

 MIKE 2019

MIKE HYDRO Basin Engine

Interface Programming Guide

 mikehydro_basinengine_interfaceprogrammingguide.docx/EJQ/2017-01-05 - © DHI

DHI headquarters

Agern Allé 5

DK-2970 Hørsholm

Denmark

+45 4516 9200 Telephone

+45 4516 9333 Support

+45 4516 9292 Telefax

mike@dhigroup.com

www.mikepoweredbydhi.com

 i

CONTENTS

MIKE HYDRO Basin Engine
Interface Programming Guide

1 Introduction ... 1
1.1 Technical Requirements for Using the Interface .. 1

2 Using VSTO and C# Programming ... 2
2.1 MIKE HYDRO Basin Engine with C# ... 2

3 Model Object Identifiers ... 5

4 Using VSTO for Interacting with MS Excel ... 11
4.1 Creating a VS Project with MikeBasin Engine/MS Excel 64 bits (MS Windows) 11
4.2 Creating a Visual Studio Project Step-by-Step .. 12

5 Migrating from VBA to C# - VSTO ... 19
5.1 Calling Modes in C# and VBA .. 19
5.1.1 VBA Calling modes .. 19
5.1.2 C# Calling Modes ... 20

6 DHI.MikeBasin.Engine.Engine Interface Methods ... 23

7 Lesser used DHI.MikeBasin.Engine.Engine Methods ... 25

8 DHI.MikeBasin.Engine.Engine Interface Properties .. 29

9 DHI.MikeBasin.Engine.ModelObject Interface Methods ... 31

10 Lesser used DHI.MikeBasin.Engine.ModelObject Methods ... 35

11 Skeleton of Program in C# using VSTO and the Engine Interface 39

12 Limitations with 64 bits Installation and .NET Alternatives .. 41
12.1 Example Written on IronPython .NET .. 42
12.2 Example Written on Visual Basic .NET .. 43

Introduction

 1

1 Introduction

The Purpose of the present document is to introduce the use of the MIKE HYDRO Basin

Engine .NET interface in programming environments. In particular we will consider the

use of Visual Studio Integrated Development Environment (https://www.visualstudio.com/)

together with the special package Visual Studio Tools for Office (VSTO) for interaction

with MS Excel and all functionality available from the MIKE HYDRO Basin Engine

interface. The MIKE HYDRO Basin Software uses MIKE HYDRO Basin’s computational

core (named the “MikeBasin engine”, or simply the “Engine” in the present document),

which can be accessed programmatically. The interface may be used with any

programming language that supports .NET (C#, Iron Python, Visual Basic .NET, C++/CLI,

etc.). In the present document, it is expected that the reader is familiar with the use of

MIKE HYDRO Basin software and the water domain knowledge behind it. In case of

doubts, please refer to the MIKE HYDRO Basin User’s Guide. More specifically, the

Engine interface actually consists of two interfaces objects, defined in the assembly

DHI.MikeBasin.Engine.dll, namely

1. DHI.MikeBasin.Engine.Engine

2. DHI.MikeBasin.Engine.ModelObject

The Engine is the core object that contains the entire model setup and simulation

information. The model setup itself is composed of ModelObject’s. ModelObject’s can be

physical features or network elements, such as nodes, reaches and catchments.

Additional types of ModelObject’s are logical or computational entities, such as allocation

rules. The ModelObject interface also provides methods to return the rules applicable for

a feature-type ModelObject. Both interfaces contain methods that refer to some

enumerations defined in the assembly DHI.Mike.Basin.Common.dll (namespace

DHI.MikeBasin.Common). This assembly needs to be included in the project references if

the user uses one of the enumerations defined by the assembly. This is not necessary in

most of the simple models.

1.1 Technical Requirements for Using the Interface

In order to use the programming interface, the following tools need to be installed in your

PC:

1. MIKE Zero 2017 or later releases (only available in 64 bits)

2. Any .NET framework 4.5.1 compatible programming language (C#, VB, Iron Python,

C++/CLI, etc.)

3. Visual Studio (2013 or above)

4. Visual Studio Office Development Tools (optional, for enabling interaction with MS

Excel 64 bits)

5. 64-bit version of MS Excel 2013 or later (optional).

Remark: Due to architecture compatibility constraints, no version of MS Excel 32 bits can

interact with any version of MIKE Zero 64 bits. Therefore, it is not possible to use two

such binaries in a common environment. Thus, it is mandatory to use a 64-bit version of

MS Excel for this purpose.

 MIKE HYDRO Basin Engine

2 Interface Programming Guide - © DHI

2 Using VSTO and C# Programming

Microsoft releases “Visual Studio Tools for Office” (VSTO,

https://www.visualstudio.com/vs/office-tools/) as an extension for Visual Studio for

interacting with Office products. These tools provides a comprehensive way of interacting

with the MikeBasin engine. The name of the tool we aim to use here is “Visual Studio

Tools for Office” (VSTO, https://www.visualstudio.com/vs/office-tools/). It is a free tool if

you have already Visual Studio installed in your PC. One of the most recommended

languages for .NET applications during the last decade is C#. Therefore we will consider

C# for the most of the document. Nevertheless, any language supporting .NET is suitable

for programming using the MikeBasin engine interface and we will show a couple of

examples with other .NET languages as well (see section 12). If you are new to the .NET

Framework, there are plenty of .NET-based programming tutorials and courses for all

languages (C#, Iron Python, VB, C++/CLI, etc.) and levels available on the internet. Any

basic one is good enough for the requirements needed to use the MikeBasin Engine

interface.

2.1 MIKE HYDRO Basin Engine with C#

If you want to use the Engine interface in a C# project in Visual Studio, it is necessary to

include the reference to the dll assembly (DHI.MikeBasin.Engine.dll, usually located on

the bin folder of your MIKE Zero installation, typically

C:\Program Files (x86)\DHI\2017\Bin\x64, or

C:\WINDOWS\Microsoft.NET\assembly\GAC_64\DHI.MikeBasin.Engine\

When you have done so, you can start coding your Console Application project, more

specifically in your main program you can type:

1 using System;

2 using DHI.MikeBasin.Engine;

3

4 namespace ConsoleApplication1

5 {

6 class Program

7 {

8 static void Main(string[] args)

9 {

10 Engine myEngine = new Engine();

11 }

12 }

13 }.

The line 10,

 Engine myEngine = new Engine();

Which creates a new instance of the DHI.MikeBasin.Engine.Engine object (simplified

syntax by the “using” statement in line 2). After creating this new instance, the next step is

to initialize it. For that purpose, the method Initialize must be called, passing as

arguments, the path to the MIKE HYDRO file location folder, and the MIKE HYDRO setup

file name:

https://www.visualstudio.com/vs/office-tools/

Using VSTO and C# Programming

 3

string workDir = @"C:\path\to\MikeHydro\file\location\";

string mikeHydroFileName = "MIKEHYDRO1.mhydro";

myEngine.Initialize(workDir, mikeHydroFileName);

After this, the simulation is ready to start. For that matter, a call to the simulate method

would complete the execution:

myEngine.Simulate();

This line runs the simulation, and writes the result file.

Summarizing, a minimalistic program running a MIKE HYDRO Basin engine simulation

would contain only three real code lines, besides the namespace and class definition and

other minimum required code:

using System;

using DHI.MikeBasin.Engine;

namespace ConsoleApplication1

{

 class Program

 {

 static void Main(string[] args)

 {

 Engine myEngine = new Engine();

 myEngine.Initialize(@"C:\path\to\MikeHydro\file\location\",

"MIKEHYDRO1.mhydro");

 myEngine.Simulate();

 }

 }

}

These three lines inside the main program are equivalent to just open the MIKE HYDRO

Basin file from the GUI and click on the “Run” button. Nevertheless, the MIKE HYDRO

Basin interface comes along with a number of methods to customize the execution of a

simulation, allowing the user to change programmatically initial conditions and default

parameters, as well as changing some of the state variables along the simulation. This

also means that a user is able to set for instance, the time step size, and is able to run a

single time step, retrieve the important results, and based on these, change one or more

input parameters, run another single time step, and so on. In order to do this, we can use

the method SetBasicSimulationTiming:

DateTime simStart = new DateTime(1980, 1, 1); // January 1, 1980

DateTime simEnd = new DateTime(1980, 7, 1); // July 1, 1980

double timeStep = 86400; // one day in seconds

myEngine.SetBasicSimulationTiming (simStart, simEnd, timeStep);

The method requires as arguments, the start time of the simulation, the end time of the

simulation and the time step. To run a single time step, you need to call a method called

SimulateTimeStep, which uses as an argument the starting date time for the time step to

be executed:

DateTime currDate = myEngine.SimulationStart;

myEngine.SimulateTimeStep(currDate);

If you want to extract a result from the recently executed time step, you can do that by

using a ModelObject object and a method called GetCurrentResult. The modelObject

 MIKE HYDRO Basin Engine

4 Interface Programming Guide - © DHI

specifies the element in the entire model setup from which we will extract a result data. A

ModelObject could be a river node, a water user, a reservoir, a catchment, an extraction

rule, etc. The method GetCurrentResult requires as argument a string with name of the

required quantity item:

ModelObject N2 = myEngine.GetModelObject("N2");

double flow = N2.GetCurrentResult("Water leaving model area");

In this example, flow is the required result data, the modelObject used is extracted using

its modelObject identifier (“N2”), which hints us that it is about a river node (further

explanation in section 3). The argument of the method ("Water leaving model area") is

also a string identifier, specifying the item we want to extract (the flow leaving the model

area) from the model object. If you want to have good control of the model, you need to

know all possible object identifiers. In order to have full overview of what you can change

and what result you could extract (see section 3).

If you want to change an input parameter before running a time step, you need a

modelObject and two function calls. The first function is called FindInputIndex, which

returns an integer that will allow us to set the value of the input parameter. For example:

ModelObject feature = myEngine.GetModelObject("FCL_5");

int iItemIndex = feature.FindInputIndex("TimeSeries", "R5|Water Level");

feature.SetInput(iItemIndex, currDate, currDate, 540.0);

Here we obtain a model object (feature) related to the identifier “FLC_5”, we obtain an

index related to the quantity “R5|water Level” and in the next line we set the value to

540.0 (using your default water level default unit). As we mentioned before, the next

section will explain how to obtain these text fields to include in the function calls related to

all model objects.

Model Object Identifiers

 5

3 Model Object Identifiers

The ShowStatus() method output can be used to list the model objects that are part of the

model setup, which is has been initialized. Furthermore, it also shows us, which input

parameters, time series or look-up tables that are modifiable. The text in the dialogue will

also list the properties that are accessible for each model object. To call the ShowStatus()

method, you simply type in your program:

myEngine.ShowStatus();

Here it is an example of the output of the ShowStatus() dialogue, with line numbers added

for helping referencing specific lines:

1 DHI_Engines_MIKEBASIN.Engine status

2 ===

3

4 Working directory:

5 C:\work\Main\Products\Source\MIKEBASIN\Engine\TestingData\TwoReservoirs_GuideCurve

6

7

8 File/database output is enabled

9 01-01-1981

10 Results from the following network elements can be used (accessed):

11

12 River Node 12 (E22, 0)

13 River Node 2 (E22, 12057,97)

14 River Node 13 (E32, 0)

15 River Node 7 (E31, 5411,59)

16 River Node 3 (Catchment1)

17 River Node 14 (E28, 0)

18 River Node 11 (E27, 0)

19 River Node 9 (E33, 5833,33)

20 River Node 1 (E2, 0)

21 Water User Node 4 (industries)

22 Water User Node 6 (City)

23 Water User Node 5 (Irrigation)

24 Reservoir Node 16 (DownStr Res)

25 Reservoir Node 15 (Reservoir15)

26 Reach 22 (E22)

27 Reach 32 (E32)

28 Reach 31 (E31)

29 Reach 30 (E30)

30 Reach 28 (E28)

31 Reach 27 (E27)

32 Reach 33 (E33)

33 Reach 2 (E2)

34 Reach 21 (E21)

35 Reach 16 (E16)

36 Reach 6 (E6)

37 Reach 29 (E29)

38 Reach 12 (E12)

39 Reach 23 (E23)

40 Reach 18 (E18)

41 Reach 26 (E26)

42 Catchment 1 (Catchment1)

43

44

45 Inputs from the following network elements can be accessed:

 MIKE HYDRO Basin Engine

6 Interface Programming Guide - © DHI

46

47 Water User Node 4 (industries): "WaterUseTS", "Water demand" ("Time series

WaterUseTS|Water demand")

48 Water User Node 4 (industries): "DemandFactor", "" ("Parameter DemandFactor")

49 Water User Node 4 (industries): "WaterUseTS", "Deficit carry-over fraction" ("Time

series WaterUseTS|Deficit carry-over fraction")

50 Water User Node 6 (City): "WaterUseTS", "Water demand" ("Time series WaterUseTS|Water

demand")

51 Water User Node 6 (City): "DemandFactor", "" ("Parameter DemandFactor")

52 Water User Node 6 (City): "WaterUseTS", "Deficit carry-over fraction" ("Time series

WaterUseTS|Deficit carry-over fraction")

53 Water User Node 5 (Irrigation): "WaterUseTS", "Water demand" ("Time series

WaterUseTS|Water demand")

54 Water User Node 5 (Irrigation): "DemandFactor", "" ("Parameter DemandFactor")

55 Water User Node 5 (Irrigation): "WaterUseTS", "Deficit carry-over fraction" ("Time

series WaterUseTS|Deficit carry-over fraction")

56 Reservoir Node 16 (DownStr Res): "CharacteristicLevelsTS", "Bottom level" ("Time

series CharacteristicLevelsTS|Bottom level")

57 Reservoir Node 16 (DownStr Res): "CharacteristicLevelsTS", "Top of dead storagel"

("Time series CharacteristicLevelsTS|Top of dead storagel")

58 Reservoir Node 16 (DownStr Res): "LevelAreaVolumeTable", "x" ("Lookup table item

LevelAreaVolumeTable|x")

59 Reservoir Node 16 (DownStr Res): "LevelAreaVolumeTable", "Area" ("Lookup table item

LevelAreaVolumeTable|Area")

60 Reservoir Node 16 (DownStr Res): "LevelAreaVolumeTable", "Volume" ("Lookup table item

LevelAreaVolumeTable|Volume")

61 Reservoir Node 16 (DownStr Res): "InitialWaterLevel", "" ("Parameter

InitialWaterLevel")

62 Reservoir Node 16 (DownStr Res): "CharacteristicLevelsTS", "Dam crest level (if any)"

("Time series CharacteristicLevelsTS|Dam crest level (if any)")

63 Reservoir Node 15 (Reservoir15): "CharacteristicLevelsTS", "Bottom level" ("Time

series CharacteristicLevelsTS|Bottom level")

64 Reservoir Node 15 (Reservoir15): "CharacteristicLevelsTS", "Top of dead storagel"

("Time series CharacteristicLevelsTS|Top of dead storagel")

65 Reservoir Node 15 (Reservoir15): "LevelAreaVolumeTable", "x" ("Lookup table item

LevelAreaVolumeTable|x")

66 Reservoir Node 15 (Reservoir15): "LevelAreaVolumeTable", "Area" ("Lookup table item

LevelAreaVolumeTable|Area")

67 Reservoir Node 15 (Reservoir15): "LevelAreaVolumeTable", "Volume" ("Lookup table item

LevelAreaVolumeTable|Volume")

68 Reservoir Node 15 (Reservoir15): "InitialWaterLevel", "" ("Parameter

InitialWaterLevel")

69 Reservoir Node 15 (Reservoir15): "CharacteristicLevelsTS", "Dam crest level (if any)"

("Time series CharacteristicLevelsTS|Dam crest level (if any)")

70 Reservoir Node 15 (Reservoir15): "MakeWaterLevelPrioriryTS", "Reservoir Water level"

("Time series MakeWaterLevelPrioriryTS|Reservoir Water level")

71 Reservoir Node 15 (Reservoir15): "MakeWaterLevelPrioriryTS", "Reservoir Water level"

("Time series MakeWaterLevelPrioriryTS|Reservoir Water level")

72 Reach 22 (E22): "Width", "" ("Parameter Width")

73 Reach 32 (E32): "Width", "" ("Parameter Width")

74 Reach 31 (E31): "Width", "" ("Parameter Width")

75 Reach 30 (E30): "Width", "" ("Parameter Width")

76 Reach 28 (E28): "Width", "" ("Parameter Width")

77 Reach 27 (E27): "Width", "" ("Parameter Width")

78 Reach 33 (E33): "Width", "" ("Parameter Width")

79 Reach 2 (E2): "Width", "" ("Parameter Width")

80 Reach 21 (E21): "Width", "" ("Parameter Width")

81 Reach 16 (E16): "Width", "" ("Parameter Width")

82 Reach 6 (E6): "Width", "" ("Parameter Width")

83 Reach 29 (E29): "Width", "" ("Parameter Width")

84 Reach 12 (E12): "Width", "" ("Parameter Width")

85 Reach 23 (E23): "Width", "" ("Parameter Width")

86 Reach 18 (E18): "Width", "" ("Parameter Width")

87 Reach 26 (E26): "Width", "" ("Parameter Width")

88 Catchment 1 (Catchment1): "AssignedArea", "" ("Parameter AssignedArea")

Model Object Identifiers

 7

89 Catchment 1 (Catchment1): "TotalRunoffTS", "Specific runoff" ("Time series

TotalRunoffTS|Specific runoff")

90 Rule RF_4_14: "TimeSeries", "Return flow fraction" ("Time series TimeSeries|Return

flow fraction")

91 Rule RF_6_12: "TimeSeries", "Return flow fraction" ("Time series TimeSeries|Return

flow fraction")

92 Rule RF_5_13: "TimeSeries", "Return flow fraction" ("Time series TimeSeries|Return

flow fraction")

93 Rule FCL_15: "TimeSeries", "Flood control level" ("Time series TimeSeries|Flood

control level")

94 Rule R_MIN_15: "TimeSeries", "Minimum release" ("Time series TimeSeries|Minimum

release")

95 Rule R_MAX_15: "TimeSeries", "Maximum release" ("Time series TimeSeries|Maximum

release")

96 Rule MOL_15: "TimeSeries", "Flood control level" ("Time series TimeSeries|Flood

control level")

97 Rule FCL_16: "TimeSeries", "Flood control level" ("Time series TimeSeries|Flood

control level")

It is a good advice to run the program, call the ShowStatus() method once and then save

the output to a text file. By doing this you will not need to call the method again, unless

you edit the model setup by adding or removing some of the model objects.

Beside the information provided by the ShowStatus() method, it is important to take into

consideration that to retrieve a model object it is necessary to have either its string

identifier or its zero-based integer identifier.

The string identifier is composed by a string ID related to the model object type and an

integer number. The integer number is a unique identifier of the model object. The string

ID for model object types are provided the following table:

Table 3.1 String ID for each model object type

Model Element String ID

River node "N"

Water User "W"

Irrigation node "I"

Hydro Power node "H"

Reservoir node "R"

Reach "E"

Catchment "C"

Rule "L"

External Updater "U"

WQ model "Q"

WQ Parameter "P"

WQ Parameter Location "O"

Therefore, if we want to obtain the modelObject related to a water user, we can look at

the list of water users from the showStatus() method output:

 MIKE HYDRO Basin Engine

8 Interface Programming Guide - © DHI

21 Water User Node 4 (industries)

22 Water User Node 6 (City)

23 Water User Node 5 (Irrigation)

Since we are looking at water users, we use the string ID related to water users from the

table: “W” (second row). If we are interested in getting the first water user “water user 4

(industry)” at line 21, the model object will have a name ID = “W4”. Following this, we can

call the GetModelObject() method for obtaining the water user 4 object:

ModelObject Wu4 = myEngine.GetModelObject("W4");

If now we want to obtain any of the result values, we can look at a dfs0 result file related

to the water user 4, displayed in the MIKE Zero time series editor:

Figure 3.1 dfs0 result file display of the items related to the water user 4, part 1

Figure 3.2 dfs0 result file display of the items related to the water user 4, part 2

Model Object Identifiers

 9

The possibilities are, as you can see in the item names: "Relative deficit, "Water demand

deficit", "Used water"", "Groundwater abstraction", "Net flow to node", "Unallocated

water", "Extraction from: River Node 7 (E31, 5411,59)", "Return flow to: River Node 14

(E28, 0)", and "Mass balance". So, we could for example extract the amount of used

water for the water user 4 using the lines:

double Flow = waterUser4.GetCurrentResult("Used water");

If we furthermore wanted to manipulate one of the Rule objects, we should look at the list

of Rule objects in the ShowStatus() output text:

90 Rule RF_4_14: "TimeSeries", "Return flow fraction" ("Time series

TimeSeries|Return flow fraction")

91 Rule RF_6_12: "TimeSeries", "Return flow fraction" ("Time series

TimeSeries|Return flow fraction")

92 Rule RF_5_13: "TimeSeries", "Return flow fraction" ("Time series

TimeSeries|Return flow fraction")

93 Rule FCL_15: "TimeSeries", "Flood control level" ("Time series

TimeSeries|Flood control level")

94 Rule R_MIN_15: "TimeSeries", "Minimum release" ("Time series

TimeSeries|Minimum release")

95 Rule R_MAX_15: "TimeSeries", "Maximum release" ("Time series

TimeSeries|Maximum release")

96 Rule MOL_15: "TimeSeries", "Flood control level" ("Time series

TimeSeries|Flood control level")

97 Rule FCL_16: "TimeSeries", "Flood control level" ("Time series

TimeSeries|Flood control level")

We can just pick up one of these, for instance the second one (RF_6_12) at line 91, and

we use the line:

ModelObject rule6 = myEngine.GetModelObject("RF_6_12");

Let us suppose we want to modify an input quantity related to this model object rule6.

Looking again at the line defining the rule information:

91 Rule RF_6_12: "TimeSeries", "Return flow fraction" ("Time series

TimeSeries|Return flow fraction")

It is a rule defining a return flow fraction. Let us say we can to set this return flow fraction

for the DateTime simTime to retFrac = 0.3. Then we can use the following couple of lines:

int iItemIndex = Rule4->FindInputIndex("TimeSeries", "Return flow

fraction");

Rule4->SetInput(iItemIndex, simTime, simTime, 0.3);

The first line gets an integer index to use in the second line, which is the method

SetInput(..) for setting the desired value.

 MIKE HYDRO Basin Engine

10 Interface Programming Guide - © DHI

Using VSTO for Interacting with MS Excel

 11

4 Using VSTO for Interacting with MS Excel

For the installing procedure, please refer to Visual Studio web page:

https://www.visualstudio.com/vs/office-tools/.

Once you have installed VSTO on your PC, you can proceed to use it in your Visual

Studio projects. The easiest way to use VSTO, is to create a MS Excel 2013 workbook

project in Visual Studio, which will include the necessary references to start the project.

Next section includes a step by step guide for creating a project for MS Excel interacting

with the .NET interfaces in DHI.MikeBasin.Engine.dll. Here we will focus on the

programming part on Visual Studio for manipulating Excel sheets in a simple and basic

way. Once you have created the project, you can create an excel sheet object by typing

the following line:

Excel.Worksheet actSheet =

((Excel.Worksheet)Globals.ThisWorkbook.Application.ActiveSheet);

This object will allow you to interact with the spreadsheet. For instance, if you want to get

the value of a given cell in the active sheet, you can simply type, for example:

var cellValue = ((Excel.Range)activeSheet.Cells[2, 6]).Value2;

This line obtains the value of the cell in row 2, column 6 and store it on the variable

“cellValue”. On the other hand, if you want to set the value of a cell, you can type:

((Excel.Range)activeSheet.Cells[10, 2]).Value2 = 12.5;

This will write the value 12.5 on the cell at row 10, column 2. These basic features will

allow us to write/read data used to modify our simulation accordingly. For instance, we

could have observed data related to the water level of a reservoir, and we would like to

overwrite the current data from the simulation with this observed data. We could also want

to take the result value of any give variable and write it down into a given column of the

spreadsheet. There are many more options for the use of VSTO tools, if you are eager to

learn more tricks from VSTO, feel free to refer to the documentation of this tool from the

Visual Studio documentation.

4.1 Creating a VS Project with MikeBasin Engine/MS Excel 64 bits (MS
Windows)

This step-by-step guide will help you create a Visual Studio project (Visual Studio 2013)

where the MikeBasin Interface is used and controlled from the same project and the

capabilities of MS Excel are also incorporated. You are required to have installed on your

machine the following components:

• MS Windows 7 or later.

• MIKE Zero 2017 or later (64 bits).

• Visual Studio (2013 or later).

• Visual Studio Office Development Tools.

https://www.visualstudio.com/vs/office-tools/

 MIKE HYDRO Basin Engine

12 Interface Programming Guide - © DHI

• MS Excel 2013 or later, 64 bits (MS Excel 32 bits is not compatible)

You are expected to be running Windows 7 or later, but this procedure may also work with

other OS.

4.2 Creating a Visual Studio Project Step-by-Step

1. Open the Microsoft Visual Studio 2013, click the “File => New project”. Under Visual

C#, go to the Office/SharePoint Subtree, and select “Excel 2013 WorkBook”:

Choose a directory location and a name for your Visual Studio project

2. You will have a project with a few pre-created classes:

Using VSTO for Interacting with MS Excel

 13

3. Right-click in the project name and add a new item. Select “Ribbon (Visual

Designer)”.

4. In the toolbox tab at the left of the window, select and drag a button into the ribbon:

5. Right click in the recently created button. Select “Properties”. Change the field

“Label” to “Run MIKE HYDRO” or any other convenient name:

6. Double click in the created button. This action will automatically create the code

related to the event of clicking the created button:

 MIKE HYDRO Basin Engine

14 Interface Programming Guide - © DHI

7. Add a reference to DHI.MikeBasin.Engine.dll. This reference is located in a

subfolder, which, for windows machines is located in the bin folder or in the GAC

(global assembly cache) folder:

C:\Program Files (x86)\DHI\2017\Bin\x64, or

C:\WINDOWS\Microsoft.NET\assembly\GAC_64\DHI.MikeBasin.Engine\

Your Visual Studio project reference list may look something like this:

Using VSTO for Interacting with MS Excel

 15

The highlighted in grey are the added reference to MikeBasin Engine

(DHI.MikeBasin.Engine.dll). This reference holds the interface for all MIKE HYDRO

Basin Objects. Now you can add the logic running MIKE HYDRO Basin to the click

button event created at step 6. Eventually, it would be necessary to include a

reference to the assembly DHI.MikeBasin.Common.dll, which is also located, as the

engine interface, in the bin folder, or in the GAC (Global Assembly cache), as stated

above.

8. Add the static variables holding simulation data, the logic of the simulation and the

rest of the logic loading and running a MIKE HYDRO Basin Model. You would usually

want to link the simulation to the button clicking event handler
(button1_Click(object sender, RibbonControlEventArgs e) in the example

below). In the following example we show a program using the VSTO tools, the MIKE

HYDRO Basin engine, where the code:) Opens a MIKE HYDRO Basin file; 2)

Creates an initialize an engine with the data; 3) Performs a time step simulation; 4)

Retrieves the resulting water level of the reservoir in the model; 5) Writes the value

into the MS Excel spreadsheet, return to step 3 unless the current time reaches the

end of the simulation.

Take a look at the code:

//Ribbon.cs //

using System;
using Microsoft.Office.Tools.Ribbon;
using Excel = Microsoft.Office.Interop.Excel;
using DHI.MikeBasin.Engine;

namespace ExcelWorkbookRunningMikeHydro
{
 public partial class Ribbon1
 {
 static List<double> reservoirWaterLevels = new List<double>();
 static String ReservoirName = "R15"; // identifier of the object
 static String ReservoirWLItemName = "Water level"; // item name
 // in the result section of Mike Hydro it appears as "R2|Water Level"
 static String waterUserName = "W4";
 static String waterUserTSIdentifier = "WaterUseTS";
 static String waterUserDemandIdentifier = "W4|Water demand";

 private void Ribbon1_Load(object sender, RibbonUIEventArgs e)
 {
 }

 private void button1_Click(object sender, RibbonControlEventArgs e)
 {

 // Set paths to simulation file
 string workDir = @"C:\path\to\MikeHydro\file\location\";
 string dataBaseFileName = "MIKEHYDRO1.mhydro";

 Engine myEngine = new Engine();
 myEngine.Initialize(workDir, dataBaseFileName);
 SetSimulationTimeData(ref myEngine);
 RunEngine(myEngine);
 }

 MIKE HYDRO Basin Engine

16 Interface Programming Guide - © DHI

 private static void SetSimulationTimeData(ref Engine myEngine)
 {
 DateTime simStart = new DateTime(1980, 1, 1); // Simulation start time
 DateTime simEnd = new DateTime(1980, 7, 1); // Simulation end time
 double timeStep = 86400;
 DateTime badTime = new DateTime(100, 1, 1);
// Requires an invalid tof, so Data assimilation is not considered
 myEngine.SetSimulationTiming(simStart, badTime, simEnd, timeStep, 0);
 }

 static void RunEngine(Engine myEngine)
 {

 DateTime currDateTime = myEngine.SimulationStart;

 int counter = 0;
 bool areEqual = DateTime.Equals(currDateTime, new DateTime(1899, 12, 30));
 ModelObject waterUser = myEngine.GetModelObject(waterUserName);
 WriteValueInActiveSheet("WaterLevel", 1, 4);
 double WaterLevel = double.MaxValue;
 while (!areEqual)
 {
 if (WaterLevel < 538.5)
 {
 int year = currDateTime.Year;
 int month = currDateTime.Month;
 DateTime monthBeginnig = new DateTime(year, month, 1, 0, 0, 0);
 double modifiedDemand = 1.2; // leave industry with limited water
// in dry periods
 int iItemIndex = waterUser.FindInputIndex(waterUserTSIdentifier,
 waterUserDemandIdentifier);
 double dTime = monthBeginnig.ToOADate();
 waterUser.SetInput(iItemIndex, dTime, dTime, modifiedDemand);
 }

 myEngine.SimulateTimeStep(currDateTime);
 currDateTime = myEngine.AdvanceTimeStep(true);
 counter++;
 areEqual = DateTime.Equals(currDateTime, new DateTime(1899, 12, 30));
 WaterLevel = GetResult(myEngine, ReservoirName, ReservoirWLItemName);
 WriteValueInActiveSheet(WaterLevel, counter + 1, 4);
 }

 }

 static double GetResult(Engine engine, String modelObjectName, String quantityName)
 {
 ModelObject modelobj1 = engine.GetModelObject(modelObjectName);
 double currenresult = modelobj1.GetCurrentResult(quantityName);
 return currenresult;
 }

 static void WriteValueInActiveSheet(object val, int row, int col)
 {
 Excel.Worksheet activeSheet =
 ((Excel.Worksheet)Globals.ThisWorkbook.Application.ActiveSheet);
 ((Excel.Range)activeSheet.Cells[row, col]).Value2 = val;
 }
 }
}

Using VSTO for Interacting with MS Excel

 17

9. Build and run. Go to the Add-in tab and click on the “Run MIKE HYDRO” button.

Remark: At build time, Visual Studio creates a new excel sheet containing the add-

in. The Excel File is identical to the original one, with the addition of the created add-

in. You should open the created one in the bin folder of the project.

Figure 4.1 Excel sheet with Add-in created by the Visual Studio tool for Office

You move to the “ADD-INS” tab (encircled in red in the Figure 4.1). The excel sheets

contains a couple of tables and a graph for input/output of relevant simulation data.

These tables and graphs have been included beforehand, just to set a storing

location to the result data. In the table on top, you can see a path to a model, so it

could be read by the add-in in case you want to extend your application to make the

program automatically read the date from the spreadsheet (exercise for the reader).

There is a table that will be filled in by the Add-in with the results of the simulation

(flow computed by the engine).

10. After you click in the Add-ins you will see the “Run MIKE HYDRO” Button inside the

ribbon:

 MIKE HYDRO Basin Engine

18 Interface Programming Guide - © DHI

11. Click the button to run the simulation:

In this case the Add-in writes the values of the flow in a column of cells, which was

already prepared to plot the graph with the values. As the presented one here, you

can make many other customizations with the VSTO tools package in MS Excel

Sheets.

Migrating from VBA to C# - VSTO

 19

5 Migrating from VBA to C# - VSTO

This section is intended for those who want to start programming in C# using the Engine

interface, but also for those who had used VBA in the past and now will replace their

existing VBA code for an equivalent in C# + VSTO. If you are not familiar with C# a few

important details need to be considered, and we will focus on those details in this section.

We intend to clarify the minimum concepts to make C# function calls, and the basics to

define your own methods. A deep understanding of the C# language is way beyond the

scope of this document. For such an extensive explanation of the C# language, refer to

the official C# documentation.

5.1 Calling Modes in C# and VBA

5.1.1 VBA Calling modes

In VBA, an argument of a function may be called by reference or by value. If a method is

called by reference, it means that the variable may be changed by the calling method,

giving to the argument a status of output variable. Take for instance the method

GetCurrTimeStepInfo from the Engine interface. We present here its signature and give

an example of a function call (we use the special notation “byref” to represent call by

reference, otherwise it is understood to be an argument by value):

Here it is the “signature” using our convention:

GetCurrTimeStepInfo ByRef Date CurrTimeStep, ByRef Double CurrTimeStepLength

And an example of such a function call:

‘ Function call example. – this is a VBA comment, therefore ignored by the compiler:

Dim CurrTimeStep As Date

Dim CurrTimeStepLength As Double

engine.GetCurrTimeStepInfo CurrTimeStep, CurrTimeStepLength

VBA can also use an argument for a method as an argument “by value”, meaning that the

argument is only as an input and will not be modified by the calling method. Here is a VBA

code signature and call example:

‘Signature:

SimulateTimeStep Date SomeDate

‘function call example:

Date CurrTimeStep

CurrTimeStep = #12/15/1981#;

engine.SimulateTimeStep CurrTimeStep

Note that the call using an argument as by value does not include any keyword.

 MIKE HYDRO Basin Engine

20 Interface Programming Guide - © DHI

5.1.2 C# Calling Modes

 In C#, there are four ways to use an argument in a function call. The arguments could be:

1) By value,

2) Of type “ref”, (reference)

3) Of type “out” (output reference) and

4) As unsafe pointer.

In sections 6, 7, 9, and 10, the signature of all functions are presented, so the user can

know which keyword must be used in each function call.

A C# function call by value (case 1) does not use any keyword when making a function

call (nor at function definition):

DateTime CurrTimeStep;

CurrTimeStep = new DateTime (1981, 15, 12);

engine.SimulateTimeStep(currDate);

The DateTime variable CurrTimeStep will still be December 15, 1981 after the call to

SimulateTimeStep, since it was called by value, and we do not need to know the

implementation details of the method to confirm this fact.

The cases 2) and 3) use each a special keyword in the signature and in the function calls.

These keywords are respectively, “ref” and “out”. If the keyword “ref” is used (case 2), it

means that the argument could be modified by the callee before returning it to the caller,

with the requirement that the caller of the method needs to initialize the ref object before

the method call. On the other hand, if the keyword “out” is used, it is understood that the

callee must initialize the object and return it to the caller. Therefore we can say that there

is a slightly more complex way to use the method arguments in C#: Furthermore, most of

the time, the “byref “arguments get translated as “out” arguments in C#. For example, the

GetBasicInfo(..) method, called with “byref” arguments in VBA, in the C# language has a

signature using the “out” keyword for its arguments:

//signature

void GetBasicInfo(out int ObjectTypeAsInt, out int ObjectID, out string
UserDefName);

// function call:

int objectType;
int objectId;
string userName;
ModelObject feature = myEngine.GetModelObject("FCL_5");
feature.GetBasicInfo(out objectType, out objectId, out userName);

However, some other methods would also be called “byref” in VBA, its equivalent method

in C# would have a signature including the “ref” keyword:

private void SetSimulationTimeData(ref Engine myEngine).

The case 4) represents a case where, the .NET interface is forced to use directly the

original C++ pointer used in the C++/CLI interface (language in which the interface is

written). VBA does not make this difference and the call is understood as done “byref”.

For instance:

GetCurrTimeStepInfo ByRef Date CurrTimeStep, ByRef Double CurrTimeStepLength

Migrating from VBA to C# - VSTO

 21

Its corresponding signature in C# uses directly the C++ pointer, for which a “*” symbol is

used (C++ dereferencing operator):

void GetCurrTimeStepInfo(DateTime* CurrTimeStep, double*

CurrTimeStepLength);

In order to call this method, the C# project needs to be set to allow unsafe code, and

define de class where the method is called with the “unsafe” keyword:

Public unsafe class MyClass

{

 Public static Main(args[])

 {

 DateTime* CurrTimeStep = new DateTime(2001, 1, 1);

 double* CurrTimeStepLength = 86400;

 GetCurrTimeStepInfo(CurrTimeStep, CurrTimeStepLength);

 }

}

Among other differences with VBA, notice the different way in which a function call is

made. In C#, the arguments are listed between parenthesis, and there is a comma “,”

between two consecutive arguments, unless a keyword is used (in which case the “,” go

between the argument and the keyword).

Properties

Properties are “shorthand” methods with one argument or return value, respectively. A

property can be set, get (read-only), or both. An example of a property is

engine.Silent = True; // set property

bool bSilent;

bSilent = engine.Silent; // get property

The syntax used to document the property in the example is bool Silent {get; set;};

Explicit Declaration of variables

In C#, unlike VBA, variables must be declared specifying its type, unless the use of the

keyword “var”, so it is legal to write, e.g.:

DateTime currTimeStep;

currTimeStep = new DateTime (2005,12, 15);

var nextTimeStep = new DateTime (2005,1, 1);

myEngine.SimulateTimeStep(currTimeStep);

Local versus Static (Global) variables

In C#, you should most of the times prefer to declare your variables as local variables. C#

possess an automatic garbage collector, which is in charge of free all resources that are

gone out of scope during the execution of a program. In situations, however, where you

want a program to run many simulations, you can save time by declaring the Engine as a

static (global) variable of the outer class (for a Visual Studio tools project, it is the Ribbon

class).

 MIKE HYDRO Basin Engine

22 Interface Programming Guide - © DHI

Static variables persist as long as the calling application (MS Excel) is open. A typical

example is Optimization using Solver in Excel, working on a function like:

public static void MikeBasinEval(double ref someVariableToBeOptimized)

{

 if(myEngine == null) //then the first-time call only

 {

 myEngine = new Engine();

 myEngine.Initialize("c:\\example", "ProjectData.mhydro")

 }

 // code to set some inputs for engine

 myEngine.Simulate();

 // code to retrieve some results from the engine

}

The first time the above function is called, all variables are uninitialized (null). The if

statement detects whether the engine variable has been created and the setup is

initialized (see details on that method below). Any subsequent time the function is called,

engine is no longer null, and the time-consuming call to Initialize” can be skipped.

Daisy-chaining vs temporary variables

For many common tasks, you may need to call more than one method. For example, a

very common pattern is to have created a DHI.MikeBasin.Engine.Engine variable, then

request a ModelObject from it, and finally retrieve a result for that ModelObject. The

“daisy-chaining” code for this task is:

double result = myEngine.GetModelObject("N1").GetAverageResult("Net flow

to Node", new DateTime(1981, 15, 12), new DateTime(1982, 1, 1));

The alternative is to create temporary variables to hold the results of the first method:

DateTime dateStart = new DateTime(1981, 12, 15);

DateTime dateEnd = new DateTime(1981, 1, 1);

ModelObject Mn1 = myEngine.GetModelObject("N1");

double result = Mn1.GetAverageResult("Net flow to node", dateStart,

dateEnd);

This Daisy-chaining keeps the code shorter, but is more difficult to debug and often also

slower. Whenever you want to call multiple methods for the feature above, it is much

faster to only “get” it only once and then store the result for subsequent calls.

DHI.MikeBasin.Engine.Engine Interface Methods

 23

6 DHI.MikeBasin.Engine.Engine Interface Methods

In the following sections, the most commonly used methods are outlined.

Initialize

void Initialize(string WorkingDir, string MHydroFileName);

This method initializes the Engine. That is, it establishes the model setup as created in

the user interface. Basically, the principle behind is to first create a setup in the regular

user interface, run a “base” simulation, and then do any modifications in the program.

Accordingly, this method must be called before any simulation. The argument WorkDir is

the working directory for the simulation, which is the directory that contains the mhydro

document, which is the second argument (MikeHydroFileName).

Simulate

void Simulate();

Runs the simulation for the same time period as specified in the engine at the time of

calling the method.

SimulateTimeStep

void SimulateTimeStep(DateTime StepStart);

This method runs a single time step in the simulation, starting at StepStart. Stepwise

simulation is an alternative to Simulate(), giving the possibility to control the simulation.

For example, one can connect a user to a reservoir and change that user’s water demand

dynamically based on the current time step’s simulation results or even on several

previous time steps’ results (for example, the reservoir water level). Make sure the first

call to SimulateTimeStep is done with the proper start date/time. SimulateTimeStep is a
very flexible method, because the argument StepStart does not have to be continuously

increasing as in a regular simulation.

The options are:

• Date input in the same sequence as it has in a regular simulation or the Simulate

method.

• Date repeated (several iterations for the same time step, the iteration loop controlled

by the user’s Main program).

• Date as an earlier time step for which initial conditions were remembered (‘hotstart’,

allowing controlled iterations of sub-periods in the simulation). For more information,

see RememberForHotstart.

 MIKE HYDRO Basin Engine

24 Interface Programming Guide - © DHI

AdvanceTimeStep

DateTime AdvanceTimeStep(bool bSaveResults);

Because the time stepping for SimulateTimeStep can include repeated iterations of the

same time step, this method is needed to advance the simulation to the next time step
once a user-defined iteration criterion is fulfilled. The argument bSaveResults is obsolete

and retained only for backward compatibility. The returned value is the next time step’s

date, as determined by the sequence in a regular simulation. A value of 0 is returned

when the simulation is finished.

ShowStatus

int ShowStatus();

This method is for reference only. Calling this method will cause a pop up dialogue to be

displayed. It shows the working directory and mhydro file specified in “Initialize” and

whether or not the Engine is ready to run simulations. Moreover, if the simulation has

been initialized, it will list all model objects used in the model as well as the results that

can be retrieved. The text can be used to find out which input can be modified for the

initialized model setup. See ModelObject Identifiers section (section 3) for more details.

GetModelObject

ModelObject GetModelObject(object UserDefNameOrIDNameOrZeroBasedIndex);

A setup consists for a collection of ModelObjects. That is, the four types of nodes,

reaches, catchments and allocation rules. GetModelObject retrieves any such object, as

described by either:

• Its user-defined name, as entered in the “Name” field in feature’s property dialogue,

the Water Quality parameter set dialogue, or the “Comment” field of an allocation

rule, depending on the type of model object.

Note that such name has to be unique for this method to succeed.

• The short ID also shown in results time series (e.g., “N15” for the river node with

feature ID 15). The ID system is different for rules, see comment in ModelObject

interface, Section 3.

• A zero-based index within all ModelObjects in the setup. The ModelObject interface

is documented separately.

Lesser used DHI.MikeBasin.Engine.Engine Methods

 25

7 Lesser used DHI.MikeBasin.Engine.Engine Methods

The following sections outline other methods available to you, but they are typically less

commonly used.

RunAll

bool RunAll(string Directory, string MSAccessFileName, bool Silent, bool

RegressionTest);

This is a single method that “does it all”. In essence, it is a combination of “Initialize” and

“Simulate”.

For details on the first two arguments, see Initialize. The argument Silent can be set to

true to suppress any dialogs. The argument RegTest can enable regression tests (not

publicly available). The return value is true if the method has finished successfully, false

otherwise.

RememberForHotstart

void RememberForHotstart(bool saveToFile);

This method causes the Engine to remember all state variables for the current time step t,

such that all initial conditions (e.g., reservoir levels, groundwater levels, solute masses,

volumes in river branches with routing) are given when the simulation later goes back in

time to t. RememberForHotstart must be called immediately after calling

AdvanceTimeStep(..), before any call to SimulateTimeStep for the new time step (as such

a call generally changes the state variables). Set the argument saveToFile to true to also

save the state to a file.

GetIthRuleForNode

ModelObject GetIthRuleForNode(ModelObject NodeObject, int

iRelativeZeroBased, bool bWhereNodeIsUpstream, bool

bWhereNodeIsDownstream);

This method returns the i-th rule relevant for NodeObject. That is, a ModelObject that is a

node, or 0 if the i-th rule does not exist. The returned rule is also a ModelObject. Set

bUpstream and bDownstream to true to retrieve only those rules where NodeObject is the

upstream and downstream end, respectively, of a rule. To retrieve all rules for a node, call

this method in a while loop, incrementing iZeroBased until the return value is 0.

SetSimulationOptions

void SetSimulationOptions(DHI.MikeBasin.Common.WqSimulationModes wqMode,

bool bGroundwater);

This method allows you to overwrite the simulation settings otherwise defined in the

Options dialogue in the user interface. To be effective, this method must be called before

“Initialize”. The argument WqMode is not used in MIKE HYDRO. The argument

bGroundwater refers to the groundwater module that can be enabled or disabled. The call

 MIKE HYDRO Basin Engine

26 Interface Programming Guide - © DHI

to this function requires that the project includes besides the engine interface assembly,

also a reference to the DHI.MikeBasin.Common.dll assembly.

SetSimulationTiming

void SetSimulationTiming(DateTime SimStart, DateTime TimeOfForecast,

DateTime SimEnd, double TimeStepInSeconds, int StochasticPeriodInYears);

With this method, the simulation timing can be changed relative to the values specified in

the simulation period and simulation time step. The most relevant dates that can be edited

are simulation start and end date times. The time step must be given in seconds, or -1.0

to indicate monthly time steps. This method should be called immediately after “Initialize”,

before any call to Simulate or SimulateTimeStep. All specs relevant to simulation timing

are thus collected in a single multi-argument method rather than provided as individual

properties to set. This design makes it easier to check the various constraints related to

timing. Individual get-only properties for timing specs are provided, however. The

arguments TimeOfForecast and StochasticPeriodInYears refer to options not available

from the user interface. StochasticPeriodInYears can be set to 1 in the Time step control

page when checking the “Stochastic analysis” option. However, intervals other than 1

year are also possible. The TimeOfForecast argument is related to the Engine’s ability to

perform data assimilation. Forecast can be disabled by setting timeOfForecast for 1st

January of year 100.

SetInputTimeSeriesValue

void SetInputTimeSeriesValue(string ObjectUserDefNameOrIDName, string

TSAbsOrRelativeFileName, string TSItemName, DateTime When, double

valueInUserUnits);

Changes an input value in a time series associated with a node, reach, or catchment

feature as identified by the argument UserDefNameOrIDName, which can be:

1. The user-defined name, as entered in the “Name” field in feature’s property dialogue.

Note that such name has to be unique in order for this method to succeed.

2. The short ID also shown in results time series (e.g., “N15” for the river node with

feature ID 15). Allocation rules have a peculiar identifier since they are not directly

represented in the results.

For this feature, it affects the time series specified by its file name (argument

TSFileName), which can be either relative to the WorkingDirectory (recommended for

portability of the code) or absolute. For this time series, it affects the entry for in the

column with name equal to the argument TSItem-Name. In that column, the value at time

When is set to valueInUserUnits.

SetInputTimeSeriesValue is maintained mostly for backward compatibility with pre-2005

versions of MIKE HYDRO BASIN macros. Accordingly, this method will also scan the time

series for all rules associated with a node if UserDefName-OrIDName refers to a node.

Currently, rules are ModelObjects in their own right, and can be retrieved using

GetModelObject.

SetInputTimeSeriesValue is not as fast as its newer alternatives, but it is a shorthand

method that “does it all” in a single line of code.

Lesser used DHI.MikeBasin.Engine.Engine Methods

 27

GetCurrTimeStepInfo

void GetCurrTimeStepInfo(DateTime* CurrTimeStep, double*

CurrTimeStepLength);

Get information on the current time step, both start time and length (in seconds). This

method can be useful when running a simulation time step by time step, i.e., using

AdvanceTimeStep. That method returns the next time steps start, but not its length. If you

require that latter information, use GetCurrTimeStepInfo. Note that the arguments of

these functions are classical C++ pointers handled by C# as unsafe pointers. Therefore,

to use this method you need to allow unsafe code in the project settings, and the class

making the function call should be prefixed with the “unsafe” keyword, as explained in

Section 5.

ShowAnyWarnings

int ShowAnyWarnings();

Shows the list of warnings for the above simulation (if any). Unlike errors, warnings do not

cause exceptions that stop the program, but contain useful information on inputs that

probably are incorrect. This method will cause a text box to pop up.

FinishSimulation

void FinishSimulation(bool bForceWrite);

This method need generally not be called explicitly. It writes out the results time series

and makes any feature - time series associations. Generally, FinishSimulation is

automatically called after the last AdvanceTimeStep call, i.e., when a simulation has

reached its end time. Only in rare cases where you may want to override the default

behavior can this method become useful. Furthermore, the argument bForceWrite is not

relevant for MIKE HYDRO.

GetTemplateModelObject

ModelObject GetTemplateModelObject(DHI.MikeBasin.Common.ObjectTypes

objType);

Return a “typical” instance of a type of model object. This method is mainly relevant if you

want to see the relevant results and inputs for any ModelObject of a particular type. This

method can be called before “Initialize”, but after any call to SetSimulationOptions. The

call to this function requires that the project includes besides the engine interface, a

reference to the DHI.MikeBasin.Common.dll assembly.

Engine

public Engine(bool bOpenMiLinkable);

Alternative constructor used by the OpenMI wrapper for the Engine.

 MIKE HYDRO Basin Engine

28 Interface Programming Guide - © DHI

FindModelObject

public ModelObject FindModelObject(DHI.MikeBasin.Common.ObjectTypes

objType, int withinTypeDHI_ID);

This method is an alternative to GetModelObject. Get a reference to a ModelObject, found

by its type and primary key value in its attributes table. Should be called after “Initialize”.

The call to this function requires that the project also includes a reference to the

DHI.MikeBasin.Common.dll assembly.

GetRulesForNode

public ModelObject[] GetRulesForNode(ModelObject NodeObject, bool

bWhereNodeIsUpstream, bool bWhereNodeIsDownstream);

This method is an alternative to GetIthRuleForNode. It returns an array of all rules for a

node rather than the i-th one.

RestoreFromHotstartFile

DateTime RestoreFromHotstartFile(DateTime DesiredTime, string

HotStartSubDirectory, bool bExactTime);

Read all states from hotstart file (i.e., initial conditions), as generated by a call to

RememberForHotstart with argument true, when the simulation was at DesiredTime. The

argument HotStartSubDirectory indicates on optional subdirectory of the WorkingDirectory

to search for hotstart files in. Leave this argument empty if you have not moved hotstart

files after a call to RememberForHotstart. If no hotstart file is available for DesiredTime,

the argument bExactTime becomes relevant. If it is set to false, the method will try to use

the closest hotstart file instead, otherwise it will fail. The return value is the date for which

the hotstart file is valid, 0 if none. After this method, you can call Simulate() or

SimulateTimeStep(). Internally in the Engine, the current time step is not changed by a

call to RestoreFromHotstartFile.

Optimize

bool Optimize(DHI.MikeBasin.Common.OptimizationModes OptimMode);

This method is not relevant for MIKE HYDRO.

DHI.MikeBasin.Engine.Engine Interface Properties

 29

8 DHI.MikeBasin.Engine.Engine Interface Properties

Initialized

bool Initialized [get]

Indicates whether “Initialize” has finished successfully or not.

WorkingDirectory

string WorkingDirectory [get; set]

The directory where the MIKE HYDRO file is located.

WriteOutput

bool WriteOutput [set]

Determines whether simulation results should be written to a file.

NumberOfNetworkElements

long NumberOfNetworkElements [get]

Returns the total number of features (nodes, reaches, and catchments) in a model setup.

NumberOfObjects

long NumberOfObjects [get]

Returns the total number of ModelObjects in a setup. Besides features and network

elements, this number also includes allocation rules.

SimulationStart

Datetime SimulationStart [get]

The start of the simulation as specified in the user interface. See also

SetSimulationTiming.

SimulationEnd

Datetime SimulationEnd [get]

The end of the simulation as specified in the user interface. See also

SetSimulationTiming.

TimeOfForecast

Datetime TimeOfForecast [get]

 MIKE HYDRO Basin Engine

30 Interface Programming Guide - © DHI

The time of forecast up to which simulated values can be corrected by observations, and

beyond which the error model can estimate corrections. See also SetSimulationTiming.

TimeStep

double TimeStep [get]

The simulation time step as specified in the user interface, -1.0 for monthly. See also

SetSimulationTiming.

StochasticPeriod

long StochasticPeriod [get]

The interval for resetting states (in years). The user interface only allows this value to be

set to 1. See also SetSimulationTiming.

NumberOfTimeSteps

long NumberOfTimeSteps [get]

The number of time steps in the simulation, as follows from SimulationStart,

SimulationEnd, and TimeStep. This number is first computed in the first time step, i.e., is

not available until after the first call to SimulateTimeStep or Simulate.

Silent

bool Silent [get; set]

Indicates whether any dialogs should be displayed.

OptimizationMode

OptimizationModes OptimizationMode [get]

Not relevant for MIKE HYDRO.

SimulationDescription

string SimulationDescription [get; set]

The simulation description as specified in the user interface, “Simulation description”

page. The description determines the name of the results output. The name of the output

file should be changed only when the default name for river basin result file is used in

“Storing of results” page. If you want to set this property, you must do so before calling

“Initialize”.

DHI.MikeBasin.Engine.ModelObject Interface Methods

 31

9 DHI.MikeBasin.Engine.ModelObject Interface Methods

The following sections outline the most commonly used interface methods for the

assembly DHI.MikeBasin.Engine.ModelObject. Note: You cannot create a new instance of

a ModelObject. Instances can only be returned from the Engine interface, methods

GetModelObject or FindModelObject.

In the latter model, rules were listed in a single table, it was therefore possible to identify

rule with a unique ID composed of a letter and an integer value (e.g. ‘L9’). In MIKE

HYDRO rules are part of model objects such as reservoir or water users. The identifier is

therefore different, and to be unique it is composed of: an ID (unique for each rule type),

the upstream (if it exists) and downstream node identifiers.

This implies that a MIKE HYDRO Basin C# program using geo-database needs to be

updated with regards to the rule identification. Using ShowStatus() method can help to

generate the correct script, see Section 3 for more information. The list of Rule type IDs to

be used for each rule type is given in Table 9.1 and the String IDs for each model object

type are given in Table 3.1.

Table 9.1 Rule type IDs

Type ID Has

upstream

node

 Has

downstream

node

Example of

identifier

StorageOwnership_FloodControlLevel FCL No Yes “FLC_5”

Release_MinRequirement R_MIN No Yes

Release_MaxLimit R_MAX No Yes

StorageOwnership_MinOperationLevel MOL No Yes

StorageOwnership_GuideCurveLevel GCL No Yes

RemoteFlowControl_MinRequirement RFC_MIN No Yes

RemoteFlowControl_MaxLimit RFC_MAX No Yes

InstreamFlow_MinRequirement F_MIN No Yes

NaturalFlowSplit_Bifurcation BIF Yes Yes

Supply_FractionalRight SF Yes Yes

Supply_Demand SD Yes Yes

Supply_ManagedDemand SMD Yes Yes

StorageOwnership_ReservoirPool RP Yes Yes

Call_Demand CD Yes Yes “CD_1_2”

Call_FractionOfDemand CF Yes Yes

NaturalFlowSplit_ReturnFlow RF Yes Yes

Call_StorageDemand CSD Yes Yes

 MIKE HYDRO Basin Engine

32 Interface Programming Guide - © DHI

GetCurrentResult

double GetCurrentResult(object NameOrZeroBasedIndex);

Get the current (iteration’s or time step’s) value of a results item for the ModelObject,

which must be a feature / network element. Thus, GetCurrentResult is relevant only when

the program takes control of the simulation time loop by using SimulateTimeStep or

AdvanceTimeStep on the engine. The return value is in user units, which are the units

shown in the results time series. GetCurrentValue is very useful when modelling

feedback, e.g., the sensitivity of water demand to availability. Given the “Relative deficit”

current result, you could use SetInput to manipulate the “Water demand” input time

series, then run the current time step again until some convergence criterion you define is

attained, and finally call AdvanceTimeStep. The argument NameOrZeroBasedIndex can

be a string (as used in FindResultIndex) or a Long int (as would be returned by

FindResultIndex). Using an argument of type Long is faster.

GetAverageResult

double GetAverageResult(object NameOrZeroBasedIndex, DateTime StartTime,

DateTime EndTime);

Get any period’s (reasonably ending before the current time in the simulation) time-

weighted average value of a results item. The value is in user units. The argument

NameOrZeroBasedIndex can be a string (as used in FindResultIndex) or a long (as would

be returned by FindResultIndex). Using an argument of type Long is faster. The

arguments StartTime and EndTime delimit the period of interest.

FindResultIndex

int FindResultIndex(string Name);

Simulation results are generated for every ModelObject that is a feature or network

element. FindResultIndex returns the index (zero-based) within all result items available

for a ModelObject. This index can be stored in a local variable and used repeatedly to

access results in a fast manner. For example, all nodes have a result time series item

“Net flow to node”. Furthermore, in the output, the item name is prepended an ID letter

and the feature ID for easier identification, e.g. “N15|Net flow to node”. This method

should be called without the prepended part, i.e., with “Net flow to node” alone.

ShowStatus() will list of model objects, once the model set up has been initialized.

Moreover, the exact names of the result items can be copied from the result file (See

Section 3).

FindInputIndex

int FindInputIndex(string DatabaseFieldName, string TSGroupItemName);

This method is similar to FindResultIndex, but for inputs. Inputs are more complex than

results, because they can be not only time series, but also lookup tables and parameters.

The method ShowStatus() will list of model objects, once the model set up has been

initialized. The output of ShowStatus() can be used to get the two arguments to this

method. The argument DatabaseFieldName indicates the field in the attribute table where

DHI.MikeBasin.Engine.ModelObject Interface Methods

 33

an input is set. The argument TSGroupItemName indicates the time series item name (if

any) within a time series input group. The return value is the zero-based index found. The

output of the ShowStatus() can be used to get the two arguments to this method.

SetInput

void SetInput(int iQuantityZeroBased, object

TimeSeriesStartTimeOrTableRow, object TimeSeriesEndTime, double

valueInUserUnits);

This is the single method for setting any input to a simulation. The index

iQuantityZeroBased is the index found with FindInputIndex or GetInputSpecs. If the

quantity is a time series, you can pass Date values as the arguments

TimeSeriesStartTimeOrTableRow and TimeSeriesEndTime to manipulate a sub-period

only. If the quantity is a lookup table, you can pass a Long int value in the argument

TimeSeriesStartTimeOrTableRow to manipulate a single row (zero-based). The value to

be set is in the same unit as displayed in the user interface. Note that if the quantity is a

time series, only values in existing time steps can be changed. If the arguments

TimeSeriesStartTimeOrTableRow and/or TimeSeriesEndTime do not match perfectly any

existing time step in the input time series, the closest ones will be used instead. Thus, be

aware that if you would like to use a program to set daily inputs, you cannot use a monthly

time series in the regular simulation input. Also note that there is no recycling for SetInput.

In other words, while it is generally fine to specify an input time series for any year (as

long as it covers a whole year), you must call SetInput with the actual year in the time

series. Furthermore, when a parameter or a value in a time series is changed, the

modification will only apply for the current simulation. The updated variables are not

saved into the model setup or in the time series files.

 MIKE HYDRO Basin Engine

34 Interface Programming Guide - © DHI

Lesser used DHI.MikeBasin.Engine.ModelObject Methods

 35

10 Lesser used DHI.MikeBasin.Engine.ModelObject Methods

GetBasicInfo

void GetBasicInfo(out int ObjectTypeAsInt, out int ObjectID, out string

UserDefName);

Returns information common to all ModelObjects. ObjectTypeAsInt is the index in the

enumeration ObjectTypes (0 = RiverNode, etc.). ObjectID is not relevant for MIKE

HYDRO. UserDefName is the name of the object if it has one.

GetInputSpecs

bool GetInputSpecs(int iQuantityZeroBased, out string

AttributeTableFieldName, out string TsOrXyItemName, out string

DisplayName, out int EumUnit, out string QuantityDescription);

This method is similar to GetResultSpecs, but for inputs. The return value is true if a result

item with the requested index exists, false otherwise. Thus you can use a while loop to

retrieve information on all inputs for the ModelObject. DatabaseFieldName is set to the

name of the field in the object’s attribute table that - in a regular simulation - defines the

input quantity. If this field refers to a time series group or XY lookup table,

TSGroupItemName is set to the name of the item within the group. It is set to an empty

string if the input quantity is a parameter. DisplayName and QuantityDescription are set to

a textual descriptions, the latter containing more details. EumUnit is set to the DHI-internal

code for the unit of the input quantity.

GetInputOriginalValue

double GetInputOriginalValue(int iQuantityZeroBased, object

TimeSeriesStartTimeOrTableRow, object TimeSeriesEndTime);

Return the value of a quantity with index iQuantityZeroBased as it would be in a regular

simulation, i.e. as set during “Initialize”. The value is in the same unit as displayed in the

user interface. If the quantity is a time series, you can pass Date values in the arguments

TimeSeriesStartTimeOrTableRow and TimeSeriesEndTime to retrieve a value for a sub-

period only. If the quantity is a lookup table, you can pass a Long value in the argument

TimeSeriesStartTimeOrTableRow to indicate the row (zero-based). GetInputOriginalValue

is useful, for example, when wanting to set an input to a multiple of its otherwise user-

defined “base” value, or to find an initial guess in an optimization.

GetExtendedInfo

void GetExtendedInfo(out DHI.MikeBasin.Common.ObjectTypes ObjectType, out

string UserDefName, out string UserDefCategory, out int ObjectID, out int

FeatureID, out DHI.MikeBasin.Common.RuleTypes RuleType);

This is an extended version of GetBasicInfo. The ObjectType is returned as the (more

indicative) enumeration element. ObjectID and UserDefName are returned as in

GetBasicInfo. UserDefCategory is not relevant for MIKE HYDRO. FeatureID is only

relevant for features.

 MIKE HYDRO Basin Engine

36 Interface Programming Guide - © DHI

GetResultSpecs

bool GetResultSpecs(int iItemIndexZeroBased, out string ItemName, out int

EumDataType, out int EumUnit);

In a way, this is the inverse of FindResultIndex, in as much that for a given index, the

result item name is returned. Also returned are DHI-internal IDs for the data type and unit,

respectively. The return value is true if there exists a result item with the requested index,

false otherwise. Thus you can use a while loop to retrieve information on all results for the

ModelObject.

GetDayResult

double GetDayResult(object NameOrZeroBasedIndex, DateTime StartTime);

This method is mainly maintained for backward compatibility. It returns the same result as

GetAverageResult with EndTime = StartTime + 1 day.

GetMonthResult

double GetMonthResult(object NameOrZeroBasedIndex, DateTime StartTime);

This method is mainly maintained for backward compatibility. It returns the same result as

GetAverageResult with EndTime = StartTime + 1 month.

GetInputTSObject

TSObject GetInputTSObject Long iQuantityZeroBased

This method has been deprecated.

GetOverwriteableVariableSpecs

bool GetOverwritableVariableSpecs(int iVariableZeroBased, out string

VariableName, out ValueType VariableEumDataType, out ValueType

VariableEumUnit);

This method applies for OpenMI: what state variables can be overwritten? Loop through

iVariableZeroBased from 0 until you get a return value of false. State variables are those

otherwise calculated by this engine, e.g., flow. So in a sense they are "input" quantities,

but only a small subset, because in general, input quantities are boundary conditions or

parameters. Those are obtained from GetInputQuantitySpecs(..). Those can be set easily

without affecting the simulation logic, whereas overwriting requires a lot more logic in the

code. E.g., if you overwrite a water level in a reservoir, you also have to adjust the volume

and the area. Furthermore, overwriting more than one variable may result in physically

inconsistent states, e.g., when you overwrite a reservoir level, you cannot independently

overwrite that reservoir's volume. Because of the extra logic required, only few variables

are open for overwriting. Technically, over writable variables are presented to the user in

the same way as result items. This makes sense, because results are the simulated

values of internal variables. The analogy also makes identification of over writable

variables intuitive, by using the same name as the corresponding result item. Also, over

Lesser used DHI.MikeBasin.Engine.ModelObject Methods

 37

writable variables just as results exist only for an Element, not an Object. The method

returns whether iVariableZeroBased exists or not.

OverwriteVariableInComingTimeStep

void OverwriteVariableInComingTimeStep(int iVariableZeroBased, double

newValueInUserUnits);

 This method applies for OpenMI: Overwrite the iVariableZeroBased-th over writable

variable of an element.

 For more info, see GetOverwritableVariableSpecs.

 MIKE HYDRO Basin Engine

38 Interface Programming Guide - © DHI

Skeleton of Program in C# using VSTO and the Engine Interface

 39

11 Skeleton of Program in C# using VSTO and the Engine
Interface

The following skeleton can be used to run a simulation time step by time step. Inputs can

be changed before executing the time step, and results can be retrieved afterwards.

Remark: It is also possible to execute the time step multiple times, before moving on to

the next time step.

// file: Ribbon1.cs

using System;
using Microsoft.Office.Tools.Ribbon;
using Excel = Microsoft.Office.Interop.Excel;
using DHI.MikeBasin.Engine;

namespace csharp_excel_program_example21
{
 public partial class Ribbon1
 {
 private Engine myEngine;
 private string SimulationDirectory;
 private string SimulationFile;
 private double Flow;
 private int cellIndex;

 private void Ribbon1_Load(object sender, RibbonUIEventArgs e)
 {

 }

 private void RunMHButton_Click(object sender, RibbonControlEventArgs
e)
 {
 SimulationDirectory = ((Excel.Range) activeSheet.Cells[2,
6]).Value2;
 SimulationFile = ((Excel.Range) activeSheet.Cells[3, 6]).Value2;
 Simulate();
 }

 private void Simulate()
 {
 // initialize a mikeBasin Engine
 myEngine = new Engine();
 myEngine.Silent = false; //' no progress info, no separate dialogs
 myEngine.SimulationDescription = "C# Test";
 myEngine.Initialize(SimulationDirectory, SimulationFile);
 DateTime currDate = myEngine.SimulationStart;
 cellIndex = 10;
 bool areEqual = false;
 while (!areEqual)
 {
 // Simulate the current time step
 myEngine.SimulateTimeStep(currDate);
 // get current (this time step’s) results (if any)
 GetSimResults(currDate);

 MIKE HYDRO Basin Engine

40 Interface Programming Guide - © DHI

 ModelObject feature = myEngine.GetModelObject("FCL_R5");
 int iItemIndex = feature.FindInputIndex("TimeSeries", "R5|Water
Level");
 feature.SetInput(iItemIndex, currDate, currDate, 540.0);

 //Set the simulation timing to the next time step
 currDate = myEngine.AdvanceTimeStep(true);
 areEqual = DateTime.Equals(currDate, new DateTime(1899, 12, 30));
 }
 }

 private void GetSimResults(DateTime currDate)
 {
 // define an object from which extract a result we might be
interested in
 ModelObject N2 = myEngine.GetModelObject("N2");
 Flow = N2.GetCurrentResult("Water leaving model area");
 // define the Excel sheet in which write the results
 object actSheetObj = Globals.ThisWorkbook.Application.ActiveSheet;
 Excel.Worksheet activeSheet = (Excel.Worksheet) actSheetObj;
 ((Excel.Range) activeSheet.Cells[cellIndex, 2]).Value2 = currDate;
 ((Excel.Range) activeSheet.Cells[cellIndex, 3]).Value2 = Flow;
 cellIndex = cellIndex + 1;
 }

 private void ChangeInput(DateTime currDate)
 {
 ModelObject feature = myEngine.GetModelObject("FCL_R5");
 int iItemIndex = feature.FindInputIndex("TimeSeries", "R5|Water
Level");
 feature.SetInput(iItemIndex, currDate, currDate, 540.0);
 }

 }
}

Limitations with 64 bits Installation and .NET Alternatives

 41

12 Limitations with 64 bits Installation and .NET Alternatives

As stated in the previous sections it is not be possible to use this interface with any

version of MS Excel 32 bits. If you happen to have installed a version of MS Excel on 32

bits (which is the common case), you will not be able to use the MikeBasin Engine

interface. One alternative to consider is to drop the use of MS Excel as interactive

appliation, and use a simpler environment to control programatically the engine interface.

You can still use any .NET language to connect to the engine interface, as for example,

Visual Basic, C#, Iron Python, C++/CLI, etc.. If for example you decide to use C# (without

VSTools for Office), the code would have to remove the VSTO references and related

coded:

File: MikeBasinProgram.cs

using System;
using DHI.MikeBasin.Engine;

namespace CSharpCallingWrapper
{
 class Program
 {
 static Engine myEngine;
 static string SimulationDirectory;
 static string SimulationFile;

 static void Main(string[] args)
 {

 SimulationDirectory = @"C:\path\to\MikeHydro\file\";
 SimulationFile = "model.mhydro";
 myEngine = new Engine();
 myEngine.Silent = true; //' no progress info, no separate dialogs
 myEngine.SimulationDescription = "Test";
 myEngine.Initialize(SimulationDirectory, SimulationFile);
 DateTime currDate = myEngine.SimulationStart;

 bool areEqual = false;
 while (!areEqual)
 {
 myEngine.SimulateTimeStep(currDate);
 GetSimResults(currDate);
 ChangeInput(currDate);
 currDate = myEngine.AdvanceTimeStep(true);
 areEqual = DateTime.Equals(currDate, new DateTime(1899, 12, 30));
 }
 }

 private static void GetSimResults(DateTime currDate)
 {
 // define an object from which extract a result we might be interested
in
 ModelObject N2 = myEngine.GetModelObject("N2");
 double FloW = N2.GetCurrentResult("Water leaving model area");
 }

 private void ChangeInput(DateTime currDate)
 {

 MIKE HYDRO Basin Engine

42 Interface Programming Guide - © DHI

 ModelObject feature = myEngine.GetModelObject("FCL_R5");
 int iItemIndex = feature.FindInputIndex("TimeSeries", "R5|Water
Level");
 feature.SetInput(iItemIndex, currDate, currDate, 540.0);
 }
 }
}

12.1 Example Written on IronPython .NET

Another popular .NET language is Iron Python. If we decide to use IronPython to control a

MIKE HYDRO Basin application. In Visual Studio 2013 for example, the procedure is very

simple. The reference to the MikeBasin engine is included directly in the code. An

example of an Iron Python Application would look like this:

file: callMikeBasin.py

import clr
clr.AddReferenceToFileAndPath(' C:\Program Files
(x86)\\DHI\\2017\Bin\\x64\\DHI.MikeBasin.Engine.dll')
import DHI.MikeBasin.Engine
from System import DateTime

myEngine = DHI.MikeBasin.Engine.Engine()
SimulationDirectory = 'C:\\path\\to\\MikeHydro\\file\\';
SimulationFile = 'model.mhydro';

myEngine.Initialize(SimulationDirectory, SimulationFile);

currDate = myEngine.SimulationStart;
invalidTime = DateTime(1899, 12, 30);

areEqual = False;
while areEqual == False:
 myEngine.SimulateTimeStep(currDate);
 N2 = myEngine.GetModelObject("N2");
 headMessage = "Water leaving model area"
 Flow = N2.GetCurrentResult(headMessage);
 print('{0}: {1}'.format(headMessage, Flow))

 feature = myEngine.GetModelObject("FCL_R5");
 iItemIndex = feature.FindInputIndex("TimeSeries", "R5|Water Level");
 feature.SetInput(iItemIndex, currDate, currDate, 540.0);

 currDate = myEngine.AdvanceTimeStep(True);
 areEqual = DateTime.Equals(currDate, invalidTime);

Limitations with 64 bits Installation and .NET Alternatives

 43

12.2 Example Written on Visual Basic .NET

As a third .NET alternative, you can use Visual Basic .NET. If we decide to use Visual

Basic .NET, a similar procedure is done in Visual Studio. First you create a Visual Basic

.NET console application, you should add a reference to the MIKE HYDRO Basin Engine

Interface in the projects references. The code would look like this:

//file: ModuleMikeBasin.vb

Imports System
Module Module1
 Sub Main()

 Dim directory As String
 Dim mhydroFile As String
 directory = "C:\path\to\MikeHydro\file\"
 mhydroFile = "Model.mhydro"

 Dim engine As DHI.MikeBasin.Engine.Engine
 Dim feature As DHI.MikeBasin.Engine.ModelObject
 Dim iItemIndex, result, currDate

 ' initialize calculations
 engine = New DHI.MikeBasin.Engine.Engine
 engine.Silent = True ' no progress info, no separate dialogs
 engine.SimulationDescription = "Macro Test" 'make sure it does not
overwrite results

 engine.Initialize(directory, mhydroFile)

 ' run the simulation time loop
 currDate = engine.SimulationStart
 Dim invalidDate As DateTime = New DateTime(1899, 12, 30)

 While currDate <> invalidDate
 engine.SimulateTimeStep(currDate)

 ' get current (this time step's) results (if any)
 feature = engine.GetModelObject("N2")
 result = feature.GetCurrentResult("Water leaving model area")

 'Write the date and the results to spreadsheet
 currDate = engine.AdvanceTimeStep(True)

 End While
 End Sub
End Module

There are plenty of options to choose in case you want to control your MIKE HYDRO

Basin Model from any .NET programming environment and customize the simulation

according to your needs.

 MIKE HYDRO Basin Engine

44 Interface Programming Guide - © DHI

	1 Introduction
	1.1 Technical Requirements for Using the Interface

	2 Using VSTO and C# Programming
	2.1 MIKE HYDRO Basin Engine with C#

	3 Model Object Identifiers
	4 Using VSTO for Interacting with MS Excel
	4.1 Creating a VS Project with MikeBasin Engine/MS Excel 64 bits (MS Windows)
	4.2 Creating a Visual Studio Project Step-by-Step

	5 Migrating from VBA to C# - VSTO
	5.1 Calling Modes in C# and VBA
	5.1.1 VBA Calling modes
	5.1.2 C# Calling Modes
	Properties
	Explicit Declaration of variables
	Local versus Static (Global) variables
	Daisy-chaining vs temporary variables

	6 DHI.MikeBasin.Engine.Engine Interface Methods
	Initialize
	Simulate
	SimulateTimeStep
	AdvanceTimeStep
	ShowStatus
	GetModelObject

	7 Lesser used DHI.MikeBasin.Engine.Engine Methods
	RunAll
	RememberForHotstart
	GetIthRuleForNode
	SetSimulationOptions
	SetSimulationTiming
	SetInputTimeSeriesValue
	GetCurrTimeStepInfo
	ShowAnyWarnings
	FinishSimulation
	GetTemplateModelObject
	Engine
	FindModelObject
	GetRulesForNode
	RestoreFromHotstartFile
	Optimize

	8 DHI.MikeBasin.Engine.Engine Interface Properties
	Initialized
	WorkingDirectory
	WriteOutput
	NumberOfNetworkElements
	NumberOfObjects
	SimulationStart
	SimulationEnd
	TimeOfForecast
	TimeStep
	StochasticPeriod
	NumberOfTimeSteps
	Silent
	OptimizationMode
	SimulationDescription

	9 DHI.MikeBasin.Engine.ModelObject Interface Methods
	GetCurrentResult
	GetAverageResult
	FindResultIndex
	FindInputIndex
	SetInput

	10 Lesser used DHI.MikeBasin.Engine.ModelObject Methods
	GetBasicInfo
	GetInputSpecs
	GetInputOriginalValue
	GetExtendedInfo
	GetResultSpecs
	GetDayResult
	GetMonthResult
	GetInputTSObject
	GetOverwriteableVariableSpecs
	OverwriteVariableInComingTimeStep

	11 Skeleton of Program in C# using VSTO and the Engine Interface
	12 Limitations with 64 bits Installation and .NET Alternatives
	12.1 Example Written on IronPython .NET
	12.2 Example Written on Visual Basic .NET

