	-	-	-	-
Concentration	Yes	Yes	Yes	Yes	Yes	-	-
Mass Flux	-	Yes	Yes	Yes	Yes	-	-
Weir/Gate Position	-	-	Yes	Yes		-	-
Pump ON/OFF	-	-	-	-	Yes	-	-
Action Active	-	-	-	-	-	Yes	-
Action Active Time	-	-	-	-	-	Yes	-
Valve Opening	-	-	-	-	-	-	Yes
External	-	-	-	-	-	-	-

Table 8.2Overview of available Location Types for each Sensor Type

8.5 RTC Settings

Define controllable devices and the respective control settings on the RTC Settings editor (Figure 8.2).

The main parts of the RTC Settings editor are:

- An overview table of controllable devices (lower left side of the editor)
- The Rules editor (in the Rules tab)
- Other data tabs for controllable devices (i.e. Type and Description tabs)
- The Actions editor (right side of the editor)

	nge:													Ð
ю	Rules	Punp				Insert Delete				lentification ID NumpControlP				Encert Culota
	eture I									Input () Set point ()	10 control Level_12) ableLookup("a:PumpControlP tandard_Pump_up_doven	Djonfumpjika	•	
								1	F	D D	ALL RTC. Control type	Gear Actions Start Leve		selected Show care
								1		ID PunpControR1 WeitControR1 PunpControD10	RTC. Canitrol type PID control 0 PID control 1 Set start and stop Levels	Actions Start Law + + + TableLaok	el	selected 📃 Stow data
		ID	* 41	• 0		eve selected 5	on Gala errors	Ti concel inducted	2	ID PunpControR1 WeitControR1 PunpControD10	RTC. Cantrol type PID costrol PID costrol	Actions Start Law •	el	
		[ID	• AL	• [] de		even selectedS	ow data errora	a decision of the second secon	2	ID PunpControR1 WeitControR1 PunpControD10	RTC. Canitrol type PID control 0 PID control 1 Set start and stop Levels	Actions Start Law + + + TableLaok	el	
	ID	D Souchare type		• Ce			ow data errors Onfor wear ID	(4 rown, 3 millional Description	2	ID PunpControR1 WeitControR1 PunpControD10	RTC. Canitrol type PID control 0 PID control 1 Set start and stop Levels	Actions Start Law + + + TableLaok	el	
_				Weir ID	RIC :	ettings			2	ID PunpControR1 WeitControR1 PunpControD10	RTC. Canitrol type PID control 0 PID control 1 Set start and stop Levels	Actions Start Law + + + TableLaok	el	
-	1	Structure type	Pump ID	Weir ID	RITC : Value ID	ettings			2	ID PunpControR1 WeitControR1 PunpControD10	RTC. Canitrol type PID control 0 PID control 1 Set start and stop Levels	Actions Start Law + + + TableLaok	el	
1 2 3	1 2 4	Rhucture type Pullip WW Pullip	Pump ID + Pump, + Pump, J	1444 10 2,3 1449_12_3	RIC: Valve ID	ettings			2	ID PunpControR1 WeitControR1 PunpControD10	RTC. Canitrol type PID control 0 PID control 1 Set start and stop Levels	Actions Start Law + + + TableLaok	el	
¥1 2	1 2 4	Rouchure hype Pump WW	Punp ID • Punp,	Weir 10 2,3 Weir_12_3	RIC: Valve ID	ettings			2	ID PunpControR1 WeitControR1 PunpControD10	RTC. Canitrol type PID control 0 PID control 1 Set start and stop Levels	Actions Start Law + + + TableLaok	el	

Figure 8.2 The RTC Settings Editor

The operational control rules for controllable devices are specified in this editor. The control is specified as a set of rules linking logical conditions and control actions. The rules are evaluated sequentially following the rules list sequence.

8.5.1 Identification

Specify the ID of RTC settings configurations in the Identification group box on the RTC Settings editor.

	Insert
D 1	
	Delete

Use the 'Insert' button to add RTC configurations in the project. A summary of RTC settings is shown in the overview table on the bottom left part of the editor.

8.5.2 Type

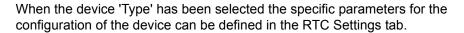
Define the type of controlled device for which to apply RTC settings in the Type tab on the editor.

Type Rules	Description			
Туре	Weir	•		
Structure ID	Weir_12a_3	📐		

Figure 8.3 The Type Tab in the RTC Settings Editor

The Type identifies the device which is controlled. The available device types are 'Pump', 'Weir', 'Gate in rectangular orifice', 'Weir in rectangular orifice' and 'Valve' (see Figure 8.4).

Controlled devices require that the related structures have been previously defined in the relevant Network data dialogs (see succeeding sections and Figure 8.5 to Figure 8.8).


An orifice should first be defined in the model (Network | Orifices) for 'Gate in rectangular orifice' and 'Weir in rectangular orifice' controllable devices. The 'RTC Settings' dialog is used to add either a movable gate or a movable weir to the orifice.

Note that a 'Weir in rectangular orifice' device requires predefining an orifice in the Network model, and not an ordinary weir.

Also, the difference between a 'Gate in rectangular orifice' and 'Weir in rectangular orifice' is that the gate blade edge moves downwards from the top of the orifice (to the bottom), while the weir blade edge moves upwards from the bottom of the orifice.

Туре	Pump 🔹	
	Pump	
Structure ID	Weir	
	Gate in rectangular orifice Weir in rectangular orifice Valve	

Pumps

Specify RTC settings for RTC pumps in the Regulation tab on the Pumps Editor (Network | Pumps).

umps						
Identifica ID 01	tion CC232p1		From node	01CC232		Insert
Geometry	Capacity	Regulation	Description			Delete
📝 Us	e regulation					
•	Variable speed RTC	Webw	ell Setpoint	[m]		
	Constant sp	eed				
	Variable spe	ed				
	Variable spe Max start level		0,272 [m]	Min time ON	5 [m	in]

Figure 8.5 Control data specific for pumps in the Pumps Editor Regulation Tab

Max Start Level

The maximum START level for the pump. If exceeded, the pump is unconditionally switched ON.

Min Stop Level

The minimum STOP level for the pump. If a lower level occurs, the pump is unconditionally switched OFF.

Min Time ON

The minimum time the pump has to be ON before it can stop.

Min Time OFF

The minimum time the pump has to be OFF before it can start again.

Valves

For controlled valves, specify RTC settings in the Regulation tab on the Valves Editor (Network | Valves).

15					
lentification					
ID Valve_1	From node	01CA004		Insert	
, idio_1	To node	01CB006	🕨	Delete	
Decision Dece					
ometry Regulation Descri	ption				
	ption				
Non return flap Ontrolled through Real 1		c]			
Non return flap	ime Control Edit RT	_			
Non return flap	ime Control Edit RT	c 0 [%]			
Non return flap Controlled through Real 1	ime Control Edit RT	_			
Non return flap Controlled through Real T Max opening	ime Control Edit RT	0 [%]			

Figure 8.6 Control data specific for valves in the Valves Editor Regulation Tab

Max Opening

The maximum opening of the valve in percentage.

Min Opening

The minimum opening of the valve in percentage.

Max Speed

The maximum velocity for movement of the valve in percentage/sec.

Weirs

For controlled weirs, specify RTC settings in the Regulation tab on the Weirs Editor (Network | Weirs).

	Fr	rom node	Greve_2221	h.	Insert	
ID Greve_2221w1	Т	o node	Greve_2295		Delete	
ometry Regulation	Description					
Non return flap						
	th real time control	Edit RT	· _]			
Controlled through	in real dille control	CORMIN				
Controlled throug	in real dille control	COLKI				
Max level	23,822		Max speed up	0,01		
[[m] !		0,01		
Max level	23,822	[m] !	Max speed up			

Max Level

The maximum elevation of the movable weir crest.

Min Level

The minimum elevation of the movable weir crest. The fixed weir crest level is not used for an RTC weir.

Max Speed Up

The maximum velocity for movement of the weir in upward direction.

Max Speed Down

The maximum velocity for movement of the weir in downward direction.

Orifices with weirs and gates

If the device type is either 'Gate in rectangular orifice' or 'Weir in rectangular orifice', specify RTC settings in the Regulation tab on the Orifices Editor (Network | Orifices).

Drifices					n x
Identification					
	From node	20CC132	k	Insert	
ID 20CC132o1	To node	20CC132X		Delete	
Geometry Regulation D	escription				
🛅 Non return flap					
Controlled through Re	eal Time Control	trolled			
Max level	1,43 [m] Max	speed up	0,01		
Min level	0,43 [m] Max	speed down	0,01		

Figure 8.8 Control data specific for orifices in the Orifices Editor Regulation Tab

Max Level

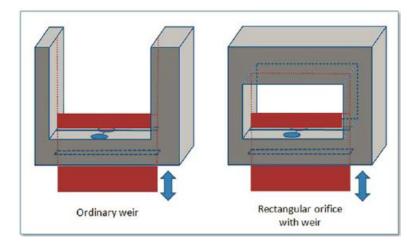
The maximum elevation of the movable gate/weir.

Min Level

The minimum elevation of the movable gate/weir.

Max Speed Up

The maximum velocity for movement of the gate/weir in upward direction.


Max Speed Down

The maximum velocity for movement of the gate/weir in downward direction.

Difference between weir and weir in orifice

It is possible to define weirs in two different ways. One way is through the 'Weir' dialog, which we will refer to as an 'ordinary weir'. The second way is to use the combination of an orifice and the controllable device type 'Weir in rectangular orifice'.

Figure 8.9 Difference between ordinary weir and a weir in rectangular orifice

The main difference is that the 'Weir in rectangular orifice' can close the orifice completely while the ordinary weir is always open upwards. It has no ceiling and in principle the flow can always pass over the weir if the water level is higher than the weir crest level.

For the 'Weir in rectangular orifice', once the weir fully closes the orifice then no flow will pass the weir even if the water level is above the crest level.

8.5.3 Actions

A control Action is a functional relation between input from one or two sensors and the setpoint or the setting for the controlled device.

Actions are defined in the Actions dialog located on the right side of the RTC Settings editor. Additional parameters for Actions must be defined depending on the Action Control Type specified.

1	ID PumpC	ntrolPIC)						Dele	ete	
Act	tion										
c	Control type	PI) control			•					
I	Input	[Le	vel_02]								
		-				_					
9	5et point	Tal	oleLookup("a:PumpControlP	ID_o	nPump_Pum	p_2					
	5et point PID paramete	-	oleLookup("a:PumpControlP indard_Pump_up_down	ID_o	nPump_Pum	IP_2					
		-		ID_o	nPump_Pum	IP_2		v selec	ted	Show	data
		s Sta	ndard_Pump_up_down	•	Clear			v selec	ted	Show	data
		s Sta	ndard_Pump_up_down	•	Clear			v selec	ted	Show	data
	PID paramete	s Sta	ndard_Pump_up_down ALL RTC /	•	Clear			v selec	ted	Show	data
F	PID paramete	ID	ALL ALL RTC / Control type PID control	↓ Action	Clear			v selec	ted	Show .	data
F	PID paramete ID ID PumpCo	ID ID ItrolPID ItrolPID	ALL ALL RTC / Control type PID control PID control	← Actior	Clear	2	Shov				

Figure 8.10 The Actions dialog on the RTC Settings Editor

An overview of the Action dialog parameter attributes is shown in Table 8.3 below.

Table 8.3Overview of the Actions dialog attributes (Table msm_RTCAction)

Edit field	Description	Used or required by simulations	Field name in data structure
ID	Unique ID for the Action used to access the action from other dialogs	Yes	MUID
Control Type	The Action type	Yes	ControlTypeNo
Start Level	Pump start level	Yes If Control Type = Set start and stop levels	StartLevel

Edit field	Description	Used or required by simulations	Field name in data structure
Stop Level	Pump stop level	Yes If Control Type = Set start and stop levels	StopLevel
Input	The parameter to control (at the Set- point location)	Yes If Control Type = PID Control	PIDInput
Setpoint	Target value for PID-controlled parameter	Yes If Control Type = PID Control	PIDSetPoint
PID Parameters	Parameters for PID control action	Yes If Control Type = PID Control	PID
Weir Level	Desired weir blade edge level	Yes If Control Type = Set weir level	WeirLevel
Position	Desired gate blade edge level	Yes If Control Type = Set gate position	GatePosition
Opening	Desired % valve opening	Yes If Control Type = Set valve opening	ValveOpening

Table 8.3 Overview of the Actions dialog attributes (Table msm_RTCAction)

Control Type

This field holds information on the type of control the Action describes, as well as the applicability of the action with respect to a device type. For example, a 'Set valve opening' Action would be related to a controllable valve.

The available control Action types are:

- Direct setting:
 - Set start and stop levels
 - Set weir level
 - Set gate position
 - Open
 - Close
 - Set valve opening
- PID control (at a setpoint)

If a direct setting is used, the action specifies information on e.g. start- and stop levels for pumps, or the wanted position for gates or weirs. If PID control is applied, the action specifies a setpoint (for flow or level) anywhere in the system.

Input

For a PID control action, the Input parameter is the parameter being evaluated against the setpoint (i.e. target) value at the setpoint for the controlled device.

The Expression editor may be used to define the Input. Note that a Double data type is expected from the evaluation of the input expression.

The input may involve two sensors e.g. if the flow is regulated as a function of the difference between two level sensor values.

Setpoint

The setpoint value (i.e. target) for a PID control action. The Expression editor may be used to define the Setpoint. Note that a Double data type is expected from the evaluation of the setpoint expression.

A functional relation may also be defined under 'Setpoint'. The functional relation (i.e. of type RTC or RTC Time) should first be defined on the Curves and Relations editor (Tables | Curves and Relations) (see Tables Chapter in this User Guide for more details on Curves and Relations).

	ID WeirContro	lPID				Delete	
Act	tion						
0	Control type	PID control		•			
I	Input	[Level_12]					
		Tablet a slow //a	unic i loro				
5	Set point	i abielookup(a	a:WeirControlPID_on	weir_weir_12	***		
	Set point PID parameters	Standard_Weir		weir_weir_12			
		Standard_Weir		Clear		ected 🔲 Sho	w data e
	PID parameters	Standard_Weir	r_up_up	Clear			w data e PID inp

Figure 8.11 Example PID Control Action

In this example, the weir level (at Weir_12_3) shall be modified by controlling the water level at setpoint location [Level_12] (see Figure 8.12).

Control of the water level at [Level_12] shall be according to the RTC lookup table (a:WeirControlDirect_onWeir_Weir_12a_3) (see Figure 8.13). The lookup table provides corresponding setpoint values for [Level_12] according to water level readings at another reference sensor [Level_A] (Figure 8.13). The TableLookup function syntax for the expression is TableLookup ('Table MUID', reference sensor).

History				
[Level_12]		•	Save	Open
Expression				
Variables:	•			
Functions:	•	Operators:		
Condition :Expected expression return type is I	Double	Position 1:11		
4				•
، د Error list:				,
4 C				,
۹ در Error list:				k
۹ c Error list:				Þ

Figure 8.12 Example Input expression in Expression Editor

Initially, one may start with the Variables dropdown menu in the Expression editor when building expressions for Input. The Variables dropdown offers predefined variables, such as Sensors.

History				
TableLookup('a:WeirControlPID_	onWeir_Weir_12_3', [Level_A])		 Save 	Open
Expression				
Variables:		*		
Functions:		 Operators: 		0
Condition :Expected expression r	return type is Double	Position 1:1		
	ntrolPID_onWeir_Weir_12_3', [b			
4 0				,
4 C				,

Figure 8.13 Example Setpoint expression in Expression Editor

Functions and Operators may also be used to define more complex expressions for both Input (e.g. difference between 2 sensors) and Setpoint (e.g. TableLookup).

8.5.4 Rules

Control rules are specified in the Rules tab on the RTC Settings editor.

ID 1	Inse	_					
pe Rules Description		_					
dentification		Inser	t Delete Up	Down		elected Show o	ata errors
ID Rule0_PumpControlPID Description			10	Condition	Control rules Action ID	Block time [min]	Description
		11	Rule0_PumpControlPID		PumpControlPID		
	*						
Action ID PumpConkrolPID	•						
	0 [min]						

Figure 8.14 The Rules Tab on the RTC Settings Editor

An overview of the Rules tab parameters is shown in Table 8.4.

Edit field	Description	Used or required by simulations	Field name in data structure
ID	Unique identifier for the rule	Yes	MUID
Description	Free text description	Optional	Description
Condition	Input box for the Condition Expres- sion	Yes	Condition
Action ID	Id of the Action item corresponding to a Condition for a con- trol rule	Yes	ActionID
Block Time	The period over which the system is locked to a certain rule after it is acti- vated	Yes	BlockTime
Control Rules secondary grid	Table listing control rules made up of Condition-Action combinations	Yes	-

Table 8.4Overview of the Rules Tab attributes in the RTC Settings editor (Table
msm_RTCRule)

Control rules secondary grid

Create rules for a device under the Control Rules secondary grid in the Rules tab (Figure 8.15). Add a new rule using the 'Insert' button above the table.

			Control rules		
	ID	Condition	Action ID	Block time [min]	Descriptio
▶1	Rule0_PumpControlPID		PumpControlPID	0)

Figure 8.15 The Control Rules secondary grid in the Rules tab

Rules are combinations of Conditions and Actions.

Any number of rules can be specified to control the device. The statements are sequentially evaluated starting from the top. This means that appropriate sequence of rules is essential for the achievement of the desired control logic.

Use the 'Up' and 'Down' buttons above the secondary grid to modify the order of the Rules.

Evaluation of a logical condition belonging to a rule as 'TRUE', leads to the selection of the specified control action. If a logical conditions is 'FALSE', the evaluation proceeds to the next rule on the list.

If no logical condition is specified, the rule is unconditionally evaluated as 'TRUE'. This implies that the last rule in the sequence must not include any logical conditions in order to ensure a selection of a 'Default' control action if all specified conditions are found 'FALSE'.

Condition

A logical condition demarcates the boundaries of a certain operational situation in the controlled system. This frame consists of an arbitrary number of independent logical tests on the various operational variables, where the relation of the actual value (or state) of the variable (provided by a sensor) is tested against the specified threshold (limit) value (or state). The individual tests are evaluated as TRUE or FALSE, with the outcome depending on the actual variable value (or state), the threshold and the specified operator.

A condition is specified as a mathematical expression in the Condition input box is the editor (Figure 8.16).

	*	
	_	

Figure 8.16 The Condition input box in the Rules Tab

The implementation of mathematical expressions in MIKE URBAN+ is very general, supporting a comprehensive set of mathematical functions and operators. Click on the ellipsis button to the right of the Condition input box to launch the Expression editor.

History					
			•	Save	Open
Expression					
Variables:					
Functions:		• Operato	ors:	-	
Condition :Expected expression return type is Bool	ean	Position	1:1		
4 C					*
۹ در العام الع Error list:					ŀ
4 CError list: Expression string is empty					Þ

Figure 8.17 The Expression Editor

Mathematical expressions are formulas or expressions trees. The formulas support the standard mathematical functions like sine, cosine, abs, power etc. On top of these standard mathematical functions, a number of specific MIKE 1D engine control functions are available.

Note that a Boolean data type (i.e. TRUE, FALSE) is expected from the evaluation of the expression for Conditions.

Action ID

The corresponding control Action for a given Condition. Options are taken from the Action dialog on the right side of the RTC Settings editor. The choice of the controllable device determines relevant control actions.

Block Time

The Block Time ensures that a certain rule is applied for a minimum period. This means that the system is locked to a certain rule in a period equal to the block time after it is activated.

Some notes when specifying rules are:

- All control actions used to control a specific device must be of the same function type – corresponding to the specified device Type and Control Type.
- For PID control, all control actions must refer to the same setpoint sensor (i.e. Input). Changing the setpoint sensor during simulation is not allowed.
- For time dependent control (Setpoint = RTC Time lookup table) only ONE rule can be specified. The menu allows more rules to be inserted, but only the first one will be used during the simulation.
- When starting a simulation, the system checks if these conditions are fulfilled and in the case of any violation, the simulation will not start.

8.5.5 Description

One may include a description of RTC settings items in the Description tab of the editor. An image file (e.g. of the controlled device) may also be added using the 'Add picture' button.

Туре	Rules	Description	
De	escription	Weir in rectangular orifice	
			Add picture

Figure 8.18 The Description Tab in the RTC Settings Editor

8.6 PID Settings

This editor is used to define the functions for PID (Proportional Integral Differential) control. RTC includes the possibilities for PID control of weirs, gates, pumps, and valves. Independently of the choice of the controlled variable, the PID algorithm adjusts the settings of the regulator according to the current error between the specified setpoint and the actual value of the controlled variable.

The following settings/outputs can be used as means of flow control:

- Weirs: weir crest level setting
- Gates: level of the bottom lip of the gate setting
- Pumps: pump discharge
- Valves: opening of the valve

A single PID set can be used to regulate any of these parameters.

ID se	sttings								3 3
	entification ID Standard_Pump_up	_down				insert			
Pa	arameters					Joiete			
Pr	roportionality factor K:	-1 [()]	Alph	a 1 - weight time n:		1			
In	ntegration time Ti:	ion time Ti: 0,08333333 [h] Alpha 2 - weight time n-1:		1					
			,0002222222 [h] Alpha 3 - weight time n-2:		1				
D	erivation time Td:	0,0002222222 [h]	Alph	a 3 - weight time n-2:		1			
D	erivation time Td:	0,0002222222 [h]	Alph •	-	w selected 🔲 Sho	1 ow data errors	2/6 rows,	0 selected	
D			•	-		1 ow data errors Alpha 1	2/6 rows, Alpha 2	0 selected Alpha 3	
1	[ID	✓ ALL Proportionality [(•	Clear Sho	w selected 🔲 Sho	and the second second	Sector Sector Sector Sector		1
	ID	ALL Proportionality [(•	Clear Sho Integration [h]	w selected 👘 Sho Derivation [h]	Alpha 1	Alpha 2		1
1	ID ID Standard_Pump_up_	ALL Proportionality [(•	Clear Sho Integration [h] 0,08333333	w selected Sho Derivation [h] 0,0002222222	Alpha 1	Alpha 2 1		1 1 1
1	ID ID Standard_Pump_up_do Standard_Pump_up_do	ALL Proportionality [(up up up	•] 0] 1 -1	Clear Sho Integration [h] 0,08333333 0,08333333	w selected Sho Derivation [h] 0,0002222222 0,0002222222	Alpha 1 1 1	Alpha 2 1 1		1
1 2 3	ID Standard_Pump_up_do Standard_Pump_up_do Standard_Weir_up_	ALL Proportionality [(up up up up up	•] 0] 1 -1 1	Clear Sho Integration [h] 0,0833333 0,0833333 0,0833333	w selected Sho Derivation [h] 0,0002222222 0,0002222222 0,0002222222	Alpha 1 1 1 1	Alpha 2 1 1 0,7		1

ID

Each set of PID settings is identified with a unique ID. This is how the PID parameter set is accessed from other dialogs.

Proportionality Factor, Integration Time, and Derivation Time

The 3 main parameters for the PID control. These parameters are further discussed in Section 8.6.1 below.

Alpha-1, Alpha-2 and Alpha-3

Weighting factors for time level n, n-1 and n-2. These parameters are further discussed in Section 8.6.1 below.

8.6.1 Calibration of the PID Constants

Tuning of the PID constants (Ti, Td and K) is not a straightforward task. Understanding the theoretical background and the numerical solution of the control equation would be beneficial in this process.

The following values may be used as a guide:

Typical values of the PID constants and weighting factors Table 8.5 below shows suggestions for initial values for PID constants.

Parameters	Pumps	Gates	Weirs
Ti		300 sec.	
Td		0.8 sec.	
K (Setpoint downstream of device)	1	1	-1
K (Setpoint upstream of device)	-1	-1	1
Alpha-1	1	1	1
Alpha-2	1	0.7	0.7
Alpha-3	1	1	1

Table 8.5Summary of typical values for PID constants and weighing factors

NOTE: The sign on the K-factor is very important. If it is wrong it will cause the control function not to work at all since the device will typically move to one of the extreme positions and stay there until the end of the simulation.

Figure 8.20 to Figure 8.22 show examples of how the actual variable (flow or water level) can fluctuate around the setpoint as a consequence of PID constants values. Each figure has three different graphs depending on whether the constant is too high, too low, or adequate.

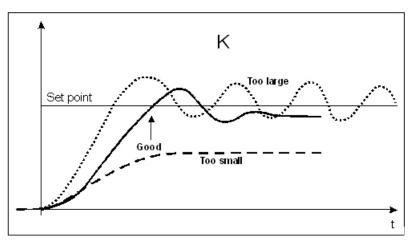


Figure 8.20 Fluctuations around the setpoint depending on the size of the proportionality factor, K

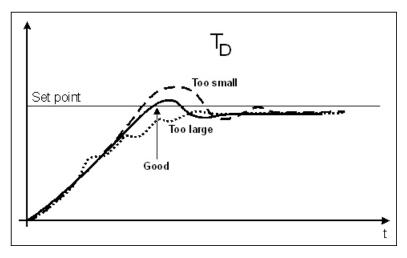


Figure 8.21 Fluctuations around the setpoint depending on the size of the derivation time, Td

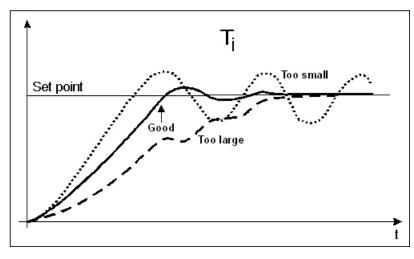


Figure 8.22 Fluctuations around the setpoint depending on the size of the integration time, Ti

8.7 RTC Computations

An RTC simulation is started from the usual Simulation Setup editor (Simulation Specifications | Simulation Setup).

RTC computations are performed if the 'Real time control (RTC)' module is active on the Modules editor (General Settings | Modules) (Figure 8.23.).

1odules Model type					
Model:	Collection system	Unit system:	MU_CS_SI	•	
Collection s	ystem				
📝 Hydr	odynamic (HD)				
V	Real time control (RTC)				
[]	Long term statistics (LTS)				
🔲 Wate	er quality (AD)				
	Water quality (MIKE ECO Lab)				
📃 Rainf	fall runoff (RR)				
	Stormwater runoff WQ (SWQ)				
Catc	hment discharge				
200	Catchment discharge WQ				

Figure 8.23 Activate the Real Time Control (RTC) module on the Modules Editor

9 Long-Term Statistics (LTS)

The Long-Term Statistics (LTS) module performs a time-efficient simulation of wastewater collection and urban drainage systems exposed to intermittent hydrological inputs over long, continuous historical periods and the computation of relevant statistics for the operational variables (instantaneous and accumulated) of interest.

LTS features an easy way to convert a usual simulation covering a long historical period (typically 10 - 30 years) into a discontinuous series of relevant hydrological events and to define various event-based and annual statistics for the selected variables. By these means, the long-term simulation becomes feasible even for large models, as both the simulation time and the amount of the generated output data gets significantly reduced, compared to a continuous simulation over the same historical period.

Based on the specified criteria, the system automatically selects the periods for dynamic pipe flow simulations during wet weather. This reduces the simulation time significantly, while preserving the accuracy in the simulation of relevant dynamic effects in the system - CSOs, surcharges, pollution emissions, etc.

Running LTS simulations with the existing drainage system configuration and with the planned upgrades, impacts of the planned investments (e.g. new sewers, retention tanks, control schemes) on system performance can be reliably tested and evaluated based on the computed operational statistics.

This allows the user to diagnose the current operation of the system and to develop the optimal rehabilitation/upgrade strategy, e.g. for satisfying the requirements of environmental regulations.

Statistics on maximum water levels, discharges from weirs, pollution emissions, etc. generated by simulating long continuous periods subject to impact of recorded historical rainfalls is particularly useful for the evaluation of the simulated system functionality. Statistics are used to compare the effects of various mitigation measures in the planned rehabilitation process, the performance of various control strategies, the cost-benefit efficiency of the planned investments, as well as to determine whether the functionality of the sewer system is compliant with legislative requirements.

The functionality of urban drainage systems is often subject to requirements like:

- Flooding on terrain must not happen more frequently than once in every T-years.
- Flooding of basements must not happen more frequently than once in every T-years.

- Discharge from CSO weirs to receiving waters must not happen more frequently than n times per year.
- Total volume from CSOs must not exceed a certain threshold amount per year.

LTS answers these and other similar questions and is thereby an essential simulation tool for reliable assessment of drainage system performance.

Statistics on some operational variables are only reliable if the simulated number of independent events is sufficiently large, i.e. if the simulated historical period is sufficiently long. This, in turn, may imply very long simulation times (if 'normal' computing hardware is applied) and thereby spoil the feasibility of the analysis.

However, use of dynamic simulation for the hydraulic and pollution transport analysis of drainage networks is only beneficial in periods of high-flow dynamics. Otherwise, simpler and much faster simulation tools can be used with a similar level of accuracy. Since high-flow dynamics in urban drainage networks are normally associated with rainfall events, the dynamically simulated periods can be reduced to include wet weather periods only, i.e. only a few percent of the historical period included in the analysis.

The fundamental principle behind the LTS concept is therefore the ability to reduce the simulation time without losing significant information. LTS can, based on the user-specified criteria, eliminate the irrelevant periods from the simulated series and to limit the dynamic simulations to a series of disconnected events instead of the entire simulation period.

9.1 Data Input

9.1.1 LTS Job List

LTS Job list specifies intervals within the LTS simulation period that are relevant for dynamic network simulation. Duration of each job (i.e. simulation event) is defined by its START time and END time.

A job list is generated by the LTS computational engine on the basis of model setup and boundary files, the simulation period (specified in the Simulation Setup Editor, General Tab), optionally the LTS initiation hot start file(s) and user-specified job list criteria.

The job list is written into an ASCII file, recognizable by the extension *.JLF.

The job list file includes the following information:

- General information on the actual simulation setup
- List of relevant boundary conditions

- Overview over job list criteria
- Job list events, defined by
 - Start time
 - End time
 - Hot start file name and hot start time
 - Triggering job list criteria
- Job List Summary

9.1.2 Job List Criteria

Job list criteria are defined as hydraulic loads thresholds on the network, including dry weather flow (i.e. wastewater), rainfall and other loads, with the purpose of identifying and delimiting wet weather periods relevant for dynamic (network) simulation. Each job list criterion consist of a job START criterion and a job STOP criterion.

Job START criterion selects rainfall events to be included in the LTS job list, by comparing the inflow generated by all hydraulic loads to the specified part of the model (location) with the specified start-threshold value: if the threshold is exceeded continuously for at least the specified duration, the event is included in the job list. The simulation event start time is set at exactly the beginning of the identified rainfall event.

The location can be specified as an individual node, part of the system defined by a selection list or the system as the whole (General).

The START threshold value should be specified as an estimate of the hydraulic load peak just below the load that is likely to cause the operational effects of interest (e.g. overflows, inundations, activation of retention basins, etc.). By these means, many small, potentially irrelevant rainfall events are eliminated from the LTS simulation, making it feasible and time-efficient. Anyway, the specified threshold should be set sufficiently low to ensure that none of the relevant events is omitted from the simulation.

"Duration" is included in the evaluation to avoid inclusion of very short events that, despite a relatively high peak, are not likely to cause significant hydraulic effects in the system.

If multiple job list criteria are specified and activated, at least one active START criterion must be fulfilled for the event to be included in the job list.

Job STOP criterion defines the anticipated end of dynamic simulation (i.e. end-time of the simulation event). The end-time is set by comparing the inflow generated by all hydraulic loads to the specified part of the model with the specified end-threshold value: simulation end-time is set at the time when the load falls below the specified threshold and remains lower than the threshold continuously for at least the specified duration.

The simulation event end time may be extended by (optional) runtime stop criteria.

"Duration" ensures that very short drops in inflow are ignored, i.e. that the inflow load has definitely dropped below the threshold. Also, appropriately set "duration" may secure that the time offset between the actual hydraulic load and its effects in the system is included in the dynamic simulation. In the large systems including significant volumes, this offset may be quite long (e.g. emptying od a large retention basin may take many hours or even days). In such cases, instead of attempting to capture this by setting a long duration for the job list stop criterium, runtime criteria should be applied.

If multiple job list criteria are specified and activated, all active STOP criteria must be fulfilled at the simulation event end-time.

b list criteria								
ID	1			Туре	Total inflow	~		Insert
Apply								Delete
Location Location type	Gene	ral V	Job sta	hold	[m^3/s]	- Job stop	0,1 [m^3/s]	
Location			Durat		[h]	Duration	10 [min]	
-	ID	✓ ALL	✓ Clei		now selected	05		1
ID 1 1	Apply	Type Total inflow +	Location type General -	Location	Start thresho	ia (mr 3/s)	Start duration [h]	Stop threshold

Figure 9.1 The Job List Criteria Editor. LTS simulation requires definition of at least one set of job list criteria

Edit field	Description	Used or required by simulation	Field name in data structure
ID	Job list criteria iden- tifier. Up to 40 characters and case sensitive.	Yes	MUID
Туре	Controls the type of criterion to be speci- fied. In this version only "Total Inflow" can be selected	Yes	ConditionNo

Edit field	Description	Used or required by simulation	Field name in data structure
Apply checkbox	Checkbox for acti- vating or deactivat- ing a Job list criteria	Yes	ApplyNo
Location Type	For the criteria of type 'Total Inflow', it must be specified for which part of the system the inflow must be evaluated. 'Location type' can be: 'General' (the whole system), 'List' (a list of ele- ments), or 'Individual' (a single node)	Yes	LocationNo
Location	For the types 'List' and 'Individual', additional informa- tion must be speci- fied in the 'Location' field. For the 'List', a Selection List must be specified. For 'Individual', a single node name must be types or selected from the node list.	Yes, except LocationNo=1 (General)	LocationID
Job Start Threshold	Defines the thresh- old that must be exceeded in order to evaluate the job start criterion as true.	Yes	StartValue

Table 9.1	Job List Criteria editor attributes	(Table msm	LTS.Jobl istCriteria)

Edit field	Description	Used or required by simulation	Field name in data structure
Job Start Duration	Criteria of type 'Total Inflow' can option- ally be extended by specifying the dura- tion of a continuous period in which the threshold must be exceeded in order to evaluate the crite- rion as true. The Default duration is zero.	Yes	StartTime
Job Stop Threshold	Defines the lower threshold that must be achieved in order to evaluate the job stop criterion as true.	Yes	StopValue
Job Stop Duration	Specifies the dura- tion of a continuous period in which the stopping threshold must be fulfilled in order to evaluate the stop criterion as true. The Default duration is zero.	Yes	StopTime

Table 9.1	Job List Criteria editor attributes	s (Table msm_LTSJobListCriteria	a)
-----------	-------------------------------------	---------------------------------	----

9.1.3 Initial Conditions for Simulated Events

Appropriate initial conditions for the individual LTS simulation events are essential for achieving realistic statistics in hydrodynamic LTS simulations.

LTS provides two different methods for initializing the network model: The network model can either be initialized in an empty state before each job (Default), or a set of hot start files can be provided. If the latter option is used, then the specific hot start file used for a simulation event is selected based on the actual hydrological inflow to the system at the start of the event.

When applying the 'Empty system' method, the model will for all simulated events be initiated as empty, similarly as in a normal network simulation without hot start. This option is valid only for storm drainage systems where there is no water in the system during dry periods. It is not recommended to use this option in any other situation.

The method with hot start accounts for the correct initial conditions related both to the amount of infiltration and DWF load at the simulation event start time.

If a set of hot start files is provided, each hot start file must be associated with an inflow interval for total hydrological inflows. This interval is the "validity interval", meaning that the specified hot start file is valid (i.e. the file will be used) for all simulation events in the Job List where the total hydrological inflow (i.e. inflow generated by any of the hydrological models) to the network at the beginning of the actual simulation event is within that interval.

Note that for the surface runoff models, the hydrological inflows will be zero at the beginning of the simulation event in most cases. This implies that correct initial conditions may be achieved with only one hot start file, covering any possible inflow, defined as the inflow interval including zero inflow (e.g. from 0 m³/s to 10 m³/s). This hot start file is created by simulating the system loaded by any recurring (typically wastewater) loads, over at least one day.

In model setups including continuous hydrological models (RDI), multiple hot start files are needed in order to cover different infiltration levels that may occur at the start of a simulation event. E.g. if it is known that infiltration may vary between zero and 2 m³/s, a set of 4 hot start files may be prepared, covering the following infiltration intervals: $0 \rightarrow 0.5 \text{ m}^3/\text{s}$, $0.5 \rightarrow 1.0 \text{ m}^3/\text{s}$, $1.0 \rightarrow 1.5 \text{ m}^3/\text{s}$, $1.5 \rightarrow 2.0 \text{ m}^3/\text{s}$. These files are created by simulating the system loaded by any recurring (typically wastewater) loads and constant infiltration loads of $0.25 \text{ m}^3/\text{s}$, $0.75 \text{ m}^3/\text{s}$, $1.25 \text{ m}^3/\text{s}$ and $1.75 \text{ m}^3/\text{s}$, over at least one day. The infiltration loads should be distributed proportionally to the catchment area.

If the total inflow to the system at the beginning of job is outside of all specified validity intervals provided for the hot start files, the system will be initialized with the hot start file that is the closest to the actual inflow.

In order to account for diurnal inflow variations, the time-of-day at which the values from the hot start file should be used is set equal to the simulation event start time. However, the hot start date must be provided by the user. This is because the hot start file may cover two or more days, including the system filling phase. The date specified for the hot start must relate to the day following the completion of the filling phase.

Initial conditions						□ X		
C Empty sy	vstem	Use hot	start		Insert Delete			
Hot Start File	Hot Start File C:\Users\nsd\Documents\CollectionSystemMOUSE\Demo\Exam6base.resId							
	Hot start file 🛛 🗸	ALL ~	Clear Show	selected 🗌	Show data errors	1/1 rows, 0 se		
Hot start	file			Date	From [m^3/s]	To [m^3/s]		
▶ 1 C:\Users\r	nsd\Documents\Collec	tionSystemMOUSE\D	emo\Exam6base.res1d	05-02-2019	0	0		
<						>		

Figure 9.2 Initial Conditions Editor

Table 9.2 Initial Conditions editor attributes (Table msm_LTSInit)

Edit field	Description	Used or required by simulation	Field name in data structure
Empty System/Use Hotstart radio button	Radio buttons for selecting the initial conditions mode	Yes	-
Hotstart File	Specifies a hot start file to be used for the system initializa- tion in association with the specified range of total inflows (excluding DWF) detected at the beginning of certain job.	Yes, if Hotstart	HotStartFilename
From	Defines a lower threshold for total inflow intervals (excluding DWF) used at the start of each job in the Job List to evaluate what hot start parameters to use.	Yes, if Hotstart	InitFrom

Edit field	Description	Used or required by simulation	Field name in data structure
То	Defines an upper threshold for total inflow intervals (excluding DWF) used at the start of each job in the Job List to evaluate what hot start parameters to use.	Yes, if Hotstart	InitTo
Date	Specifies the date in the hot start file to be used in the search for the hot start conditions associated with the specified range of total inflows (exclud- ing DWF) detected at the beginning of a job.	Yes, if Hotstart	InitDate

Table 9.2 Initial Conditions editor attributes (Table msm_LTSInit)

9.1.4 Generating and editing Job Lists

A Job List is created based on the Job List Criteria, simulation input files, simulation period (specified in the Simulation Setup Editor, General Tab) and, optionally, the LTS initiation hot start file.

A Job List is created using the Create Job List function in the Simulation Setup Editor (Simulation Setup | LTS Tab).

The simulation periods for individual events in the resulting Job List represent the minimum simulation time (i.e. preliminary), which may be extended during run time when evaluating the Run Time Criteria.

	ation setup								□ ×
	dentification -						1 -	ĩ	^
	ID	Simulation	_15		Active project	Insert	Сору		
	Scenario	Base		~		Delete	RUN		
LTS	S Job List						1		
		10			JobList.		Edit	Generate Job List	
		ID	~ ALL		lear Show	selected Sho	w data errors	1/2 rows, 0 selec	ed
	ID		Scenario	Active Project	lear Show	selected Sho	w data errors	1/2 rows, 0 selec	
▶ 1		ID nulation_15			lear Show Catchments	selected Sho	w data errors	1/2 rows, 0 selec noff WQ (SWQ)	ed
▶ 1 2	Sin		Scenario	Active Project	lear Show	selected Sho	w data errors	1/2 rows, 0 selec	ed

Figure 9.3 Generate Job List option in the Simulation Setup Editor LTS Tab

There is no dedicated dialog available for reviewing and editing job list files. Instead, Windows Notepad is used. Alternatively, any ASCII editor can be used.

```
Sirius_LTSfeature_1_CD0001_area2Base.MJL - Notepad
                                                                                X
                                                         2
File Edit Format View Help
// Created
            : 2019-09-5 10:9:54
// DLL
               : C:\Program Files (x86)\DHI\MIKE URBAN\2019\bin\x64\pfs2004.DLL
// Version
            : 18.0.0.13246
[MIKE1D JOB LIST]
   [SIMULATION_SETUP]
      Simulation_ID = 'Sirius_LTSfeature_1_CD0001_area2'
      Scenario ID = 'Base'
      Simulation_start = 1933, 7, 22, 16, 31, 0
      Simulation end = 1934, 5, 19, 14, 50, 0
      Live_catchments = true
   EndSect // SIMULATION SETUP
   [BOUNDARY CONDITIONS]
      Catchment_source_boundaries = 'Catch_discharge'
      Global source boundaries = 'Rainfall'
   EndSect // BOUNDARY_CONDITIONS
   [LTS_SETUP]
      [INITIAL_CONDITIONS]
         Hotstart1 = 'Hot_startLTSBase.res1d', 0.005, 0.01, '2019-01-01 00:00:00'
      EndSect // INITIAL_CONDITIONS
      [JOB_START_CRITERIA]
         JL_Criterium_2 = 0.1, '00:05:00', 'SingleNode'
         JL_Criterium_1 = 0.15, '00:03:00', 'SingleNode'
      EndSect // JOB_START_CRITERIA
      [JOB_STOP_CRITERIA]
         JL_Criterium_2 = 0.02, '00:10:00', 'SingleNode'
JL_Criterium_1 = 0.02, '00:10:00', 'SingleNode'
      EndSect // JOB_STOP_CRITERIA
   EndSect // LTS_SETUP
   [SIMULATION_EVENT]
      Simulation_start = '1933-07-22 16:31:00'
      Simulation end = '1933-07-22 18:49:00'
      Simulation_end_no_duration = '1933-07-22 18:39:00'
      Hotstart_file = 'Hot_startLTSBase.res1d'
      Hotstart_time = '2019-01-01 16:31:00'
      Hotstart hydrological inflow = 0.0
      Duration = '02:18:00'
      Job number = 1
      Job_start_criterion = 'JL_Criterium_1'
Job_stop_criterion = 'JL_Criterium_2'
   EndSect // SIMULATION_EVENT
   FETMUL ATTON EVENT
```

Figure 9.4 Example Job List file

Optionally, the Job List file can be edited before starting the LTS calculation.

A job list file includes several info sections:

- SIMULATION_SETUP
- BOUNDARY_CONDITIONS
- LTS_SETUP

SUMMARY

Actual simulation events are defined in sections "SIMULATION_EVENT" (one section for each event). See example:

```
[SIMULATION_EVENT]
```

```
Simulation_sTart = '1933-07-22 16:31:00'
Simulation_end = '1933-07-22 18:49:00'
Simulation_end_no_duration = '1933-07-22 18:39:00'
Hotstart_file = 'Hot_startLTSBase.res1d'
Hotstart_time = '2019-01-01 16:31:00'
Hotstart_hydrological_inflow = 0.0
Duration = '02:18:00'
Job_number = 1
Job_start_criterion = 'JL_Criterium_1'
Job_stop_criterion = 'JL_Criterium_2'
DtMin = 10.0
DtMax = 10.0
EndSect // SIMULATION EVENT
```

Some of the parameters in the simulation event definition may be edited:

Simulation_start: defines start time of the simulation event,

Simulation_end: defines end time of the simulation event,

Simulation_end_no_duration: defines end time of the simulation event, without "duration". This is of relevance when run-time criteria are included, i.e. defines the time when evaluation of run-time criteria commences.

Hotstart_file: name of the hot start file for the actual simulation event

Hotstart_time: hot start time for the actual simulation event

DtMin: minimum time step [s] for network simulation in the actual simulation event

DtMax: maximum time step [s] for network simulation in the actual simulation event

The remaining parameters are for information only, and editing would not affect the simulation.

9.1.5 Run Time Stop Criteria

The simulation event end time may optionally be subject to further evaluation and possible extension by a set of Run Time Criteria during the simulation.

Run time Criteria are founded on the evaluation of the operational variables within the network itself, which can potentially extend the simulation beyond the end time defined in the Job List. Since the Run Time Criteria are evaluated during the simulation, it is not possible to determine the exact duration of the dynamic simulation in advance.

LTS Run Time Stop Criteria define threshold values to be evaluated during computations (i.e. run time) in order to determine the earliest time at which the simulation can be stopped without missing important information in the closing phase of the simulated event. This may include e.g. emptying of retention basins and, generally, return of the system to dry weather situation.

The following types of Run Time Stop criteria are available:

Outflow - Inflow

The threshold value represents an absolute value of a difference between the total inflow into the system and the total outflow from the system. During rain events, this difference is relatively big due to the dynamic effects in the network: outflows are normally attenuated and delayed in the network. In dry weather, this difference is typically very small and relates to the attenuation and transport time of diurnally varying wastewater loads.

This criteria is defined for the entire system only (Location = General). It is used to identify return of the system to dry weather situation.

Outflow

The threshold value represents outflow from the system at a specified location. The location can be specified as general, list and individual, separately for various types of outlets (outlets, pumps, weirs, orifices, valves).

This criterium can be used to identify return of the system to dry weather situation, end of overflow, end of pumping from a retention basin, etc.

Total volume

The threshold value represents volume of water contained in the model elements specified as location. The location can be specified as general, list and individual.

Knowing the water volume in the specified location in dry weather situation, this criterium can be used to identify return of the system to dry weather situation, completed emptying of a basin, etc.

Filling degree

The threshold value represents the filling degree (fraction of full system volume) of entire system.

This criterium can be used to identify return of the system to dry weather situation, end of overflow, etc.

Depth

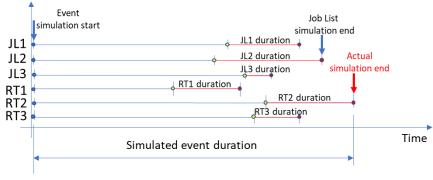
This threshold represents water depth in a node specified as location. If location is specified as List of nodes, then the highest depth in all included nodes is evaluated against the specified threshold.

This criterium can be used to identify completed emptying of a retention basin.

Local flow

This threshold represents flow at a specified individual conduit (link) or structure (weir, orifice, pump, valve) anywhere in the system, i.e. not limited to outlets.

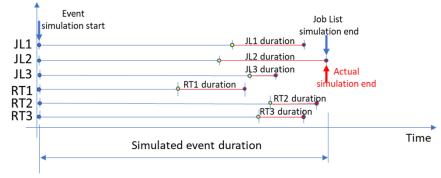
The "Duration", associated with each run time criteria, ensures that the criterium has been fulfilled continuously over the specified duration, and that it is not just a short instance in oscillating or varying variable.


The Run Time Stop Criteria for the event being simulated are evaluated throughout the simulation. As soon as some of run time criterium is fulfilled, the time counter for the specified duration is activated. The simulation will stop only after all active run time criteria are fulfilled, but never before the "Simulation_end" time specified in the job list.

For better understanding, figures below illustrate possible situations.

In the depicted example, three active job list criteria are specified (JL1, JL2 and JL3), each with different "duration" parameter. During job list generation, the LTS engine has determined the simulation start time (equal for all three criteria, if the rainfall event exceeds the thresholds specified for all three criteria). Also, the simulation end times are determined for each criterium. The latest of the three "simulation end" times (JL2) is selected and written in the job list.

During the simulation, the three run time criteria (RT, RT2 and RT3) are continuously evaluated. Whenever one of the run time thresholds has been achieved, the duration counter for that criterium is activated. The simulation continues at least until the "simulation_end". If at that time there are any run time criteria still not fulfilled (including the specified duration), the simulation will continue until all run time criteria are satisfied.


In example 1 (Figure 9.5), when the simulation reaches the "job list simulation end", the run time criterium RT2 is still not fulfilled for the specified "duration". Therefore, the simulation continues beyond the "job list simulation end" and stop only after RT2 criterium has been satisfied.

EXAMPLE 1: RUNTIME CRITERIA EXTEND THE SIMULATION TIME

In example 2 (Figure 9.6), all the run time criteria (including duration) have been satisfied before the simulation reaches the "job list simulation end". Therefore, the simulation ends at the "job list simulation end".

EXAMPLE 2: RUNTIME CRITERIA DO NOT EXTEND THE SIMULATION TIME

Figure 9.6 Run time criteria do not affect the "job list simulation end"

Run tir	me stop cr	iteria										
	entification		- 1									Insert
	ID Outlet			ΥP	e Ou	tflow	•		Delete			
Lo	cation		_					Stop Criterium				
3	Location t	ype	Gene	eral		•		Threshold		0,05	[m^3/s]	
	Location							Duration	0,0166	6667	[h]	
	_	I			La		ar	Clear	Show selected		ihow data errors	s 1/1 rows, (
	ID				AL	Location type		Location	Threshold	2012.0.2	ation [h]	, I/I rows, (
▶ 1	Outlet	Арр	νγ I▼	Type Outflow	•	General	-	-	0,05		0,01666667	
				1				- L.				

Figure 9.7 The Run Time Stop Criteria Editor

Edit field	Description	Used or required by simulation	Field name in data structure
ID	Unique name for a Run Time Stop crite- rion Each criterion is identified with a unique indentifier, which is used as a reference in the evaluation matrix.	Yes	MUID
Туре	Controls the type of criterion to be speci- fied: - Inflow-Outflow (difference between inflow and outflow), - Outflow (total outflow), - Total Volume (total volume (total volume stored in the sys- tem), - Filling degree (filling degree in the system), - Depth, - Local flow	Yes	ConditionNo
Apply checkbox	Checkbox for acti- vating or deactivat- ing a Run Time Stop Criteria set	Yes	ApplyNo

Table 9.3 Run Time Stop Criteria database attributes (Table msm_LTSRunS)

Edit field	Description	Used or required by simulation	Field name in data structure
Location Type	Defines for which part of the system the run time stop cri- teria must be evalu- ated. Location type can be: - General (the whole system), - List (a list of ele- ments), - Node, - Outlet, - Weir, - Orifice, - Pump, - Valve, - Link	Yes	LocationNo
Location	For the 'List' Loca- tion Type, a Selec- tion List must be specified. For indi- vidual element loca- tion types, a single element ID must be specified or selected from the element list.	Yes, Except for Location Type = General	LocationID
Threshold	The residual value of the variable defined by the 'Type' that must be achieved in order to evaluate the crite- rion as true	Yes	StopValue
Duration	A period in which the parameter value must be below the threshold in order to evaluate the crite- rion as true.	Yes	StopTime

Table 9.3 Run Time Stop Criteria database attributes (Table msm_LTSRunS)

9.1.6 LTS Global Parameters - Event Definitions

In terms of events statistics, MU+ LTS distinguishes events associated with extremes (maxima) of instantaneous variables (e.g. water level, discharge,

mass transport), and intermittent (i.e. discontinuous) events where accumulated values (e.g. volume, pollution mass) and durations are calculated.

In order to perform statistical analysis on extreme events (maxima), MU+ LTS analyses the respective time series and identifies independent extreme events. For instantaneous variables (e.g. water level, discharge, concentration, etc.), the event identification must consider time between consecutive extreme events and the "depth" of the local minima in order to eliminate dependent maxima and "noise" caused by numerical instabilities, a nearby pump action, etc. In other words, MU+ LTS applies two interevent criteria to identify independent extreme events:

- 1. Interevent time criterion dT_c : Two successive events (i.e. peak occurrences) are considered independent if the time between the two events is larger than dT_c . This parameter is considered for all statistics of instantaneous values, i.e. level, flow, velocity, and concentration.
- 2. Interevent level criterion p_c ($0 < p_c < 1$): Two successive events are independent if the level between the events is smaller than pc times the lower of the two events. This is a threshold for the ratio between the lowest minimum value between two peaks and the lower peak.

MU+ LTS considers two successive events as independent only if both criteria (1) and (2) are fulfilled. This means that two peaks are independent if the time between them is longer than dT_c AND if the lowest minimum between the two peaks is smaller than the value of the smaller peak multiplied with p_c .

Both for peak statistics and for accumulated flow statistics, two events are always considered as independent if the computation has been stopped in between by the specified stop criteria. Thus, specification of a very long dT - longer than any individual event to be simulated would result in the number of peak values and the number of accumulated discharges and duration corresponding exactly to the number of simulated events.

Each MU+ LTS simulation job contains at least one statistical event. In some cases, several events may be identified within one MU+ LTS Job.

The interevent time criterion dT_c is user-specified through the LTS Global Parameters editor, separately for instantaneous (Q, H, v, C) and accumulated (V, T, M) values. The interevent level criterion pc is also specified through the LTS Global Parameters editor.

Note that the default value 0.75 only removes "noise" of relatively small amplitude as well as prevents false extremes in case of a flat time series. Application of smaller values would reduce the number of identified independent events.

Note that for some variables (e.g. discharge) the specified pc applies for the actual value of the variable. In other cases, e.g. water levels, pc is applied on

local water depth, i.e. water level subtracted local invert level. In principle, all variables are offset so that the minimum possible local value is zero.

Definition of independent extreme events for instantaneous variables is illustrated in several examples below.

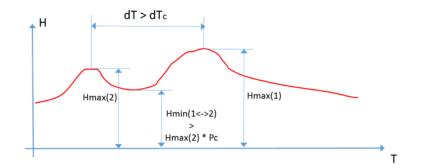


Figure 9.8 The two water level (i.e. depth) peaks in the time series are grouped under one event. The higher of the two depth peaks is clearly one extreme event in the current simulation. The other peak (Hmax(2)) is also a candidate for extreme depth event, because it occurs before the highest peak longer that the specified dTc criterion. But evaluation of the level criterion is negative - the "bottom" between the two peaks is higher that the specified criterion pc. Therefore, Hmax(2) is not considered a separate, independent event and is considered as belonging to the same event leading to the true peak Hmax(1).

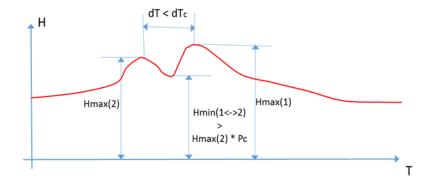


Figure 9.9 The two water level (i.e. depth) peaks in the time series are grouped under one event. The higher of the two peaks is clearly one extreme event in the current simulation. The other peak (Hmax(2)) is also a candidate for extreme depth event, but evaluation of both criteria is negative - this peak occurs too close to the highest peak and the "bottom" between the two peaks is higher that the specified criterion pc. Therefore, Hmax(2) is excluded as a separate, independent event. Rather, it is considered as belonging to the same event leading to the true peak Hmax(1).

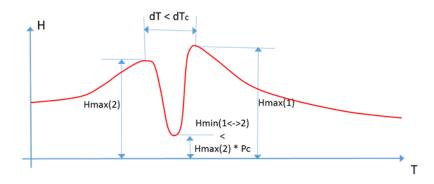


Figure 9.10 The two water level (i.e. depth) peaks in the time series are grouped under one event. The higher of the two depths (Hmax(1)) is clearly an extreme event in the current simulation. The other peak (Hmax(2)) is also a candidate for extreme depth event, but evaluation of dTc criterion is negative - this peak occurs too close to the highest peak. Therefore, Hmax(2) is excluded as a separate, independent event and is considered as belonging to the same event leading to the true peak Hmax(1).

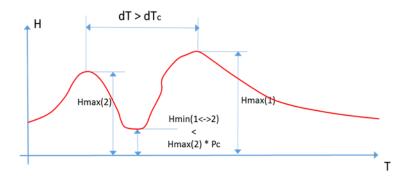


Figure 9.11 The two water level (i.e. depth) peaks in the time series are identified as two separate events. The higher of the two peaks (Hmax(1)) is clearly an extreme event in the current simulation. The other peak (Hmax(2)) is also a candidate for extreme depth event. Both criteria are evaluated positively - this peak occurs long time before the highest peak (dT > dTc) and the "bottom" between the two peaks is lower that the specified criterion pc. Therefore, Hmax(2) is also identified as a separate, independent event.

To identify intermittent events and statistics on accumulated variables (e.g. volume, duration, and mass), only the interevent time criterion dT_c applies. Consecutive independent events are separated by time intervals longer than dT_c , where the underlying instantaneous variable (e.g. discharge for volume, mass transport for mass) is below the specified threshold (default value for the threshold is zero). E.g. two overflow events (i.e. overflow spills) are considered as independent overflow events if there is zero flow between them for a time longer than dT_c .

A threshold value other than zero is relevant for inherently continuous variables, e.g. discharge in pipes: even if the pipe is empty, due to the requirements of the algorithm, a small "numeric" discharge in the pipe will be reported. In order to consider such periods as "dry", the user may want to specify a small discharge threshold other than zero.

This feature is offered via the 'LTS_DISCHARGE_THRESHOLD' parameter in the CS Engine Configuration dialog accessed through the Simulation menu ribbon.

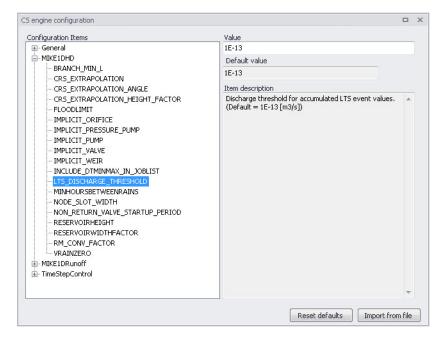


Figure 9.12 The CS Engine Configuration dialog

Override the Default value of 1E-13 for the parameter by specifying a value in the Value input box.

Examples of identifying independent events are shown in Figure 9.13.

For some statistics parameters, the number of events during a long LTS computation can be very high and the statistics result file size can grow rapidly.

Therefore, the statistical computation can be limited to a specified number of highest events, i.e. only the limited number of most significant events is included into the calculation. This is possible if the purpose of statistical calculation is to focus only on extreme events. In such a case, all insignificant events may be eliminated from the statistics as "irrelevant".

The maximum number of events must be specified within the range 1-5000.

The main parameters which control the event definition for various types of statistics are specified in the LTS Global Parameters editor (Figure 9.14).

This editor also includes parameters for controlling the LTS outputs:

- Number of events to save: limits the saved results to the specified number of the most significant (i.e. the largest) events
- Discharge and emissions statistics frequency: allows for switching between Monthly and Yearly statistic.
- Continuous DWF TS save frequency: specifies saving frequency for continuous LTS TS outputs for intervals between dynamic simulations.

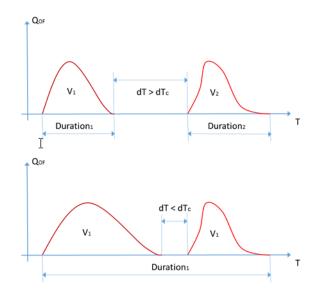


Figure 9.13 This example illustrates simulated sewer overflows occurring as two spills separated by a time period with zero flow. In the upper graph, the two spills are separated by dT which is longer than the specified dTc. In this case, MU+ LTS considers the two spills as two independent overflow events and calculates their volumes and durations separately. In the lower graph, the second spill starts shortly after the first one has stopped, i.e. within time interval shorter than dTc. In this case, MU+ LTS considers both spills as one overflow event (probably caused by the same meteorological event) and calculates the total volume and duration.

cs (Q, H, v, C)	
120	[min]
0,75	
120	[min]
100]
Yearly 🔻]
	120 0,75 120 100

Figure 9.14 The LTS Global Parameters Editor

Edit field	Description	Used or required by simulation	Field name in data structure
Interevent dT (For instantane- ous variables sta- tistics)	Interevent time criterion or minimum time interval between two peaks to consider them as inde- pendent	Yes	Dth
Interevent p (For instantane- ous variables sta- tistics)	Interevent level criterion or threshold for ration between the lowest mini- mum value between two peaks and the lower peak	Yes	Pc
Interevent dT (For accumulated variables statis- tics)	Interevent time criterion or minimum time interval between two events to consider them as inde- pendent	Yes	DtQV
Number of events to save	Number of largest events to save in the statistics results (1-5000)	Yes	EventLimit
Discharge and emissions statis- tics frequency	Choice between monthly and yearly chronological statistics	Yes	StatFrequencyNo

 Table 9.4
 LTS Global Parameters table attributes (Table msm_LTSResult)

9.2 LTS outputs

A MIKE URBAN+ LTS simulation generates result files containing timeseries and various event-based and annual statistics.

LTS outputs are defined as any other model results, i.e. by specifying the wanted result files and their contents under result specification. The specified results are then included in the actual simulation setup, as required.

LTS outputs may take the following forms:

- "Standard" TS result outputs
- Extreme event statistics (instantaneous and accumulated)
- Chronological statistics (monthly and yearly)
- Continuous TS outputs

9.2.1 Standard TS result files

Standard TS result files with default or user-specified contents may be specified as part of an LTS simulations. These are actually "normal" result files, generated by the catchment and network models.

Common for all these files is that due to long simulation periods, they tend to be quite large and care should be taken to keep the size of such LTS outputs within reasonable limits.

The default MIKE 1D result files (*.RES1D), where the computed time series for default result items are saved for entire model, may become extremely large in long-term simulations if the saving frequency is high. On the other hand, too coarse time resolution in a result file might make the saved results useless. Consequently, for simulations covering long periods, a user-specified result file with carefully defined contents will usually be of major interest.

The user-specified result file will only contain selected result items at locations of interest. This makes it especially practical for keeping LTS results sufficiently resolved and the default result file potentially unnecessary. Detailed information on the specification of the contents of user-specified result files is provided in the Result Specifications Chapter.

Runoff result file

Strictly speaking, runoff result files are not specific for LTS. A fundamental difference compared to runoff results in other types of analysis is the length of the simulation periods and, consequently, size of the file. In the context of LTS simulations, runoff result files may be used as input for job list generation and/or as boundary condition for LTS simulation. Due to highly dynamic character of surface runoff, the runoff result saving frequency must remain high during rainfall. During dry weather periods, the simulation time step and saving frequency is automatically changed to much longer "DWF" time step.

RDI model is per definition continuous, so the results will be saved continuously for the entire simulation period.

Inevitably, models many sub-catchments and long simulation periods will generate extremely large runoff result files (and, optionally, SWQ result files). If accompanied with surface pollution result files with multiple pollutants, this may become a serious problem. In order to avoid this, alternative workflow for the job list creation and LTS simulation are available (see the description of simulation workflows further ahead).

• Catchment discharge result file

Similarly, as runoff result file, in context of LTS simulations, catchment discharge result files may be used as input for job list generation and/or as boundary condition for LTS simulation. Catchment discharge normally represent slowly chaining flows (diurnal wastewater and constant infiltration, where the simulation time step and result saving frequency can be low (e.g. 1 hour) without any significant loss of accuracy. However, catchment discharge is present continuously during the simulation period. This means that models with many sub-catchments and long simulation periods will generate extremely large catchment discharge result files (and, optionally, CD WQ result files). In order to avoid this, alternative workflow for the job list creation and LTS simulation are available (see the description of simulation workflows further ahead).

Network result file

When generated by LTS simulation, network result files contain time series the specified result items for the entire model domain or for the specified locations of interest. The time series are discontinuous, i.e. results are only available during the dynamic simulation. Due to normally high result saving frequency, these results may become very large unless the specified contents is user-specified, focused to really needed results.

9.2.2 Statistics Result File

When running any simulation over a longer period, information on operational statistics is of major interest rather than on the raw time series. MIKE 1D LTS can save additional result files (*.RES1D) containing various statistics (eventbased and annual) over the individual computed time series and the system performance as a whole:

LTS Event-based Extremes Statistics (instantaneous and accumulated)

These result files contain ranked extreme values for the included result items and for the specified locations. The result items represent either extremes (peaks) of instantaneous variables (e.g. water level, discharge,

concentration) and/or accumulated values of cumulative variables (e.g. volume, mass, duration) for the statistical events identified as described elsewhere in this document. Such results are typically desired for overflows, water levels, pumps operations, etc.

• LTS Chronological Statistics (monthly and yearly)

These result files contain accumulated (monthly or yearly) cumulative variables for the specified locations in the system, sorted chronologically. Such results are typically desired for overflows and pollution emissions, pumps operations, etc.

The statistics are computed according to user specifications.

The technical background for statistical computations and the process of specifying which statistical results to save are further described in the following sections below.

9.2.3 Specification of Statistics and Result Files

LTS statistical results are stored in statistical result files (*.RES1D). As a bonus, an *.ERF file is also generated, which can be loaded in MIKE View for presentation and statistics report generation.

It is possible to combine LTS hydrodynamic simulations with pollution transport (AD) calculations. In this way, one can estimate statistics on annual or event-based pollutant loads.

The contents of the statistical result file (result items and locations) must be specified prior to an LTS simulation. Content statistics is defined through the Result Files dialog (Result Specifications| Result Files).

There are two types of LTS statistics results:

- 1. LTS Extreme Statistics. These are divided in two sub-types:
- Instantaneous values statistics. Represent instantaneous extreme (peak) values. These include:
 - Max water level. Saves ranked peak water levels.
 - Max flow. Saves ranked peak flows.
 - Max velocity. Saves ranked peak flow velocities.
 - Max concentration. Saves ranked peak concentrations for all simulated pollutants.
- Accumulated values statistics. Represent accumulated values during events.
 - Event volume. Saves ranked event-accumulated discharge.
 - Event mass. Saves ranked event-accumulated mass for all simulated pollutants
 - Event duration. Saves ranked event duration.

- 2. LTS Chronological Statistics. These have the following two sub-types:
- Individual chronological statistics. These may include accumulated discharge and pollutant mass transport in individual pipes, weirs, pumps, orifices, outlets, valves, and spilling nodes. Individual statistics imply multiple item values per file.
 - Accumulated volume. Saves individual accumulated yearly/monthly discharge in chronological order.
 - Accumulated mass transport. Save individual accumulated yearly/monthly mass flux for all simulated pollutants in chronological order.
- Global accumulated statistics of discharges and emissions. These include accumulated discharge and pollutant mass transport for ALL outlets and weirs, pumps, orifices, valves discharging out of the system, and all spilling nodes, as well as TOTAL accumulated discharge and pollutant mass transport out of the system. Global statistics imply one (i.e. TOTAL) item value per file.
 - Total accumulated volume. Saves chronological total accumulated yearly/monthly discharge.
 - Total emission. Saves chronological total accumulated yearly/monthly mass flux for all simulated pollutants.

LTS statistics result items are specified in the LTS HD Items and LTS AD Items tabs in the Result Files editor. Available statistics results items are presented in Figure 9.15, Figure 9.16, Figure 9.17 and Figure 9.18.

Result files									x
Identification									
ID	Sirius LTS chronologi	ral statistic N	lodel type	Netw	ork	~		Insert	
	Sinds_Ers_chionologi	cal_stausuc	iouer type	Netw	UTK	~		Сору	
Content type	LTS extreme statistics	; ~ F	ormat	.res1	d	~		Delete	
								Delete	
Location LTS H	HD Items LTS AD Ite	ms							
Max water	level								^
Max flow (g									
	pilling nodes)								
	surcharging nodes)								
	y (grid points)								
	me (grid points)								
	me (spilling nodes)								
	me (surcharging nodes)								
	ne (soakaway exfiltrati								
	tion (grid points)								
	tion (spilling nodes)								
	tion (surcharging nodes	;)							~
			_	_					_
L		ALL V	Clear	Insert	Delete	Сору	1/1	rows, 0 sel	ected
	Result files					Result selections			
ID		Model type	^		ID	Location type		Subset typ	e
	ault_LTS_extreme_stat	istics Network	• Y		IET_LTSC_Cop	y Save all	•	Selection	-
<			>	<					>

Figure 9.15 LTS HD Items for event-based extreme statistics in the Result Files Editor

Result fi	iles										X
- Iden ID	tification	Sirius_LTS_chronolo	gical_statistic	Mod	el type	Net	work	~		Insert	^
Cont	tent type	LTS extreme statisti	cs v	Form	nat	.res	1d	~		Copy Delete	
Locati	on LTS	HD Items LTS AD I	tems								
	Max conce										
E 1	Event load	(grid points)									
- E	Event load	(spilling nodes)									
	Event load	(surcharging nodes)									
	Event load	(soakaway exfiltratio	n)								~
<											>
		ID ~	ALL	~	Clear	Inser	t Delete	Сору	1/	1 rows, 0 sel	ected
		Result files						Result select	ions		
	ID		Mode	l type	^		ID	Location	type	Subset typ	e
10	Def	fault_LTS_extreme_st	atistics Netwo	ork	- v	▶1 .	NET_LTSC_C	opy Save all	-	Selection	-
<				3	>	<					>

Figure 9.16 LTS AD Items for event-based extreme statistics in the Result Files Editor

Result fi	iles													x
Iden	tification												_	^
ID		Default.	_LTS_chronol	ogical_statis	1	Model type	N	letwo	ork		\sim	Insert		
Cont	tent type	ITC chr	onological sta	tistics ~		=ormat		res 1d			\sim	Сору		
Com	tent type	LISCIN	onological sta	usucs v		ormat	-	esic			~	Delete		
Save a	all LTS H	ID Items	LTS AD Ite	ms										
	Total accun	nulated v	olume (out of	the system)										
	Total accun	nulated v	olume (outlet	pipes)										
	Total accun	nulated v	olume (pumps	out of the sys	tem	1								
	Total accun	nulated v	olume (weirs	out of the syste	em)									
	Total accun	nulated v	olume (orifice	s out of the sys	ster	n)								
	Total accun	nulated v	olume (valves	out of the sys	tem)								
	Total accun	nulated v	olume (spilling	nodes)										
	Accumulate	d spilled	volume (spillin	ig nodes)										
	Accumulate	d surcha	rge volume (r	odes)										
	Accumulate	d exfiltra	tion volume (soakways)										
	Accumulate	d volume	(discharge)											~
<														>
		ID	~	ALL	~	Clear	In	sert	Delete	Сору		1/1 rows, 0	sele	cted
			Result files						-	Result s	electio	ns		
	ID			Model type		Conte ^			ID	Location ty	pe	Subset type		Indivi
▶4	Default_L	TS_chron	nological_s	Network	-	LTS ch 🗸	▶ 1	. 1	NET_LTSC	Save all	-	Selection	-	Node
<						>	<							>

Result files									C	х
Identification								Trank		^
ID	Default_LTS_chrono	ogical_statis	Model type	Netw	/ork	~		Insert	_	
Content type	LTS chronological sta	atistics 🗸	Format	.res	ld	~		Сору		
								Delete		
Save all LTS H	HD Items LTS AD It	ems								_
Total emiss	sion									
Total emiss	sion (outlet pipes)									
Total emiss	sion (pumps)									
Total emiss	sion (weirs)									
Total emiss	sion (orifices)									
Total emiss	sion (valves)									
Total emiss	sion (spilling nodes)									
Accumulat	ed spilled mass (spilling	nodes)								
Accumulat	ed surcharge mass (no	des)								
Accumulat	ed exfiltration mass (s	pakways)								
Accumulate	ed mass transport									~
<										>
	ID ~	ALL	✓ Clear	Inser	t Delete	Сору		1/1 rows, 0	sele	cted
	Result files				_	Result select	tions		_	
ID		Model type	Conte ^		ID	Location type		Subset type		Indivi
▶ 4 Default_	LTS_chronological_s	Network	• LTS ch ↓	▶ 1	NET_LTSC	Save all	-	Selection	•	Node
<			>	<						>

Figure 9.18 LTS AD Items for annual/monthly statistics in the Result Files Editor

9.2.4 Applicability of LTS statistics to various types of model elements

LTS statistics output is defined by the result item type and by location. Availability of certain statistics at a specific location depends on the compatibility of the location and item type, and on the actual implementation status. A complete overview of the currently available statistics is provided in Table 9.5, Table 9.6 and Table 9.7.

Result Type	Node (Manhole, Basin)	Spilling nodes (Cover Type = Spilling)	Surcharged nodes (WL > GL)	Soakaways
Max water level	Yes	Yes	Yes	Yes
Max flow		Yes	Yes	Yes
Event volume		Yes	Yes	Yes
Event duration		Yes	Yes	Yes
Max concentration	Yes	Yes		Yes
Event load		Yes		Yes
Total accumulated volume		Yes		
Accumulated volume		Yes		
Total emission		Yes		
Accumulated mass		Yes		

Table 9.5 Statistics result types in nodes (Manholes, Basins and Soakaways)

Table 9.6 Statistics result types in links (Links and Outlet pipes)

Result Type	Link (Grid point)	Outlet (Outlet pipe)
Max water level	Yes	Yes
Max flow	Yes	Yes
Max velocity	Yes	
Event volume	Yes	Yes
Event duration	Yes	Yes
Max concentration	Yes	Yes
Event load	Yes	Yes
Total accumulated volume		Yes
Accumulated volume		Yes
Total emission		Yes
Accumulated mass		Yes

Result Type	Pump	Weir	Orifice	Valve
Max flow	Yes	Yes	Yes	Yes
Event volume	Yes	Yes	Yes	Yes
Event duration	Yes	Yes	Yes	Yes
Max concentration	Yes	Yes	Yes	Yes
Event load	Yes	Yes	Yes	Yes
Total accumulated volume	Yes	Yes	Yes	Yes
Accumulated volume	Yes	Yes	Yes	Yes
Total emission	Yes	Yes	Yes	Yes
Accumulated mass	Yes	Yes	Yes	Yes

Table 9.7Statistics results in outflow structures (Pumps, Weirs, Orifices, and
Valves leading out of the system)

9.2.5 Specifying location for LTS statistics results

LTS statistics outputs are per definition user-specified. For such (non-Default) results it must be specified for which location(s) the desired results are to be saved.

As for "normal" result files, the location type for LTS statistics can be either 'Save all' (the whole system), 'Save subset' (Selection), 'Save individual' (Location ID), or 'Save within polygon'.

If 'Save subset' or 'Save individual' is selected, supplementary information on the selection list or element ID should be specified.

Additionally, for LTS statistics some pre-defined groups can be specified as subsets, such as:

- Pipes and canals
- Manholes
- Pumps
- Weirs
- Orifices
- Valves
- Outlet nodes
- Basins
- Soakaways

tesult files										
-	LTSUserSpec		Model type	Network .res1d	•		Insert Copy Delete			
Location LTS HE	D Items L1	IS AD Items				Filter f	or pipes and	canals		
Save subset	[Pipes and canals	•			Save	User specifi	ed chainage	•	
🔘 Save individua	al 🚺	Selection Pipes and canals		B4.1520		Chaina	ige	0	[m]	
Save within po Draw on map	olygon I	Manholes Pumps Weirs Orifices Valves Outlet nodes Basins Soakways	rows, 0 RSSGeol	selected m						

Figure 9.19 Pre-defined result location subset groups

For pipes and canals, the location for saving results can be specified as:

- All grid points
- Upstream grid point
- Downstream grid point
- Both upstream and downstream grid points
- Middle grid point
- User-specified chainage. Specify the chainage in the Chainage input box.

Result files					
Identification ID Content type	LTSUserSpecified	 Model type Netwo Format .resto 		Insert Copy Delete	
Location LTS	HD Items LTS AD Items			Filter for pipes and canals	
 Save subset 	Pipes and canals	•		Save User specified chain	iage
Save individ	dual Curb inlet	-	B4.1520	Chaina All grid points (no fil Upstream grid point	
🔘 Save within	polygon Insert Delete	e 0/0 rows, 0 selected RSSGeom	l.	Downstream grid po Up- and downloadst Middle grid point	tream poi
Draw on map	X [m]	Y [m]		User specified chain	age

Figure 9.20 Grid point selector for result locations in pipes and canals

For chronological (annual/yearly) LTS statistics, the result items themselves define a subset of the model. E.g. result items "Total accumulated volume (weirs out of system)" contains statistics for accumulated volume of all weirs discharging out of the system. This filtering works jointly with the initially specified location, so that separate results of the same type can be achieved for various parts of the system. E.g. if definition of "Location" only includes weirs discharging into one of several recipients in the model area, the "Total accumulated volume (weirs out of system)" will be calculated and summed up for these weirs only.

If the same LTS statistics result type is used more than once (e.g. that the results from the above example are created for all local recipients separately and for the entire system), these need to be saved in separate result files.

9.2.6 Continuous LTS TS Outputs

Per definition, LTS network simulations generate discontinuous time series, with results available during dynamic simulation only. In the time intervals between events that are simulated dynamically, the variables values are set to zero.

At some locations in a modelled system it is advantageous to study a complete time series, also including the intervals between the dynamically simulated events. A typical example is the inflow to a WWTP.

MU LTS allows for the specification of any number of locations (links) in the system where such continuous discharge time series is generated by the system.

A continuous time series in the specified link is constructed by concatenation of the network simulation results during events and the sum of all hydraulic loads (boundaries) contributing to the flow in the specified link during interevent periods. Obviously, the flows inserted in the inter-event periods are not hydraulically correct, but only an approximation. Volumes of the inserted flows are correct, but the peak amplitudes and timings inherently include an error, as the transport time and hydraulic diffusion in the network are not accounted for.

The contributing loads are user-defined by specifying the "Location" - a set of nodes and links located upstream the specified link. All loads (boundary conditions defined as runoff input, catchment discharge, load point, lateral inflows, infiltration) associated with the included model elements will be included automatically.

Accurate definition of the model elements contributing to the flows in the specified link is solely the modeler's responsibility - the model does not check if the listed elements really contribute to the specified link discharge.

The continuous time series are saved in a network result files with the contents type "LTS continuous". As for any other LTS result file, there is no default configuration available. This means that when a continuous TS output is wanted, LTS result file with continuous output TS must be created and configured "from scratch", and finally included in the actual LTS simulation setup.

The following parameters define LTS continuous result file:

File name:	user-specified
Model Type	Network
Content type:	LTS continuous
Format	res1d or dfs0
Location (contributing to the system):	Save all Save selection Save within polygon
Location (LTS continuous output in pipe of canal):	Any link
HD items	Discharge

Identification ID Content type	Conti_LP LTS continue	ous	Model t			~		Insert Copy Delete					
	items AD I	tems											
🔾 Save all							Filter	for pipes	and car	nals —			
Save subset	t	Selection	~		LP_conti		Save	All grid	points	(no filter))	\sim	
							Chai	nage			0 [m]		
Save within	polygon			54 52 54 10									
Draw on map	polygon	Insert De		ows, 0 selected ection geometry	-			continuous		on pipe 0 0210702			
-		X [m]	Result sel	ection geometry	acted C	Insert		_	C2	0210702	.1		əlec
-	ID	✓ ALL	Result sel	ection geometry	ected [Insert		te C		0210702	-		elec
-		✓ ALL	Result sel Y [m]	ection geometry	ected [Insert		te C	C2 opy ult selec	0210702	.1	• s, 0 se	elect

Figure 9.21 Continuous LTS TS output definition

The continuous LTS TS outputs are saved with two different frequencies:

- During dynamic simulation: user-specified save frequency in "Simulation setup | Results (Default: 60 seconds)
- Inter-event intervals: user-specified save frequency in "LTS Global parameters | Continuous DWF TS save frequency" (Default = 1 hour)

9.3 LTS Computations

9.3.1 Starting an LTS computation

LTS computations are started from the Simulation Setup editor with the Long-Term Statistics (LTS) module activated in the General Tab.

inulation setup Identification ID Scenario	TutorLTS Base		Active project	Insert Co Delete RL			X
General Catcl Simulation Type Catchment Storm Catchme Cot V Vetwork (f Cong-Te Pollution MIKE	hments HD LTS R Runoff (RR) 1 Water Quality (SWQ) ant Discharge (CD) 1 ater Quarlity HD) m Simulation (LTS) 1 Transport (AD) ECO Lab (WQ) 1t Transport (ST)	esults Simulation Pe Start Duration End Description	eriod 03/01/1936 01:26:00 30 0 0 0 02/02/1936 01:26:00	[dddd][hh][mm][ss]	Boundary Info	_	
ID 1 TutorLTS	ID ID Scenario Active Prime Base Image: Scenario	oject Catch	Clear Show select Simulation setup ments Runoff(RR)	ted Show data error Stormwater runoff WQ		selected :hment Disc	:ha

Figure 9.22 LTS computation activation in the Simulation Setup dialog General Tab

9.3.2 Generating job list files

Activating the LTS module activates the Generate Job List functionality in the LTS Tab for generating a Job List file.

Identification ID TutorLTS Insert Copy Scenario Base • Delete RUN General Catchments HD LTS Results LTS Job List TutorLTSBase.MJL Edit Generate Job List ID ALL Clear Show selected Show data errors 1/1 rows, 0 selected Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Dis 1 TutorLTS Base IV IV IV Image: Clear in the setup		ion setup					
Scenario Base Delete RUN General Catchments HD LTS Results LTS Job List Tutort.TSBase.MJL Edit Generate Job List ID ALL Clear Show selected Show data errors 1/1 rows, 0 selected Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc	Ider	ntification					
General Catchments HD LTS Results LTS Job List TutorLTSBase.MJL Edit Generate Job List ID ALL Clear Show selected Show data errors 1/1 rows, 0 selected Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Dis	ID)	TutorLTS		Active project	Insert Copy	
LTS Job List TutorLTSBase.MJL Edit Generate Job List ID ALL Clear Show selected Show data errors 1/1 rows, 0 selected Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc	S	cenario	Base		•	Delete RUN	
Tutori TSBase.MJL Edit Generate Job List ID ALL Clear Show selected Show data errors 1/1 rows, 0 selected Simulation setup Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc	Gene	ral Catch	nments HD	LTS Results]		
ID ALL Clear Show selected Show data errors 1/1 rows, 0 selected Simulation setup Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc	LTS J	ob List					
Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc					TutorLTSBase.MJ	JL Edit Generate Job I	List
Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc							
Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc							
Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc							
Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc							
Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc							
Simulation setup ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc							
ID Scenario Active Project Catchments Runoff(RR) Stormwater runoff WQ (SWQ) Catchment Disc							
			ID	▼ ALL	Clear Show sel	lected 🧮 Show data errors 1/1 rows, 0 sc	elected
1 TutorLTS Base 🔽 🔽 🔽 C			ID	ALL		lected 📄 Show data errors 1/1 rows, 0 sc	elected
		ID	L		Simulation setup		
	+ 1	-	Scenario	Active Project	Simulation setup Catchments Runoff(RR)	Stormwater runoff WQ (SWQ) Catch	

Figure 9.23 LTS Tab in the Simulation Setup dialog

9.3.3 Automatic recovery of a failed LTS simulation

An LTS simulation includes many - possibly thousands - simulation events. Depending on the size of the model, complexity and the number of the requested statistical outputs, such a simulation may represent a significant computational job. With usually available hardware, a single LTS run may take hours, days or even weeks. This sets the requirements for a stable a safe completion of such simulations very high, to avoid repetitions and delays.

Likeliness for a successful completion of a simulation improves with the application of a conservatively short time steps, at the expense of the overall longer simulation time.

Anyway, it happens occasionally that one of the simulation jobs in the LTS simulation fails. In such a case, LTS will recover automatically by repeating the failed simulation with a reduced time step.

Time step for a repeated simulation is calculated as a fraction of the time step applied in the just failed simulation. This is controlled by the parameter LTS_FAILED_JOB_TIME_STEP_REDUCTION_FACTOR, found under "Simulation | CS Engine configuration".

The system will reduce the time step and repeat the simulation as many times as specified in LTS_FAILED_JOB_MAX_REDO_COUNT, also found under "Simulation | CS Engine configuration".

Any repetition due to a failed simulation will be reported in the simulation log.

If the repeated simulation was successful, the LTS computation will continue regularly.

If the simulation still fails after the maximum number of redo attempts was tried, this event will be excluded from any specified output and the LTS computation will continue regularly.

Any exclusion of a simulation event due to the simulation failure will be reported in the simulation log.

9.4 LTS Statistics Presentation

LTS results are saved in *.RES1D format. Due to specific contents and requirements for LTS result presentation, *.RES1D files containing LTS results are flagged to distinguish them from regular *.RES1D files containing ordinary result time series.

Essentially, there are two types of LTS result files:

- 1. Files containing extreme statistics (ranked extreme values) for specified variables and locations.
- 2. Files containing chronological yearly or monthly accumulated statistics for specified variables and locations.

9.4.1 Displaying Yearly/Monthly Statistics Bar Charts

Annual/monthly statistics may be displayed as bar charts.

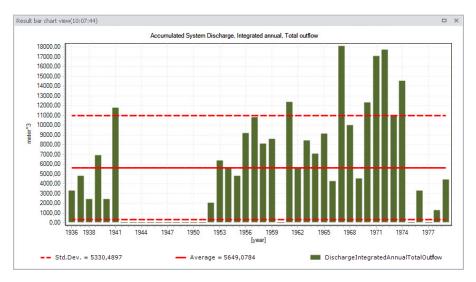
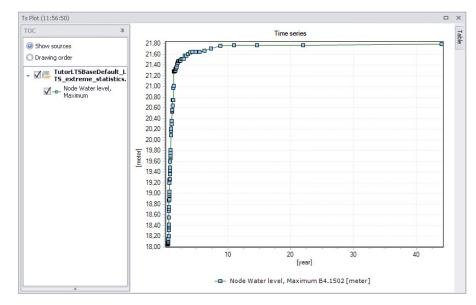


Figure 9.24 Chronological yearly statistics displayed as bar chart.

X-axis: Year axis. Yearly values are shown in case of yearly statistics. In case of monthly statistics, major tick marks are shown for years and minor tick marks for months.

Y-axis: Values axis showing with units according to type of variable for accumulated values.


Statistical information: The graph also displays the average annual/monthly accumulated (or duration) values, as well as standard deviation values plotted as line series on the graph.

The chart appearance (e.g. bar colours) may be customized.

9.4.2 Displaying Extreme Events Statistics Probability Plots

Extreme events statistics are displayed as probability plots.

X-axis: Recurrence interval in years.

Y-axis: Value units are displayed according to the type of variable plotted.

The user can modify plot data series colors, line thickness, marker type, etc.

9.4.3 User-specified "Observation Period"

"Observation Period" is calculated as the difference between the simulation end date/time and start date/time by Default. But sometimes, the simulated period is not continuously covered by boundary data and therefore these "empty" intervals do not contribute to the statistics.

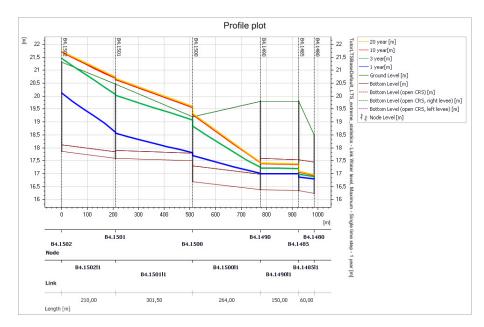
In the bar chart example in Figure 9.24, the period between 1943 and 1952 (ten years) is not covered by rainfall data and no statistics are available for these years. In some of the other years, there are no reported results in the graph, but this is due to the actual simulations, and not due to the absence of boundary data.

To compensate for missing intervals (i.e. to calculate the exceedance frequency with the correct time base), the default "Observation Period" can be overwritten by a user-specified value:

Figure 9.26 LTS Observation Period dialog

The Observation Period dialog is accessed via the "LTS user period" button in the Result Time Series window that appears when loading a result file. The option is only available for LTS extreme events statistics results.

Time period to load	1000 C		ОК
Begin: 1	03-01-1936 01:26:00		Cancel
End: 100	28-12-1979 15:21:00		Full Time
Step every: 1	LTS user pe	eriod	
V Link Water lev V Link Water lev V Weir Water lev	evel, Maximum, Time vel, Maximum vel, Maximum, Time		



9.4.4 Displaying Extreme Events Statistics in Longitudinal Profiles

Recurrence intervals of exceedance for selected variables may be displayed along a longitudinal profile.

The example below shows exceedance values for link water levels along a profile for recurrence intervals 1, 3, 10 and 20 years. These are static values and cannot be animated.

Figure 9.28 Example of link water level exceedance intervals plotted along a longitudinal profile

Exceedance values for the following variables are available for plotting along a profile:

- Maximum water level (grid points and nodes)
- Max flow (grid points, pumps, orifices, weirs, valves)
- Max velocity (grid points)
- Max concentration (grid points, pumps, orifices, weirs, valves, nodes)

After selecting the wanted variable, the exceedance values for the specified frequency are plotted for all model elements along the profile where extreme statistics are available. Intermediate values between two neighboring available values are linearly interpolated.

9.4.5 Calculating exceedance values for specified recurrence intervals

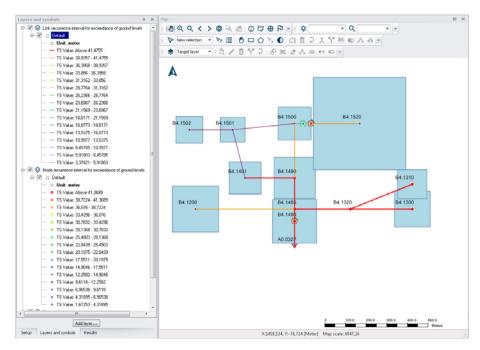
After choosing to plot exceedance values for a certain variable (e.g. water level) to a longitudinal profile plot, the user must provide the wanted recurrence interval as part of the plot specification.

The program calculates exceedance values by linear interpolation between the first available shorter recurrence interval and the first longer recurrence interval (see example below):

Number of years simulated: 15

Index (rank)	Recurrence int.	Hmax
1	15.0000	7.50
2	7.5000	7.20
3	5.0000	7.00
4	3.7500	6.70
5	3.0000	6.40
6	2.5000	6.30
7	2.1429	6.15
8	1.8750	6.10
9	1.6667	6.05
10	1.5000	6.00
11	1.3636	5.99
12	1.2500	5.97
13	1.1538	5.80
14	1.0714	5.70
15	1.0000	5.65
16	0.9375	5.50
17	0.8824	5.40
18	0.8333	5.30
19	0.7895	5.35
20	0.7500	5.34

Exceedance value for 10 years recurrence interval is calculated as (i.e. interpolation between values for the 7.5 and 15 recurrence intervals):


 $Hmax(10y) = 7.20 + (10-7.5)/(15-7.5)^{*}(7.5-7.2) = 7.30$

9.4.6 Displaying Extreme Events Statistics on the Map

MU+ can present the following results as layers on the map:

- Maximum water level exceedance in nodes and grid points for specified recurrence intervals. The values are presented in all nodes and grid points where "Max water level" statistics are available. Results in nodes are shown as point symbols, and results in grid points as line symbols.
- Maximum discharge exceedance in grid points, weirs, pumps, orifices and valves for specified recurrence intervals. The values are presented in all locations where max. discharge statistics are available. Results are shown as line symbols.

• Recurrence interval for Maximum water level exceedance of ground level in nodes and grid points. The recurrence interval is calculated similarly as in the previous section (i.e. by linear interpolation). The values are presented in all nodes and grid points where "Max water level" statistics are available.

Figure 9.29 Example maximum node and link water level exceedance recurrence interval plot on the Map

Ground levels for nodes are taken from node data. Ground levels for grid points are interpolated from the neighboring nodes.

Results are shown as point symbols at nodes. The user can control the colouring and size of the symbols.

 Recurrence interval for Maximum water level exceedance of critical level in nodes. The recurrence interval is calculated similarly as described in the previous section (i.e. by linear interpolation). The values are presented in all nodes where "Max water level" statistics and "Critical level" data are available.

Critical levels for nodes are taken from the node data in the LTS result file.

 Recurrence interval for Maximum flow exceedance of Manning discharge (i.e. full-flow discharge) in grid points. The recurrence interval is calculated similarly as described in the previous section (by linear interpolation). The values are presented in all grid points where "Max flow" statistics are available.

Manning discharge for grid points (i.e. for links) are taken from the link data in the LTS result file.

9.4.7 Generating Reports on LTS Statistics

MU+ generates LTS statistics reports for the following:

- 1. **Summary report on extreme events statistics.** This report contains tables summarizing all calculated statistics in the file, i.e. for all individual locations, variables and statistics types. Can be generated only for result files with LTS extreme events statistics.
- 2. **Detailed report on extreme events statistics.** This report contains tables detailing all calculated statistics in the file, i.e. for all individual locations, variables and statistics types. Can be generated only for result files with LTS extreme events statistics.
- 3. **Report on chronological (yearly/monthly) statistics.** This report shall contain tables with all calculated yearly/monthly statistics for all individual locations and variables (volumes, accumulated mass, durations, number of events). Can only be generated for Chronological results (with yearly/monthly statistics).

Summary report on extreme events statistics

This report includes some or all of the tables listed below. The tables included depend on the actual contents of the LTS result file and user selection.

The following fields (columns) are included in the tables:

- MUID: Location ID (always)
- Position: Distance of the grid point from upstream node (Optional, only for location type = Link)
- GL: Node ground level (Optional, only for some types of statistics in nodes)
- **T_GL**: Recurrence interval for exceedance of node ground level (Optional, only for some types of statistics in nodes)
- H_crit: Node critical level (Optional, only for some types of statistics in nodes)
- **T_Hcrit**: Recurrence interval for exceedance of node critical level (Optional, only for some types of statistics in nodes)

- **Q_full**: Link's full-flowing Q (Manning Q) (Optional, only for discharge statistics in links)
- **T_Qfull**: Recurrence interval for exceedance of link's Q_full (Optional, only for discharge statistics in links)
- **T_spill**: Recurrence interval for occurrence of spill in a spilling node (Optional, only for some types of statistics in spilling nodes)
- **T_surcharge**: Recurrence interval for occurrence of surcharge in nodes (Optional, only for some types of statistics in spilling nodes)
- **1year**: Exceedance of variable value for recurrence interval 1 year (For LTS simulations longer than 1 year)
- **2year**: Exceedance of variable value for recurrence interval 2 years (For LTS simulations longer than 2 years)
- **5year**: Exceedance of variable value for recurrence interval 5 years (For LTS simulations longer than 5 years)
- **10year**: Exceedance of variable value for recurrence interval 10 years (For LTS simulations longer than 10 years)
- **20year**: Exceedance of variable value for recurrence interval 20 years (For LTS simulations longer than 20 years)
- **50year**: Exceedance of variable value for recurrence interval 50 years (For LTS simulations longer than 50 years)
- **100year**: Exceedance of variable value for recurrence interval 100 years (For LTS simulations longer than 100 years)

	conte	rt a repo	JIC								
View											
File name:	C:\Use	rs\mikeadmin\/	AppData\Loca	al\Temp\bkhzv(gac.xml						Ехрог
Preview Da	atabase										
			100								
MIKE	UKB	AN+ re	port								
 Extr 	eme sta	tistics for !	Waterl ev	elMaximu	m (Nodes	Y.					
				eIntegrated		^					
				eMaximum							
				Duration							
				eMaximum eIntegrated							
				eDuration							
				elMaximu							
				elntegrated							
				eMaximum							
				Duration							
				cityMaxim /elMaximu							
				eintegrate							
				eMaximum							
				Duration							
				elMaximu							
				elntegrated eMaximum							
				Duration							
	onio sia	150051011	bischarg	bulution	(1101137						
Extreme	e statis	tics for	WaterL	evelMax	imum (Nodes)					
MUID		T_GL	H_crit	T_Hcrit	1 year	2 years	5 years	10 years	20 years	50 years	100 years
MOID	[sec]	[years]	[sec]	[years]	[sec]	[sec]	[sec]	[sec]	[sec]	[sec]	[sec]
MOID			15,5		-1E-35	-1E-35	-1E-35	-1E-35	-1E-35		
A0.0327	17,2					19,238	20,19	20,308	20,353		
	17,2 19,9	2,629	18,9	1,5065	18,092	19,230	20,15		20,000		
A0.0327		2,629	18,9 18,9	1,5065	18,092 17,722	17,766	17,83	17,865	17,874		
A0.0327 B4.1200	19,9	2,629		1,5065							

Figure 9.30 Example report on extreme statistics for water level in nodes

Detailed report on extreme events statistics

This report provides full detail of all extreme events statistics available in the LTS result file. The total number of tables corresponds to the number of available statistics types multiplied by the actual number of locations for each type of statistics.

The header of the report document has a list of hyperlinks for available statistics.

View and		
File name:	C:\Users\mikeadmin\AppData\Local\Temp\\52wgpfd.xml	Export
Preview Da	tabase	
MIKE	URBAN+ report	(≡
	·	
	eme statistics for WaterLevelMaximum (Nodes) eme statistics for DischargeIntegrated (Nodes)	
	eme statistics for DischargeMaximum (Nodes)	
 Extr 	eme statistics for DischargeDuration (Nodes)	
 Extr 	eme statistics for DischargeDuration (Nodes) eme statistics for SurchargeMaximum (Nodes)	
• Extr	eme statistics for DischargeDuration (Nodes) eme statistics for SurchargeMaximum (Nodes) eme statistics for SurchargeIntegrated (Nodes)	
 Extr Extr Extr 	eme statistics for DischargeDuration (Nodes) eme statistics for SurchargeMaximum (Nodes) eme statistics for SurchargeIntegrated (Nodes) eme statistics for SurchargeDuration (Nodes)	
 Extr Extr Extr Extr 	eme statistics for DischargeDuration (Nodes) eme statistics for SurchargeMaximum (Nodes) eme statistics for SurchargeIntegrated (Nodes) eme statistics for SurchargeDuration (Nodes) eme statistics for WaterLevelMaximum (Links)	
 Extr Extr Extr Extr Extr 	eme statistics for DischargeDuration (Nodes) eme statistics for SurchargeMaximum (Nodes) eme statistics for SurchargeIntegrated (Nodes) eme statistics for SurchargeDuration (Nodes)	

Figure 9.31 Report header hyperlinks

Report on chronological (yearly/monthly) statistics

This report includes tables according to the actual contents of the LTS chronological (yearly/monthly) statistics result file and user selections.

/iew and convert a report			
View			
File name: C:\Users\mikeadmin\AppData\Local\Temp\4gz	tqbwe.xml		··· Export
Preview Database			
MIKE URBAN+ report			
 Annual statistics for Node 'A0.0327' 			
 Annual statistics for Node 'B4.1200' 			
 Annual statistics for Node 'B4.1300' 			
Annual statistics for Node 'B4.1310'			
 Annual statistics for Node 'B4.1320' Annual statistics for Node 'B4.1480' 			
Annual statistics for Node 'B4.1485'			
 Annual statistics for Node 'B4.1490' 			
 Annual statistics for Node 'B4.1491' 			
 Annual statistics for Node 'B4.1500' 			
 Annual statistics for Node 'B4.1501' Annual statistics for Node 'B4.1502' 			
Annual statistics for Node 'B4.1502' Annual statistics for Node 'B4.1510'			
 Annual statistics for Node 'B4.1520' 			
Annual statistics for Node 'A0.0327'			
Year	No. of events	Total duration	Total Volume
	[0]	[se c]	[m^3]
Observation period[years]			43
Mean	2,8372	13,13	5548,1
Std. Deviation	2,3022	12,271	5258,8
1936	2	7,7573	3278
1937	3	17,356	4829,7

The number of tables in the report is a multiple of the number of included (and selected) table types and locations.

The following fields are included in the tables:

- Year: (Always) Actual year. The first row in the table contains the first year of simulation, and the last row contains the last year of the simulation. Intermediate rows contain the simulated years in growing order.
- **Month**: (Optional, only if monthly statistics). Actual month. The first row in the table contains the first month of simulation, and the last row contains the last month of the simulation. Intermediate rows contain the simulated months in growing order, repeating from 1 to 12 each year.
- **No. of events**: (Optional, only for individual locations). Count of events identified in the current year/month.
- **Total Duration**: (Optional, only for individual locations). Accumulated duration of all events in the current year/month.
- **Total Volume**: (Optional, if volume statistics are available and selected for this type of location). Accumulated volume for all events in the current year/month.

• **Total mass (Component xx)**: (Optional, if pollutant mass statistics are available and selected for this type of location). Accumulated pollutant mass for all events in the current year/month. NOTE: This column shall be repeated for each AD component included in the simulation.

9.5 LTS Workflows

Setting up and running LTS simulations is a modelling task that requires a thorough understanding of the LTS concepts and solid modelling skills. The following descriptions of the complete workflows and advices on individual steps complement the technical information provided in the previous chapters.

A typical LTS workflow includes the following steps:

- Preparation of an LTS model setup
 - Set-up and calibration of a collection system model (catchments + network)
 - Choice of the simulation period, preparation of the LTS catchment boundary time series and definition of the LTS catchment model boundary condition
 - Definition of job list criteria
 - Definition of runtime stop criteria (optional)
 - Preparation of hot start files and definition of initial conditions for LTS simulation events (optional)
 - Review and modification (optional) of LTS global parameters
 - Definition of LTS outputs
 - "Standard" result outputs
 - Extreme event statistics (instantaneous and accumulated)
 - Chronological statistics (monthly and yearly)
 - Continuous TS outputs
- Setting-up and execution of an LTS simulation
 - Set-up and execution of the catchment model simulation (runoff and catchment discharge)
 - Creating a job list
 - Set-up and execution of the network LTS simulation
- Review, analysis and presentation of LTS results

The steps in the LTS workflow are described in the following chapters.

9.5.1 Preparation of an LTS setup

Set-up and calibration of a collection system model

This step is identical as for any other collection system model. I.e. the model shall be set-up and calibrated, following a good modelling practice and calibration principles.

The model stability shall be tested by simulating high-intensity rainfall events (historical or synthetic) so that an appropriate simulation time step for the LTS simulation can be determined: a shorter time step contributes to the simulation stability but may compromise the simulation efficiency.

Choice of the simulation period, preparation of the LTS catchment boundary time series and definition of the LTS catchment model boundary condition

An LTS simulation normally covers long historical periods, ranging from several years to several decades (10-30 years). Duration of the simulation period may be limited by the purpose of the LTS study and, often, by the limited availability of reliable historical rainfall time series. A longer simulation period is to be preferred, as it creates a better foundation for the statistical analysis.

The applied rainfall time series should be as complete as possible. Application of a time series with frequent drop-out events may generate misleading statistical results.

If the rainfall time series includes events known to be recorded incorrectly or if such events have been removed from the time series, they should be replaced by correctly recorded rainfall at the given time at a nearby rain gauge (if available).

Any selected rainfall time series (one or several) shall be included as the catchment model rainfall boundary condition. If the hydrological simulation includes RDI model, then the potential evapotranspiration time series for the model area, covering the LTS simulation period shall also be provided as boundary condition. Similarly, where relevant, air temperature time series must be provided to support the simulation of snow accumulation/snow melt processes.

Definition of job list criteria

At least one job list criterium shall be specified. Otherwise, any number of job list criteria may be specified.

The specified START threshold shall be defined so that any event of relevance for the actual analysis is included in the LTS job list. A too high threshold value may cause important loss of information (i.e. exclusion of events that contribute to the statistics. On the other hand, a too low threshold means

inclusion of many, potentially insignificant events in the LTS job list, which may compromise the efficiency of the LTS simulation.

A good guideline for the threshold value may be intensity of specific runoff (LT⁻¹), i.e. runoff per unit area. E.g. if it is known that overflows are likely to occur if the specific runoff exceeds certain intensity, the threshold may be calculated based on the total catchment area connected to the specified location.

"Duration" depends greatly on the specified location (size of the connected catchments). Small catchments may generate very short runoff peaks associated with spikes in recorded rainfall. Specifying a longer "duration" may eliminate such events from the LTS simulation.

The specified END threshold should reflect a situation when the inflow is low enough to be considered as insignificant for the processes of interest. Usually, it can be defined as a fraction of the START threshold (e.g. 10%). To ensure that the delayed hydraulic effects in the network are included in the simulation, appropriate "Duration" is specified. This depends on the size of the system, emptying time of the retention basins, etc.

Note that a better and a more precise way to control the END of the event simulation is by means of runtime criteria.

Definition of runtime stop criteria (optional)

It is recommended to apply run time stop criteria, as this is much more precise method to control the end of the event simulation than job list stop criteria. Precisely specified runtime stop criteria will result in the shortest total simulation time, without any loss of important information due to prematurely ending event simulations.

Preparation of hot start files and definition of initial conditions for LTS simulation events (optional)

Realistic initial conditions for the LTS simulation must be provided in order to achieve correct results. The following cases should be considered:

• Storm drainage system loaded by a surface runoff model

It is assumed that the system is empty in dry weather. The runoff model generates intermittent runoff loads associated with rainfall events.

Appropriate initial conditions for such a setup are "empty system", i.e. no hot start file is required.

• Wastewater and/or combined drainage system with some dry weather loads and runoff loads generated by a surface runoff model

In dry weather, the system carries dry weather loads, typically wastewater. At the beginning of rainfall event, hydrological load is zero. Appropriate initial conditions for such a setup is with a single hot start file, created with dry weather loads only. The hot start file shall include at least one day of dry weather flows, excluding the filling phase. This can be achieved either running the DWF hot start simulation over two or several days, until a fully stationary (repetitive) situation is established.

 Wastewater and/or combined drainage system with some dry weather loads and runoff loads generated by RDI runoff model (continuous infiltration)

In dry weather, the system carries dry weather loads, typically wastewater, and some infiltration load. At the beginning of rainfall event, the hydrological load (i.e. infiltration) may have a different scale, depending on previous hydrological events, season, etc.

Appropriate initial conditions for such a setup are established with several hot start files, created with dry weather loads and a constant infiltration component. The hot start files shall cover the expected range of possible infiltration in uniform intervals. The hot start files shall include at least one day of dry weather flows, excluding the filling phase. This can be achieved either running the DWF hot start simulation over two or several days, until a fully stationary (repetitive) situation is established.

When a hot start file (or files) is/are prepared, initial conditions for the LTS event simulations shall be specified in the dedicated "LTS initial conditions editor".

Review and modification (optional) of LTS global parameters

Default values for LTS global parameters represent a reasonable choice for the most case. It is, however, a good idea to review the global parameters and consider modifications, if it deems appropriate for the actual LTS setup.

Definition of LTS outputs

Depending on the specific requirements, LTS output files should be specified and included in the actual simulation setup.

9.5.2 Setting up and executing LTS simulations

After the LTS model has been set-up according the previous steps, the LTS simulation itself must be set-up and executed.

Several alternative workflows for running LTS simulations are available. These are described and commented in the following.

"Classic" LTS workflow

Running LTS simulation in a "Classic" LTS workflow includes three steps as described and illustrated below.

- STEP 1: Running runoff and catchment discharge (optional) simulation. This a "normal" catchment simulation, except that it runs over long historical periods.
 - Rainfall boundary condition(s) and, optionally, evapo-transpiration, temperature and SWQ boundary condition(s) must be specified for the entire simulation period and activated.
 - Catchment discharge boundary condition(s) (optional dry weather flow) must be specified for entire simulation period and activated.
 - Set-up a catchment simulation with runoff and catchment discharge (optional) included. Simulation must include at least the period to be included in the LTS simulation.
 - Define adequate simulation time step for runoff and catchment discharge simulations
 - Result files for runoff and catchment discharge shall be included in the simulation. They must include results for all catchments, saved with the frequency enough to resolve the simulated dynamics. For surface runoff, saving frequency is typically 60-300 seconds, for RDI 1- 12 hours and for catchment discharge 1 hour.
 - Start the catchment model simulation by pressing "RUN"

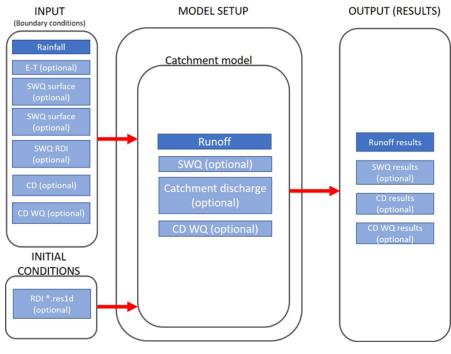


Figure 9.33 "Classic" workflow - STEP1

- STEP 2: Create job list
 - Set-up a network simulation and include LTS. The simulation period shall extend over the wanted historical period (inside the available rainfall boundary data).
 - Create and activate boundary conditions of the type "inflow from file" with simulated runoff and catchment discharge
 - In the HD TAB of the simulation setup editor define the network model simulation time step. Make sure that the specified time step is adequate for the actual model
 - In the LTS TAB of the simulation setup editor press "create job list" button. This will initiate the job list creation process. A job list file *.jlf will be created in the actual project directory. The file's name includes the actual simulation job name.
 - Upon completed job list creation, load the job list file into the simulation setup by opening the file browser (...) and picking the *.jlf file. Open the file to review and (optionally) manually modify its contents (e.g. change time step for some known extreme event). Make sure that all included boundary conditions are OK. Pay attention to the reported overall number of simulation jobs (event) and total duration of the simulation. If this deviate significantly from expectation, review and modify the job list criteria and repeat job list creation. Finally, close and save (optionally) the *.jlf file.

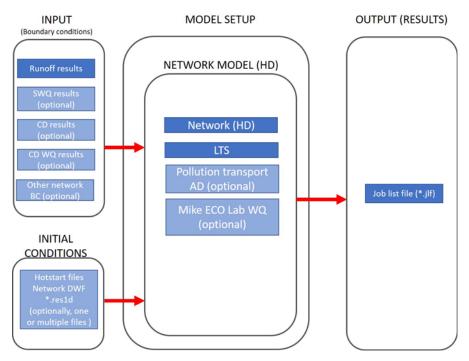


Figure 9.34 "Classic" workflow - STEP2

- STEP 3: Running LTS network simulation
 - Include the wanted output files in the simulation setup. All LTS outputs (except ASCII version for computed statistics *.ERF) are optional. The output will typically include LTS extreme statistics and LTS chronological statistics. LTS continuous output and "standard" network result files may be added if such outputs are wanted.
 - Start the network LTS simulation by pressing "RUN". Depending on the size of the model, length of the simulation period, number of specified statistics and the available hardware, this simulation may take a long time.

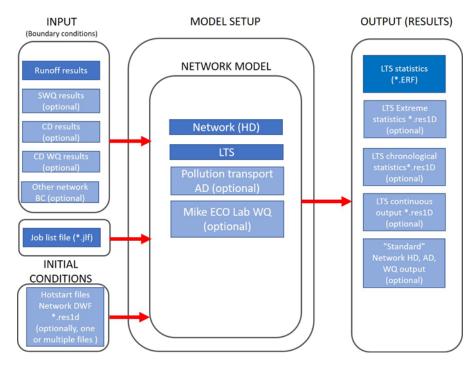
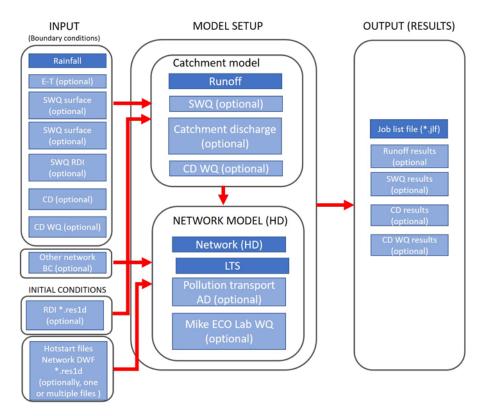


Figure 9.35 "Classic" workflow - STEP3

Disadvantage of this workflow is its inefficiency and generation of large intermediate result files (runoff and catchment discharge) with the sole purpose to provide input to the network LTS simulation.


Integrated 2-step LTS workflow

This workflow includes two steps as described and illustrated below.

 STEP 1: Create job list "on the fly" i.e. simultaneously with runoff and catchment discharge simulations

- Set-up an integrated catchment &network simulation, including runoff and catchment discharge, as well as LTS. The simulation period shall extend over the wanted historical period (inside the available rainfall boundary data).
- Define adequate simulation time step for runoff and catchment discharge simulations
- In the HD TAB of the simulation setup editor define the network model simulation time step. Make sure that the specified time step is adequate for the actual model
- Rainfall boundary condition(s) and, optionally, evapotranspiration, temperature and SWQ boundary condition(s) must be specified for the entire simulation period and activated.
- Catchment discharge boundary condition(s) (if dry weather flow included) must be specified for entire simulation period and activated.
- Any existing network boundary condition (inflow from file) representing runoff and/or catchment discharge shall be de-activated or removed.
- No result files should be specified, as we want to avoid large intermediate result files. However, if wanted, result files for runoff and catchment discharge can be included in the simulation.
- In the LTS TAB of the simulation setup editor press "create job list" button. This will initiate the job list creation process. A job list file *.jlf will be created in the actual project directory. The file's name includes the actual simulation job name.
- Upon completed job list creation, load the job lit file into the simulation setup by opening the file browser (...) and picking the *.jlf file. Open the file to review and (optionally) manually modify its contents. Make sure that all included boundary conditions are ok. Pay attention to the reported overall number of simulation jobs (event) and total duration of the simulation. If these outcome deviates significantly from expectation, review and modify the job list criteria and repeat job list creation. Finally, close and save (optionally) the *.jlf file.

Figure 9.36 2-step integrated simulation workflow - STEP1

- STEP 2: Running integrated LTS catchment and network simulation
 - Include the wanted output files in the simulation setup. These will typically include LTS extreme statistics and LTS chronological statistics. Optionally, LTS continuous output and "standard" network result files may be added.
 - Start the integrated catchment and network LTS simulation by pressing "RUN". Depending on the size of the model, length of the simulation period, number of specified statistics and the available hardware, this simulation may take a long time.

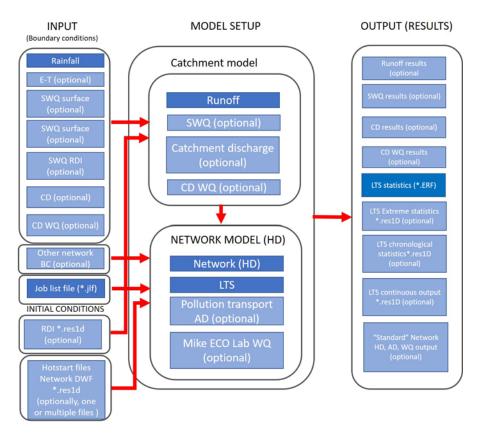


Figure 9.37 2-step integrated simulation workflow - STEP2

Advantage of this LTS workflow is its relative simplicity and avoiding creation of large runoff and catchment discharge result files.

Integrated simulation single step LTS workflow

This workflow executes the LTS simulation in a single step as follows:

- Set-up an integrated catchment &network simulation, including runoff and catchment discharge, as well as LTS. The simulation period shall extend over the wanted historical period (inside the available rainfall boundary data).
- In the "Catchments" TAB of the simulation editor, define adequate simulation time step for runoff and catchment discharge simulations
- In the "HD" TAB of the simulation setup editor define the network model simulation time step. Make sure that the specified time step is adequate for the actual model
- In the "LTS" TAB of the simulation setup editor, make sure that the job list file field is empty.

- Rainfall boundary condition(s) and, optionally, evapotranspiration and temperature boundary condition(s) must be specified for the entire simulation period and activated.
- Catchment discharge boundary condition(s) (dry weather flow) must be specified for entire simulation period and activated.
- Any network boundary condition (inflow from file) representing runoff and/or catchment discharge shall be ad-activated or removed.
- Include the wanted LTS output files in the simulation setup. These will typically include LTS extreme statistics and LTS chronological statistics. Optionally, LTS continuous output and "standard" network result files may be added
- No result files for the runoff and catchment discharge models should be specified. However, if wanted, result files for runoff and catchment discharge can be included in the simulation.
- Start the integrated catchment and network LTS simulation by pressing "RUN". Starting an LTS simulation without specified job list file, will trigger the single-step LTS simulation. Depending on the size of the model, length of the simulation period, number of specified statistics and the available hardware, this simulation may take a long time. This simulation will create a job list "on the fly" and apply it for the LTS network simulation.

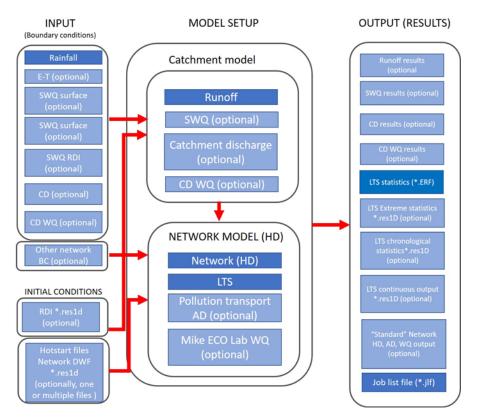


Figure 9.38 Single step integrated simulation workflow - STEP2

This workflow is the simplest and most efficient. Disadvantage is that it does not allow for review and optional editing of the job list file. Therefore, it is recommended for relatively simple LTS setups or for repeated LTS simulation with minor modifications of the LTS setup.

9.6 Controlling the LTS computations

In addition to data and parameters supplied through the general model setup and LTS editors, several engine parameters are available for controlling and adjusting the default performance of the LTS computation.

These parameters can be accessed through "CS engine configuration" dialog

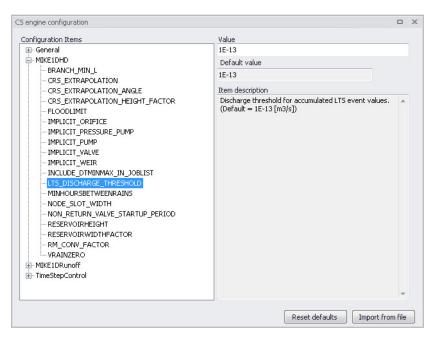


Figure 9.39 LTS engine parameters can be modified through "CS engine configuration"

9.6.1 INCLUDE_DTMINMAX_IN_JOBLIST

When value of INCLUDE_DTMINMAX_IN_JOBLIST is "ON", the job list generator will include lines with minimum and maximum timestep in each simulation event definition (see example below):

```
[SIMULATION_EVENT]
Simulation_start = '1933-07-22 16:31:00'
Simulation_end = '1933-07-22 18:49:00'
Simulation_end_no_duration = '1933-07-22 18:39:00'
Hotstart_file = 'Hot_startLTSBase.res1d'
Hotstart_time = '2019-01-01 16:31:00'
Hotstart_hydrological_inflow = 0.0
Duration = '02:18:00'
Job_number = 1
Job_start_criterion = 'JL_Criterium_1'
Job_stop_criterion = 'JL_Criterium_2'
DtMin = 10.0
DtMax = 10.0
EndSect // SIMULATION EVENT
```

By "manually" editing these parameters for individual simulation events, user can ensure that e.g. a particularly difficult rain event is simulated with shorter time steps than generally specified.

Possible values: ON (writes DTmin and DTmax in the job list) OFF (does not write DTmin and DTmax in the job list)

Default value: OFF

9.6.2 LTS_DISCHARGE_THRESHOLD

This parameter controls the definition of statistical intermittent events for accumulated variables (discharge, mass transport) in network conduits.

Per definition, discharge and mass transport events (duration, volume and accumulated mass) are delimited by the events start time and end time.

Due to "numerical water" in empty conduits, discharge and, possibly, mass transport is never zero during a simulation. Accordingly, without a specified threshold discharge (or specified very low, i.e. smaller than expected "numerical" discharge), every simulated accumulated event in a conduit would have duration equal to the simulation period, and the accumulated volume and/or mass would include numerical water and mass. The two consecutive discharge events, even they are sufficiently separated (dT > Interevent dT) would be reported as a single event. The effect of correctly/incorrectly specified LTS_DISCHARGE_THRESHOLD is illustrated in Figure 9.40:

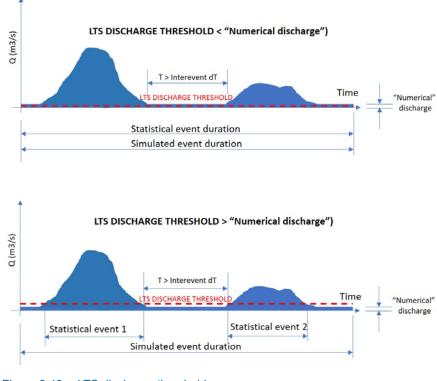


Figure 9.40 LTS discharge threshold

Possible values: any positive value

Default value: 10-13 [m3/s]

9.6.3 LTS_FAILED_JOB_MAX_REDO_COUNT

This parameter is related to the automatic recovery of failed jobs during an LTS simulation. It specifies how many times a failed job may be re-simulated with a shorter time step.

Possible values: 0, 1, 2, 3, 4, 5...

Default value: 1

Note: Time step for an LTS simulation should be specified so to ensure a stable and accurate simulation of the most intensive events included in the LTS simulation. Re-simulating accidentally failed jobs with a shorter time step should be considered as exception.

9.6.4 LTS_FAILED_JOB_TIME_STEP_REDUCTION_FACTOR

Likewise LTS_FAILED_JOB_MAX_REDO_COUNT, this parameter is related to the automatic recovery of failed jobs during an LTS simulation. It specifies how much the simulation time step shall be reduced in the following attempt to simulate a failed job..

Possible values: 0 < LTS_FAILED_JOB_TIME_STEP_REDUCTION_FACTOR < 1..

Default value: 0.5

9.6.5 LTS_JOBLIST_CREATOR_TYPE (0/1)

This parameter controls the process of job list creation, with focus on speed or accuracy.

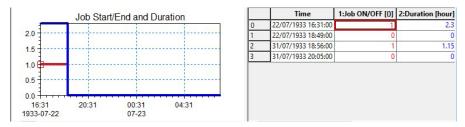
Choice of possible values (0 or 1) has the following effects:

- LTS_JOBLIST_CREATOR_TYPE = 0
 Calculates the inflows used by job list criteria only when it is raining. This
 effectively skips potential jobs where boundary inflow other than rainfall
 satisfies a job start condition, but there is no active rain. This contributes
 to the job list creation efficiency, as wet periods typically represent a
 smaller part of the simulated period.
- LTS_JOBLIST_CREATOR_TYPE = 1 Calculates the inflow continuously, i.e. also during periods without rainfall. This option is relevant in cases when the model includes significant intermittent inflows which are not directly related to the local rainfall. This slows down the process of job list creation.

Possible values: 0 (calculates inflow only during rain) 1 (calculate inflows continuously)

Default value: 0

9.6.6 LTS_JOB_LIST_DFS0 (Off/On)


When this parameter is set to "On", the LTS job list creation process generates a *JobStartEnd.dfs0 file containing the following time series items:

Job ON/OFF (): 1 (job = ON); 0 (job = OFF)

Duration (hours): Simulation job duration

An example of such file shown in figure below:

Possible values: On (create *.JobStartEnd.dfs0 file) Off (do not create *.JobStartEnd.dfs0 file)

Default value: Off

9.6.7 LTS_JOB_LIST_INFLOW_TIMESERIES (Off/On)

When this parameter is set to "On", the LTS job list creation process generates a *BaseJobCriteriaInflow.dfs0 file containing the time series of inflows into the system, used in the evaluation of job list criteria. I.e. the file includes as many time series as there are job list criteria in the actual LTS setup.

The time series are created by summing up all inflows (catchment discharges, runoff, infiltration, any other lateral inflow) connected to the specific location (Individual), part of the system (List, defined by a selection) or to the whole system (General).

Figure 9.42 below illustrates example with two job list criteria. The time series are intermittent, i.e. only contain inflow discharges for the period during the simulation jobs.

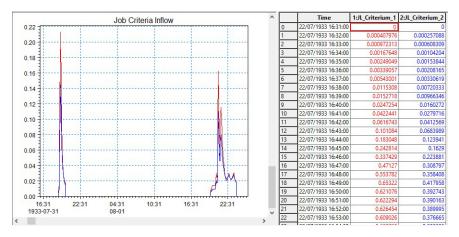


Figure 9.42 Example of dfs0 file with inflow time series associated with two job list criteria

Possible values:

On (create *.BaseJobCriteraInflow.dfs0 file) Off (do not create *.BaseJobCriteraInflow.dfs0 file)

Default value: Off

9.6.8 LTS_TIME_BEFORE_JOB_CATCHMENT_DISCHARGE

This parameter controls the running of catchment discharge model in the dry periods between simulated events, during a "live" run of catchment and network model in an LTS simulation.

When running the catchment discharge model (typically generating wastewater inputs to the network) and the network model simultaneously in an LTS simulation, the catchment discharge model may be set to run only during the network simulation, or it can be specified to start running several days before the start time of the network simulation. Ultimately, the catchment discharge model can be set to run continuously.

Purpose of stopping the catchment discharge simulation between LTS simulation events is to minimize the simulation time and size of the catchment discharge result file. As catchment discharge establishes insta9bntaneously,

default setting is "0", i.e. the catchment discharge simulation will start exactly at the same time as the network simulation.

Possible values:	-1	catchment discharge simulation runs continuously between events
	0	catchment discharge simulation starts at the same time as network simulation
	N (1,2,3,)	catchment discharge simulation starts N days before the network model simulation
Default value:		0

9.6.9 LTS_TIME_BEFORE_JOB_NAM

This parameter controls the running of RDII (NAM) hydrological model in the dry periods between simulated events, during a "live" run of catchment and network model in an LTS simulation.

When running the RDII hydrological model (generating continuous hydrological inputs to the network) and the network model simultaneously in an LTS simulation, the RDII model may be set to start running a number of days before the network simulation or, ultimately, the RDII model can be set to run continuously. The latter option is preferred, because RDII model simulates slow hydrological processes and only a continuous simulation between LTS events ensures correct results.

Possible values:	-1	RDII simulation runs continuously between events
	0	RDII simulation starts at the same time as network simulation
	N (1,2,3,)	RDII simulation starts N days before the network model simulation
Default value:		1

9.6.10 LTS_TIME_BEFORE_JOB_SURFACE

This parameter controls the running of any surface runoff model in the dry periods between the simulated events, during a "live" run of catchment and network model in an LTS simulation.

When running a surface runoff model (typically generating storm runoff inflows to the network) and the network model simultaneously in an LTS simulation, a surface runoff model may be set to run only during the network sim-

ulation, or it can be specified to start running a number of days before the start time of the network simulation. Ultimately, the surface runoff model can be set to run continuously.

Purpose of stopping a surface runoff simulation between LTS simulation events is to minimize the simulation time and size of the runoff result file. However, this must be done with a due care to avoid incorrect simulation. Models involving processes which depend on significant "hydrological memory" (e.g. infiltration) may need to be run before the actual start of the network simulation, in order to capture the effects of small rainfall events not included in the LTS job list.

Possible values:	-1	Surface runoff simulation runs continuously between LTS events
	0	Surface runoff simulation starts at the same time as network simulation
	N (1,2,3,)	Surface runoff simulation starts N days before the network model simulation
Default value:		1

9.6.11 MINHOURSBETWEENRAINS

This parameter allows to consider consecutive recorded rainfalls, separated by relatively short dry intervals, as one continuous rainfall event. This may affect the start time of an LTS job (it is set to the rainfall start time) in cases when a rainfall event included in the LTS job list is preceded by a small, lowintensity rainfall. This is illustrated in figures below.

If the preceding small rainfall is separated from a large rainfall event by a **dry interval longer than the specified MINHOURSBETWEENRAINS**, the two rainfalls are considered as two separate events. The small rainfall is ignored as it generates the inflow to the system smaller than the threshold specified by any of the job list START criteria. The big rainfall is included in the job list (it exceeds the threshold discharge for the time longer than the specified duration, for at least one of the job list START criteria. The start time for the simulation is set to the start of the big rainfall event.

The end of the job list event is set to the time when the inflow drops below the specified threshold for the time longer than the specified duration, for all specified job list STOP criteria.

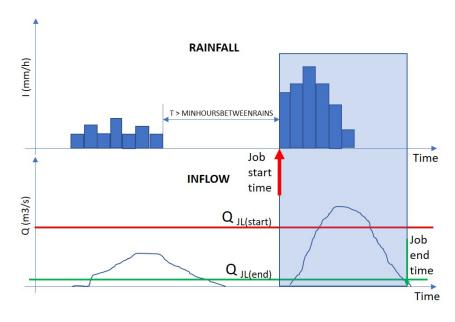


Figure 9.43 Definition of event start for rainfall events separated by a long dry interval

If the preceding small rainfall is separated from a large rainfall event by a d**ry interval shorter than the specified MINHOURSBETWEENRAINS**, the two rainfalls are considered as one continuous event. The small rainfall is included in the simulation, as it is treated as part of the big event. The joint rainfall event is included in the job list (it exceeds the threshold discharge for the time longer than the specified duration, for at least one of the job list START criteria. The start time for the simulation is set to the start of the joint rainfall event, effectively at the beginning of the small rainfall.

The end of the job list event remains unaffected, it is set to the time when the inflow drops below the specified threshold for the time longer than the specified duration, for all specified job list STOP criteria.

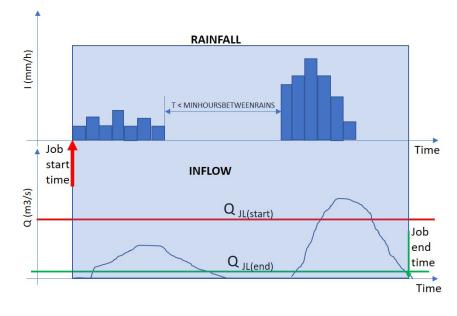


Figure 9.44 Definition of event start for rainfall events separated by a short dry interval

10 Water Quality

MIKE URBAN+ provides several modules for the simulation of and water quality for both urban catchments surfaces and sewer systems. Since pollutants are carried by sediment, sediment transport process and water quality in sewer systems are closely interconnected. This is important for understanding phenomena like the first flush effect, which can only be simulated with a description of the temporal and spatial distribution of sediment deposits on the catchment surface and in the sewer system. MIKE URBAN+ can model these complex mechanism using Surface Water Quality (check catchments module), Advection-Dispersion (AD), and the MIKE ECO Lab engine to solve Biological Processes equations.

10.1 Advection-Dispersion (AD)

Advection-Dispersion (AD) simulates the transport of dissolved substances and suspended fine sediments in the network. Conservative materials as well as those that are subject to a linear decay can be simulated. The computed pipe flow discharges, water levels, and cross-sectional flow areas are used in the AD computation. The solution of the advection-dispersion equation is obtained using an implicit, finite-difference scheme which has negligible numerical dispersion. Concentration profiles with very steep fronts can be accurately modelled. The computed results can be displayed as longitudinal concentration profiles and pollutants graphs, which could be used at the inflow to a sewage treatment plant or an overflow structure. The AD can be linked to Long Term Statistics modelling capacities to provide long-term simulation of pollutant transport.

The option to simulate water age and blend in percentages between two sources can be done with the AD module.

The Advection-Dispersion model can be used for calculation of the transport of dissolved or suspended substances, age of water, blend in percent between two sources, and for modelling of water temperature variation within the sewer network. The model is based on the one-dimensional transport equations for dissolved material. The equations reflect two transport mechanisms: the advective (or convective) transport with the mean flow velocity and the dispersive transport due to concentration gradients in the water. The transport equations are solved by use of an implicit finite difference scheme, which is fully time and space centred, in order to minimize the numerical dispersion. The main assumptions of the model are:

- The considered substance is completely mixed over the cross-sections. This implies that a source/sink term is considered to mix instantaneously over the cross-section.
- The substance is conservative or subject to a first order reaction (linear decay).

• Fick's diffusion law can be applied, i.e. the dispersive transport is proportional to the concentration gradient.

Special considerations have been given to the transport at manholes and other structures.

The Advection-Dispersion model requires two types of data: time series of concentrations at the model boundaries and data for full definition of the components to be modelled, e.g. initial concentrations, dispersion coefficients and decay rates.

Water Quality (WQ) Components

Each of the WQ components (substances) to be included in the Advection-Dispersion computations must be specified in this section shown in the WQ Components dialog. Naming of component is absolutely flexible, and no 'reserved' or 'standard' component names are prescribed.

WQ co	omponents								х
	ID Component	L1				Insert Delete			
W	Q component glo Type Decay constant	Pollutant		~	[/h]				
	ID	Salinity			Clea	r Show selected	Show data er	rors	
▶ 1	Component_1		Pollutant	•					
2	Component_2		Pollutant	•					
3	Component_3		Pollutant	•					

Figure 10.1 Water Quality Components

The specified pollution components can be declared as 'Pollutant', 'Microorganism', 'Temperature', 'pH', 'Salinity' 'Water Age', 'Water Blend' and 'Other'. This categorization is needed for correct handling of units: mass per volume (pollutants, other), counts per volume (bacteria), water age in hours, water blend in %, and degrees (temperature). When working with water-quality model, this categorization is further supplemented with other parameters, in order to apply the components in the WQ model properly. Practically, each of the specified components can be connected to a 'standard' component in the WQ module. By these means the WQ module 'knows' how to treat each component.

For each component, specification of an initial condition and decay coefficient can be specified. The decay coefficient cannot be given for water age and water blend type. If the specification of the initial concentration for a certain component has been omitted, a zero concentration is automatically applied.

Water blend concentration must always be given as a number between 0 and 100 percent, and the sum of the two blend components must add up to 100 percent.

Advection-Dispersion initial conditions for pollutants, water blend, water age and temperature can be specified under 'AD Initial conditions'.

AD initial conditions	αx
Identification ID Condition_1 WQ Component Component_1 Delete	
() All	
Manhole Node_1	
O List	
WQ initial condition - local data	
Initial condition [mg/l]	
	_
ID V ALL V Clear Show selected Show data errors	1/1 rows,
ID Component ID Connection type Node List File Node ID Initial Condition	1
▶ 1 Condition_1 Component_1 Manhole	

Figure 10.2 AD Initial Conditions

The initial conditions are specified for individual nodes. The initial conditions in the connected conduits is calculated by linear interpolation of the concentrations specified in the upstream and downstream nodes.

By defining decay constants, non-conservative components can be specified. For such non-conservative component the concentration is assumed to decay according to the first order expression:

$$\frac{dC}{dt} = KC \tag{10.1}$$

where:

K = the decay coefficient (h⁻¹)

C = the concentration

The decay constant is defined as an uniform decay over the entire model.

The AD model can be run with the components specifications only. In this case all model specific parameters (decay constant, dispersion coefficient, initial concentration) as well as boundary conditions are set to zero.

Please not that the sum of the two blend components must always add up to 100.

AD Dispersion

The dispersion coefficient is specified as a function of the flow velocity. The function is given as:

$$D = au^b \tag{10.2}$$

where:

D = the dispersion coefficient (m2/s),

a = the dispersion factor,

u = the flow velocity (m/s),

b = a dimensionless exponent.

If the exponent is set equal to zero, then the dispersion coefficient is constant and independent of the flow velocity. The unit for the dispersion factor will then be m2/s. If the exponent is 1, i.e. the dispersion coefficient is a linear function of the flow velocity, then the unit of the dispersion factor will be meter, and the dispersion factor will in this case be equal to what is generally termed the dispersivity. It is possible to specify values of the minimum and the maximum dispersion coefficients, in order to limit the range of the dispersion coefficient calculated during the simulation.

Ispersion		X
Global AD dispersion Dispersion factor 0,1 Minimum dispersion coeficient 0,25 [m^2/s] Exponent 1 Maximum dispersion coeficient 0,3 [m^2/s]		
Identification ID Local_Dispersion_1 ID Link_1	Insert Delete	
Local parameters Dispersion factor Dispersion factor Exponent 1 Minimum dispersion coeficient Maximum dispersion coeficient 0,5 [m^2/s]		
ID V ALL V Clear Show selected Show data errors 1/1 rows, 0 s	selected	
	persion coef [m^2/s	
▶ 1 Local_Dispersion_1 Pipe Link_1 0,35 1		0
		>

Figure 10.3 AD DIspersion

The dispersion coefficient can be given either globally or locally.

The global description will be used at all locations except for those pipes where local conditions have been specified in the menu.

The dispersion coefficients specified locally, 'overrule' the global specification

10.2 Biological Processes (BP)

Biological processes can be modelled through MIKE ECO Lab, it simulates the reaction processes in multi-compound systems, including degradation of organic matter, bacterial fate, exchange of oxygen with the atmosphere and oxygen demand from eroded sewer sediments. This allows realistic analysis of complex phenomena related to water quality in sewer systems. Biological Processes includes diurnal variation of foul flow discharges and user-specified concentrations of foul flow components. The sediment types included in the interaction with BP are foul flow organic sediments, fine and course mineral in-pipe sediments originating from catchment runoff, potholes, and stilling basins. BP can account for:

- Decay of BOD/COD in biofilm and water phase
- Hydrolysis of suspended matter
- Growth of suspended biomass
- Oxygen consumption from decay of BOD/COD, biofilm, and erosion of sediment

- Re-aeration
- Bacterial fate
- Interaction with sediments for nutrients and metals

10.3 Water Quality (MIKE ECO Lab Template)

Hydrodynamic and advection-dispersion (transport) simulations can be coupled with MIKE ECO Lab for efficient and versatile simulation of water quality processes in sewer systems. This option opens for practically unlimited range of processes to be simulated, as long as these can be described by a consistent model.

MIKE ECO Lab is a highly flexible and open framework for formulation of water quality models. MIKE ECO Lab utilises a concept of templates where water quality models are defined transparently: Complete contents of the predefined templates supplied by the MU installation is accessible for review and can be modified without any need to involve the software vendor. Also, completely new templates can be developed by the user.

The MIKE URBAN+ installation includes two pre-defined water quality templates that can be applied "as is" - or they can be adjusted by the user to conform to the specific project requirements.

A MIKE ECO Lab template is as ASCII file which can be accessed and edited by the MIKE ECO Lab editor. Note that MIKE ECO Lab is part of MIKE Zero and it is necessary install MIKE Zero and acquire a license for MIKE ECO Lab in order to use MIKE ECO Lab with MIKE URBAN+.

Please consult the MIKE Zero ECO Lab documentation on how to create or modify model templates, i.e. how to work with the MIKE ECO Lab editor.

MIKE ECO Lab implementation in MIKE URBAN+ is limited to coupling the existing MIKE ECO Lab templates for MIKE URBAN+ with the hydrodynamic and transport model and to editing the MIKE ECO Lab model constants during calibration.

A simulation job with the coupled HD/AD and MIKE ECO Lab model is set up and launched from within MIKE URBAN+ in a usual way.

MIKE ECO Lab in MIKE URBAN+ is supported by a set of four MIKE ECO Lab editors in MIKE URBAN+:

- Templates and Assignments
- State Variables
- Forcings
- Constants

These four editors and the database tables behind them are described below.

MIKE ECO Lab templates							x
Identification ID ECOLAB_template	_1	Apply				Insert Delete	
Template file Connection Template MIKE URBAY MIKE URBAY MIKE URBAY Summary H2S WATS Custom (use State variables 7 Forcings 6 Processes 9	N Classic WQ	C:\Program File	es (x86) \DHI\MIKE Constants uxillary variables Nelivered output	25 11 0	9\Templates	Import	
ID	~ All	~ (Clear 🗌 Sh	ow selected	Show data	a errors 1/1 rows,	0 sek
ID		emplate	File na	sme			
I ECOLAB_template_1	M	IKE URBAN Classic	:WQ ▼ C:\Pro	gram Files (x8	36) \DHI \MIKE U	RBAN\2019\Template	s\ECO
<			_				>

Figure 10.4 MIKE ECO Lab Templates

Edit field label	Database field	Description
ECO Lab Template ID	msm_EcoLabTem- plate.MUID	User-specified tem- plate ID
Description	msm_EcoLabTem- plate.Description	Free text description of the template
ECO Lab name	msm_EcoLabTem- plate.TemplatePath	Path/filename of the MIKE ECO Lab template
Connection type	msm_EcoLabTem- plate.ConnectionType	1 = All 2 = Indiviidual 3 = List
Node	msm_EcoLabTem- plate.NodeID	Individual node assignment
Link	msm_EcoLabTem- plate.LinkID	Individual link assignment
List	msm_EcoLabTem- plate.ListName	Path/filename of the *.MUS file for the template assign- ment

Table 10.1 Field description for MIKE ECO Lab Templates editor

Pressing <Import> button after the template has been already loaded (imported) into MIKE URBAN+ will re-load the template and any associations of the MIKE ECO Lab state variables with MIKE URBAN+ AD components, as well as any modifications of the MIKE ECO Lab constants will be lost.

10.3.1 MIKE ECO Lab State Variables

This editor is used for coupling MIKE URBAN+ AD components to MIKE ECO Lab state variables and for possible reconciliation of differences in units used in MIKE URBAN+ and in MIKE ECO Lab, respectively. The data for this editor is stored in the msm_EcoLab.Component MU database table.

In MIKE URBAN+ database table msm_ADComponent there should be an entry for every MIKE ECO Lab state variable defined in the MIKE ECO Lab template. This means that all MIKE ECO Lab state variables are subject to both AD transport mechanisms and to MIKE ECO Lab transformations.

AD components must be specified by the user. These AD components must represent exactly the same constituents as those in the MIKE ECO Lab template, but their names can be freely defined. The specified initial values for the AD components will be applied in the computation. Initial (default) values for the MIKE ECO Lab state variables defined in the template will be ignored.

The import operation described in the MIKE ECO Lab Templates and Assignments section will automatically create the required entries in this table. The user must couple each of these MIKE ECO Lab state variables (components) to the relevant AD component.

The 'Conversion Factor' entry (default value 1, i.e. no conversion) can be set different from 1.0 if the units for the AD components and MIKE ECO Lab state variables are different. Please note that the AD components require a specific unit while MIKE ECO Lab does not require a specific unit for a specific component type.

Ident						
ID	tification	14 MIKE EC	D Lab E	COLAB_template_1	Delete	
10						
/ariabl	le assignments Descri	ption				
S	itate variable	Tempe	erature			
N	VQ component	Temperature	\sim			
C	Conversion factor		1			
	ID	~ ALL	∨ Clear	Show selected	Show data errors 7	7 rows, 0 s
	ID	MIKE ECO Lab	State variable	WQ component	Conversion factor	Descriptio
1	ECOLAB_Component_8	ECOLAB_template_1	DO	DO	1	
2	ECOLAB_Component_9	ECOLAB_template_1	BOD_dis	BOD_Diss	1	
3	ECOLAB_Component_10	ECOLAB_template_1	BOD_susp	BOD_susp	1	
4	ECOLAB_Component_11	ECOLAB_template_1	ColiF	ColiF	1	
5	ECOLAB_Component_12	ECOLAB_template_1	ColiT	ColiT	1	
2			Strep	Strep	1	
-	ECOLAB_Component_13	ECOLAB_template_1	Strep	Sucp		

Figure 10.5 MIKE ECO Lab State Variables

Table 10.2	Field description for MIKE ECO Lab State Variables editor
------------	---

Edit field label	Database field	Description
Component ID	msm_EcoLabCompo- nent.ComponentID	MIKE ECO Lab state variable identifier
MIKE ECO Lab Template	msm_EcoLabCompo- nent.TempID	MIKE URBAN+ name of the template the component belongs to

Edit field label	Database field	Description
WQ Component ID	msm_EcoLabCompo- nent.ADComponentID	MU AD component which is coupled to the MIKE ECO Lab state variable
Conversion factor	msm_EcoLabCompo- nent.ConvFactor	Conversion factor for possible units conversion between MU and MIKE ECO Lab

Table 10.2 Field description for MIKE ECO Lab State Variables editor

Please note that the only active fields in this editor are those for coupling the MU+ AD components with MIKE ECO Lab state variables, and for specification of the conversion factor.

The <Delete> button has a functionality limited to very special applications, deleting a state variable would destroy the MIKE ECO Lab template functionality, with unpredictable consequences.

10.3.2 MIKE ECO Lab Forcings

Forcings are external variables associated with computational points (i.e. are spatially fixed), constant or variable in time, which affect some of the processes on the state variables.

Forcings are "Built-In" or "User-Defined", "Built-in" means that forcings are provided by the hydraulic model through coupling with MIKE ECO Lab. "User Defined" forcings must be provided by the user, either as constant values or as time series (dfs0 file name and item in the file).

This editor is used for setting the User Defined forcings associated with the loaded MIKE ECO Lab templates. Built-In forcings are also imported into MIKE URBAN, but specification of their values as constants or time series would not have any effect on the MIKE ECO Lab computations.

The data table in MIKE URBAN database containing MIKE ECO Lab forcings is msm_EcoLabForcing. The database records are created automatically during the template import. The table contains as many forcings as there are in the MIKE ECO Lab template.

		rcings								
	ntification ID 9		MIKE EC	O Lab		ECOLA	B_template_1		Delete	
Forci	ng Des	cription								
	Forcing		slope							
	Const	tant			◯ Tim	e series				
	Value	•	0		-	e name				
					Ite				~	
									~	
		ID ~		~ C		em	selected] Show data	a errors 3/6	20
	ID	ID ~		✓ C TS type	Ite lear	em	selected] Show data Item	~	20
1			ALL Forcing ID	_	Ite lear	em			a errors 3/6	
1 2	7	MIKE ECO Lab	ALL Forcing ID	TS type Constar	Ite lear	em Show			a errors 3/6	••
2	7	MIKE ECO Lab ECOLAB_template_1	ALL Forcing ID u dm	TS type Constar	Ite lear e nt • nt •	em Show Value 0,2			a errors 3/6	
2	7 8 9	MIKE ECO Lab ECOLAB_template_1 ECOLAB_template_1	ALL Forcing ID u dm slope	TS type Constar Constar	Ite lear ht • ht •	em Show Value 0,2 8			a errors 3/6	
2 3	7 8 9 10	MIKE ECO Lab ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1	ALL Fording ID u dim slope volume	TS type Constar Constar Constar Constar	lear e nt • nt • nt •	em Show Value 0,2 8			a errors 3/6	•

Edit field label	Database field	Description
Forcing ID	msm_EcoLabForcing.Forc- ingID	MIKE ECO Lab forcing identi- fier
MIKE ECO Lab Template	msm_EcoLabForcing.Tem- pID	MIKE URBAN name of the template the forcing belongs to
Value	msm_EcoLabForc- ing.DefaultValue	Constant value for the forcing
File	msm_EcoLabForcing.File- Name	Path/filename for dfs0 time series file containing forcing TS data
Item	msm_EcoLabForcing.Item- Label	dfs0 item reference

Please note that the only active fields are those for the specification of the forcing's constant value or the reference to dfs0 TS file. The remaining fields are read-only.

The <Delete> button has a functionality limited to very special applications. Deleting a forcing would destroy the MIKE ECO Lab template functionality, with unpredictable consequences.

10.3.3 MIKE ECO Lab Constants

This editor is used for setting the values of constants used in the MIKE ECO Lab template, typically in relation to the model calibration.

The data table in MIKE URBAN+ database containing MIKE ECO Lab constants is msm_EcoLabCoeff. The database records are created automatically during the template import. The table contains as many constants as there are in the MIKE ECO Lab template.

MIKE EC	CO Lab co	onstants					ΞX
Π		Description	MIKE ECC) Lab E	COLAB_template_	1 Delete	
	Coefficier Global val		includeBiofilm y	res/no			
		ID ~	ALL V	Clear	Show selected	Show data errors	
	ID	MIKE ECO Lab	Coefficient ID	Global value	Description		^
▶ 1		MIKE ECO Lab ECOLAB_template_1	Coefficient ID includeBiofilm	Global value	Description		^
▶ 1 2	26			Global value	Description		^
	26 27	ECOLAB_template_1	includeBiofilm	Global value	Description		^
2	26 27 28	ECOLAB_template_1 ECOLAB_template_1	includeBiofilm fBOD_COD	Global value	Description		^
2	26 27 28 29	ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1	includeBiofilm fBOD_COD kof	Global value	Description		^
2 3 4	26 27 28 29 30	ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1	includeBiofilm fBOD_COD kof mu	Global value	Description		^
2 3 4 5	26 27 28 29 30 31	ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1	indudeBiofilm fBOD_COD kof mu Ymax	Global value	Description		Î
2 3 4 5 6	26 27 28 29 30 31 32	ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1	indudeBiofilm fBOD_COD kof mu Ymax rho_heter	Global value	Description		Î
2 3 4 5 6 7	26 27 28 29 30 31 32 33	ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1	indudeBiofilm fBOD_COD kof mu Ymax rho_heter Bx	Global value	Description		^
2 3 4 5 6 7 8	26 27 28 29 30 31 32 33 33 34	ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1	indudeBiofilm fBOD_COD kof mu Ymax rho_heter Bx khl	Global value	Description		^
2 3 4 5 6 7 8 9	26 27 28 29 30 31 32 33 34 35	ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1 ECOLAB_template_1	indudeBiofilm fBOD_COD kof mu Ymax rho_heter Bx khi thu	Global value	Description		^

Figure 10.7 MIKE ECO Lab Constants

Edit field label	Database field	Description
Coefficient	msm_EcoLabCoeff.CoeffID	MIKE ECO Lab constant iden- tifier
MIKE ECO Lab Template	msm_EcoLabCoeff.Tem- pID	MIKE URBAN name of the template the constant belongs to
Description	msm_EcoLabCo- eff.Description	Free text description of the template coefficient
Global Value	msm_EcoLabCoeff.Coef- fValue	Value of the constant

Table 10.4 Field description for MIKE ECO Lab Constants editor

Please note that the only active field in the one containing the constant value. The remaining fields are read-only.

The <Delete> button has a functionality limited to very special applications, deleting a constant would destroy the MIKE ECO Lab template functionality, with unpredictable consequences.

10.3.4 Running MIKE ECO Lab simulation

To run a MIKE ECO Lab simulation, the network model must be prepared in consistency with the MIKE ECO Lab template which is to be simulated. This means that it should contain at least those AD components which are to be coupled with MIKE ECO Lab state variables.

Further, the wanted MIKE ECO Lab template should be imported to MIKE URBAN+. Possible unit inconsistencies must be considered and resolved by providing proper conversion factors. Values of the constant should be reviewed and modified, as appropriate. User-defined forcings should be specified, either as constants or as time series.

The network simulation with MIKE ECO Lab is activated by checking "Transport (AD)" and "ECO Lab" checkboxes, as shown in Figure 10.8. Default integration method (EULER) can be applied in most cases.

The simulation will result in three files containing all the hydrodynamic information (*.res1d), advection and dispersion results for the state variables (*AD.res1D) and the auxiliary variables, processes and derived outputs included in the MIKE ECO Lab results file (ADEL.res1D).

									×
Identification									
ID	teste_2			✓ Ac	tive project	Insert	Сору]	
Scenario	Base		\sim			Delete	RUN		
General Cat	chments HD	AD and WQ	Results						
Simulation Type	e		-Simulation P	eriod					
Catchments Rainfall-Runoff (RR) Storm Water Quality (SWQ) Catchment Discharge (CD)			Start Duration	01/01/2	2010 00:00:00	[dddd][hh][m	Bou	undary Info.	
	Water Quarlity		End	03/01/2	2010 04:00:00		_	t max. time	
Pollutio	ern Sindiston on Transport (Al E ECO Lab (WQ	0)	Description						
	ID	× A11		Clear	Show select	ted Show A	ata errors —	/1 rows. 0 sel	ecter
	ID	~ ALL	~	C.C.C.	Show select	ted 🗌 Show d	ata errors 1	/1 rows, 0 sele	ected
ID	ID Scenario	 ALL Active Project 		Simulation		ted Show d		/1 rows, 0 sek	
ID	Scenario		t Catchr	Simulation	setup	Stormwater run			
ID	Scenario	Active Projec	t Catchr	Simulation	setup Runoff(RR)	Stormwater run	off WQ (SWQ)		

Figure 10.8 MIKE ECO Lab Check

2

Ider	ntification						
IC	D	teste_2			Active project	Insert Copy	
S	cenario	Base	~	•		Delete RUN	
Gene	ral Cat	thments HD	AD and WQ R	Results			
AD H	otStart File	-					
	Apply						
MIKE	ECO Lab	Integration					
EUL	ER		\sim				
		ID		V Clear	Show selec	ted Show data errors	1/1 muse D select
_		ID	~ ALL	✓ Clear Simulatio		ted 🗌 Show data errors	1/1 rows, 0 select
	ID	ID Scenario	 ALL Active Project 	✓ Clear Simulatio Catchments		ted Show data errors	
▶ 1	ID teste_2			Simulatio	n setup		
▶ 1		Scenario	Active Project	Simulatio Catchments	n setup Runoff(RR)	Stormwater runoff WQ (SWQ)	

Figure 10.9 MIKE ECO Lab Integration Method

10.3.5 The Sediment Transport Models

The sediment transport models in MIKE URBAN+ can be divided into two groups:

- Explicit models
- Morphological models

The main difference between the two model types is that in the explicit models the bed levels are fixed during the simulation. In the morphological models the bed levels / sediment deposits are updated dynamically during the simulation.

The Explicit Sediment Transport Models

In the explicit sediment transport models the bed level is fixed throughout the simulation and the only feed-back from the sediment transport computations to the hydrodynamics is established via the Manning number. The sediment transport capacity is calculated in time and space as an explicit function of the corresponding hydrodynamic flow parameters, i.e. the model calculates a

potential sediment transport and no sediment is moved around in the system. The explicit models are in general used to:

- Investigate the hydraulic capacity in pipes with sediment deposits
- Calculation of the sediment transport at locations where the bed levels changes are insignificant during a simulation

The Morphological Models

The morphological models are:

- Morphological model for uniform sediment
- Morphological model for non-uniform sediment

In the morphological models the sediment transport continuity equation is solved, based on the corresponding values of the hydrodynamic parameters (i.e. discharge, water levels, etc). The feedback to the hydrodynamic module is established through dynamically changed flow area and flow resistance number.

The morphological model for uniform sediment uses one grain diameter at each point in the sewer system to calculate the sediment transport. In the morphological model for non-uniform sediment it is possible to calculate the sediment transport from a range of grain diameters. For the transport of fine organic particles some of the non-uniform sediment fractions can be chosen to be transported by use of the Advection-Dispersion transport formulation instead of the non-cohesive sediment transport formula, as the transport of particles transported in suspension is better described by used of the advection-dispersion equation. The fractions transported by the advection-dispersion module are still included in the morphological calculation, but the description of erosion/deposition is changed.

10.3.6 The Transport Formulae - Short Description

The following four non-cohesive sediment transport formulae are implemented in ST:

- Engelund Hansen
- Ackers White
- Engelund Fredsøe Deigaard
- van Rijn

Short descriptions of the sediment transport formulae are given below. No general guidelines can be given for the preference of one formulation over another, as the applicability of each depends on a number of factors.

All these formulae demonstrate that the sediment transport is a highly nonlinear function of the flow velocity: depending on the formulation, the sedi-

ment transport is proportional to the velocity raised to the power from 3 to 5. Hence, the user should be very careful in the description of the hydrodynamics in the model setup.

The Ackers-White formulae

The formulae determine directly the total sediment transport. The formulae are semi-empirical, based partly on dimensional analysis and partly on physical arguments.

The Engelund-Hansen formula

The formula determines the total sediment transport directly. It has been derived from consideration of the work done by the flow on the sediment being transported. Originally, the formula was derived for a dune covered bed, but it was found applicable to the upper regimes (plane bed and antidunes) as well.

The Engelund-Fredsøe-Deigaard formulae

The formulae calculate the total transport as the sum of the bed load transport and the suspended transport. The sediment transport is calculated from the skin friction, i.e. the shear stress acting on the surface of the bed. In this formulae it is possible to describe the development of sand dunes in pipes and hence include the resulting friction into the computations. The total bed resistance is then calculated as the sum of a contribution from the skin friction acting on the dune and an expansion loss behind the dune.

The van Rijn formulae

In the van Rijn sediment transport formulae the sediment transport is divided into bed load and suspended load. The bed load is calculated from the saltation height, the particle velocity and the bed load concentration. The bed load computations follow the approach of Bagnold (1973), which assumes that the motion of the bed load particles is dominated by the gravity forces. When the bed shear velocity exceeds the fall velocity sediment is transported in suspension.

The suspended load is calculated as the depth integration of the local concentration and flow velocity. The method uses the reference concentration computed from the bed load transport. The formula has been verified for particles in the range 200 - 2000 mm. The verification based on 600 data sets, showed that 77% of the predicted bed load rates were within 0.5 and 2 times the observed values, van Rijn (1984a). The verification for the suspended load, using 800 data sets showed that 76% of the predicted values were within 0.5 and 2 times the observed values, van Rijn (1984b).

10.3.7 The Flow Resistance in Sewer Systems with Sediment Deposits

The hydraulic resistance in the sewer originates from the pipe wall and from the sediment deposits on the bottom of the sewer. The resistance from the sediment deposits consists of two contributions, one part originates from the grain friction and the other part originates from the expansion loss behind the bed forms. The dimensions of the bed forms are determined by the sediment transport and the flow, the resistance from the bed forms can be described through sediment transport formulae.

The average shear stress in a pipe with sediment deposits is calculated from the Einstein side-wall elimination procedure. The calculation is based on the pipe roughness and the bed shear stress calculated from the sediment.

11 Sediment Transport (ST)

Urban drainage networks are exposed to sediment loads carried by wastewater and/or by stormwater runoff. Such sediment loads may vary strongly both in space and time, as well as they may include a variety of particle types, ranging from large pieces of solid waste, street litter, sand and gravel from construction sites and unpaved areas, wind-borne dust, traffic debris, as well as small organic particles originating from wastewater. These sediments, if present in forms and quantities larger than the self-cleansing capacity of the sewer can handle, may create significant operational problems, such as reduced hydraulic capacity, increased overflows and full blockages of sewer pipes. These problems are typically associated with higher operational costs.

Modelling sediments in urban drainage networks does not belong to mainstream modelling work. However, the sediment modelling may be motivated by the wish to understand and eliminate existing or anticipated sedimentsrelated problems, or by the need to document compliance with design criteria in terms of self-maintaining the sediment-free network.

MIKE URBAN+ ST provides a modelling platform for such analyses. Current implementation of sediment transport modelling in MIKE URBAN+ is a truncated version of a full-scale sediment transport model developed for river sediment modelling applications. Scientific background for the implemented solutions can be found in the document MIKE1D_Reference_Manual, Sediment Transport (ST).

Inevitably, keeping the modelling apparatus reasonably simple and practically applicable requires some conceptualization of the complex reality. In MIKE URBAN+ this is achieved by limiting the number of model parameters and computational options to those most important ones, The following are examples of simplifications and conceptualization in MIKE URBAN+:

- Various sediment fractions are distinguished by the median grain size (D50), relative density and the applied transport mechanism. Typically, the sewer sediments are represented by one coarse fraction (D50>=0.1 mm) and one fine fraction (D50< 0.1 mm).
- Transport of the coarse fraction is preferably computed as non-cohesive transport, using one of the available sediment transport formulae.
- Transport of the fine fraction is preferably computed as cohesive transport, with advection-dispersion transport mechanism.

A detailed description of the ST editors and work flows is provided in the following paragraphs.

11.1 Types of Sediment Transport Analyses

Two types of sediment transport analyses are supported by MIKE URBAN+ ST:

- Hydraulic effects of fixed bed sediment deposits (so called explicit ST model)
- Morphological analysis

The main differences between the two analysis types are that in the explicit models the bed levels are fixed during the simulation and any sediment boundary conditions are ignored, while in the morphological models the bed levels / sediment deposits are updated dynamically during the simulation (erosion/deposition) due supply of sediments through the model's boundary condition and transport of sediments in the network.

11.1.1 The explicit sediment transport model

In the explicit sediment transport analyses the bed level is fixed throughout the simulation and the only feed-backs from the sediment transport computations to the hydrodynamics are established via the reduced cross-section area and flow resistance (Manning number).

The flow resistance in a conduit with sediment deposits is calculated as a weighted average of the Manning number for the horizontal sediment bed and the wetted conduit walls. The Manning number of sediment deposits can be provided either directly or computed automatically, based on the specified sediment fractions grain sizes.

No sediment is moved around in the system and any active sediment boundary condition is ignored.

The explicit ST models are in drainage systems modelling used to:

- investigate the hydraulic capacity in pipes with sediment deposits, i.e. document changes of hydraulic capacity and overflow volume and frequency due to sediment deposits and their removal;
- calculate and map bottom shear stress under representation hydraulic conditions. Result of this analysis may e.g. be used for planning of preventing maintenance (sediment removal) and identification of sedimentation-prone locations.

11.1.2 The morphological analyses

In the morphological models the sediment transport continuity equation is solved, based on the corresponding values of the hydrodynamic parameters (i.e. discharge, water levels, etc.). The feedback to the hydrodynamic module

is established through dynamically changed flow area and flow resistance (Manning number).

The morphological ST model in MIKE URBAN+ allows for calculation of sediment transport for any number of specified sediment fractions, i.e. to perform the analysis for non-uniform sediments. However, it is recommended to limit the analysis to two representative fractions - coarse and fine fraction. More complex setups become increasingly difficult to verify and analyse.

The transport of the coarse fraction is modelled by one of four non-cohesive sediment transport formulae:

- Engelund Hansen
- Ackers White
- Engelund Fredsøe Deigaard
- van Rijn

Short descriptions of the sediment transport formulae are given in the following paragraphs. No general guidelines can be given for the preference of any one formulation over the another, as this may be guided by the modeller's preference.

The transport of the fine fraction (D50 less than 0.1 mm) should preferably be modelled by the Advection-Dispersion transport formulation instead of the non-cohesive sediment transport formula, as the transport of particles transported in suspension is better described by used of the advection-dispersion equation. The fractions transported by the advection-dispersion module are still included in the morphological calculation, but the description of erosion/deposition is changed.

Note, that the morphological models require sediment supply boundary conditions at the model inflow boundaries. At inflow boundaries with no sediment, zero sediment load is assumed.

11.2 The Transport Formulae - Short Description

The implemented formulae demonstrate that the sediment transport is a highly non-linear function of the flow velocity: depending on the formulation, the sediment transport is proportional to the velocity raised to the power from 3 to 5. Obviously, a correct description of the hydrodynamics in the model setup is an essential prerequisite for a meaningful and accurate simulation of sediment transport.

11.2.1 The Ackers-White formulae

The formulae determine directly the total sediment transport. The formulae are semi-empirical, based partly on dimensional analysis and partly on physical arguments.

11.2.2 The Engelund-Hansen formula

The formula determines the total sediment transport directly. It has been derived from consideration of the work done by the flow on the sediment being transported. Originally, the formula was derived for a dune covered bed, but it was found applicable to the upper regimes (plane bed and antidunes) as well.

11.2.3 The Engelund-Fredsøe-Deigaard formulae

The formulae calculate the total transport as the sum of the bed load transport and the suspended transport. The sediment transport is calculated from the skin friction, i.e. the shear stress acting on the surface of the bed. In this formulae it is possible to describe the development of sand dunes in pipes and hence include the resulting friction into the computations. The total bed resistance is then calculated as the sum of a contribution from the skin friction acting on the dune and an expansion loss behind the dune.

11.2.4 The van Rijn formulae

In the van Rijn sediment transport formulae the sediment transport is divided into bed load and suspended load. The bed load is calculated from the saltation height, the particle velocity and the bed load concentration. The bed load computations follow the approach of Bagnold (1973), which assumes that the motion of the bed load particles is dominated by the gravity forces. When the bed shear velocity exceeds the fall velocity sediment is transported in suspension.

The suspended load is calculated as the depth integration of the local concentration and flow velocity. The method uses the reference concentration computed from the bed load transport. The formula has been verified for particles in the range 200 - 2000 my-m. The verification based on 600 data sets, showed that 77% of the predicted bed load rates were within 0.5 and 2 times the observed values, van Rijn (1984a). The verification for the suspended load, using 800 data sets showed that 76% of the predicted values were within 0.5 and 2 times the observed values, van Rijn (1984b).

11.3 Main Parameters of a Sediment Transport Model (Editor "ST Model")

Setting up a sediment transport model commences in the "ST Model" editor, where the model's main parameters are specified. These parameters are valid for entire model area and for all simulation jobs in the current MU+ project.

11.3.1 Selecting type of sediment transport analysis

The wanted type of the ST analysis type is selected in the "ST Model" editor (File | Sediment Transport | ST Model).

Sediment transport Analysis type Morphological analysis	,
Analysis type Morphological analysis 🗸	
ST model Morphological analysis Hydraulic effects only	
Relative density 2.65]
Porosity of deposits 0.35	

Figure 11.1 Selecting the type of ST analysis

The selected analysis determines the type of results which may be saved as the ST simulation output. Outputs of "Hydraulic effects only" are limited to items: "Bed level", "Manning number" and "Bed shear stress".

When morphological analysis is selected, the preferred transport formula can be selected in the field "ST Model".

Morphological analysis	\sim
Engelund-Hansen	ř
Engelund-Hansen Ackers-White	67
Engelund-Fredsoe-Deigaard Van Rijn	
	Engelund-Hansen Engelund-Hansen Ackers-White Engelund-Fredsoe-Deigaard

Figure 11.2 Selecting type of ST transport formula

The global sediment parameters (relative density and porosity of sediment deposits) apply for the sediments in the model as the whole and are valid for the entire geographical scope of the model. These parameters are specified in the "ST Model" editor (Setup | Sediment Transport | ST Model).

As they are only relevant for morphological analysis, the default values can be modified only when "Morphological analysis" is selected.

"ST Model" editor fields are described in Table 11.1.

Edit field	Description	Unit SI	Unit US
Analysis type	Choice between two types of analy- sis: - Morphological analysis (default) - Hydraulic effects only	-	-
ST Model	Choice between four sediment trans- port formulae: - Engelund-Hansen - Ackers - White - Engelund - Fredsøe - Deigaard - van Rijn	-	-
Relative density	Density of all sediments in the model, relative to water	-	-
Porosity of deposits	Fraction of sediment deposits volume filled with pores	-	-

Table 11.1"ST Model" editor data fields

11.4 Specifying Sediment Fractions (Editor "Sediment fractions")

Any number of individual sediment fractions can be specified (at least one). Sediment fractions are inserted and edited in the "Sediment fractions" editor (Setup | Sediment Transport | Sediment fractions).

Se	diment fractions				х
	Identification			Insert	
	ID STF_1			Delete	
	Network sediment transport				
	Transport mode	AD Model \sim]		
	Grain size	0.1	[mm]		
	Pct. of total sediment volume	50	[%]		
	Fall velocity mode	Specified ~]		
	Fall velocity	6.242782	[cm/s]		
	Erodability coeff	0.2	[kg/m^2/s]		
	Tau crit. (deposition)	0.7	[N/m^2]		
	Tau crit. (erosion)	1	[N/m^2]		

Figure 11.3 The "Sediment fractions" editor

Sediment fraction editor fields are described in Table 11.2.

Edit field	Description	Unit SI	Unit US
ID	Unique identified of a sediment frac- tion	-	-
Transport mode	Determines the transport mechanism for the sediment fraction: ST Model = transport as non-cohe- sive sediments by the specified trans- port formula. Recommended for grain sizes > 0.1 mm AD Model = transport as cohesive sediments suspended in water, with deposition and erosion. Recom- mended for fine sediments with grain sizes <= 0.1 mm	-	-
Grain size	Median grain size (D50) for the sedi- ment fraction	mm	in
Pct. of total sediment volume	Percent of total sediment volume. Sum for all fraction shall be 100%	%	%
Fall velocity mode	Specified: user-specified fall velocity Computed: fall velocity computed by Rubey formula (1933), based on sed- iment fraction grain size, sediment relative density and water viscosity (at 20 deg.C)	cm/s	In/s
Erodibility coeff.	Determines the rate of erosion when bottom shear stress exceeds critical value for erosion (only for AD trans- port mode)	g/m^2/s	g/m^2/s
Tau crit. (deposition)	The maximum value of bottom shear stress at which sedimentation of the actual fraction will occur (only for AD transport mode)	N/m^2	N/m^2
Tau crit. (erosion)	The minimum value of bottom shear stress at which erosion of the actual fraction will occur (only for AD trans- port mode)	N/m^2	N/m^2

Table 11.2"Sediment fraction editor data fields

11.5 The Flow Resistance and Initial Sediment (Editor "Initial sediment depths and friction")

11.5.1 The flow resistance due to sediment deposits in sewers

The hydraulic resistance in the sewer originates from the pipe wall and from the sediment deposits on the bottom of the sewer. In general, the flow resistance from the sediment deposits consists of two contributions: one part originates from the grain friction and the other part originates from the expansion loss behind the bed forms (ripples, dunes, etc.). In MIKE URBAN+ ST, only the flow resistance from the sediment grains is calculated.

The flow resistance of the horizontal sediment bed can be specified explicitly (as Manning number) or it can be calculated based on the sediment grain size and bed shear stress. Both methods can be applied globally (i.e. for entire model) and for individual conduits. Any local definition overrides the global specification.

The average shear stress in a pipe with sediment deposits is calculated from the Einstein side-wall elimination procedure. The calculation is based on the pipe roughness and the bed shear stress calculated from the sediment deposits.

11.5.2 Initial sediment depths

Specification of initial sediment depths in the model's links is important in two cases:

- In morphological analysis, as correct initial conditions, e.g. according to the observed situation
- In hydraulic effects analysis, as a fixed-bed sediment deposits, representing e.g. observed situation or assumed sedimentation scenario

The specified sediment depth is assumed uniform along entire link.

11.5.3 "Initial sediment depths and friction" editor

Initial sediment depths and sediment deposits friction are defined in the "Initial sediments depths and friction" editor (Setup | Sediment Transport | Initial sediment depths and friction).

Initial sediment depths and friction can be specified globally (for all links in a model), or specifically for individual links or selection of links. The local definitions override the global definition.

itial sediment depths a	nd friction		\mathbf{b}	
Global data			-0	
Sediment depth	0.1	[m]		
Manning type	Computed ~]		
Manning value	60]		
Identification				
Link ID	Link_2-1			Insert
🔘 List				Delete
Sediment depth	0	[m]		
Manning type	Specified ~]		
Manning value	45]		

Figure 11.4 The "Initial sediment depths and friction" editor

"Initial sediment depths and friction" editor fields are described in Table 11.3..

Edit field	Description	Unit SI	Unit US
Global data - Sedi- ment depth	Uniform sediment depth in all model's conduits	m	ft
Global data - Man- ning type	Determines the model-wide method for the definition of sediment deposits flow resistance:		
	Specified = Manning number (M) value for sediment deposits is speci- fied directly Computed = Manning number (M) value for sediment deposits is calcu- lated, based on grain size and shear stress		
Global data - Man- ning value	Model wide directly specified Man- ning number (M) for sediment depos- its		
Link ID	Identifier of a single link where local sediment depth and/or friction defini- tion method, and (optionally) Man- ning number is to be specified. This definition overrides the global and "List" definition		
List	Selection of links where local sedi- ment depth and/or friction definition method, and (optionally) Manning number is to be specified. This defini- tion overrides the global definition		
Sediment depth	Uniform sediment depth in specified conduits (links)	m	ft

Table 11.3"Initial dediment depths and friction" editor data fields

Edit field	Description	Unit SI	Unit US
Manning type	Determines the method for the defini- tion of sediment deposits flow resist- ance in specific links:		
	Specified = Manning number (M) value for sediment deposits is speci- fied directly Computed = Manning number (M) value for sediment deposits is calcu- lated, based on grain size and shear stress		
Manning value	Directly specified Manning number (M) for sediment deposits in specific links		

Table 11.3 "Initial dediment depths and friction" editor data fields

11.6 Removal of Non-cohesive Sediments in Basins (Editor "Sediment removal in basins")

Basins act as "sediment traps" because the water flow kinetic energy and turbulence (hence, dynamic forces acting on sediments) are much lower than in the conduits. Sedimentation in basins may in some cases be an unwanted side-effect and an operational problem (need for frequent sediment removal), while in other cases it may be deliberately designed to induce sedimentation.

MIKE URBAN+ ST does not simulate sedimentation in basins: both noncohesive (ST) and cohesive (AD) sediment transport continues unaffected through basins (actually, through any node in the model).

However, effect of basins on sediment transport (non-cohesive sediments transport only) may be emulated by defining a sediment removal efficiency in individual basins. This function simply removes the specified fraction of the inflowing non-cohesive (ST transport) sediments.

Cohesive sediments (AD transport) are not affected by this function.

Removal of non-cohesive sediment in basins is defined in the "Sediment removal in basins" editor (Setup | Sediment Transport | Sediment removal in basins).

Sediment removal in basins		х
Identification	Insert	
10 3110_02-2	Delete	
Basin ID Node_B2-2		
Removal coefficient 0.5		

Figure 11.5 The "Sediment removal in basins" editor

"Sediment removal in basins" editor fields are described in Table 11.4..

Table 11.4 "Sediment removal in basins" editor data fields

Edit field	Description	Unit SI	Unit US
ID	Unique identifier of sediment removal definition	-	-
Basin ID	Identifier of actual basin	-	-
Removal coefficient	Fraction of inflowing non-cohesive sediment to be removed in the actual basin	-	-

The sediment removed in basins can be reported in ST output file for each basin individually as sediment and mass transport (instantaneous and accumulated) for each ST fractions separately and for total sediment transport.

11.7 Removal of non-cohesive sediments in weirs

Weirs act as efficient barriers for non-cohesive sediment transport, as the weir crest levels are normally significantly higher that the conduit's invert. This means that significant part of non-cohesive sediment cannot be transported over weirs.

MIKE URBAN+ ST simulates effect of weirs on sediment transport (noncohesive sediments transport only) by defining a constant sediment removal efficiency or removal efficiency as function of weir discharge. This function simply removes the specified fraction of the non-cohesive (ST transport) sediments from the weir flow.

Removal of non-cohesive sediment in weirs is defined in the "Sediment removal in weirs" editor (Setup | Sediment Transport | Sediment removal in weirs).

Sediment removal in weirs		x i
Identification ID STRW_C2-1	Insert Delete]
Weir ID Weir_C2-1 Method Constant Efficiency		
Efficiency factor 0.5		
Efficiency function		
<		>

Figure 11.6 The "Sediment removal in weirs" editor

"Sediment removal in weirs" editor fields are described in Table 11.5..

Edit field	Description	Unit SI	Unit US
ID	Unique identifier of sediment removal in weirs definition	-	-
Weir ID	Identifier of actual weir	-	-
Method	Constant efficiency: sediments removal by efficiency factor Efficiency (flow): sediment removal efficiency specified as function of weir flow	-	-
Efficiency factor	Fraction of non-cohesive sediment to be removed from the actual weir flow (only with "Constant efficiency")		
Efficiency function	Reference to a tabular function of type "Removal efficiency" (only with "Efficiency(flow)")		

Table 11.5"Sediment removal in weirs" editor data fields

The sediment removed in weirs can be reported in ST output file for each weir individually as sediment and mass transport (instantaneous and accumulated) for each ST fractions separately and for total sediment transport.

11.8 Sediment transport boundary conditions

Sediment transport boundary conditions are only relevant for morphological analysis. For "Hydraulic effects only" type of analysis, no sediment boundary conditions are needed. Any active sediment boundary conditions are ignored in the sediment transport analysis is specified as "Hydraulic effects only".

Sediment transport boundary conditions may be specified at any inflow boundary in the model (upstream boundary) and at outlet water level boundaries (downstream boundary).

Sediment inflows to a drainage model can be specified either in association with catchment model or with network model, defined as "WQ boundary properties" for the any hydraulic or SWQ boundary conditions.

The sediment boundary (only for AD transport) can also be specified in association with outlet water level boundary for a network model.

For most of boundary condition types, the sediment boundary properties are specified directly as sediment concentration in the inflowing water (ML⁻³). For SWQ boundaries, sediments inflows are defined either as a tabular function (specific runoff vs. sediment concentration) or are calculated by SWQ advanced methods (BuildUp/WashOff and EMC).

A schematic overview over the possible types of sediment boundary conditions is presented in Table 11.6.

Note that when running an integrated simulation (Catchment + Network simul-taneously), sediment outputs from the catchment model are automatically transferred to the network model at the locations of catchments connections to the network model. If the simulations of catchment and network models are run separately in a sequence, the catchment model's sediment outputs must be specified as WQ boundary properties of the corresponding hydraulic boundary conditions to the network model.

 Table 11.6
 Overview over possible sediment boundary conditions.

			WQ boundary property (for each sediment fraction)						
	Boundary condition type	Constant	Cydic	Time series /result file	Table concentration	SWQ advanced			
	Catchment discharge				NO				
odel	Catchment discharge per PE		YES, sediment concentration	YES, sediment concentration		NO			
entm	Catchment discharge per area	YES, sediment							
Catchment model	Stormwater loads (surface)	concentration			YES, sediment	YES, SWQ calculation			
S	Stormwater loads (RDII)		NO		function of runoff intensity				
	Inflow to node								
_	Inflow to link	YES, sediment concentration	YES, sediment concentration						
mode	Inflow from result file								
Network model	Exfiltration from node	NO			NO	NO			
Netv	Exfiltration from link	NO	NO	NO					
	Outlet water level	YES, sediment concentration, AD transport only	YES, sediment concentration, AD transport only	YES, sediment concentration, AD transport only					

11.9 Sediment transport outputs

Per default, MIKE URBAN+ ST generates an output file "Default_Network_ST" with basic contents, including Total sediment transport and sediment transport per fraction.

This default contents can be expanded to include a full range of relevant results: sediment transport (instantaneous and accumulated), mass transport (instantaneous and accumulated), bed level, bed shear stress, Manning number.

Overview of possible outputs is presented in Figure 11.7.

Result files							
Identification							
ID	Default_Network	ST		Model type	Network	\sim	Insert
Contract to me				Format		\sim	Сору
Content type	Sediment transpo	rt	\sim	Format	.res1d	~	Delete
Save all HD It	ems AD Items	ST Items	ECO La	ab			
Basic items				Additiona	items		
✓ Total sedin	nent transport			⊡ Bo	ttom level		
Sediment t	ransport (per fract	ion)		✓ Be	d shear stress		
				Dir	nensionless bed shear stress		
				Ma	nning number		
				🗹 То	tal mass transport		
				🗸 Ma	iss transport (per fraction)		
				✓ To	tal accumulated mass transpo	rt	
				✓ Ac	cumulated mass transport (pe	r fraction)
				🗸 То	tal accumulated sediment trar	nsport	
				Ac	cumulated sediment transport	t (per frac	tion)
				🗸 Su	spended sediment concentrat	ion (per fi	raction)
				🗸 То	tal Bed load removal		
				✓ Be	d load removal (per fraction)		
				🗸 То	tal accumulated bed load rem	oval	
				Ac	cumulated bed load removal (per fractio	on)
				🗹 Ma	ass balance (per fraction)		

Figure 11.7 The output items for sediment transport model

11.10 Sediment Transport Modelling Work Flows

Several typical work flows in modelling sediment transport are presented below.

11.10.1 Analysis of hydraulic effects of sediment deposits

This analysis focusses on the hydraulic effects (changes in flow capacity, overflows, surcharge, etc.) as consequence of fixed bed sediment deposits in the network.

Step1: Prepare a stable and well-calibrated drainage network model, loaded with representative hydraulic inflows

Step 2: Set the "Sediment transport | ST Model" analysis type to "Hydraulic ef-fects only".

Step 3: Specify at least one sediment fraction (Sediment transport | Sediment fractions). Fractions' basic properties (grain size and percent of total sediments) are only relevant if sediment flow resistance (Manning number) is specified as "Computed" (see Step 5). Fall velocity is not relevant for the specified type of analysis.

Step 4: Specify initial sediment depths (fixed-bed sediment depths), globally and, optionally, locally. The local sediment depth specifications override global specification.

Step 5: Specify flow resistance for sediment deposits, globally and, optionally, locally. The local Manning number specifications override global specification.

Step 6: Outputs. Review the contents of the default output file for sediment transport (Default_Network_ST) and include the wanted output items. Note that this type of analysis generates only result items "Bottom level", Bottom shear stress", and "Manning number". Alternatively, make a copy of default network result file, change its contents type to "Mixed contents" and add the wanted ST result items.

Step 7: Set up ST simulation. Create a simulation job, including "Network (HD)" and "Sediment transport (ST)". Set appropriate simulation period, simulation time step and hot-start file (optionally).

Step 8: Review output files to be generated and set appropriate result saving frequency

Step 9: Run a simulation

Step 10: Review results

11.10.2 Analysis of wastewater sediments transport in a drainage network

This is a morphological analysis of sedimentation in a wastewater collection network. The analysis includes sediment loads from wastewater inflows generated on urban catchments, and their transport, sedimentation and erosion in the sewer network.

Step1: Prepare a stable and well-calibrated drainage network model, loaded with representative hydraulic inflows, defined as "Catchment discharge", representing wastewater generated by population in the catchments. Wastewater load is defined by quantity and diurnal variation.

Step 2: Set the "Sediment transport | ST Model" analysis type to "Morphological analysis". Choose the ST formula and review basic sediments properties (relative density and porosity of deposits).

Step 3: Specify at least one sediment fraction (Sediment transport | Sediment fractions) and review/modify its properties.

Step 4: Specify initial sediment depths), globally and, optionally, locally. The local sediment depth specifications override global specification.

Step 5: Specify flow resistance for sediment deposits, globally and, optionally, locally. The local Manning number specifications override global specification.

Step 6: Specify WQ Boundary properties for the wastewater boundary condition, as sediment concentration in wastewater, separately for each sediment fraction. The concentration may be given as a constant or as diurnal variation.

Step 7: Outputs. Review the contents of the default output file for sediment transport (Default_Network_ST) and include the wanted output items. Alternatively, make a copy of default network result file, change its contents type to "Mixed contents" and add the wanted ST result items.

Step 8: Set up ST simulation. Create a simulation job, including "Catchments | Catchment discharge | Catchment discharge WQ" and "Network (HD) | Sediment transport (ST)".

Set appropriate simulation period, simulation time step for catchment discharge and for network simulation, and hot-start file for the network model (optionally).

Step 9: Review output files to be generated and set appropriate result saving frequency.

Step 10: Run a simulation

Step 11: Review results

11.10.3 Analysis of stormwater sediments buildup/washoff ("first flush") and sediment transport in a drainage network


This is a morphological analysis of sedimentation in a wastewater collection network. The analysis includes sediment loads from storm runoff, generated on urban catchments, and their transport, sedimentation and erosion in the sewer network

Step 1: Prepare a stable and well-calibrated drainage network model, loaded with representative rainfall, defined as "Rainfall" boundary condition.

Step 2: Set the "Sediment transport | ST Model" analysis type to "Morphological analysis". Choose the ST formula and review basic sediments properties (relative density and porosity of deposits).

Step 3: Specify at least one sediment fraction (Sediment transport | Sediment fractions) and review/modify its properties.

Step 4: Specify initial sediment depths), globally and, optionally, locally. The local sediment depth specifications override global specification.

Step 6: Define buildup/washoff parameters for the specified sediment fractions or the model's catchments

Step 7: Define SWQ boundary condition (Stormwater loads (surface) and its WQ properties, based on SWQ advanced method "BuildUp Washoff".

Step 8: Outputs. Review the contents of the default output file for sediment transport (Default_Network_ST) and include the wanted output items. Alternatively, make a copy of default network result file, change its contents type to "Mixed contents" and add the wanted ST result items.

Step 9: Set up ST simulation. Create a simulation job, including "Catchments | Rainfall-Runoff (RR) | Storm water quality (SWQ)" and "Network (HD) | Sediment transport (ST)".

Set appropriate simulation period, simulation time step for runoff and for network simulation, and hot-start file for the network model (optionally).

Step 10: Review output files to be generated and set appropriate result saving frequency

Step 11: Run a simulation

Step 12: Review results

12 Calibrations

Model calibration is important to ensure that model predictions represent the actual hydraulic and water quality conditions in the system. Calibration of the model is important when model results are to be used for decisions regarding remedial actions, augmentation works, forecasting, etc.

Calibration is primarily focused on reproducing the observed hydraulics and water quality behaviour of the system in terms of flow depth/pressure, flow discharges and velocities. The model calibration should include comparisons between model simulation results and field measurements for, but not limited to, the following:

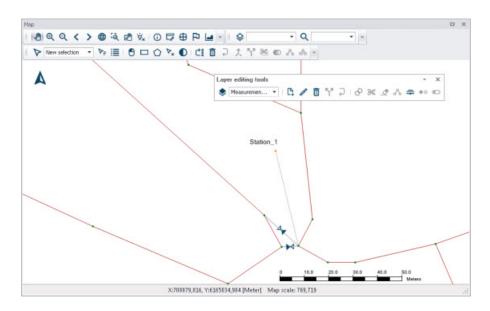
- Flow
- Water level / Pressure / Hydraulic head
- Velocity
- Water mass balance
- Contaminant concentrations
- Contaminant migration rates
- Degradations rates

Usually these comparisons are presented in maps, tables or graphs. The calibration results need to be evaluated by the modeller using engineering professional judgement. There are no universally accepted 'goodness of fit' criteria that can be applied in all cases. However it is important that the user makes every attempt to minimize the difference between model simulations and measured field data.

The model calibration procedure is supported in MIKE URBAN+ wherein calibration plots of simulated and measured value can be set up and visually compared. Also, statistical analysis can be performed to determine the goodness of fit in MIKE URBAN+. The calibration plots and statistics are written to a report as documentation and for further report processing.

12.1 Measurement Stations

Measurement stations, representing locations of flow gauges, pressure meters, and the like, can be defined in MIKE URBAN+. It is possible to graphically add a measurement station on the map as well as directly on the editor (Calibrations | Measurement Stations) (Figure 12.1).



708822,886005698 [m] Insert 6165044,98065347 [m] Delete
•
•
_5225
T
•
Clear Show selected Show data errors
Location type Location ID Chainage
347 Nodes 🔹 Olsbaek_5225 Downstream
307 Nodes • KystRenden_960 Downstream
÷
34

Figure 12.1 The Measurement Stations Editor

The stations can be viewed on the Map providing the user an overview of monitoring locations. Additional information such as an image and description may be provided for a station.

Graphically add a station on the map using the 'Create' layer editing tool, specifying 'Measurement stations' as the Target layer. As with other point layers, the 'Create', 'Edit', and 'Delete' tools are available for measurement stations.

The various parts of the Measurement Stations editor are described in succeeding sections.

12.1.1 Identification

The Identification group box holds information on the measurement station ID and location. Use the 'Insert' button to add new measurement stations in the Editor.

ntification		Contraction of the second s	
	X:	711477,237785518 [m]	Insert
D Station_2			
	Y:	6166506,63159307 [m]	Delete

12.1.2 Model Connection

The stations need to be associated (i.e. geocoded) with elements of the model network to link the measurement station with a modelling result item.

Associate measurement stations with specific model elements in the Model Connection tab on the Measurement Stations Editor (Figure 12.4).

Identification		X:	711477,237785518	[m]	Insert
ID Station_2					
		Y:	6166506,63159307	[m]	Delete
lodel connection Me	asurements	Description			
Model element type	Nodes		-		
Model element ID		KystRe	nden_960 🕨]	
Chainage	Downstrea	m	*		

Figure 12.4 The Model Connection Tab on the Measurement Stations Editor

Model Element Type

Define the model element type to be associated with a measurement station by selecting an element type from the dropdown menu. Model element types that may be linked to stations are:

- Nodes
- Pipes and Canals
- Pumps
- Weirs
- Orifices
- Valves
- Curb Inlets

Model Element ID

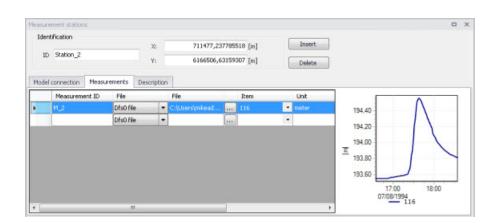
Define the ID for the particular model element to associate with a station.

Use the ellipsis button to select the ID from a list.

Use the cursor button to graphically select the element on the Map.

Chainage

For stations connected to links, there is an option to specify the chainage or computational grid point of the connection - either Upstream, Middle or Downstream of the link.


Note that connections lines between stations and the network are displayed on the map after model connections are specified for stations. Also, on the Map View, the 'Connect station' tool is available from the 'Layer editing tools' toolbar for connecting stations to network elements.

12.1.3 Measurements

Define time series for externally measured data for a station in the Measurements Tab on the Measurement Stations editor (Figure 12.5).

Add an external time series item via the secondary grid in the tab by specifying the time series file location under the 'File' column. A plots of a specified time series is shown to the right of the secondary grid.

Figure 12.5 The Measurements Tab on the Measurement Stations Editor

The Measurements secondary grid has the following data columns:

Measurement ID

The unique identifier for the measurement time series.

File

Measurement time series data may be in .DAT or .DFS0 file formats.

Item

The item to use from the time series file.

Unit

Displays the units for the selected time series item.

Start

Displays the start date and time for the time series.

End

Displays the end date and time for the time series.

Action (Edit)

Launches the Plots and Statistics Editor wherein comparisons of the measured data with simulation results may be configured.

12.1.4 Description

The Description tab allows the modeller to add descriptive information for the Measurement Station. An image may also be added using the 'Add picture' button.

Measurement station	5					 ×
Identification ID Station_2		X: Y:		37785518 63159307	Insert Delete	
Model connection	Measurements	Description				
Description	Basin					
Data source	Utiky					
Asset ID	Basin 1				Add picture	
Status	4: Inserted		•			
Network type	3: Combined		-	1		
Bottom level			0	[m]		
Model	1: Overal		-			

Figure 12.6 The Description Tab on the Measurement Stations Editor

Table 12.1 below shows an overview of the various parameters on the Measurement Stations Editor.

Table 12.1	Overview of the Measurement Stations editor attributes (Table m_Sta-
	tion)

Edit field	Description Used or required		Field name in data structure
ID	Station identified Yes		MUID
X	X coordinate of the station	Yes	-
Y	Y coordinate of the station	Yes	-
Model Element Type	Type of connected model element	Yes	LocationType
Model Element ID	ID if connected model element	Yes	LocationID
Chainage	Model element grid point associated with measurements	Yes If Model Element Type = Pipes and canals	Chainage

Edit field	Description	Used or required	Field name in data structure
Description	Free text description of the measure- ment station	Optional	Description
Data Source	Source of data	Optional	DataSource
Asset ID	Station ID in asset database	Optional	AssetName
Status	Information on data status	Optional	Element_S
Network Type	Information on the type of network	Optional	NetTypeNo
Bottom Level	Bottom level at measurement point	Optional	BottomLevel
Model	Model group under which the station is categorised	Optional	SubModelNo

Table 12.1 Overview of the Measurement Stations editor attributes (Table m_Station)

12.2 Plots and Statistics

The Plots and Statistics dialog allows the user to compare measured data with simulation results at measurement stations.

Set up a calibration plot on the Plots and Statistics Editor (Figure 12.7), where a reference file with observation data is loaded and compared to a result file. Multiple plot and statistics setups may be created for a project.

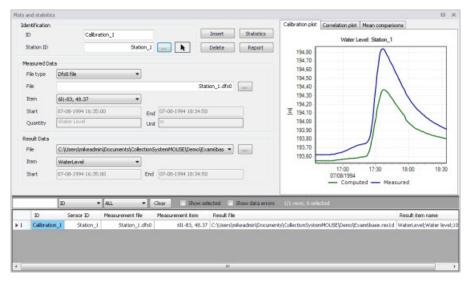


Figure 12.7 The Plots and Statistics dialog

The user can opt to plot a correlation plot, presenting the deviation of simulated results from observed data.

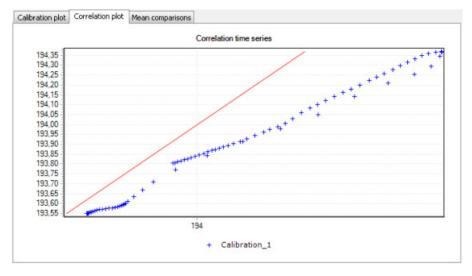


Figure 12.8 Example correlation plot

Below is an example of a mean comparison plot wherein the mean value for simulated results is compared to the mean value for measured data.

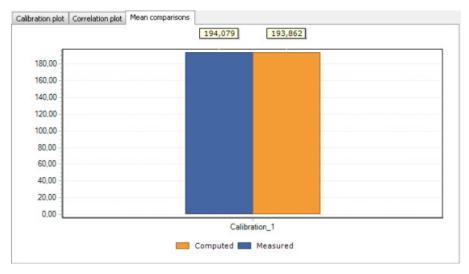


Figure 12.9 Example mean comparison plot

Edit field	Description	Used or required	Field name in data structure
ID	Each time a record is added an auto- matic ID is given of the form: Calibra- tion_1, Calibra- tion_i This may be changed to something more descriptive	Yes	m_Measure- ment.MUID
Station ID	The ID of the Meau- rement Station	Yes	m_Measure- ment.StationID
File Type	Measurement time series data may be in .DAT or .DFS0 file formats.	Yes	-
Measured Data File	External file name and path - this is were the measured time series is linked to the measure- ment station	Yes	TSFileName

 Table 12.2
 Overview of the Plot and Statistics editor attributes (Table m_Measurement)

Edit field	Description	Used or required	Field name in data structure	
Measured Data Item	Display of item in the measured time series	Yes	TSItemName	
Measured Data Start				
Measured Data End	time series file end time. Used to con- trol the End time for comparison			
Measured Data Quantity	Displays item name for selected item from measurement time series	Yes	-	
Measured Data Unit	Displays units used for selected item from measurement time series	Yes	-	
Result Data File	Result file name and path	Yes	ResFileName	
Result Data Item	Data The result file item Yes ResItemName			
Result Data Start	Display of simu- lated result time series start date and time	Yes	-	
Result Data End	Display of simu- lated result time series end date and time	Yes	-	

Table 12.2 Overview of the Plot and Statistics editor attributes (Table m_Measurement)

The following button functionalities are available on the Plots and Statistics dialog:

Insert

Inserts a new Plot and Statistics item.

Delete

Deletes the active Plot and Statistics item.

Statistics

Displays various statistics parameter values, such as Mean error and RMS error, used for evaluating the comparison between simulated values and measurements.

Report

Option for exporting a report in various file formats about the time series comparisons.

13 Result Specifications

MIKE URBAN+ allows flexible generation of model simulation result files and summaries. Various result file setups may be specified in the Result Specifications section, which may then be used in a simulation as needed by the user.

Result files obtained from simulations may be customised with respect to the number of result files generated, file types, spatial extent of saved results, and types of result items included in the files.

In MIKE URBAN+, **one result file** may be set up to contain **multiple result sets** comprised of **various location-item combinations** (see Sections 13.1.4 and 'User-specified results').

Result file and custom network summary specifications are defined under the following editors:

- **Result Files.** Result files obtained from simulations may be customised with respect to the number of result files generated, file types, spatial extent of saved results, and types of parameters included in the files.
- **Network Summary**. Basic HTML summaries for network simulations may be extended by adding supplementary tables to the summary.

13.1 Result Files

The Result Files editor (Figure 13.1) provides a facility for viewing and specifying result file setups in a project. The types or results available depend on the active Modules for the project (General Settings | Modules).

Result setups are a mix of Default and User-specified results.

Default results

The editor is initially filled with Default result setups. A Default set is shown for each active Module in the project. These records are distinguished by the "Default_" prefix in their IDs.

The following table shows an overview of the various Default result files that are possible in MIKE URBAN+.

Default ID	Model Type	Format	Content Type
Default_Sur- face_runoff	Catchments	.RES1D	Surface runoff
Default_RDII	Catchments	.RES1D	RDII

Table 13.1 Overview of possible Default result files in MU+

Default ID	Model Type	Format	Content Type
Default_Storm_wa- ter_quality	Catchments	.RES1D	Storm water quality
Default_Storm_wa- ter_sediments	Catchments	.RES1D	Storm water sedi- ments
Default_LIDs	Default_LIDs Catchments		LIDs
Default_Catch- Catchments ment_discharge		.RES1D	Catchment dis- charge
Default_Catch- ment_dis- charge_quality		.RES1D	Catchment dis- charge quality
Default_Net- work_HD	Network	.RES1D	Hydrodynamic
Default_Net- work_RTC	Network	.RES1D	Real time control
Default_Net- work_AD	Network	.RES1D	Pollution transport
Default_Network MIKE_ECOLab	Network	.RES1D	MIKE ECO Lab
Default_LTS_ex- treme_statistics	Network	.RES1D	LTS extreme statis- tics
Default_LTS_chron- ological_statistics	Network	.RES1D	LTS chronological statistics
Default_2D_over- land	2D Overland	DFSU / DFS2	2D area
Default_2D_over- land_AD	2D Overland	DFSU / DFS2	2D area, AD
Default_2D Flood_statistics	2D Overland	DFSU / DFS2	2D flood statistics
Default_2D_Vol- ume_balance	2D Overland	DFS0	Volume balance

Table 13.1 Overview of possible Default result files in MU+

Default result sets include results in all model elements, saving values for the basic calculation parameters.

Default result sets may be modified with respect to:

- File format: .RES1D or .DFS0 file format.
- Result items: Calculated parameters to be included in the file. Only basic result items are initially included in Default result setups.

Note that the saving locations may not be modified for Default results, and results will always be saved in all elements.

Also note that for some content types, only one file format is allowed and cannot be changed.

User-specified results

The user may also define custom result file setups according to their modelling needs.

The following properties may be customised for user-specified results:

- File format
- Location: Spatial extent or network elements for which results are saved in the file.
- Result items: Calculated parameters to be included in the file.

Note that **multiple result sets comprised of various location-item combinations may be specified for one user-specified result file** (see Section 12.1.4 for more details).

Identification Insert Insert D UserSpecifiedHD Model type Network Copy Content type Node Pormat resid Delete Save all Seve subset Selection Filter for pipes and condition Save subset Selection Filter for pipes and condition Save subset Selection Chainage (m) Save subset Selection geometry Chainage (m) D ALL Clear The subset is selection Content type Insert Delete QD rows, 0 selected Result selection Result selection D ALL Clear The Insert Delete Content type Insert Delete Content type Insert Delete Result selection Insert Delete Content type Insert Selection Node Insert Delete Content	The set of the set	
D UserSpecifiedHD Model type Network Gay Content type Need content Pormat resid Delete Content type Need content Pormat resid Delete Save all Save subset Selection Fiter for pipes and condis Save individual Node Chainage Save individual Node Chainage Chainage Draw on map X (m) Y (m) Insert Delete Copy 1/1 rows, 0 selected Result selections ID ALL Cleer Sho Insert Delete Copy 1/1 rows, 0 selected ID ALL Cleer Sho Insert Delete Copy 1/1 rows, 0 selected ID Model type Content type ID Location type Subset type Indvidual type 1 Defaul_Strace_unoff Catchmerts Sorm water quark Sorm water quark Sorm water quark Sorm water quark Sorm water se Sorm water se Seliiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		
Content type Nixed content Format Format Delete Format F	ID UserSpecifiedHD Model type Network	
Location HD Remis AD Remis ST Remis ECO Lab Save all Save subset Selection Save individual Node Save within polygon Tesert Delete Save Save Delete Copy 1/1 rows, 0 selected Result selection Result selection Result selection Result selection Delete Result files Delete Result files Delete Save all Save all Save all Save Save all Save Save Delete Result files Delete Save Save Save Save Save Save Save Sav		
Save all Save subset Selection Save subset Selection Save individual Node Save within polygon Insert Delete Draw on map X (m) Y (m) X (m) Y (m) Insert Delete Coarter type Insert Delete Result selection geometry Coarter type Draw on map X (m) Y (m) X (m) Y (m) Insert Delete Default_Startace_runoff Catchments + Surface runoff Default_Startace_runoff Catchments + Startace runoff Default_Startace_runoff Catchments + Startace runoff Default_Startace_runoff Startments + Startace runoff Default_Startace_runoff Catchments + Startace runoff Default_Starta_gedments Startments + Startace runoff Default_Startace_runoff Catchments + Startace runoff Default_Startace_runoff Catchments + Catchments + Startace runoff Default_Startace_runotic Catchments + Catchment decl Default_Startace_runotic Catchments + Catchment decl Default_Startace_runotic Catchment decl Default_Network_ST Network + Polukin transp Default_Network_ST		
Save all Save subset Selection Save subset Selection Save individual Node Save within polygon Insert Delete Opmows, 0 selected Draw on map X (m) Y (m) X (m) Y (m) Insert Delete Opmows, 0 selected Result files Result selection geometry D ALL Oraw on map X (m) Y (m) X (m) Y (m) Insert Delauk_Startace_runoff Catchments + Surface runoff D Defauk_substrage Individual type 1 Defauk_Startace_runoff Storm water quality 4 Defauk_Storm_water_gediments Storm water quality 4 Defauk_Storm_water_gediments Catchments + Storm water quality 6 Defauk_Storm_water_gediments Catchment dest 7 Defauk_Storm_water_gediments Catchment dest 8 Defauk_Network_ST Network + Polydown transp 10 Defauk_Network_ST Network + Sediments ransp 11 UserSpecifiedN Network + Mixed catchment 11 UserSpecifiedN <td>Landing 10 Burry 10 Burry 17 Burry 1999 1</td> <td></td>	Landing 10 Burry 10 Burry 17 Burry 1999 1	
Save subset Selection Save individual Node Image Ima	Location PD Items AD Items 51 Items ECO Lab	
Save individual Node Save within polygon Insert Delete 0/0 rows, 0 selected Result selection geometry X (m) Y (m) X (m) Y (m) X (m) Y (m) V Image D ALL Clear Shor Image Image Image Image Image Image Image	Save all Filter for pipes an	anals
Save within polygon Insert Delete 0/0 rows, 0 selected Result selection geometry X (m) Y (m) X (m) Y (m) Y (m) X (m) Y (m) Y (m) ID ALL Clear Shor Result files Result selection Result selections ID Model type Content type ID 1 Default_Surface_runoff Catchments Surface nunoff 2 Default_Storm_water_gediments Catchments Roll 3 Default_Storm_water_gediments Catchments Roll 4 Default_Storm_water_gediments Catchment discharge Storm water selections 5 Default_Catchment_discharge Catchments Catchment discharge 7 Default_Storm_water_gediments Catchment discharge Catchment discharge 8 Default_Network_DD Network Hydrodynamic 9 Default_Network_ST Network Sedment transg 11 UserSpecifiedDR Network + Mixed catchment 12 UserSpecifiedD Network + Mixed catchment </td <td>Save subset Selection - Save All grid pr</td> <td>s (no filter) 🔹</td>	Save subset Selection - Save All grid pr	s (no filter) 🔹
Save within polygon Insert Delete 0/0 rows, 0 selected Draw on map X (m) Y (m) X (m) Y (m) ID ALL Clear Result selection geometry Insert Delete Copy ID ALL Clear Shor Insert Delete Copy ID ALL Clear Shor Insert Delete Copy 1/1 rows, 0 selected Result files Result files Result selections Individual type Individual type 1 Default_Surface_runoff Catchments Surface runoff ID Location type Subset type Individual type 2 Default_Storm_water_gedments Catchments RDII Sel_1 Save all Selection Node 3 Default_Storm_water_gedments Catchments Storm water set	Save individual Node V Chainage	0 [m]
Draw on map X [m] Y [m] X [m] Y [m] Y [m] B Default_Storm_water_gedments Catchmerks S Default_Storm_water_gedments Catchmerk dist B Default_Catchment_discharge Catchmerks Y Default_Catchment_discharge Catchmerk dist B Default_Network_AD Network Hydrodynamic P Default_Network_ST Network Sedment transp 10 Default_Network_ST Network Mixed catchment 11 UserSpecifiedD Network Mixed catchment 12 UserSpecifiedD Network Mixed catchment		
Draw on map X (m) Y (m) ID ALL Clear Shor Result files Result selections ID Model type Content type ID Default_Surface_runoff Catchments S Default_RDII Catchments S Default_Storm_water_geudity Catchments S Default_Storm_water_sements Catchments G Default_Storm_water_sements Catchments S Default_Catchment_discharge Catchments G Default_Catchment_discharge Catchments G Default_Network_HD Network Pefault_Catchment_discharge Catchments Catchment disct 8 Default_Network_D Network Hydrodynamic 9 Default_Network_ST Network Sediment transp 11 UserSpecifiedRR Catchments Mixed catchment 11 UserSpecifiedR Network Mixed catchment <td>ansie Deele upprovs, dispected</td> <td></td>	ansie Deele upprovs, dispected	
ID ALL Clear Shor Insert Delete Copy 1/1 rows, 0 selected Result files Result selections ID Model type Content type 1 Default_Surface_runoff Catchments Surface runoff 2 Default_RDII Catchments RDII 3 Default_Storm_water_gediments Catchments Starm water set 5 Default_Storm_water_gediments Catchments Starm water set 6 Default_Storm_water_gediments Catchments Catchment doct 7 Default_Catchment_discharge_gualty Catchment doct 8 Default_Network_DD Network Hydrodynamic 9 Default_Network_DD Network Sediment transp 10 Default_Network_DD Network Mixed catchment 11 UserSpecifiedRR Catchments Mixed catchment 12 UserSpecifiedRN Network Mixed catchment	Draw on man	
Result files ID Model type Content type ID Location type Subset type Individual type 1 Default_Surface_runoff Catchments Surface runoff ID Location type Subset type Individual type 2 Default_Storm_water_quality Catchments Surface runoff > 1 Sel_1 Save all > Selection > Node 3 Default_Storm_water_gediments Catchments Storm water get > 5 Selection > Node 4 Default_Catchment_discharge_guality Catchments Storm water get > 5 Catchments Catchments Catchment disc 5 Default_Catchment_discharge_guality Catchments Catchment disc Catchment disc 6 Default_Network_HD Network Polution transp Selement transp Mixed catchment 10 Default_Network_ST Network Mixed catchment Mixed catchment Selement transp Selement transp 11 UserSpecifiedRR Catchments	x [m] ¥ [m]	
Result files ID Model type Content type ID Location type Subset type Individual type 1 Default_Surface_runoff Catchments Surface runoff ID Location type Subset type Individual type 2 Default_RDII Catchments RDI 3 Default_Storm_water_gediments Catchments Storm water quadry 4 Default_Storm_water_gediments Catchments Storm water gediments Storm water gediments Storm water gediments Catchments Storm water gediments Catchments Storm water gediments Catchments Catchment discharge_gualty Catchments Catchment discharge_gualty Catchments Catchment discharge_gualty Catchments Catchment discharge_gualty Catchments Catchment discharge Catchment discharge Catchments Catchment discharge Storm water gediment trans Storm water gediment trans 9 Default_Network_AD Network Polution transp Storm wate cathment Storm water gediment trans 11 UserSpecifiedRR Cathments Mixed cathment Mixed cathment 12 UserSpecifiedRN Network		e en la stada d
ID Model type Content type 1 Default_Surface_runoff Catchments Surface runoff 2 Default_RDII Catchments RDII 3 Default_Storm_weber_guality Catchments Storm water equality 4 Default_Storm_weber_guality Catchments Storm water equality 5 Default_LIDS Catchments Catchment discharge_guality 6 Default_Catchment_discharge_guality Catchments Catchment discharge 9 Default_Network_AD Network Polution transpin 10 Default_Network_ST Mixed catchment 11 UserSpecifiedRR Catchments		ows, u selected
1 Default_Surface_runoff Catchments • Surface runoff 2 Default_RDII Catchments • RDII 3 Default_Storm_water_guadky Catchments • Storm water guadky 4 Default_Storm_water_guadky Catchments • Storm water guadky 5 Default_Catchment_discharge Catchments • LIDs 6 Default_Catchment_discharge Catchments • Catchment disc 7 Default_Catchment_discharge Catchments • Catchment disc 8 Default_Network_HD Network • Hydrodynamic 9 Default_Network_ST Network • Polizion transp 10 Default_Network_ST Network • Mixed catchment 11 UserSpecifiedRR Catchments • Mixed catchment 12 UserSpecifiedRR Network • Mixed catchment		pe Individual type
3 Default_Storm_water_guality Catchments Storm water quality 4 Default_Storm_water_sedments Catchments Storm water set 5 Default_LIDs Catchments IDs 6 Default_Catchment_discharge Catchments Catchment disc 7 Default_Catchment_discharge Catchment disc 8 Default_Network_DD Network Hydrodynamic 9 Default_Network_DD Network Polution transp 10 Default_Network_ST Network Stedment transp 11 UserSpecifiedRR Catchments Mixed catchment 12 UserSpecifiedRD Network Mixed catchment		
4 Default_Storm_water_sediments Catchments Storm water set 5 Default_LIDs Catchments LIDs 6 Default_Catchment_discharge Catchments Catchment disc 7 Default_Catchment_discharge_quality Catchments Catchment disc 8 Default_Network_HD Network Hydrodynamic 9 Default_Network_ST Network Polution transp 10 Default_Network_ST Network Steinment transp 11 UserSpecifiedRR Catchments Mixed catchment 12 UserSpecifiedPD Network Mixed content	2 Default_RDII Catchments - RDII	
5 Default_LIDs Catchments LIDs 6 Default_Catchment_discharge Catchments Catchment disc 7 Default_Catchment_discharge_quality Catchments Catchment disc 8 Default_Network_HD Network Hydrodynamic 9 Default_Network_ST Network Polution transp 10 Default_Network_ST Network Seiment transp 11 UserSpecifiedRR Catchments Mixed catchment 12 UserSpecifiedPD Network Mixed content	3 Default_Storm_water_quality Catchments • Storm water qu	
6 Default_Catchment_discharge Catchments Catchment disc 7 Default_Catchment_discharge_quality Catchments Catchment disc 8 Default_Network_HD Network Hydrodynamic 9 Default_Network_AD Network Polution transp 10 Default_Network_ST Network Seiment transp 11 UserSpecifiedRR Catchments Mixed catchmer 12 UserSpecifiedD Network Mixed content	4 Default_Storm_water_sediments Catchments • Storm water set	
7 Default_Catchment_discharge_guaity Catchments Catchment disc 8 Default_Network_HD Network Hydrodynamic 9 Default_Network_AD Network Pollution transp 10 Default_Network_ST Network Seiment transp 11 UserSpecifiedRR Catchments Mixed catchmer 12 UserSpecifiedPD Network Mixed content	5 Default_LIDs Catchments + LIDs	
8 Default_Network_HD Network Hydrodynamic 9 Default_Network_AD Network Pollution transp 10 Default_Network_ST Network Sedment transp 11 UserSpecifiedRR Catchments Mixed catchmer 12 UserSpecifiedPD Network Mixed content	6 Default_Catchment_discharge Catchments + Catchment disct	
9 Default_Network_AD Network Pollution transp. 10 Default_Network_ST Network Sediment transp. 11 UserSpecifiedRR Catchments Mixed catchments. 12 UserSpecifiedHD Network Mixed content	7 Default_Catchment_discharge_quality Catchments + Catchment disct	
10 Default_Network_ST Network • Sediment transp 11 UserSpecifiedRR Catchments • Mixed catchment 12 UserSpecifiedHD Network • Mixed content	8 Default_Network_HD Network + Hydrodynamic	
11 UserSpecifiedRR Catchments • Mixed catchment 12 UserSpecifiedHD Network • Mixed content	9 Default_Network_AD Network Pollution transp	
UserSpecified+D Network Mixed content		
	▶12 UserSpecifiedHD Network Mixed content	
	< » <	

Figure 13.1 The Result Files Editor

The various data tabs and components of the Result Files editor are described in succeeding sections.

13.1.1 Identification

The Identification group box on the Result Files editor contains general information on a result file item.

Identification				2	insert	
ID	Default_Network_HD		Model type	Network	 	
Content type	Hydrodynamic	-	Format	.res1d	 Сору	
	(I) di esti l'anne				 Delete	

Model Type

Each result file item is categorised based on the type of model from which it is generated. The model may either be a Catchment model, a Network model (comprising CS network and/or River network) or a 2D Overland model.

Content Type

This parameter characterises result files according to the calculation modules, and filters the available result items that may be included in the result file setup. The available categories depend on the selected Model Type for a result file setup.

Note that there are also "mixed content" types, which allow flexibility in terms of mixing result items across various active computational modules in one result file setup (See Section 13.1.4).

Content Type can be:

- For 'Catchments' Model Type:
 - Mixed catchment contents. Content type for which result items across various active catchment model-related computational modules may be included.
 - Surface runoff
 - RDII
 - Storm water quality
 - Storm water sediments
 - LIDs
 - Catchment discharge
 - Catchment discharge quality
- For 'Network' Model Type:
 - Mixed content. Content type for which result items across various active network model-related computational modules may be included (e.g. HD, AD, ST, and MIKE ECO Lab).
 - Hydrodynamic
 - Real time control. If the 'Real Time Control (RTC)' module is active.
 - Pollution transport. If the 'Water Quality (AD)' module is active.
 - MIKE ECO Lab. If the 'Water Quality (MIKE ECO Lab)' module is active.
 - LTS extreme statistics. If the 'Long Term Statistics (LTS)' module is active.
 - LTS chronological statistics. If the 'Long Term Statistics (LTS)' module is active.
- For '2D Overland' Model Type:
 - 2D area: a map result file containing instantaneous results at regular time intervals
 - 2D flood statistics: a map result file containing a single time step with statistical results (e.g. maximum values over time)

- Time series: time series results from one or more cells from the 2D domain
- Volume balance: a time series providing total volumes over the 2D domain
- Section discharge: a time series providing the total discharge computed through a cross section
- 2D area, AD: a map result file containing instantaneous water quality results at regular time intervals
- Time series, AD: time series of water quality results from one or more cells from the 2D domain

Format

Some result files may be saved in various file formats.

An overview of the Identification group attributes in the Result Files editor is shown in Table 13.2 below.

Edit field	Description	Used or required by simulations	Field name in datastructure
ID	Unique identifier for the result file setup	Yes	MUID
Model Type	Categorises the model used to gen- erate the result file as either: - Catchment model, or - Network model	Yes	ModelTypeNo
Content Type	The type of result set under which the result file item falls under. Lists of pos- sible content types are shown below.	Yes	ContentTypeNo
Format	The file format for the generated result file is either: RES1D DFS0 - DFSU - DFS2	Yes	FormatNo

Table 13.2	Overview of the Identification group box attributes (Table msm_RS)
------------	--

The buttons to the right of the Identification group box control the data rows in the left overview table in the Result Files editor.

'Insert' button

Adds a new result item in the Result Files table.

'Copy' button

Creates a copy of an active result file item. The ID of the copied item is set the same as the original item's ID plus the suffix '_Copy'.

'Delete' button

Deletes the current selected rows from the left overview table in the editor.

13.1.2 Location

The flexibility in results-saving in MIKE URBAN+ extends to possibilities for selecting elements or specifying locations for which to save results in the file.

Result locations may be defined for user-specified result files, but not for Default results. Note that Default result files will always save results in all model elements (i.e. 'Save all' option).

Result saving locations are specified in the Location tab in the Result Files editor (Figure 13.3).

Save all					Filter for pipes	and canals
Save subset	Sele	ction	w		Save All grid	points (no filter)
🖱 Save individui	al Nod	0	×		Chainage	0 [m]
Save within p Draw on map	olygon In	sert Dele	Result selecti			
		X [m]	Y [m]			

Figure 13.3 The Location Tab in the Result Files Editor

msm_r	(88)		
Edit field	Description	Used or required by simulations	Field name in datastructure
[Location radio buttons]	Radio button for selection result sav- ing location: - Save all - Save subset - Save individual - Save within poly- gon	Yes	SelectionNo
[Save Subset dropdown menu]	Dropdown menu for selecting the type of subset	If Location = Save subset	SubsetNo
[Selection list input box]	Input box for a Selection List	If Location = Save subset and Subset = Selection	SelectionListID
[Save Individual dropdown menu]	Dropdown menu for selecting the type of model element for which to save results	If Location = Save individual	IndividualNo
[Element input box]	Input box for an ele- ment selection	lf Location = Save individual	ElementID
Save [Filter for Pipes and Canals]	Option for selecting the calculation grid point(s) along pipes and canals for which to save results	Yes If Model Type = Net- work, and results are saved in Pipes and Canals	GridPointNo
Chainage [Filter for Pipes and Canals]	Input box for speci- fying the chainage (i.e. distance from upstream node) of grid point along the pipe or canal for which to save results	Yes If Model Type = Net- work, results are saved in Pipes and Canals, and Save = User- specified chainage	Chainage

Table 13.3 Overview of the Location tab attributes in the Result Files editor (Table msm_RSS)

Save all

This option saves results in all model elements. All Default result files (see Default results section, page 367) use this option, which may not be modified. Also note that this option is not available when results are saved in .DFS0 format (see Format section).

Save subset

This option offers a dropdown list of possible subset groups for which to save results. The list varies according to Model Type associated with the results. A selection list must be defined (Figure 13.4) when the subset is a 'Selection'.

	Search Clear
Selection ID	
RDII_catchments	
road_catchments	
roof_catchments	

Save individual

This option offers a dropdown list of model elements for which to save results. The list varies according to the Model Type associated with the results. An element ID must be defined for the selected model element.

Save within polygon

Results from only the network elements or the 2D domain elements within a specified polygon are saved in the file. The polygon is characterised by vertex XY coordinates defined in the secondary grid on the Location tab (Figure 13.5).

Save all		
Save subset	Selection)
Save individual	Node 🔹	
Save within polygon	Insert Delete 0/0 rows, 0 selected	
	Result selection geometry	
Draw on map	X [m] Y [m]	

Figure 13.5 The Result Selection Geometry secondary grid in the Location Tab

The location polygon may be defined by:

- Defining values in the secondary table.
 Polygon vertex locations are added and removed from the table using the 'Insert' and 'Delete' buttons at the top of the secondary grid.
- Drawing the polygon on the map using the 'Draw on map' button to the left of the table.

Use the 'Draw on map' button to define a new polygon on the map. The 'Draw on map' button activates the Map view (Figure 12.5). Draw a polygon on the map by defining vertex locations. Double-click on the map to finish the polygon editing. The polygon coordinates are then shown in the secondary table in the Location tab of the Result Files editor.

The 'Draw on map' button is renamed 'Edit on map' as soon as a polygon has been defined and the secondary table is filled.

Note that the location polygon is shown on the Map only while drawing. The polygon is no longer shown on the map once the polygon has been drawn.

When the polygon already exists (i.e. when the Location tab secondary table is not empty), the 'Edit on map' button allows for editing the existing polygon. The Map is shown, where polygon vertices may be moved, deleted, or added.

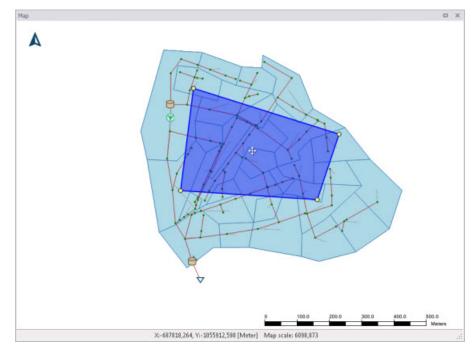


Figure 13.6 Defining a result location polygon on the Map

Coordinates

For 2D time series data, the X and Y coordinates of the time series must be specified in the table. When multiple coordinates are specified for the same result file, each location will be saved as an individual item in this file. For each time series, the raw results for the 2D domain element in which the coordinates fall will be saved.

For a 2D section discharge result file, coordinates must be specified for the start and end of the cross section line, through which the discharge will be computed.

Defining saving grid points

The Filter for Pipes and Canals group box is shown on the right side of the Location tab when the result is from a network model (i.e. Model Type = Network).

This section is used to select grid points along pipes and canals for which results are saved in the result file.

Filter for pipes and ca	nals
Save All grid points	(no filter) 🔹 🔻
Chainage	0 [m]

The 'Save' dropdown list offers the following options:

- All grid points (no filter)
- Upstream grid point
- Downstream grid point
- Up- and downstream points
- Middle grid point
- User specified chainage. If 'User specified chainage' is selected, specify the grid point location for which results are saved in the 'Chainage' field below. Results are saved for the grid point closest to specified chainage value.

13.1.3 Items

Tabs in the Result Files editor are used to select items that will be stored in the result file. Different tabs are shown depending on the Model Type and active project Modules.

Note that customising Items related to LIDs is currently not available. Also, modifying items related to MIKE ECO Lab results is done in the MIKE ECO Lab template (.ECOLAB) and not the MU+ interface.

tesult	files												□ ×
Ide	ntification												
ID		User-specified Mixed catchment contents			Model type		1	Catchments 👻			3	Insert	
Con	ntent type				E	ormat	1	.res1d				5	Сору
Cor	icenc cype	Mixe	d catchment cont	encs •	F	ormat		.res1d	2				Delete
Loca	tion RR I	ltems	SWQ AD Items	SWQ ST It	ems	LID Iten	15	CD I	tems	CD AI	D Items		
•	Save all												
0	Save subset	t	Kinematic	wave catchme	ents	¥							
0	Save individ	lual				-							
0	Save within	polygo	n Insert	Delete		0/0 rows, 0	1	elected					
			ansore			it selection			£11	-	-		
	_	_	_	_	-			-	_	_		_	
		ID	- F	ALL.	•	Clear	l	Inse	rt Del	ete	Сору		1/1 rows, 0 se
			Result files	2			_				Result sele	ction	5
	ID			Model type		Conten 4	1		ID	Lo	cation type	,	Subset type
10		Defa	ault_Network_ST	Network	•	Sedimer		▶1	Sel_9	Sa	ve all	-	Kinematic wave cat
11			Default_RDII	Catchments	•	RDII							
12	Defau	lt_Stor	m_water_quality	Catchments	•	Storm w							
13			water_sediments	Catchments	•	Storm w							
14		Default	_Surface_runoff	Catchments	•	Surface							
15			User-specified	Catchments	•	Mixed c.	-						
(111					F							,

Figure 13.7 Item Tabs in the Result Files Editor. This figure shows available tabs for results from Catchment models.

Each tab shows items related to a computation Module, and the items are categorised as:

- Basic items. Primary result parameters for a simulated process.
- Additional items. Additional result items that provide greater detail on the simulated processes for the system.

The following sections describe the various result items available in MIKE URBAN+.

RR Items (Surface runoff and RDII)

These are catchment rainfall-runoff modelling result items. RDII result items are also selected from the RR Items tab (i.e. Additional items).

Table 13.4 summarises items that may be saved in surface runoff result files.

lesult files											2 >
Identific ID Content	Default_Surface_runoff					Catchments .res1d	Insert Copy Delete				
Save all	RR Ite	ms	SWQ AD Items	SWQ ST It	ems	LID Items	CD Items	CD AD Items			
And and	' : rainfall					Act	tual rainfall tual evaporati tal infiltration tal Loss II: Overland fi	ow buted from secon nd base flow torage	nd reservoir		* W
						•		III		,	

Figure 13.8 The RR Items Tab in the Result Files Editor. The 'Total runoff' and 'Net rainfall' items are initially included in Default Surface Runoff results.

Basic Items	Additional Items
Total runoff	Actual rainfall
Net rainfall	Actual evaporation
	Total infiltration
	RDI: Overland flow (Default RDII)
	RDI: Interflow routed from second reservoir (Default RDII)
	RDI: Base flow (Default RDII)
	RDI: Interflow and base flow (Default RDII)
	RDI: Rootzone storage (Default RDII)
	RDI: Surface storage (Default RDII)
	RDI: Groundwater depth (Default RDII)
	RDI: Infiltration to groundwater (Default RDII)
	RDI: Overland first reservoir flow, from first to second reserve
	voir (Default RDII)
	RDI: Interflow first reservoir flow, from first to second reser-
	voir (Default RDII)
	RDI: Capillary flux (Default RDII)
	RDI: Overland first reservoir storage (Default RDII)
	RDI: Overland second reservoir storage (Default RDII)
	RDI: Lower base flow (Default RDII)
	SnowStorage (Default RDII)
	RDI: Snow Zone Temperature (Default RDII)
	RDI: Snow ZoneRainfall (Default RDII)
	RDI: Snow ZoneWaterRetention (Default RDII)
	RDI: Snow ZoneMeltingCoefficient (Default RDII)
	RDI: Snow ZoneAreaCoverage (Default RDII)
	RDI: Snow ZoneMeltingWater (Default RDII)
	TimeArea: InitialLossStorage
	UHM: Excess Rainfall
	KW Runoff [ImperviousSteep, Flat]
	KW Runoff [PerviousSmall, Medium, Large]
	KW Depth [ImperviousSteep, Flat]
	KW Depth [PerviousSmall, Medium, Large]
	KW WettingLoss [PerviousSmall, Medium, Large]
	KW WettingLoss [ImperviousFlat]
	KW StorageLoss [ImperviousFlat]
	KW StorageLoss [PerviousPlat] KW StorageLoss [PerviousSmall, Medium, Large]
	KW Infiltration [PerviousSmall, Medium, Large]
	KW Infiltration [PerviousSmall, Medium, Large] KW InfiltrationPotential [PerviousSmall, Medium, Large]
	Two mininations of entital [Ferviousofilall, Meuluin, Large]

Table 13.4 Overview of Surface Runoff result items in the RR Items Tab

SWQ AD Items (Stormwater quality)

These are results related to the modelling of water quality of stormwater from catchments.

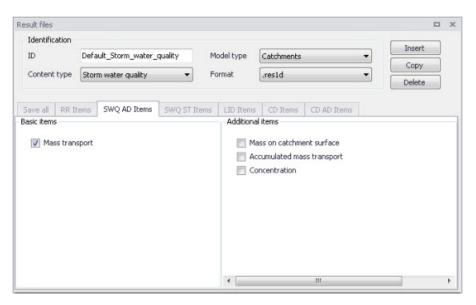


Figure 13.9 The SWQ AD Items Tab in the Result Files Editor. The 'Mass transport' item is initially included in Default Stormwater Quality results.

Basic Items	Additional Items
Mass transport	Mass on catchment surface Accumulated mass transport Concentration

SWQ ST Items (Stormwater sediments)

These are results related to the modelling of sediment transport with stormwater over catchments.

Result files											
Identific	ation								_	Insert	
ID Content type		Default_Storm_water_sediments		Model type		Catchments		- 7			
		Stor	m water sediments	-	Format		.res1d			Copy	
										Delete	
Save all	RR It	ems	SWQ AD Items	SWQ ST Ite	ems LID	Items	CD Items	CD AD Items			
 Total sed Sediment 			ort (per fraction)			Ma	al mass trans ss transport (Control on the second		on)	
						Tol	al accumulate	d sediment trans	sport	n)	

Figure 13.10 The SWQ ST Items Tab in the Result Files Editor. The 'Total sediment transport' and 'Sediment transport (per fraction)' items are initially included in Default Stormwater Sediments results.

Table 13.6	Overview of Stormwater Sediments Transport result items in the SWQ
	ST Items Tab

Basic Items	Additional Items
Total sediment transport Sediment transport (per fraction)	Total Mass on catchment surface Mass on catchment surface (per frac- tion) Total mass transport Mass transport (per fraction) Total accumulated mass transport Accumulated mass transport (per frac- tion) Total accumulated sediment transport
	Accumulated sediment transport (per fraction)

LID Items

It is currently not possible to customise result items for LID results in MIKE URBAN+. All result items are saved by Default. Table 13.7 shows the LID result items from a catchment model saved in .DFS0 format.

Basic Items	Additional Items
Rain	Evaporation
Inflow	Surface Depth
Surface Flow	Soil Moisture
Drain Flow	Storage Depth
Infiltration	Surface to Soil
	Soil to Storage
	Drain Storage Depth (Green Roof)
	Soil to Drain Storage (Green Roof)
	Pavement Moisture (Porous pavement)
	Surface to pavement (Porous pavement)
	Pavement to Storage (Porous pavement)
	Mass Checksum

Table 13.7Overview of LID result items

Please refer to the 'LID Deployment Result File' section under the 'Rainfall-Runoff Modelling' chapter in this Collection System User Guide for more details on the LID result items listed above.

CD Items (Catchment discharge)

Catchment discharge consists of person equivalent (PE)-based or areabased inflows from catchments (e.g. wastewater inflows).

Result files Identification ID		Default	_Catchment_dis	charge	Model type	Catchments		•	Insert Copy
Content	type	Catchm	ent discharge	•	Format	.res1d		•	Delete
Save all	RR Ite	ms S	SWQ AD Ibems	SWQ ST Item	LID Rems	CD Items	CD AD Items		
🗸 Cat	chment	discharg	ge						

Figure 13.11 The CD Items Tab in the Result Files Editor. The 'Catchment discharge' item is initially included in Default Catchment Discharge results.

CD AD Items (Catchment discharge quality)

These are computational items related to the modelling of pollutant transport with catchment discharge.

						0	1
Identification ID	Default_Catchment_dis	charge g	Model type	Catchments	•	Insert	
						Сору	
Content type	Catchment discharge o	uaity 🔻	Format	.res1d	•	Delete	
Save all RR Ite	ems SWQ AD Ibems	SWQ ST Ib	ems LID Item	CD Items	CD AD Items		
				D pollutant con	icentration		

- Figure 13.12 The CD AD Items Tab in the Result Files Editor. The 'CD pollutant mass load' item is initially included in Default Catchment Discharge Quality results.
- Table 13.8Overview of Catchment Discharge Quality result items in the CD AD
Items Tab

Basic Items	Additional Items
CD pollutant mass load	CD pollutant accumulated mass load CD pollutant concentration

HD Items (Hydrodynamic and RTC)

These are result items related to hydrodynamic calculations in the sewer network.

RTC (Real Time Control) result items are also selected from the HD Items tab. The Additional Items RTC setpoint value, RTC pump start level, and RTC pump stop level are always saved for RTC results as they are essential in case the result file is also used for hotstart.

Identification ID Default_Network_HD Model type Network Copy Content type Hydrodynamic Format Copy Delete Save all HD Items AD Items ST Items ECO Lab Additional items Additional items Velocity in structures Flow area Flow area Flow width Hydraulic radus Resistance number Flowed number Flowed area Total flooded area Total flooded area	Result files)
Content type Hydrodynamic Format res1d Delete Save all HD Items AD Items ST Items ECO Lab Basic items Water level Velocity in structures Flow area in structures Flow area Flow width Hydraulic radus Resistance number Conveyance Froude number Flowed area		22220	fault_Network	_HD	м	odel type	Network	-	
Basic Items Additional Items Velocity in structures Velocity in structures Velocity Flow area Flow area Flow width Hydraulic radius Resistance number Conveyance Froude number Flowed area	Content t	ype Hy	drodynamic		▼ Fo	ormat	.res1d	•	
Water level Velocity in structures Discharge Flow area in structures Velocity Flow area Flow width Hydraulic radius Resistance number Conveyance Froude number Flow data Flow data Flow data	Save all	HD Items	AD Items	ST Items	ECO Lab				
	V Disch	narge				F F	low area in structures low area low width lydraulic radius esistance number ionveyance roude number looded area		

Figure 13.13 The HD Items Tab in the Result Files Editor. The 'Water level', 'Discharge' and 'Velocity' items are initially included in Default Hydrodynamic results.

Basic Items	Additional Items
Water level	Velocity in structures
Discharge	Flow area in structures
Velocity	Flow area
	Flow width
	Hydraulic radius
	Resistance number
	Conveyance
	Froude number
	Flooded area
	Volume
	Water volume above ground
	Water flow rate to node volume above ground
	Simulation time step
	Number of tries for current time step
	Water level slope
	Energy level
	Energy level slope
	Bed shear stress
	Gate level
	Weir crest level
	Valve position
	RTC setpoint value
	RTC pump start level
	RTC pump stop level
	Pump active
	Infiltration rate

Table 13.9 Overview of Hydrodynamic and RTC result items in the HD Items Tab

AD Items (Pollution transport)

These are result items related to the modelling of the transport of pollutants in the sewer network.

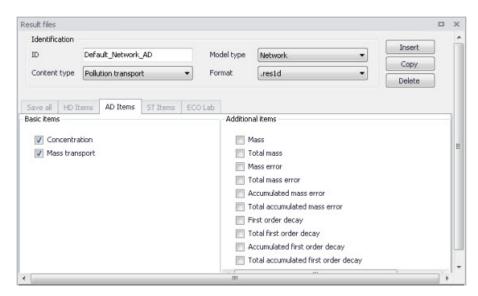


Figure 13.14 The AD Items Tab in the Result Files Editor. The 'Concentration' and 'Mass transport' items are initially included in Default Pollution Transport results.

Table 13.10	Overview of pollution	transport items in th	ne AD Items tab
-------------	-----------------------	-----------------------	-----------------

Basic Items	Additional Items
Concentration	Mass
Mass transport	Total mass
	Mass error
	Total mass error
	Accumulated mass error
	Total accumulated mass error
	First order decay
	Total first order decay
	Accumulated first order decay
	Total accumulated first order decay

ECO Lab (MIKE ECO Lab water quality)

The result items from network water quality modelling using MIKE ECO Lab depend on the State Variables, Auxiliary Variables, Processes and Derived Outputs indicated in the MIKE ECO Lab template used in the simulation (Figure 13.15).

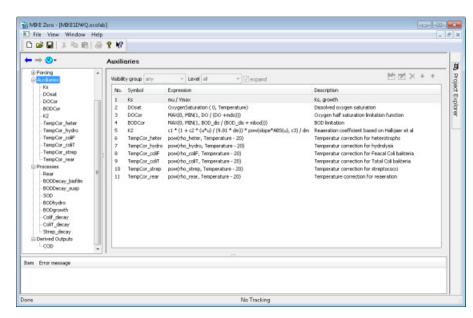


Figure 13.15 Example MIKE ECO Lab template (*.ECOLAB) showing the Auxiliaries, Processes, and Derived Outputs sections

Customising ECO Lab result items is done in the MIKE ECO Lab template that is eventually loaded into MU+, and not in the MU+ interface.

The MIKE ECO Lab simulation will result in three files containing all the hydrodynamic information (.RES1D), advection-dispersion results for the state variables (*AD.RES1D), and derived outputs, selected auxiliary variables, processes and derived outputs included in the MIKE ECO Lab results file (ADEL.RES1D).

Refer to the 'Water Quality' chapter in this Collection System User Guide for details on using MIKE ECO Lab templates in MIKE URBAN+.

LTS HD Items (LTS extreme and chronological statistics)

These are LTS statistics results related to LTS hydrodynamic modelling in sewer networks.

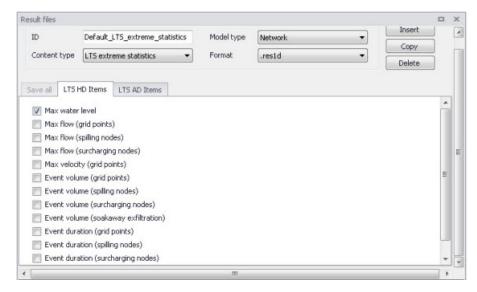


Figure 13.16 The LTS HD Items Tab in the Result Files Editor. The figure shows preselected items for Default LTS Extreme Statistics results.

Table 13.11	Overview of items in the LTS HD Items Tab related to LTS Extreme and
	Chronological Statistics Results

Extreme Statistics	Chronological Statistics
Max water level	Total accumulated volume (out of the
Max flow (grid points)	system
Max flow (spilling nodes)	Total accumulated volume (outlet pipes)
Max flow (surcharging nodes)	Total accumulated volume (pumps out
Max velocity (grid points)	of the system)
Event volume (grid points)	Total accumulated volume (weirs out of
Event volume (spilling nodes)	the system)
Event volume (surcharging nodes)	Total accumulated volume (orifices out
Event volume (soakaway exfiltration)	of the system)
Event duration (grid points)	Total accumulated volume (valves out of
Event duration (spilling nodes)	the system)
Event duration (surcharging nodes) Event duration (soakaway exfiltration)	Total accumulated volume (spilling nodes)
	Accumulated spilled volume (spilling nodes)
	Accumulated surcharge volume (nodes)
	Accumulated exfiltration volume (soaka- ways)
	Accumulated volume (discharge)

LTS AD Items (LTS extreme and chronological statistics)

These are LTS statistics results related to LTS modelling of pollution transport in sewer networks.

Result files							x
Identification ID Content type	Default_LTS_chronological_statis	Model type Format	Network .res1d	•	Insert Copy Delete		•
Total emiss Accumulat Accumulat Accumulat	sion (outlet pipes) sion (pumps) sion (weirs) sion (valves) sion (valves) sion (spilling nodes) ed spilled mass (spilling nodes) ed surcharge mass (nodes) ed exfiltration mass (soakways)						E
Accumulat	ed mass transport	.111				•	-

Figure 13.17 The LTS AD Items Tab in the Result Files Editor. The figure shows preselected items for Default LTS Chronological Statistics results.

Table 13.12	Overview of items in the LTS AD Items Tab related to LTS Extreme and
	Chronological Statistics Results

Extreme Statistics	Chronological Statistics
Max concentration	Total emission
Event load (grid points)	Total emission (outlet pipes)
Event load (spilling nodes)	Total emission (pumps)
Event load (surcharging nodes)	Total emission (weirs)
Event load (soakaway exfiltration)	Total emission (orifices)
	Total emission (valves)
	Total emission (spilling nodes)
	Accumulated spilled mass (spilling nodes)
	Accumulated surcharge mass (nodes)
	Accumulated exfiltration mass (soaka- ways)
	Accumulated mass transport

13.1.4 Combining various result items in one file

MIKE URBAN+ offers high flexibility in configuring result files obtained from simulations. The secondary table (Figure 13.18) in the Result Files editor is used to specify different combinations of items and locations for user-specified result setups.

User-specified results (i.e. non-Default) may be configured to contain different result sets with varying combinations of:

- Location
- Items. Items may be from the same Content Type or from across different (active) Content Types.

Result files															n x
Identification ID Content type	User-specif			Mode		Netwo .res1o			•	Insert Copy Delete					
Location HD Save al Save subs Save indiv Save within Edit on map	et idual n polygon	Selection Node Insert	X [m] -687950,6 -687819,9	Result se Y [m] -1056398 -1056194 -1056349	rows, 0 s					Filter for pipes and (Save All grid poin Chainage	1.11	0 •) 0[m]			
	D	• Result	0.1.1.1.	• 0	lear	2	Insert	Delete	Cop		vs, O selec t selection				
ID	Model		Content ty	pe i	Format			ID	- 1	Location type		Subset type	_	Individual type	,
▶ 1 User-sp	scified Netwo	k •	Mixed cont	ent - J	res1d	•	1 2 3	Selec	tion2 !	Save subset Save individual Save within polygon		Pipes and canals Manholes Selection	•	Node Node Node	• •
							•		н.						•

Figure 13.18 The secondary table in the Result Files Editor

The example shown in Figure 13.18 is a 'Network' result file setup that has 'Mixed content' and includes 3 Location-Items combinations in one .RES1D result file. Result items from across content types (i.e. active modules) may also be saved in one file. Use Content Type = 'Mixed content' for the result file setup to allow this option (see example in Figure 13.18).

The Location-Item combinations are is the example are summarised in the table below:

 Table 13.13
 Example Location-Items combinations from across content types that may be combined in one Mixed Content User-Specified result file

Result	Location	Items
Selection1	Save subset = Pipes and canals	HD Items = Water level, Velocity
Selection2	Save individual = Node 7	AD Items = Concentration
Selection3	Save within polygon	HD Items = Discharge

The content of the secondary table is controlled with the following buttons:

'Insert' button

Creates a new item in the table, with Default properties.

'Delete' button

Deletes the current selected rows from the secondary table.

'Copy' button

Creates a copy of the active row.

13.2 Network Summary

The basic contents of HTML summaries generated at the end of simulations may be customised in MIKE URBAN+. Various Network Summary configurations may be defined through the Network Summary editor (Result Specifications | Network Summary) (see Figure 13.20). These configurations may then be invoked in the Simulations Setup editor when running Network (HD) simulations.

The basic HTML summary shows information on the simulation, overall results summary, and boundary inputs. Adding a network summary configuration will extend the basic summary with the 'HD Results Summary' section (Figure 13.19.

MIKE 1D Computation Engin	e 2019								1	
Index Smilation Trop Ele Overniex Time Overniex Hit & semans		HD Results Summary Nodes - Water level Notes G: Max level exceeds ground level C: Max level exceeds ground level C: Max level exceeds ground level								
										Boundary Connections HD Results Summary
Simulation Type	_	A0.0327		16,50	16,50	17,20	0,70	03-01- 1936 01:26:10	03-01-1936 01:26:10	с
Туре	Nethor	B4.1200		16,80	17,16	19,90	2,74	03-01- 1936 01:26:10	02-02-1936 17:25:44	
HD	Fully Dy	B4.1300		17,43	17,55	19,90	2,35	03-01- 1936 01:26:10	02-02-1936 17:25:44	
File Overview		84.1310 84.1320		17,31	17,40	20,23	2,83	03+01+ 1936 01:26:10	02-02-1936 17:27:45	
Working Directory C:\Users\mikeadmin\Documents\LTS				84.1320	4.1320 17,11	17,20	20,20	3,00	03-01- 1936 01/26/10	02-02-1936 17:42:23
		84.1480		16,50	16,52	18,50	1,98	23-01- 1936 17:38:08	02-02-1936 17:46:54	
	Last mod 29-03-201	B4.1485		16,50	16,64	19,80	3,16	06-01- 1936 15:00:45	02-02-1936 17:46:54	
		B4.1490		16,50	16,67	19,80	3,13	06-D1- 1936 15:D7:04	02-02-1936 17:46:00	
			Last mo			Directory		03-01-	return these	

Figure 13.19 Example network simulation HTML summary augmented with an additional HD result summary table for Nodes.

Additional items may be activated for each network summary setup in the editor. The Network Summary editor is organized into the following groups:

- Identification
- Tables with min, max and accumulated values for
- Summary of input data
- Use selection to reduce summary tables

Activate the various options on the editor to customise additional contents for the network simulation HTML summary. An overview of the various options in the editor is shown in Table 13.14.

							×
Identification					Inser	rt	-
ID Summ_1					Delet	_	
Tables with min, max and	d accumulated values f	for			Doloc		
Nodes	Grid points	, water levels					
Weirs and orifices	Weirs and orifices Grid points, discharge						
Pumps	📃 Links, velo	ity					E
Links and structur	es						
Summary of input data							
Links and structur Use selection to reduce s							
Use selection to reduce s							
Use selection to reduce s						,	
Use selection to reduce s	summary tables	-		Show selected	Show d	ata erro	ors
Use selection to reduce s Use selection Use selection Uink selection	summary tables	-		Show selected Grid points, wa		ata erro Grid	
Use selection to reduce s Node selection Link selection ID	summary tables	•]				

Figure 13.20 The Network Summary Editor

Table 13.14	Overview of the Network Summary editor attributes (Table msm_Html-
	Summary)

Edit field	Description	Used or required by simulations	Field name in datastructure
ID	ID of summary- user specified	Yes	MUID
Nodes checkbox	Activate to include tables with min, max and accumulated values in the sum- mary	Optional	SummaryNodeNo
Weirs and orfices checkbox	Activate to include tables with min, max and accumulated values in the sum- mary	Optional	SummaryWeirNo

Edit field	Description	Used or required by simulations	Field name in datastructure
Pumps checkbox	Activate to include tables with min, max and accumulated values in the sum- mary	Optional	SummaryPumpNo
Links and structures checkbox	Activate to include tables with min, max and accumulated values in the sum- mary	Optional	SummaryLinkNo
Grid points, water levels checkbox	Activate to include tables with min, max and accumulated values in the sum- mary	Optional	SummaryLinkLev- elNo
Grid points, dis- charge checkbox	Activate to include tables with min, max and accumulated values in the sum- mary	Optional	SummaryLinkDis- chargeNo
Links, velocity checkbox	Activate to include tables with min, max and accumulated values in the sum- mary	Optional	SummaryLinkVeloc- ityNo
Summary of input data, Links and structures checkbox	Activate to include a summary of input data in the HTML summary	Optional	SummaryLinkIn- putNo
Node selection file checkbox	Activate to specify nodes for which to include tables with min, max and accu- mulated values in the summary	Optional	NodeSelectionNo
Node selection input box	Input box for speci- fying the Node selection list	Yes If NodeSelec- tionNo=1	NodeSelection- Name

Table 13.14 Overview of the Network Summary editor attributes (Table msm_Html-Summary)

Edit field	Description	Used or required by simulations	Field name in datastructure
Link selection file checkbox	Activate to specify links for which to include tables with min, max and accu- mulated values in the summary	Optional	LinkSelectionNo
Link selection input box	Input box for speci- fying the link selec- tion list	Yes If LinkSelec- tionNo=1	LinkSelectionName

Table 13.14 Overview of the Network Summary editor attributes (Table msm_Html-Summary)

Use the following button functions on the editor to add or remove network summary setups for the project:

'Insert' button

Adds a new Network Summary setup in the editor.

'Delete' button

Removes the active/selected Network Summary setup from the editor.

14 Scenarios

The water distribution and wastewater collection data models are commonly used for the system performance analysis and in the planning process. The complexity of the involved systems, the various uncertainties about the future conditions and usually huge costs associated with maintenance, rehabilitation and development necessitate a thorough investigation of alternative system configurations in a search for the technically feasible, environmentally sound and economically efficient solution. These alternative configurations scenarios - may differ by the system's physical layout, loading conditions, operational strategies, etc. Various projects, such as development of a Sewerage Master Plan, Wastewater Transportation Strategy, an Overflow Abatement Strategy, etc. would typically result in a large number of scenarios, either representing alternative system configurations at a given time and/or representing the system at various development stages. Test of each scenario against the prescribed legislation or the standards of service that the authorities provide requires a numerical model on its own.

These scenarios are always related to each other through the common origin ('Base') and the differences typically epitomize a smaller part of the total data. Moreover, scenarios representing a development of the system through time are subject to the dependencies propagating along with the timeline. Analysis of the scenarios as separate projects creates major inconveniences, such as:

- Large number of models, even when differences between them are minor
- Missing the efficient overview over the entire set of solutions
- Inability to maintain the existing dependencies between the individual scenarios automatically. Thus, the updating of the models with additional information requires editing of multiple files to change the same element, e.g. if a pipe diameter is found to have been incorrectly registered in the GIS database, it will have to be updated multiple times in each of the scenario project files.

14.1 What are Scenarios

The MIKE URBAN+ Scenarios is a user interface for a set of MIKE URBAN+ features, enabling the definition, organisation management and reporting of alternative scenarios, such as:

- Augmentation of existing trunk sewer mains;
- Increased wastewater loading from increased population;
- Increased water demands from increased population;
- Alternative design loads, e.g. rainfall-runoff of different return period;
- Alternative alignment of sewer and storm mains;

• Building of a new sewer trunk and water supply mains in order to cater for a new development area within the same MIKE URBAN+ project.

14.2 Design of the MIKE URBAN+ Scenario Manager

The MIKE URBAN+ Scenario group is based on the concept of Data Groups, Alternatives and Scenarios. In this context, a Data Group is a set of database tables which form a meaningful set. E.g. all database tables containing collection system network data belong to the data group 'Network Data'. Every database table relevant for the scenario manager is included in one of the Data Groups.

Each Data Group can appear in the MIKE URBAN project in any number of Alternatives. The initial alternative is named with a default name 'Base'. Any further alternative is created upon user request and gets a user-specified name. The Alternatives for a certain data group are organised in a tree-like structure, where dependencies propagate along the branches -from the 'parent' to all the 'heirs' i.e. 'children'.

A scenario represents a complete set of consistent data, featuring the system configuration for a given situation. In other words, a scenario contains one alternative of each Data Group. Actually, individual alternatives are used as building blocks for constructing scenarios. A moderate number of data groups (eight for collection system and nine for water distribution) allows for a manageable structure of scenarios, while ensuring the high level of flexibility.

The initial scenario is named with a default name 'Base', and consists of the 'Base' alternative of each data group. Any further scenario is created upon user request and gets a user-specified name. The scenarios are organised in a tree-like structure of 'parents' and 'children'.

Alternatives

The alternatives represent the components of the scenarios. The various alternatives contain the actual data belonging to a certain data group. Actually, each subsequent alternative only contains the information on the differences relative to its immediate 'parent', while the rest of data is inherited from the 'parent' through the principles of inheritance.

Grouping of various alternatives belonging to different data groups into scenarios is sometimes subject to limitations, because the data groups have not been formed on the basis of data independency, but rather following the logical data grouping. E.g. the alternative of the 'Catchment connections' CS data group, which specifies a catchment connection to node 'A', cannot be used with the alternative of the 'Network data' data group where node 'A' has been renamed or deleted. Obviously, the catchment would remain disconnected.

Collection System Alternatives

For Collection Systems, the scenarios are composed of the following data groups:

- Network
- Loads and Boundary
- Catchment & Hydrological
- WQ
- Operational RTC
- LTS
- Profiles and Curves

	Base	Anticida
cenario	base	Activate
Comment		
Alternative	s	
- Networ	k data Base Alternative	Insert
E Loads a	and boundaries data	Delete
_	Base Alternative nents and hydrology data	
	Base Alternative	
-WQ da	ta	
	Base Alternative	
	perational) data Base Alternative	
E-LTS dat		
	Base Alternative	
	and curves	
	Base Alternative	
		Comment
		msm_Node
		msm_Link msm_Pump
		msm_Weir msm_Orifice
		msm_Valve
		msm_CurbInlet msm_OnGrade
		msm_OnGradeD

Figure 14.1 Scenarios Alternatives for Collection System

Water Distribution Alternatives

For Water Distribution Systems input data can be grouped the following way, corresponding to the different types of available alternatives:

- Network
- Water Demands
- Control
- Water Quality
- Pattern and Curves

Scenarios	• 3	×
Scenario Base Comment	Activate	
Alternatives		
-Network data - Base Alternative Alternative 1	Insert	
Water demands Control data WQ data Base Alternative WQ data Patterns and curves Base Alternative Base Alternative		
	Comment	
	~	

Figure 14.2 Scenarios Alternatives for Water Distribution

Inheritance principles

With the inheritance from 'parent' alternatives to 'child' alternatives, some specific items must be kept in mind.

- Making a change to an alternative will affect all descendent ('child') alternatives of that alternative. This means that it will impact all the scenarios where either the alternative or the children of that alternative are applied. This also ensures that if one value needs updating it will be updated in all the scenarios where the alternative is applied (e.g. if a pipe diameter is found to have been incorrectly registered in the GIS data during the course of a project then the pipe diameter can be changed one place only, regardless of the number of scenarios and alternatives that reference to this alternative).
- The chain of inheritance for a certain data record stops where any change (or delete) of that element has occurred in earlier work. E.g. if a bottom level of a node 'A' has been edited in some child alternative, some later update of the bottom level in 'Base' will only propagate through the alternative tree until the alternative containing the old change.
- Adding an element (e.g. a node) in the 'parent' with an ID that already exists in one or more of its descendants ('children') will overwrite the content of the 'child' element
- If adding an element (e.g. pump/link) in the parent that cannot be added to all the children (because some parts may have been deleted/changed there), the element is added where possible and omitted elsewhere.

14.3 Managing Scenarios and Alternatives

The Scenario Manager has two parts:

- The Scenario part
- The Alternatives part

The scenario part is for creating, editing and managing scenarios, while the alternatives part is for creating, editing and managing alternatives.

Under Scenarios in the tree view one can "right-click" to get the option of creating a new child scenario.

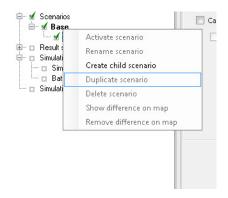


Figure 14.3 Create a new child scenario

Right-clicking on a child scenario enables the options to activate, rename, duplicate, delete, create a new child scenario and visualize the differences in the map.

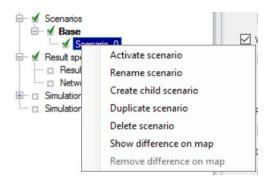


Figure 14.4 Management of child scenarios

Scenarios

The scenario part is used for creating, editing, and managing scenarios. Per default there will one built-in scenario, i.e. the Base scenario. The Base scenario cannot be edited or deleted. An unlimited number of additional scenarios can then be added to cover the various 'What if' scenarios.

Create a Child Scenario

This option adds a scenario that is a child of the highlighted (not to be confused with the active/current scenario), i.e. to begin with the alternatives of a new scenario will be that of the highlighted scenario. A name for the new scenario is suggested by default. The name can be changed through the option of Rename scenario or by editing directly in the ID field in the Scenario editor.

Remove

The remove option will delete the highlighted scenario. The Base scenario cannot be deleted. Note that deleting a scenario will not delete any data as

the alternatives hold the data (the scenarios just refer to alternatives). The comments for the scenario being deleted, however, will also be deleted.

Rename

The rename option will make the scenario name active so it can be easily renamed.

Activate

The activate button will load the scenario, i.e. the project data is manipulated so that all editors contain the appropriate data. Depending on the size of the project this may take some time.

Alternatives

Alternatives can be edited only if the appropriate scenario is made active. Alternatives can, however, be added regardless of the active scenario. When a scenario is loaded, the project data is manipulated so that all editors contain the appropriate data.

Alternatives can be activated, inserted and deleted in the editor through the visual buttons.

Scenarios			• x
Scenario	Scenario_0	Activate	
Comment			
Alternative	s		
	Base Alternative	Insert	
	Alternative 1 Alternative 1	Delete	
	Base Alternative		
	nents and hydrology data Base Alternative		
- WQ da	ta		
-RTC(op	Base Alternative perational) data		
-LTS dat	Base Alternative	Comment	
	Base Alternative		^
	and curves Base Alternative		
			×

Figure 14.5 Alternative options

14.4 How to Start Working with Scenarios

Creating alternatives and scenarios

- Right click on Scenario in the Tree view
- Create a child scenario
- Select the alternative group that you wish to add an alternative to and

press the 'Insert' button

- You can now rename it and/or continue to make alternatives
- Select the alternative and click on Activate

The activated scenario is displayed in bold font. Equally, all the alternatives belonging to the active scenario, are displayed in bold in the 'Alternatives' page.

Both the data tables, the graphics and any MIKE URBAN+ tools work ONLY with the data belonging to the currently active scenario. Access to the data belonging to other scenarios is not possible through MIKE URBAN+ interface.

15 Simulation Validation

MIKE URBAN+ employs automatic validation, checking for data errors as one navigates through the various editors. However, one may also collectively check the consistency of the MIKE URBAN+ project data through Simulation Validation.

Run model validation through the Simulation Validation window (Figure 15.1).

idation		
Run validation 📄 Hide warning	25	
Time of last validation:		
Type Text	Location	
() () () () () () () () () () () () () (

Figure 15.1 The Simulation Validation window

Data validation is performed depending on the active modelling mode and modules in the MIKE URBAN+ project.

Run Validation

Run data validation by clicking on the 'Run validation' button on the window.

The validation time depends on the database size, number of active modules and number of errors found.

An error log is shown at the end of the validation.

Time of Last Validation

The date and time of when validation was last performed for the project is displayed on the window.

Run validation			🔲 Hide warnings									
Time	of last valio	lation:	15:	52:24,	, 4-4 2	019						
	Туре	Tex	t									
	War	Poro	Porosity for basin "SOLHEGNET" is zero. Usin				ng de	fault	: valu	ue of 1		
	War	Porosity for basin "Tune_By1" is zero. Using default value of 1.					of 1.					

Figure 15.2 Time of last validation displayed

Hide warnings

Activate the 'Hide warnings' option to only show Errors and not Warnings in the Error Log.

The Error Log

The error log is a list of detected errors and warnings.

 validation ast validation:	E Hide warnings 15:52:24, 4-4 2019			
Туре	Text	Location	validation	1
Error	CR5 of type H-W has H values that are not increasing, CR5 ID: 'GREVENADL_C'.	None	571	L
	CRS of type H-W has N values that are not increasing. CRS ID: "BREVENVIN_C".	None	572	L
	CRS of type H-W has H values that are not increasing, CRS ID: 'GREVENADV_C'.	None	573	ľ
	CRS of type H-W has H values that are not increasing, CRS ID: 'GREVENADV_C'.	Name	574	L
	CRS of type H-W has N values that are not increasing, CRS ID: 'GREVENABLE'.	None	575	Ľ
	CRS of type H-W has H values that are not increasing, CRS ID \ 'GREVENADV_A'.	None	\$76	ŀ
	CRS of type H-W has H values that are not increasing, CRS ID: 'GREVENAIN_A'.	None	577	Ľ
	CRS of type H-W has N values that are not increasing, CRS ID: 'GREVENAIN_N'.	None	578	L
	CRS of type H-W has H values that are not increasing, CRS ID ('GREVENADN_D',	None	579	ŀ
	CRS of type H-W has H values that are not increasing, CRS ID: 'Olsmark, Urdoek'.	None		ŀ
	HD hot start file not found. "C-XLee dynkeednic/(Decements/(ML+ Setup/(Detek_Condition/)NDLSEHDSien INP	None	581	L
Warning	The reach with ID '378A03611' has no cross section at start chainage. The cross section with the lowest chainage will be	None	582	
Warning	The reach with ID 'Greve_220981' has no cross section at end chainage. The cross section with the highest chainage wil	None	583	
Warning	The reach with 1D 'Greve_450411' has no cross section at end chainage. The cross section with the highest chainage wil	None	584	
Warning	The reach with 1D 'Greve_\$36801' has no cross section at end chainage. The cross section with the highest chainage wil	None	585	
Warning	The reach with ID 'Greve_561311' has no cross section at start chainage. The cross section with the lowest chainage wi	None	586	
Warning	The reach with 1D 'HULBAEK_1689II' has no cross section at end chainage. The cross section with the highest chainage	None	587	
Warning	The reach with ID 'HJLBAEK_614II' has no cross section at end chainage. The cross section with the highest chainage	None	588	
Warning	The reach with ID "Ishoe; Soell" has no cross section at end chainage. The cross section with the highest chainage wilb	None	589	
Warning	The reach with ID KANALEN_910IL has no cross section at end chainage. The cross section with the highest chainage	None	590	
Warning	The reach with 1D YARLSLUNDE_351711' has no cross section at end chainage. The cross section with the highest chain	None	591	
Warning	The reach with ID Yilde_2226/1' has no cross section at end chainage. The cross section with the highest chainage will b	None	592	

The Error Log indicates whether an item is an Error (highlighted in red) or a Warning (highlighted in yellow).

A description of the warning or error is also included under the 'Text' column on the list. The description usually indicates the data type or editor in which the error should be corrected.

The total number of detected errors and warnings is also indicated beside the Simulation Validation section on the setup tree after validation.

File Project Map	CS netw) 🥳 🕅 Simulation	× ▼ Tools			MIKE U	RBAN+, Bas
Model:	\bigcirc	?	5		5	0	Ê	鐐
Collection system 🔹	Map view	Setup view	Symbols view	Results view	Property view	Log view	Project info	Global settings
Model type 🔒			Manage	views			Glob	al "
Network Network Soundary conditions Tables			Tim	e of last v	alidation:	16:49:05, 4-	4 2019	
Real time control Calibrations Scenarios		Тур	e		1	ſext		
- Result specifications			_	Error				alue is not de
B- Simulation specification				Error				
🦾 🗹 Simulation validation (1)	392)			Error				

Figure 15.3 1392 errors and warnings were detected after validation

16 Simulation Specifications

MIKE URBAN+ simulations are started from the Simulation Specifications section. This section includes the following menus:

- **Simulation Setup**. Where various combinations of different types of simulations may be setup and run.
- **Batch Simulation**. Controls batch simulations involving the automatic sequential launch of several simulation jobs.

16.1 Simulation Setup

The Simulation Setup editor has several tabs, which are shown depending on the active Modules for the project:

- **General.** Includes general parameters, such as definition of the simulation period, selection of simulation types, and free text description of the simulation setup.
- **Catchments**. Includes parameters specific for Runoff simulation.
- HD. Includes parameters specific for HD simulation.
- AD and WQ. Includes parameters specific for network AD simulation and MIKE ECO Lab.
- LTS. Includes parameters specific for Network LTS simulation.
- **Results**. Includes specification of results (output) to be generated by the simulation.

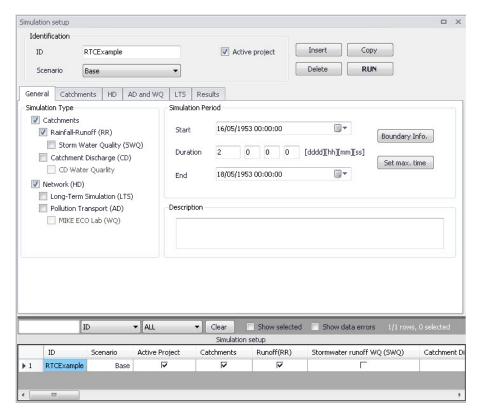


Figure 16.1 The Simulation Setup Editor

The Identification group at the top and the scrollable grid table at the bottom of the editor are common across all tabs.

Table 16.1 Overview of the Simulation Setup Identification data group (Table msm_Project)

Edit field	Description	Used or required by simulations	Field name in datastructure
ID	User-specified ID of simulation. ID will be reflected in the name of result files	Yes	MUID

Edit field	Description	Used or required by simulations	Field name in datastructure
Scenario	Dropdown menu for selecting ID of Sce- nario for the simula- tion	Yes	ScenarioName
Active Project checkbox	Defines a simulation setup as "in the tray", i.e. as the one chosen among sim- ulation setups to be used when extract- ing data by external application, e.g. MIKE Flood, and for running directly from the Simulation tool- bar. Only one job at a time may be set as "Active".	Yes	ActiveProject

Table 16.1 Overview of the Simulation Setup Identification data group (Table msm_Project)

The following buttons are also located at the top of the editor with the Identification group:

'Insert' button

Inserts a new record in the Simulation Setup editor with a default unique MUID.

'Copy' button

Duplicates an existing (currently active) simulation setup record.

'Delete' button

Deletes a currently active simulation record.

'RUN' button

Triggers export of the currently active simulation job and execution of the simulation.

16.1.1 General

The General tab includes parameters relevant for the entire simulation setup. The following parameters are specified in the General tab:

- Simulation type
- Simulation period

• Description

General	Catchments	HD	Results	
Simulation Type Catchments Rainfall-Runoff (RR) Catchment Discharge (CD) Catchment Discharge (CD) C C Water quality C S network (HD) Long-Term Simulation(LTS)		CD)	Simulation Period Start 10/01/2020 12:00:00 Topological Boundary Info. Duration 3 1 0 [dddd][hh][mm][ss] Set max. time End 13/01/2020 13:00:00 Topological <	
	Water quality(AI MIKE ECO Lab Sediment Transp ers (HD)	5) 5 (WQ)		- Description
	overland (HD) Water quality (A KE HYDRO River			

Figure 16.2 The Simulation Setup Editor General tab

An overview of the editor fields and corresponding database attributes is provided in Table 16.2 below.

Table 16.2Overview of the Simulation Setup General tab attributes (Table
msm_Project)

Edit field	Description	Used or required by simulations	Field name in datastructure
Catchments	Activates catch- ment-related simu- lation types	Yes	CatchmentCompu- tationNo
Rainfall-Runoff (RR)	Activates runoff sim- ulation	Yes	RRComputationNo
Storm Water Qual- ity (SWQ)	Activates SWQ sim- ulation	Yes	SWQComputa- tionNo
Catchment Dis- charge (CD)	Activates catch- ment discharge computations	Yes	CDComputationNo
CD Water Quality	Activates water quality computa- tions for catchment discharges	Yes	CDWQComputa- tionNo
CS Network (HD)	Activates CS Net- work HD simulation	Yes	HDComputationNo
Long Term Simula- tion (LTS)	Activates LTS simu- lation	Yes	LTSComputationNo
Water quality (AD)	Activates Network AD simulation	Yes	ADComputationNo

Edit field	Description	Used or required by simulations	Field name in datastructure
MIKE ECO Lab (WQ)	Activates Network ECO Lab simulation	Yes	ELComputationNo
Sediment Transport (ST)	Activates CS net- work sediment transport simulation	Yes	STComputationNo
Rivers (HD)	Activates River net- work HD simulation	Yes	RiverHDComputa- tionNo
2D overland (HD)	Activates 2D over- land HD simulation	Yes	M2DComputa- tionNo
Water quality (AD)	Activates 2D over- land AD simulation	Yes	M2DADComputa- tionNo
MIKE HYDRO River	Activates coupling to MIKE HYDRO River. HD coupling is always activated. AD coupling is acti- vated if AD module is activated for another simulation module.	Yes	MHRiverCompula- tionNo
Start	Specifies start date and time for the sim- ulation.	Yes	ComputationBegin
Duration	Displays the dura- tion of the simula- tion in days, hours. minutes and sec- onds. Automatically adjusted based on Start and End time/date. May be edited, adjusting End date/time accordingly.	Yes	-

Table 16.2 Overview of the Simulation Setup General tab attributes (Table msm_Project)

Edit field	Description	Used or required by simulations	Field name in datastructure
End	Specifies end date and time for the sim- ulation. Adjusted automatically according to user's specification of duration.	Yes	ComputationEnd
Description	Free text description of the simulation setup	Optional	Description

Table 16.2Overview of the Simulation Setup General tab attributes (Table
msm_Project)

'Boundary Info.' button

The Boundary Info. button opens the Boundary Overview window with a horizontal bar chart showing time extent of all active boundary conditions from all included modules.

oundary overview															
						16:00	0:00	1	3: 00	16:00	0:00	8:	00	16:00	0:00
oundary type WQ property typ	Boundary condition ID WQ boundary component ID	Boundary condition description WQ boundary component description	Apply	Edit		18 ->	00 ->	06 ->	12 ->	18->	00 ->	06 ->	12 ->	18 ->	00 - ;
Rainfall	Rainfall		×		î		۵			Time	eseries			0	
Catchment dis	c 68oundary_1		Z			4				Cons	tant				4
Poliutant o	o WQProperty_1														
Inflow to node	Inflow_01		Z		U		۵			Time	eseries			0	
Inflow to node	Inflow_01a		Z				٥			Time	eseries			0	
Inflow to node	Inflow_11		×				0			Time	eseries			0	
					-	4				_	<u> </u>				

Figure 16.3 The Boundary Overview appears when pressing the 'Boundary Info.' button

'Set max. time' button

The 'Set max. time' button sets the maximum simulation time by filling in the start and end times of the simulation. The start time of a simulation is considered the latest start time of all boundaries. Likewise the end time for the simulation is considered the earliest end time of all boundaries.

Each boundary contains a number of items which can cover different parts of the simulation.

If a limited validity interval is specified for a boundary condition, this specifies the start and end time. If a validity is not specified, only items specified as

timeseries have a start and end time. If either a constant or cyclic value is given without validity interval, the item is not included in the evaluation.

16.1.2 Catchments

The following parameters can be specified on the Catchments tab:

- Surface runoff model simulation time step
- RDII simulation time step
- Catchment discharge simulation time step
- RDII hotstart specification
- Additional parameters specification

urface runoff mo	dels			
Time-Area	60 [sec]	Linear reservoir	RDII	4 [h]
Kin. wave	60 [sec]	Wet weather	60 [sec] Catchment discharg	e
UHM	60 [sec]	Dry weather	300 [sec]	60 [sec]
DII HotStart				
Apply				
dditional Parameti	rs			

Figure 16.4 The Simulation Setup Catchments Tab

Edit field	Description	Used or required by simulations	Field name in datastructure
Time-Area	Fixed time step for Time-Area runoff model	Yes if at least one catch- ment is set for simu- lation with Time- Area model	TSDt
Kin. Wave	Fixed time step for Kinematic Wave runoff model	Yes if at least one catch- ment is set for simu- lation with Kinematic Wave model	KWDt

Table 16.3 The Simulation Setup Catchments tab attributes (Table msm_Project)

E dit field	Description		Field neme in
Edit field	Description	Used or required by simulations	Field name in datastructure
UHM	Time step for UHM model	Yes if at least one catch- ment is set for simu- lation with UHM runoff model	UHMDt
Wet weather	Time step during wet periods	Yes if at least one catch- ment is set for simu- lation with Linear Reservoir runoff model	DtWetPeriod
Dry weather	Time step during dry periods	Yes if at least one catch- ment is set for simu- lation with Linear Reservoir runoff model	DtDryPeriod
RDII	RDII slow runoff component time step. The fast run- off component time step is the corre- sponding surface runoff model time step.	Yes if at least one catch- ment is set for simu- lation with RDI runoff model	SRCDt
Catchment Dis- charge	Time step for catch- ment discharge	Yes if Catchment Dis- charge simulation active	CDDt
RDII Hotstart Apply checkbox	If this checkbox is ticked, a hotstart file for RDII must be specified.	Optional	RDIHotStartNo
Additional Parame- ters Apply checkbox	If this checkbox is ticked, an *.ADP file for the runoff simu- lation can be speci- fied	Optional	ADPRunoffFileNo

The additional parameter file (*.ADP file) is a separate file with additional settings for the simulation. Please refer to the separate documentation on this file for further information.

16.1.3 HD

For a network (CS network and/or river network) simulation, the tab holds parameters specific to the hydrodynamic simulation setup:

- Fixed simulation time step, or
- Adaptive simulation time step settings
- Network initial condition type
- Additional parameters

For a simulation including 2D overland, the time step parameters are changed to:

- A fixed simulation time step, used by the network simulation. This time step is also used to determine the saving frequency of 2D overland result files, and to synchronize the HD and AD modules for the 2D overland simulation.
- Adaptive time step settings, applying only to the 2D overland simulation.

The tab is active if a hydrodynamic (HD) module is activated and if relevant data exist in the project (e.g. if at least 1 conduit is specified).

General	Catchments	HD	AD and WQ	LTS	Results			
Time Step								
• Fixed			🔵 🔘 Adapti	ve —				
			Minim			Maximum	Max. increase factor	
	10 [sec]				l0 [sec]	10 [sec]	1,3	
Network Ho	tStart File							
Apply								
HotStart t	me 01/01/2	005 00):00:00	[
Additional P	arameters							
🔲 Apply								

Figure 16.5 HD Tab of the Simulation Setup Editor

Table 16.4 The Si	mulation Setup HD tal	b aunoutes (Table ms	m_Project)
Edit field	Description	Used or required by simulations	Field name in datastructure
Fixed/Adaptive radio buttons	Toggles between alternative time step type	Yes	HDTimeStepType
Fixed	Specifies a fixed time step for the network simulation	Yes if Fixed time step type or if including 2D overland	HDDtFixed
Minimum	Specifies a mini- mum time step for network or 2D over- land model	Yes if Adaptive time step type or if including 2D overland	HDDtMin
Maximum	Specifies a maxi- mum time step for network or 2D over- land model	Yes if Adaptive time step type or if including 2D overland	HDDtMax
Max. Increase Fac- tor	Specifies maximum increase factor for adaptive time step for network model	Yes if Adaptive time step type	HDDtIncreaseFac- tor
Max. CFL number	Specifies the expected maximum CFL number in the simulation, to con- trol the adaptive 2D overland time step	Yes if including 2D over- land	M2DHDMaxCFL
Network initial con- ditions type	Specifies if the net- work (CS and/or river) is initially empty, or using user-defined initial conditions	Yes if including CS net- work or River net- work simulation	HDInitCondTypeNo
Initial conditions ID	Specifies the ID of the set of initial con- ditions, defined in the 'Initial condi- tions' page	Yes if user-specified type	HDInitCondID
Additional Parame- ters Apply checkbox	Activates *.ADP file with network-rele- vant input. Define *.ADP file name and path if activated.	Optional	ADPNetworkFileNo

Table 16.4 The Simulation Setup HD tab attributes (Table msm_Project)

The additional parameter file (*.ADP file) is a separate file with additional settings for the simulation. Please refer to the separate documentation on this file for further information.

16.1.4 AD and WQ

The "AD and WQ" TAB includes parameters specific for the Network AD and MIKE ECO Lab (WQ) simulation setup. The tab is available if the Water Quality (AD) module is activated in the project, and if at least 1 AD component is specified; otherwise it is hidden.

General	Catchments	HD A	D and WQ	Results		
2D overla	and time step					
Minimu	m	Max	kimum		Max. CFL number	
	0.01 [sec]		1	10 [sec]	0.8 [0]	
				1.5 - D.7		
AD HotSt	art File					220 B
	bly					
MIKE ECO) Lab Integratio	n				
EULER		1				
EULER						

Figure 16.6 The Simulation Setup AD and WQ Tab

Edit field	Description	Used or required by simulations	Field name in datastructure
Minimum	Specifies a mini- mum time step for 2D overland model	Yes if including 2D over- land	M2DADDtMin
Maximum	Specifies a maxi- mum time step for 2D overland model	Yes if including 2D over- land	M2DADDtMax
Max. CFL number	Specifies the expected maximum CFL number in the AD simulation, to control the adaptive 2D overland AD time step	Yes if including 2D over- land	M2DADMaxCFL
AD Hotstart File Apply checkbox	Checkbox activates hotstart for network AD computations	Optional	ADHotStartFileNo

Table 16.5 The Simulation Setup AD and WQ tab attributes (Table msm_Project)

Edit field	Description	Used or required by simulations	Field name in datastructure
[Parameter beside the AD Hotstart File Apply checkbox]	The Network AD hotstart file name and path	Yes if AD Hotstart File = Apply	ADHotStatrFile- Name
MIKE ECO Lab Integration	Specified ECOLab integration method	Yes If Simulation Type = MIKE ECO Lab (WQ)	ELIntegrationNo

Table 16.5 The Simulation Setup AD and WQ tab attributes (Table msm_Project)

Note that the hotstart date/time for the AD hotstart is the same as the Network HD hotstart date/time (i.e. HD hotstart must be active if AD hotstart is used).

16.1.5 LTS

The LTS tab includes parameters specific for Network LTS simulations. The tab is shown if the Long Term Statistics (LTS) module is activated in the project and if at least 1 Job List Criterion is specified.

General	Catchments	HD	AD and WQ	LTS	Results			
LTS Job Li	st							
						TutorLTSBase.MJL	 Edit	Generate Job List

	-		
Edit field	Description	Used or required by simulations	Field name in datastructure
LTS Job List	Defines the Job List *.MJL file name and path to be used in the LTS simulation		MJLFileName

Table 16.6 Simulation Setup LTS tab attributes (Table msm_Project)

The LTS tab also has buttons for the following functions:

'Edit' button

Opens the specified Job List file (*.MJL) in text editor. If the Job List File dialog is empty, or the specified file does not exist or is empty, the 'Edit' button opens an empty ASCII file.

'Generate Job List' button

Starts a Job List generation process. This is a special form of simulation where the output is a Job List file (*.MJL).

More details on Lob List generation and editing are found in the Long Term Statistics (LTS) User Manual.

16.1.6 Results

The Results tab includes parameters for defining output from a simulation setup.

Multiple result files may be specified for each simulation setup.

imulat	tion setup									S X
Ide	ntification									
ID TutorLTS				ive project	Insert	Сору				
S	Scenario	Base		-			Delete	RUN		
Gene	eral Catch	ments HD	AD and W	Q LTS Re	sults					
Outp	out folder									
0 :	Save results	in default folde	er							
0	Save results	in this folder				C:\Users\mi	keadmin\Documents'	LTS\CL	ustom_Folder	1
							•			,
Colle	ection System	n Summary								
Sun	n_TutorLTS							•	Edit summary	1
_										
										J
										,
				Project out	:puts				Result files	,
	ID			Туре		Format	Save every		Result files	,
				Type Pollution trans	port	.res1d	60	secc		
2	Default_L	rS_chronologica	al_statistics	Type Pollution trans LTS chronolog	port ical statistics	.res1d	60	secc		,
2 3	Default_L	ilt_LTS_extrem	al_statistics e_statistics	Type Pollution trans LTS chronolog LTS extreme s	port ical statistics itatistics	.res1d .res1d .res1d	60 60 60	secc secc		,
3 4	Default_L	It_LTS_extrem Default_N	al_statistics e_statistics letwork_HD	Type Pollution trans LTS chronolog LTS extreme s Hydrodynamic	port ical statistics itatistics	.res1d .res1d .res1d .res1d	60 60 60 60	secc	Include Include all Edit	
2 3 4 5	Default_L	lt_LTS_extrem Default_N Default_Ne	al_statistics e_statistics letwork_HD :twork_RTC	Type Pollution trans LTS chronolog LTS extreme s Hydrodynamic Real time cont	port ical statistics itatistics : rol	.res1d .res1d .res1d .res1d .res1d	60 60 60 60 60	secc secc secc secc	Include Include all	
2 3 4 5 6	Default_L	lt_LTS_extrem Default_N Default_Ne	al_statistics e_statistics letwork_HD etwork_RTC letwork_AD	Type Pollution trans LTS chronolog LTS extreme s Hydrodynamic Real time cont Pollution trans	port ical statistics :tatistics : rol :port	res1d res1d res1d res1d res1d res1d	60 60 60 60 60 60 60	secc secc secc secc secc	Include Include all Edit Remove Use default	
2 3 4 5	Default_L	lt_LTS_extrem Default_N Default_Ne	al_statistics e_statistics letwork_HD :twork_RTC	Type Pollution trans LTS chronolog LTS extreme s Hydrodynamic Real time cont	port ical statistics :tatistics : rol :port	.res1d .res1d .res1d .res1d .res1d	60 60 60 60 60	secc secc secc secc	Include Include all Edit Remove	
2 3 4 5 6	Default_L	lt_LTS_extrem Default_N Default_Ne	al_statistics e_statistics letwork_HD etwork_RTC letwork_AD	Type Pollution trans LTS chronolog LTS extreme s Hydrodynamic Real time cont Pollution trans	port ical statistics :tatistics : rol :port	res1d res1d res1d res1d res1d res1d	60 60 60 60 60 60 60	secc secc secc secc secc	Include Include all Edit Remove Use default	
2 3 4 5 6	Default_L	ult_LTS_extrem Default_N Default_Ne Default_N	al_statistics e_statistics letwork_HD etwork_RTC letwork_AD	Type Pollution trans LTS chronolog LTS extreme s Hydrodynamic Real time cont Pollution trans	port ical statistics :tatistics : rol :port	res1d res1d res1d res1d res1d res1d	60 60 60 60 60 60 60	secc secc secc secc secc	Include Include all Edit Remove Use default	
2 3 4 5 6	Default_L	ilt_LT5_extrem Default_N Default_Ne Default_N	al_statistics e_statistics letwork_HD itwork_RTC letwork_AD HD	Type Pollution trans LTS chronolog LTS extreme s Hydrodynamic Real time cont Pollution trans Hydrodynamic	port ical statistics itatistics icrol sport :	resid resid resid resid resid resid resid	60 60 60 60 60 60	secc secc secc secc secc	Include Include all Edit Remove Use default period	
2 3 4 5 6	Default_L	ult_LTS_extrem Default_N Default_Ne Default_N	al_statistics e_statistics letwork_HD :twork_RTC letwork_AD HD	Type Pollution trans LTS chronolog LTS extreme s Hydrodynamic Real time cont Pollution trans	port ical statistics itatistics : : : : : : : : : : : : : : : : : : :	resid resid resid resid resid resid resid resid	60 60 60 60 60 60	secc secc secc secc secc	Include Include all Edit Remove Use default	ted
2 3 4 5 6	Default_L' Defau	IL_LTS_extrem Default_N Default_Ne Default_Ne ID	al_statistics e_statistics letwork_HD itwork_RTC letwork_AD HD "" ALL	Type Pollution trans LTS chronolog LTS extreme s Hydrodynamic Real time cont Pollution trans Hydrodynamic	port ical statistics itatistics irol iport : Clear Simulatior	rresid rresid rresid rresid rresid rresid rresid rresid resid	ed Show data	secc secc secc secc secc secc	Include Include all Edit Remove Use default period	
2 3 4 5 6	Default_L	ilt_LT5_extrem Default_N Default_Ne Default_N	al_statistics e_statistics letwork_HD itwork_RTC letwork_AD HD	Type Pollution trans LTS chronolog LTS extreme s Hydrodynamic Real time cont Pollution trans Hydrodynamic	port ical statistics itatistics : : : : : : : : : : : : : : : : : : :	resid resid resid resid resid resid resid resid	60 60 60 60 60 60	secc secc secc secc secc secc	Include Include all Edit Remove Use default period	

Figure 16.8 Results Tab of the Simulation Setup Editor showing multiple result items

Table 16.7 Overview of Simulation Setup Results tab attributes (Table msm_Project)

Edit field	Description	Used or required by simulations	Field name in datastructure
Save Results in Default Folder/Save Results in this Folder [Output Folder radio buttons]	Toggles between Default folder and user-specified folder for output file loca- tion	Yes	HDOutputNo
[Input box beside 'Save Results in this Folder 'option]	Contains the path for user-specified output destination folder	Yes if 'Save Results in this Folder' acti- vated	HDFolderPath

Edit field	Description	Used or required by simulations	Field name in datastructure
Collection System Summary dropdown menu	Specifies a MIKE1D simulation sum- mary. User selects from the list of avail- able summaries. Only one network summary per simu- lation job is possi- ble.	Yes if including a net- work simulation	SummaryID
Edit Summary button	Opens the Network Summary editor with the current summary in focus. Allows for editing summary contents. If user has speci- fied a non-existing summary ID, pro- gram automatically creates a new sum- mary record with default contents and opens the summary editor with the new summary in focus.	Yes	-

Table 16.7	Overview of Simulation Setup Results tab attributes (Table msm_Pro-
	ject)

A secondary grid in the Simulation Setup Results tab displays a list of the output files selected for the simulation setup (Figure 16.9). The grid retrieves the information from the Result Files editor (Result Specifications| Result Files).

	ID 👻	Туре	Format	Save every			Default save period	Start saving	End saving	Include
1	HD	Hydrodynamic	.res1d	60	seconds	•	v	03-01-1936	28-12-1979	
2	Default_Network	Real time control	.res1d	60	seconds	•	v	03-01-1936	28-12-1979	Include al
• 3	Default_Network	Hydrodynamic	.res1d	60	seconds	•	2	03-01-1936	28-12-1979	Edit
4	Default_Network	Pollution trans	.res1d	60	seconds	•	2	03-01-1936	28-12-1979	
5	Default_LTS_extr	LTS extreme s	.res1d	60	seconds	-	V	03-01-1936	28-12-1979	Remove
6	Default_LTS_chro	LTS chronologi	.res1d	60	seconds	•	v	03-01-1936	28-12-1979	Use defaul
7	AD	Pollution trans	.res1d	60	seconds	-	▼	03-01-1936	28-12-1979	period

Figure 16.9 The Project Outputs secondary grid in the Results Tab

The list of outputs is controlled by the user using functional buttons to the right of the grid.

The user selects output definitions to include from among those available in the project associated with the modules included in the simulation (and specified in the Result Files editor). The options are filtered according to the contents of the actual simulation.

The list will include at least one "Default" result file definition for each module (Runoff, Network HD, etc.) containing the most usual results for the entire model domain (e.g. runoff for all catchments, discharges and water levels for all model elements, etc.). The list of result file definitions may be extended by "user-specified" output definitions.

An overview of the attributes of the Project Outputs secondary grid is shown in Table 16.8 below.

Table 16.8	Overview of the Project Outputs secondary grid attributes (Table
	msm_ProjectOutput)

Edit field	Description	Used or required by simulations	Field name in datastructure
ID	MUID of the selected output file definition	Yes	OutputID
Туре	Type Shows type and default contents of the output file (read only)		ContentsTypeNo
Format	Shows the file for- mat (read only)	Yes	FormatNo
Save Every	Specifies results saving frequency	Yes	DtSave
[Column to the right of 'Save Every' col- umn]	Specified unit for result saving fre- quency	Yes	DtSaveUnitNo
Default Save Period checkbox	Specify to save results for the entire simulation (check), or for user-speci- fied period only (un- check)	Yes	DefaultSavePeri- odNo
Start Saving	Defines start date and time for saving results	Yes if user-specified save period	SaveStartDate
End Saving	Defines end date and time for saving results	if user-specified save period	SaveEndDate

The following functional buttons are available for controlling the list of outputs in the Project Outputs secondary grid:

'Include' button

Opens a list of all relevant output definitions for the simulation and allows the user to choose those which are to be added to the list.

'Include all' button

Fills the list with all relevant pre-defined output definitions found in the database. Relevance is determined by the modules included in the simulation. If the list is not empty, it only adds those outputs which are not already in the list.

'Edit' button

Opens the Result Files editor with the current output in focus.

'Remove' button

Removes selected output(s) from the list.

'Use Default Period' button

This function finds the full period available for an output item. The information is reflected in the Start Saving and End Saving secondary grid attributes. This tool may be used in defining user-specified saving periods to ensure they fall within valid periods.

16.2 Hotstart Files

What is hotstart?

Hotstart is a facility that enables application of initial conditions for a simulation other than the default initial conditions. Default initial conditions are empty network and uniform concentrations of pollutants in the pipe flow model, or initial values of hydrological state variables in the RDII hydrological model.

What is a hotstart file?

Hotstart initial conditions represent the state of the system as recorded in a previously generated result file at a specified time -- the so-called hotstart file.

Relevant information from a hotstart file for a network simulation includes:

- Water levels and pollutant concentrations in nodes of the system
- Water levels, discharges and pollutant concentrations in grid points of the network
- Pumps, weirs, orifices (gates) and valves flows and pollutant concentrations
- Position of controllable weirs, gates and valves (if RTC is applied)

For the RDII model, relevant information in the hotstart file includes all relevant hydrological state variables, such as surface storage, groundwater depth, etc.

It is recommended that a hotstart file for a network simulation is generated from exactly the same model setup as the model used in a hotstarted simulation run.

Only information available in the hotstart file are used to initialize a simulation; any missing information from the hotstart file (e.g. because of newlyadded elements) are not interpolated/extrapolated from available hotstart values during initialization.

Why and when is hotstart relevant?

Hot start files can be used for the following purposes:

- To avoid potential numerical instabilities that occasionally take place under Dynamic Wave computations during the initial phase of the simulation.
- To create a realistic initial condition for a simulation. This typically implies levying a set of constant base flows (for a natural channel network) or a set of dry weather sanitary flows (for a sewer network) over some startup period of time. The resulting hotstart file from this run is then used to initialize a subsequent run where the inflows of real interest are imposed.
- To divide long continuous simulations into shorter simulation periods. Here are the initial conditions for each subsequent simulation period set as the end of the previous simulation period.

Specification of the hotstart

Hotstart options are set in the Catchments, HD, and AD and WQ tabs in the Simulation Setup editor.

For the RDII runoff model, the only parameter needed is the Hotstart Filename. The system automatically detects the values of the relevant variables at the simulation start time and initiates the actual simulation run accordingly.

For the pipe flow model (HD), the following parameters are needed:

- Hotstart Filename: This is the name of an existing result file from which initial conditions for the simulation will be loaded.
- Hotstart Time: The date and time at which the initial conditions are taken from the hotstart file. The selected hotstart time must be within the hotstart file time coverage.

For the Pollution Transport (AD) hotstart, the model is initiated from the AD Hotstart File. It uses the same Hotstart Time specified for the HD hotstart as it is expected that the HD and AD hotstart files are consistent with each other (i.e. from the same simulation run).

16.3 Batch Simulation

If you need to run more simulations sequentially, you can choose to do so by including these to a batch simulation. This is done through the Batch Simulation editor.

The Batch Simulation editor includes functionalities allowing control and execution of batch simulations.

The 'Batch Run' button executes all simulations that have the 'Include to batch' flag set in the sequence that they are specified in the grid table. This means that multiple simulations and scenarios can be simulated in batch without user interaction.

Batch simulation							□ X			
Identification										
ID	TutorLTS	i				Add to batch				
Scenario	Base					E Aud	to batti			
Batch simulal	tion tools									
Sort sim	nulation jobs			Show jobs						
() () () () () () () () () () () () () () (-	All jo	be					
	love Up	Move To			h jobs only	_				
Mor	ve Down	Move To	o End	U Bato	n jobs only		BATCH RUN			
	ID	-],	ALL	▼ Clear [Show selected	🔲 Show data e	rrors 1/1 rows, 0 sele			
Include	to batch	ID	Scenario	Active Project	Catchments	Runoff(RR)	Stormwater runoff Wo			
and the second sec		TutorLTS	Base	~		V	Г			

Figure 16.10 The Batch Simulation Editor

The Batch Simulation editor manages the same data from the Simulation Setup editor. The grid table shows the same entries as the grid in the Simulation Setup editor, but built-in tools allow reordering and filtering of simulation job records for batch execution.

Edit field	Description	Used or required by simulations	Field name in datastructure
ID	ID of the simulation setup	Yes	MUID
Scenario	Scenario for the simulation setup	Yes	ScenarioName
Add to Batch checkbox	Option for including a simulation setup to batch	Yes	IncludeToBatchNo

Table 16.9 Overview of Batch Simulation editor fields (Table msm_Project)

The following functionalities are available on the editor:

Move Up

Moves the active record one position up in the grid.

Move Down

Moves the active record one position down in the grid.

Move To Top

Moves the active record to the top of the table.

Move To End

Moves the active record to the bottom of the table.

'All jobs' and 'Batch jobs only' radio buttons

This filters the list of simulation jobs displayed in the table. A complete list of simulation jobs (i.e. All jobs) is shown by Default, but the display can be reduced to show only those jobs included in the batch (i.e. Batch jobs only).

'Batch Run' button

This starts a batch job execution following the sequence of the simulation jobs on the list. Each consecutive job must wait until the previous job has been fully completed. All user prompts are suppressed during the batch job execution, i.e. the simulations are automatically executed without user prompts.

INDEX

Cross sections
nlet
Kinematic Wave
_ .inear Reservoir
) Drifice
Pipes and Canals
R DI
5 Soakaway
J Jnit Hydrograph Method
N Neirs