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PLEASE NOTE

COPYRIGHT This document refers to proprietary computer software which is pro-
tected by copyright. All rights are reserved. Copying or other repro-
duction of this manual or the related programs is prohibited without 
prior written consent of DHI. For details please refer to your 'DHI 
Software Licence Agreement'.

LIMITED LIABILITY The liability of DHI is limited as specified in your DHI Software 
Licence Agreement:

In no event shall DHI or its representatives (agents and suppliers) 
be liable for any damages whatsoever including, without limitation, 
special, indirect, incidental or consequential damages or damages 
for loss of business profits or savings, business interruption, loss of 
business information or other pecuniary loss arising in connection 
with the Agreement, e.g. out of Licensee's use of or the inability to 
use the Software, even if DHI has been advised of the possibility of 
such damages. 

This limitation shall apply to claims of personal injury to the extent 
permitted by law. Some jurisdictions do not allow the exclusion or 
limitation of liability for consequential, special, indirect, incidental 
damages and, accordingly, some portions of these limitations may 
not apply. 

Notwithstanding the above, DHI's total liability (whether in contract, 
tort, including negligence, or otherwise) under or in connection with 
the Agreement shall in aggregate during the term not exceed the 
lesser of EUR 10.000 or the fees paid by Licensee under the Agree-
ment during the 12 months' period previous to the event giving rise 
to a claim.

Licensee acknowledge that the liability limitations and exclusions 
set out in the Agreement reflect the allocation of risk negotiated and 
agreed by the parties and that DHI would not enter into the Agree-
ment without these limitations and exclusions on its liability. These 
limitations and exclusions will apply notwithstanding any failure of 
essential purpose of any limited remedy.
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Accumulation of Particles on the Catchment
1 The Build-up/Wash-off of Sediments

1.1 Accumulation of Particles on the Catchment

During dry weather periods sediments accumulate on the surface of urban 
catchments. The most common formulations of this process are to assume 
that the build up is a linear or an exponential function of time. Both formula-
tions have been implemented in the model. The choice between the two for-
mulations is not straightforward, due to insufficient experimental results. 

The linear build up function is given as:

(1.1)

where: 

M = the accumulated mass of particles at time t (kg),
Mmax = the maximum accumulated mass of particles on the

catchment (kg),
t = the time in days,
Ac = the daily accumulation rate (kg/ha/day).

The exponential build up function is given as:

(1.2)

where: 

M = the accumulated mass of particles at time t (kg),
t = the time in days,
Ac = the daily accumulation rate (kg/ha/day),
Drem = the removal coefficient (d-1).

The coefficient Drem represents the removal of particles from the surface by 
various mechanisms (e.g by wind, traffic, street sweeping, biological and 
chemical degradation) - all except wash off. The accumulated mass M will 
increase until a limit Ac/Drem is reached. 

An example of the two build up formulations is shown in Figure 1.

dM
dt

-------- Ac= for M Mmax

dM
dt

-------- 0= for M Mmax

dM
dt

-------- Ac Drem M–=
11



The Build-up/Wash-off of Sediments
Figure 1.1 The linear and the exponential build up function. Maximum value = 100 
kg and Build up rate = 40 kg/ha/day

1.2 Wash Off of Particles by Rainfall

Wash off of sediment particles during a rain event can be divided into two pro-
cesses: erosion by raindrops and erosion by overland flow. Only the erosion 
by raindrops is taken into account in the model. Erosion by raindrops is gov-
erned by several parameters. The most important are: rainfall intensity, rain-
fall depth, rainfall duration, raindrop size, catchment topography, particle 
characteristics and vegetation. However, parameters such as raindrop size 
and rainfall depth are rarely available so a simpler approximation has been 
adopted in the model. This approximation states that the rain drop erosion is 
a function of the rain intensity and a detachment rate. The equation for the 
detachment by rainfall can be written as, (Ref. /1/):

(1.3)

where:

Vsr = sediment volume detached by the rain per unit of time
(m³/h),

Dr = detachment coefficient for rainfall (m/h),
ir = rainfall intensity (mm/h),
id = rain intensity constant (=25.4 mm/h),
exp = exponent (default value 2), 
L = length of the catchment (m),
W = width of the catchment (m),
 = porosity of the sediment, 
As = fraction of surface area covered with sediment.

Vsr Dr

ir
id
--- 
 

exp

LW 1 – As=
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Wash Off of Particles by Rainfall
It is important to note that the erosion rate is independent of the diameter of 
the particles, hence the transport of the fine fraction is independent of the par-
ticle diameter. The transport of the coarse sediment is limited by the transport 
capacity of the overland flow, whilst the transport of the fine sediment only is 
limited by the rain erosion rate and the mass available on the surface. The 
transport capacity for the coarse fraction is calculated as the sum of the bed 
load and the suspended load transport capacity. The transport capacity for 
bed load and suspended load is calculated from the van Rijn formula (see the 
sediment transport reference manual).
13



The Build-up/Wash-off of Sediments
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Wash Off of Particles by Rainfall
2 The Sediment and Attached Pollutants

The description of the attachment of pollutants to sediment is based on the 
PPC concept, as described in the water quality reference manual. The mass 
attached to each fraction is determined as:

(2.1)

where:

TP = the pollutant in grams per litre wet sediment 
Mfine = the load of pollutants attached to the fine sediment 

fraction(kg/s),
Mcoarse = the mass of pollutant attached to the coarse sediment

fraction (kg/s),
Sfine = the sediment transport of the fine fraction (m3/s),
Scoarse = the sediment transport of the coarse fraction (m3/s),
FL = the percentage of the total pollutant load (TP) attached 
to

the fine fraction,
CL = the percentage of the total pollutant load (TP) attached 
to

the coarse fraction.

 

 

Mfine TP Sfine FL =

Mcoarse TP Scoarse CL =
15



The Sediment and Attached Pollutants
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The Processes in Gully Pots
3 The Gully Pots

3.1 The Processes in Gully Pots

The purpose of a gully pot is to trap particles and prevent them from entering 
the pipe system. Also, it prevents the release of odour from the pipe system. 
A sketch of a gully pot is shown in Figure 2. 

Figure 3.1 Sketch of a gully pot

The gully pot acts as a sediment trap during dry weather flow. During storms 
either deposition or erosion of sediment will take place depending on the flow 
conditions in the gully pot. Whether sediment will deposit or erode during 
storms depends on many different factors e.g.: the geometry of the gully pot, 
the depth of sediment in the gully pot, the level of turbulence in the gully pot 
and the sediment size and density. Furthermore, the removal of sediment 
from the gully pot by cleansing is an unknown factor.

Dissolved pollutants will build up in the gully pot liquid during dry weather. 
The build up is dependent on the type of pollutant, the biological/chemical 
conditions in the gully pot and the temperature. 
17



The Gully Pots
3.2 Transport of Particles Through the Gully Pots to the Sewer 
System 

During storms, the volume of liquid and sediment will remain unchanged in 
the gully pots. Thus, it is assumed that all sediment, which enters the gully 
pot is transported straight through the gully pot. This assumption is a neces-
sary simplification, since the efficiency of trapping of sediment depends to a 
large degree on the local conditions in the gully pot. The amount trapped in 
the gully pot can be represented by a reduced detachment coefficient for rain-
fall or, for the fine fraction, by reducing the volume of sediment available on 
the surface.

3.3 The Build-up and the Release of Dissolved Pollutants in Gully 
Pots

The build-up of pollutants in the gully pot is assumed to be a linear function 
with a threshold value for the maximum concentration. The release of the pol-
luted water during storm events is assumed to be a simple mixing process of 
the incoming water with the gully pot liquor as follows:

(3.1)

where:

ci = the concentration of pollutants in the inflow water,
cgully = the concentration of pollutants in the gully pot,
cout = the concentration of pollutants in the outflow water,
dt = the time step,
qi = the inflow discharge,
Vgully = the volume of the gully pot.

cout
qi ci dt Vgully cgully+ 

Vgully qi dt+
-------------------------------------------------------------=
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The Build-up and the Release of Dissolved Pollutants in Gully Pots
4 Nomenclature

Acdaily accumulation rate (kg/ha/day)

Assurface area fraction covered with sediment

CLpercentage of the total pollutant load (TP) attached to the coarse 
sediment fraction

Drdetachment coefficient for rainfall

Dremremoval coefficient (d-1)

FLpercentage of the total pollutant load (TP) attached to the fine 
sediment fraction

irrainfall intensity (mm/h)

idrain intensity constant (= 25.4 mm/h)

Llength of the catchment (m)

M accumulated mass of particles at time t (kg)

Mcoarsemass of pollutant attached to the coarse fraction

Mfinemass of pollutants attached to the fine fraction

Mmax maximum accumulated mass of particles on the catchment

Scoarsesediment transport of the coarse fraction

Sfinesediment transport of the fine fraction

TPpollutant in grams per litre wet sediment

ttime in days

Vsrsediment volume detached by the rain per unit of time (m³/h)

Wwidth of the catchment (m)

eporosity of the sediment 
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6 Introduction

Transport of sediments under impact of water in movement is a very complex 
process, which is impossible to be described in fully exact way. The reason is, 
among others, that the term "sediment" includes a very wide range of parti-
cles, which differ in size, shape and other physical properties. E.g. particle 
sizes may range from microscopic dimensions to 
boulders. The phenomena like graded sediment composition, sediment cohe-
sion, bed forms, bed armouring, sedimentation, re-suspension, etc. and their 
importance for the sediment transport process have been intensively studied, 
resulting in numerous, semi-empirical or empirical sediment transport formu-
lations. 

Common for all existing deterministic sediment transport formulations is a rel-
atively high level of uncertainty. The computed sediment transport may in 
some cases perfectly fit with the observations, while in some other case the 
two-fold error is not taken as a surprise. Therefore, when studying sediment 
transport, a sensible approach to the interpretation of the results must be 
taken.

Studying the sediment transport in sewers does not make the situation any 
easier. The actual physical conditions in sewer networks are far from the lab-
oratory models. Also, the nature of the sewage-borne sediments is far away 
from an idealised sediment picture, containing even wider spectrum of parti-
cles than in natural streams.

The MOUSE ST module is a tool which attempts to provide a platform for 
deterministic modelling of sediments in sewer systems. Taken the previous 
discussion, the MOUSE ST users must apply this tool with due care and with 
full understanding of the underlying assumptions. Particularly, the risk of 
incorrect conclusions based on the "blind" interpretation of the results, must 
be considered and minimised. 

The purpose of this Technical Reference manual is to describe the theory 
behind the MOUSE ST module. The manual describes the theories on a level 
which assumes that the user is familiar with the sediment transport terminol-
ogy and only the main equations and assumptions from the various theories 
are presented here. For a complete back-ground on the theories please refer 
to the original references.
25
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Particle Size
7 Non-Cohesive Sediment Transport - Sediment 
Properties

7.1 Particle Size

A qualitatively description of the particles size is given below:

Particle size distribution can be established from a sieve analysis. The dia-
meter obtained from the sieve analysis is termed the sieve diameter, ds. The 
sieve analysis gives the frequency curve and the grain size distribution curve. 
Examples of the frequency curve and the grain size distribution curve are 
given in Figure 7.1 below:

Figure 7.1 The grain size frequency and distribution curves

The percentile particle diameters (e.g. d35, d50, d65 and d90) can be read of 
the grain size distribution curve. 

Other two grain diameter size descriptors are often used in sediment trans-
port analysis:

The spherical diameter, dv - defined as the diameter of a sphere having the 
same volume as the given particle.

Table 7.1

Material Particle size [mm]

clay <  0.002

silt 0.002 -  0.060

sand 0.060 -  2.000

gravel 2.000 - 64.000

cobbles/boulders > 64.000
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Non-Cohesive Sediment Transport - Sediment Properties
The fall diameter, df - defined as the diameter of a sphere having the same 
fall velocity in water at 24 °C.

The difference between ds, dv and df is usually less that 10 %. When a 
reference is made to the grain diameter in MOUSE ST, it is always the fall 
diameter of the particle. 

7.2 The Porosity of Sediment

Sediment deposits consist of both solid particles and water contained in the 
spaces between the particles. The porosity is the ratio of void space in a vol-
ume to the total volume. The porosity is by definition:

(7.1)

where 

e = the void ratio.

7.3 The Fall Velocity

The sediment transport and the mode of the sediment transport is strongly 
dependent on the fall velocity (the settling velocity) of the particles in trans-
port. The fall velocity is the terminal velocity of a particle settling in fluid under 
the action of gravity. The terminal velocity is attained when the gravity force 
and the drag force on the particle are in equilibrium. The equilibrium condi-
tions are given in Equation (7.2), where the left hand side represent the grav-
ity force and the right hand side the drag force.

(7.2)

where:

 = specific weight of water (kg/(ms)2),
s = specific weight of sand (kg/(ms)2),
d = the grain diameter (m),
cD = the drag coefficient,
w = the settling velocity (m/s),

 = the density of water (kg/m3).

Rearranging equation (7.2) gives:

(7.3)

 e
1 e+
------------=

s – 
6
---d3 ½cDw2

4
---d2=

w 4 s 1– gd
3cD

---------------------------=
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The Fall Velocity
where:

s = the specific gravity of the sediment grains (s/),
g = the acceleration of gravity (m/s2).

For a single spherical particle the drag coefficient, cD, depends on the Reyn-
olds number, Re, defined as:

(7.4)

The drag force can for small values of the Reynolds numbers be approxi-
mated by use of Stokes' Law: 

(7.5)

where FD is the drag force (N).

Applying Stokes' Law the drag coefficient can be expressed as:

(7.6)

This gives an expression for the settling velocity applicable for small particle 
sizes:

(7.7)

The common expressions for the fall velocity of a solitary sand particle in a 
still, clear fluid are:

Particles in the range 0 - 100 µm, (Stokes 1851):

(7.8)

Particles in the range 100 - 1000 µm (Zanke 1977):

(7.9)

Re wd
v

--------=

FD 3dw=

cD
24
Re
--------=

w s 1– gd2

18v
--------------------------=

ws
s 1– gd2

18v
--------------------------=

ws
10v
d

--------- 1 0.01 s 1– gd3

v2
-------------------------------------+

 
 
  0.5

1–=
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Non-Cohesive Sediment Transport - Sediment Properties
Particles larger than 1000 µm (van Rijn 1982):

(7.10)

Experiments have shown that for high sediment concentrations the fall veloc-
ity of the particles will be reduced due to hindered settling. An expression for 
the fall velocity for particles in the range 50-500 µm is given by Richardson-
Zaki as:

(7.11)

where wsh is the fall velocity due to the hindered settling of the particles (m/s).

7.4 The Critical Bed Shear Stress

The critical bed shear stress is a concept used to describe whether the 
sediment motion will occur or not. The concept of the critical bed shear stress 
for a bed composed of uniform non-cohesive grains was put forward by 
Shields in 1936. 

7.4.1 The Critical Bed Shear Stress on a Horizontal Bed

Shields' analysis was based on dimensional analysis. It is assumed that a 
particle would start to move for a given ratio between the driving forces and 
the stabilising forces. The driving forces acting on a sediment particle resting 
on a plane bed are the drag force, FD, and the lift force, FL. The drag force is 
given by:

(7.12)

and the lift force, FL is proportional to the bed shear stress:

(7.13)

The stabilising forces on a sediment particle resting on a plane bed are the 
gravity force, FG, and the frictional force, FF. Both the stabilising forces are 
proportional to:

(7.14)

ws 1.1 s 1– gd 0.5=

wsh 1 c– 4ws=

FD ½cDv2d2
=

FL d2

FF FG, s – d3
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The Critical Bed Shear Stress
Shields introduced a parameter  to represent the ratio between the driving 
and the stabilising forces:

(7.15)

where is the dimensionless bed shear stress or the Shields parameter.

The sediment grains start to move when the dimensionless bed shear stress 
exceeds the critical bed shear stress c. The critical bed shear stress was 
found to be a function of the grain Reynolds number:

(7.16)

For large values of the Reynolds number it was found that c 0.06. 

An approximation to the critical bed shear stress, c, was given by van Rijn 
(1984). Van Rijn defined a curve describing the Shields curve for the critical 
bed shear stress as a function of the particle number, D*. The particle number 
is defined as:

(7.17)

The relationships describing van Rijn's curve are given below:

These relationships for the critical bed shear stress on a horizontal bed are 
shown in Figure 7.2.

Table 7.2

D* 4 c = 0.24  (D*)-1.00 

4  < D*  10 c = 0.14  (D*)-0.64

10 < D*  20 c = 0.04  (D*)-0.10

20 < D*  150 c = 0.013 (D*) 0.29

150 < D* c = 0.055


FD FL+

FG FF+
-------------------- 

 s 1– d
----------------------- YI

s 1– d
--------------------

uf
2

s 1– gd
------------------------= = = =

Re
ufd

v
--------=

D*
s 1– g

v2
-------------------- 
  1 3

d50=
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Figure 7.2 Van Rijn's relationships for the critical bed shear stress based on the 
particle number
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The Resistance from Bed Forms
8 Flow Resistance in Sewers with Sediment Deposits

The calculation of the flow resistance is far more complex for sewers with 
sediment deposits than for the clean sewers. This is because the hydraulic 
resistance in the sewer originates partially from the pipe wall, while another 
part originates from the sediment on the bottom of the sewer. Further, the 
resistance from the sediment deposits consists of two contributions. One part 
originates from the grain friction and the other part originates from the expan-
sion loss behind the bed forms. The configuration of the bed forms is deter-
mined by the sediment transport and the flow. 

In summary, the principal sources of roughness in sewers are:

 Resistance from the pipe material itself,

 Resistance from the sediment grains,

 Resistance from bed forms in the conduit,

 Other factors: aging effects, structural failure, biological growth.

The resistance from the pipe and the resistance from the sand grains them-
selves can be described through common hydraulic theory. The resistance 
from the bed forms can be described through sediment transport formulae. 
The sediment transport formulae are described in the next paragraph. The 
description of the resistance from the other factors such as: aging effects, 
structural failure and biological growth out is not included in MOUSE ST.

8.1 The Resistance from Bed Forms

The surface of sediments deposited in a sewer where sediment transport 
occurs will take one of the following bed forms (see the illustration in 
Figure 8.1:

 Ripples,

 Dunes,

 Plane bed,

 Anti-dunes (standing waves - chute and pool).

A short characterization of the different bed forms is given below. The bed 
forms, which occur in sewers are ripples, dunes and plane bed. Anti-dunes 
are not likely to occur in sewer systems as the sediment bed will be totally 
eroded during the previous flow stages.

Ripples 
Ripples are triangular sand waves with a small wavelength (compared to the 
water depth). Ripples are usually formed in fine sediments at rather low trans-
port rates. Ripples are therefore often associated with hydraulically smooth 
beds.
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Flow Resistance in Sewers with Sediment Deposits
Dunes 
Dunes are large, triangular sand waves and they are long compared to their 
height. Dunes are generally irregular and three-dimensional. Coarse sedi-
ments normally form dunes.

Both ripples and dunes have a gently curved upstream side and a steep 
downstream side with a slope close to the angle of repose (approx 27°). At 
the crest of the bed forms the flow separates and a bottom roller is formed. 
The formation of ripples and dunes on an originally plane bed has been 
explained through stability analyses (e.g. Engelund, 1970). Small sinusoidal 
perturbations of the bed are found to increase with time and the wavelength 
with the highest amplitude corresponds to the wavelength of the emerging 
bed waves.

Figure 8.1 Development of bed forms for increasing flow velocity

Plane Bed
Stability analyses have shown that in the case of a high level of suspended 
load, a plane bed will remain stable. This is due to the time lag between the 
local hydraulic conditions and the suspended load.

Anti-dunes 
Anti-dunes appear when the perturbation of the water surface is in phase with 
the bed perturbations. This occurs when the Froude number, F, exceeds the 
limit for supercritical flow:

(8.1)F k Y tanh
k Y

---------------------------
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Description of the Shear Stress in Sewers
where: 

k = the wave number of the bed forms,
Y =  the water depth.

Anti-dunes are nearly sinusoidal bed waves, which generally move upstream. 
The water surface is also sinusoidal, in phase with the bed waves and with 
larger amplitude. The anti-dunes may vary in a cyclic manner, growing until 
breaking of the surface wave occurs, then being washed out before new 
small ones are formed which then start to grow again. As anti-dunes only 
occur when the Froude number is high and when a free water surface is pres-
ent, anti-dunes are not likely to occur in sewer systems.

The variation of the bed shear stress with the velocity is shown in Figure 8.2. 
' is the skin friction, the friction if the bed had stayed plane. '' is the form fric-
tion, the extra resistance to the flow due to bed forms.

Figure 8.2 Variation in bed shear stress for increasing flow velocity

8.2 Description of the Shear Stress in Sewers

Description of the flow in a pipe with a sediment bed is complicated by the 
fact that the shear stress from the pipe wall and the sediment bed differs. A 
side wall elimination procedure can be used to describe the total resistance to 
the flow when the hydraulic conditions and the characteristics of the sediment 
layer are known. 

8.2.1 The Einstein Side Wall Elimination Procedure

The side wall elimination is based upon the findings by Einstein (1942) and 
Vanoni-Brooks (1957). The former uses the Mannings equation and the latter 
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Flow Resistance in Sewers with Sediment Deposits
the Darcy Weisbach's equation. MOUSE ST uses the Einstein side wall elim-
ination procedure, according to the following description. 

The basic assumptions of the Einstein side wall elimination procedure are:

 The cross-section area can be divided into different areas where each of 
the flow areas can be connected to a part of the wetted perimeter,

 The mean velocity is the same for the whole section,

 The hydraulic gradient is the same for the whole section.

Einstein used these assumptions to separate the resistance from the side 
walls and the bottom in channel flow. Gustavo Perrusquía (1986) has shown 
that this procedure is applicable to sewers as well. A definition sketch of a 
sewer with sediment is shown in Figure 8.3. 

Figure 8.3 A definition sketch of a sewer with a sediment deposit

The side wall elimination procedure assumes the total flow resistance can be 
written as the sum of the resistance from the different parts of the flow:

(8.2)

By use of the Manning equation:

(8.3)

F P  Pr  Rr Ir Ps  Rs Is  +  = =

V n I R2 3 =
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Description of the Shear Stress in Sewers
The slopes (I, Ir, Is) can be eliminated from Equation (8.2)

(8.4)

It is assumed the velocity varies with the hydraulic radius in the following way:

(8.5)

This gives:

(8.6)

where:

Pr = the wetted perimeter of the pipe wall, 
Ps = the width of the sediment bed and P is the total wetted 

perimeter, 
nr = the Manning number for the pipe, 
ns = the Manning number for the bed, 
n = the total resistance to the flow.

Equation (8.6) was suggested by Einstein 1950. It estimates the weighted 
resistance to the flow for a cross-section where the wall roughness differs 
from the bed roughness. 

P n2 V2

R1 3
----------- Pr nr

2 Vr
2

Rr
1 3

----------- Ps ns
2 Vs

2

Rs
1 3

----------- + = 

V

R1 6
-----------

Vr

Rr
1 6

-----------
Vs

Rs
1 6

-----------= =

n
Pr nr

2 Ps ns
2+

P
--------------------------------------=
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The Modes of Sediment Transport
9 Non-Cohesive Sediment Transport Formulae

Four sediment transport models have been implemented in the MOUSE ST. 
These are: the Ackers-White Model, the Engelund-Fredsøe Model, the Enge-
lund-Hansen Model and the van Rijn model. Further, it is possible to transport 
fine sediment by the use of the advection-dispersion equations. The Ackers-
White and the Engelund-Hansen models calculate the total transport, while 
the Engelund-Fredsøe and the van Rijn models divide the sediment transport 
into bed load and suspended load. Furthermore, the Engelund-Fredsøe and 
the van Rijn models can simulate the development of sand dunes in pipes. 
The total bed resistance is calculated as the sum of a contribution from the 
skin friction acting on the dune and an expansion loss behind the dune. 

The selection of a transport model for a particular application depends on the 
nature of the area under study, and on experience in sediment transport mod-
elling. It is at present doubtful whether the models which calculates both bed 
load and the suspended load estimate the sediment transport better than the 
models which only calculate the total load.

9.1 The Modes of Sediment Transport

The sediment transport is usually split into three transport modes:

 Wash load,

 Bed load,

 Suspended load.

The mode of transport depends on the particle characteristics and the 
hydraulic conditions, i.e. particles which are transported as bed load 
during some flow conditions may be transported as suspended load during 
other flow conditions. A qualitative description of the three transport modes is 
given below.

9.1.1 The Wash Load Transport

The wash load consists of fine sediment transported predominantly in 
suspension. The exchange between the bed material and the wash load is in 
general small. The wash load has often a uniform vertical concentration distri-
bution. Common sediment transport formulae do not include the transport of 
wash load. Instead, the transport of wash load can be described by the use of 
the advection-dispersion equations.

9.1.2 The Bed Load Transport

The bed load consists of those particles which move in almost continuous 
contact with the bed during the transport, e.g., by rolling, jumping or sliding.
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9.1.3 The Suspended Load Transport

The suspended load is transported without continuously contact with the bed. 
A particle is transported as suspended load if the turbulence eddies have 
large vertical velocity components. In steady uniform flow the vertical distribu-
tion of sediment can be described by:

(9.1)

where:

c = the concentration, 
w = the fall velocity,
 = the diffusion coefficient,
y = the height above the bed, 

Equation (9.1) is a balance between the transport through a horizontal unit 
area, where w·c is the downward movement and ·dc/dy is the upward diffu-
sion of particles through the area. 

9.2 The Diffusion Coefficient

The turbulent diffusion of fluid momentum is usually described by the use of a 
parabolic distribution, Equation (9.2). In order to achieve a better description 
of the concentration profile, some scientists (e.g. van Rijn) use a parabolic 
expression in the lower half part of the fluid and a constant diffusion coeffi-
cient in the upper half of the fluid. The parabolic-constant expression is given 
in Equation (9.3). Some others (e.g. Fredsøe and Deigaard) use a linear-con-
stant relationship. The linear-constant relation is given in Equation (9.4).

(9.2)

The van Rijn expression for the diffusion coefficient:

(9.3)

1 c– cw dc
dy
------ 0=+

 y
Y
---- 1 y

Y
----– 

  ufY=

 4y
Y
------ 1 y

Y
----– 

  max= for
y
Y
---- 0.5

max 0.25ufd= for
y
Y
---- 0.5
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The Diffusion Coefficient
The Fredsøe and Deigaard expression for the diffusion coefficient:

(9.4)

 ufy= for 0
y
Y
---- 0.192 

 ufY 13= for 0.192
y
Y
---- 1 
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The Ackers & White Sediment Transport Model
10 The Ackers-White Model

The Ackers-White model consists of the sediment transport model presented 
by Ackers and White (1973) and an extension to the model for the description 
of the resistance developed White et al. (1979). The sediment transport 
model is described first, as the formulation of the resistance uses many of the 
variables defined for the sediment transport model.

10.1 The Ackers & White Sediment Transport Model

Ackers and White (1973) presented a semi-empirical sediment transport 
model. The model is partly based on dimensional analysis and partly on 
physical arguments. The steam power concept has been used to derive the 
form of the function that was tested. 

Ackers and White assume coarse sediments to be transported, mainly as bed 
processes. The Ackers-White sediment transport model is expressed in a 
dimensionless form described in Equation (10.1). Ggr is the general transport 
parameter defined as:

(10.1)

where X is the volumetric concentration of sediment transport as a mass flux 
per unit mass flow rate.

Ackers and White showed that Ggr can be written as a function of the 
variables Ffg and Dgr , i.e. Ggr = f(Ffg, Dgr). The expressions for Ffg and Dgr are 
given below.

(10.2)

in which C, m and A are model parameters depending on the dimensionless 
grain diameter Dgr, defined as:

(10.3)

where: 

d = grain size,
v = the kinematic viscosity, 
s = the relative density of the sediment. 

Ggr
X Y
s d
------------

Uf

U
----- 
 

n

=

Ggr C
Fgr

A
------- 1– 
 

m

=

Dgr d
g s 1– 

v2
--------------------

1 3
=
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The Ackers-White Model
Note, Dgr is the same parameter as van Rijn has defined as the particle num-
ber D*.

Fgr is the general sediment mobility number defined as:

(10.4)

where: 

Uf = the friction velocity,

Y = the water depth, 

n = a model constant depending on Dgr and ranges from 0 to 1
(coarse material to fine material). 

Inserting these values of n into Equation (10.4) gives the sediment mobility 
numbers for coarse (Fcg) and fine (Ffg) material, respectively:

(10.5)

(10.6)

In determining the model parameters, Ackers and White distinguished 
between three cases: fine grains, coarse grains and a transitional grain size. 
The classification is based on Dgr.

Dgr< 1 (Fine grains):
n  = 1
A  = 0.37
C  = 2.95 · 10-4

m  = 11

Fgr

Uf
n

gd s 1– 
---------------------------- U

32
10Y

d
---------- 
 log

----------------------------------

 
 
 
 
  1 n–

=
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U
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-----------------------------------------------------------=
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Flow Resistance - White et al.
1 < Dgr < 60 (Transitional grain size):
n  = 1.0 - 0.56 log Dgr

(10.7)

(10.8)

(10.9)

Dgr  > 60 (Coarse grains):
n = 0
A =  0.17
C  =  0.025
m  =  1.50

The sediment transport rate can be determined directly as a function of Dgr, 
Uf, velocity and the water depth.

10.2 Flow Resistance - White et al.

The flow resistance model developed by White et al. (1979) is an extension to 
the Ackers-White sediment transport. The model is semi-empirical, i.e. the 
governing parameters are found by dimensional analysis and, from the analy-
sis of a large amount of data, a functional relation has been determined.

White et al. suggest that the alluvial roughness is a function of the three 
dimensionless variables: Dgr, Fgr and Ffg.

Dgr, Fgr and Ffg are defined in the previous paragraph: The Ackers & White 
Sediment Transport Model (p. 43).

Based on a large number of experimental data White et al. have found a func-
tional relation of the form:

(10.10)

where A is the critical mobility number for initiation of motion, given as a func-
tion of Dgr. 

The range of applicability for Equation (10.10) is:

F < 0.8 and 1 < Dgr < 60.

A 0.23

Dgr

------------ 0.14+=

C log 2.86 Dgr Dgrlog 2
– 3.53–log=

m 9.66
Dgr

---------- 1.34+=

Fgr A–

Ffg A–
----------------- f Dgr =
45



The Ackers-White Model
Curve fitting suggested two different expressions for the right hand side of 
Equation (10.10), viz.

(10.11)

when Dgr, Fgr and Ffg are based on d35, and

(10.12)

when the parameters are based on d65.

Testing the model on a set of independent data (both experimental and proto-
type data) White et al. found that Equation (10.11) gave slightly better results 
than Equation (10.12).

An iterative procedure is used to determine the alluvial roughness coefficient. 
The general sediment mobility number can be expressed in terms of the fine 
grain mobility as follows:

(10.13)

where t is a function of U, Y etc. but it is known:

(10.14)

Inserting Equation (10.13) into Equation (10.10) yields:

(10.15)

This formula can be used iteratively to calculate Ffg because both t / f(Dgr) 
and n are greater than 0 but smaller than 1. Subsequently, Ffg can be substi-
tuted into Equation (10.4) to obtain Uf. It is now possible, using Equations 
(10.6) and (10.12) under the heading Ackers and White Model, to solve the 
equations for the sediment transport rate.

f Dgr  1 0.76 1 1

exp Dgrlog 1.7 
-----------------------------------------––=

f Dgr  1 0.70 1 1

exp 1.4 Dgrlog 2.65 
---------------------------------------------------––=

Fgr Ffg n t=

T
U

32gd s 1– 
---------------------------------- 10Y

d
---------- 
 log=

1 n–

Ffg
t

f dgr 
-------------- Ffg

n 1 1
f dgr 
--------------– 

 A+=
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11 The Engelund-Hansen Model

11.1 Flow Resistance - The  - ' Relation

When the bed is covered by bed forms, the total bed shear stress, can be 
divided into two parts, ' and ".

' is the shear stress acting on the gently curved upstream surface of the 
dunes, named the skin friction and " is caused by the form drag on the 
dunes. The total dimensionless bed shear stress , can then be written as:

(11.1)

where:

(11.2)

with:

 = the density of water, 
s = the relative density of the bed material, 
d = the mean grain size of the bed material, 
g = the acceleration of gravity.

Engelund and Hansen (1966) found, by applying the principle of similarity, 
that a relationship exists between the dimensionless total bed shear stress , 
and the dimensionless skin friction ', see Figure 11.1 and Figure 11.2. The 
relation for a dune-covered bed can be approximated by:

(11.3)

In the case of a plane bed, the form drag becomes zero and the relation 
reads:

(11.4)

  +=

  
s 1– gd

------------------------      
s 1– gd

------------------------=,= and   
s 1– gd

------------------------=

 c 0.42+=

 =
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The Engelund-Hansen Model
Figure 11.1 Plot of  versus ’ (Experimental Data)

Figure 11.2 Plot of  versu ’ (theoretical expression)
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Flow Resistance - The  - ' Relation
The flow over the 'smooth' upstream side of the dune can be de-scribed by 
the boundary layer equation:

(11.5)

where:

(11.6)

with:

U = the mean flow velocity, 
y' = the boundary layer thickness, y' = Y '/, where Y= mean 

flow depth, 
ks = the equivalent sand roughness of the dune surface, ks ~ 2.5 d.

Under weak non-uniform flow conditions, the steady state flow conditions can 
thus be found as a function of the discharge and the depth by use of the fol-
lowing four equations:

(11.7)

(11.8)

(11.9)

(11.10)

Equations (10.11) and (11.7) to (11.10) can be solved by iteration.

The Manning or Chezy coefficient is calculated from the mean flow velocity, 
the depth and the total dimensionless bed shear stress:

(11.11)

The relation between the Manning's M and the Chezy number is:

(11.12)

U
Uf
------- 2.5

30y
ks

----------- 
  1–ln 

 =

Uf


----=

Uf
U

2.5
30y
ks

----------- 
  1–ln 

 
--------------------------------------------=

 Uf
2 s 1gd– =

 f  =

y Y  =

g

C2
------  s 1– gd  U2=

M C R1 6=
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The Engelund-Hansen Model
11.2 Modifications to the  - ' Relation

The relation given in Equation (11.3) is found from observations of the nature. 
However, in the nature discontinuous rating curves are found. Hence, there 
exist two water levels for a given discharge, meaning that there are two solu-
tions to Equation (11.3). This makes the equation unsuitable for a computer 
programme. Challet and Chunge (1980) proposed a modified 'relation 
without the disadvantages mentioned above. The modified relation is:

This  - ' relation is used in the MOUSE Sediment Transport Model.

Figure 11.3 The ' relation modified by Challet and Cunge (1980)

Table 11.1

 ’ = 

 ’ = ·0.292

 ’ = · 2

 ’ = · 5.24

1.10 <  ’ = 
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The Engelund & Hansen Sediment Transport Model
11.3 The Engelund & Hansen Sediment Transport Model

Engelund and Hansen (1967) presented a sediment transport formula which 
is derived from considerations of the work done by the water flow on the sed-
iment in transport. Although the formula was derived for a dune-covered bed, 
it was found to be applicable to the upper regime (plane bed and anti-dunes) 
as well.

The Engelund & Hansen transport equation reads:

(11.13)

where:

  the total dimensionless bed shear stress, 
f = the friction factor, defined as 2 Uf2/U2 where Uf and U are the

friction and current velocities respectively.
 = the dimensionless sediment transport defined as:

(11.14)

where qt is the total bed material transport per unit width.

 0.1
f

------- 
5
2
---

=


qt

s 1– gd3
------------------------------=
51



The Engelund-Hansen Model
52 MIKE URBAN - © DHI



The Engelund & Fredsøe Sediment Transport Model
12 The Engelund & Fredsøe Model

The sediment transport model presented by Engelund & Fredsøe (1976) 
gives a more detailed description of the sediment transport and its relation to 
the flow resistance. The total sediment transport is split up into a calculation 
of the bed load and the suspended load. The sediment within a layer of two 
times the particle diameter is assumed to travel as bed load, which is the 
same approached as used by Einstein (1950). The sediment transport is cal-
culated from the skin friction, i.e. the shear stress acting on the surface of the 
dunes. 

If the sediment transport model is to be used to calculate the resistance to the 
flow from the dunes, it is necessary to distinguish between suspended load 
and bed load, in order to estimate the variation in the size of the dunes. When 
the resistance is calculated from the dunes, hysteresis effects from dunes 
can be simulated.

It is, at present, doubtful whether the models which split the sediment load 
into bed load and suspended load are more reliable in determining the total 
transport than the transport formulae which consider the sediment transport 
as a whole.

12.1 The Engelund & Fredsøe Sediment Transport Model

12.1.1 The Bed Load

The velocity of the particles moving as bed load has been found to be:

(12.1)

where:

Ubs = the velocity of bed load particles,
Uf’ = the friction velocity of the boundary layer,
 = the dimensionless bed shear stress,
c = the critical dimensionless bed shear stress.

The number of surface particles which move per unit area is p/d, where p is 
the probability for the particles to move:

(12.2)

with:

Ubs 10Uf 1 1 2
c


-----– 

 =

p 1
 6 
 c–
---------------- 
  4

+
 
 
 

 
1
4
---–

=
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The Engelund & Fredsøe Model
' = the dimensionless skin friction,
 = the dynamic friction coefficient approx. equal to 0.65. 

The probability p has been determined so that for moderate  values all of the 
bed shear stress , exceeding the critical value c, is transferred to the bed 
through drag forces on the moving bed load particles. For high  
values the limiting value for p is 1. By combining Equations (12.1) and (12.2) 
Engelund & Fredsøe found the following bed load function:

(12.3)

12.1.2 The Suspended Load

The suspended load qs, is found as the integral of the current velocity, u(y), 
and the concentration of suspended sediment, c(y):

(12.4)

In the Equation (12.4), a is the thickness of the bed layer which can be 
approximated by 2·d50, where d50 is the mean grain diameter. The current 
velocity u, at a distance y above bed level is described by the logarithmic 
velocity profile:

(12.5)

where U'f is the boundary layer thickness and the equivalent sand roughness 
ks is equal to 2.5 d50.

The concentration is calculated in accordance with the concentration profile 
derived by Rouse (1937):

(12.6)

where:

Z = the Rouse number: Z = w/(0.4·Uf),
cb = the concentration at the bed, 
w = the settling velocity of the suspended material (Equations (7.8)

- (7.10)).

b 1
 6 
 c–
---------------- 
  4

+
 
 
 

1
4
---

 1 2 c– =

qs c u yd

a

h

=

u 2.5Uf
30y
ks

--------- 
 ln=

c cb
Y y–

y
------------- a

Y a–
------------- 

 
z

=
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The Engelund & Fredsøe Flow Resistance
Only grains with a settling velocity smaller than 0.8 Uf can be carried in sus-
pension and only these grains are considered in the calculation of the effec-
tive fall velocity. The grain-size distribution is assumed to have a 
logarithmic - normal distribution. The grain sizes not carried in suspension 
are subtracted from this distribution and the mean grain size of the remaining 
sediment is used in Equations (7.8) - (7.10).

The bed concentration, cb, at a distance y = 2·d from the bed, according to 
Engelund & Fredsøe, is determined through dynamic considerations: For 
increasing values of , the bed shear stress exceeding c cannot be trans-
ferred by the drag on the bed load particles alone. A part of the bed shear 
stress is transferred as a dispersive stress, i.e. through collisions between 
suspended particles close to the bed. The dispersive stress is described by 
the expressions developed by Bagnold (1954).

Thus, the total non-dimensional bed shear stress ' (corrected from the effect 
of dunes), is made up of three terms: the critical shear stress, the drag on bed 
load particles and the dispersive stress from the suspended load, defined as:

(12.7)

where p is the probability of particles to move.

The linear concentration b is related to cb by:

(12.8)

With known bed concentration cb and settling velocity w the integral Equation 
(12.4) can be evaluated with, for instance, the use of the diagrams presented 
by Einstein (1950). The integral cannot be expressed in closed form and, dur-
ing numerical simulations, it must be integrated numerically or an approxima-
tion must be applied.

12.2 The Engelund & Fredsøe Flow Resistance

If the dune dimensions (height and length) are known, the hydraulic resis-
tance (bed shear stress) can be calculated from the water depth and the dis-
charge. Furthermore, the portion of the dimensionless bed shear stress ' 
which is acting as skin friction on the gently curved upstream side of the 
dunes can be determined.

The total bed shear stress , is as previously split up into the skin friction, ', 
and the form friction ":

(12.9)

 c

6
---p 0.027sb

2+ +=

cb
0.65

1 1 b+ 3
-----------------------------=

  +=
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The Engelund & Fredsøe Model
t" is mainly caused by the expansion loss behind each dune and is described 
as Carnot losses, (Engelund & Hansen 1967) :

(12.10)

where:  

H = the dune height, 
L = the dune length, 
 = the velocity distribution coefficient which is close to one, 
U = the current velocity,
q = the discharge per unit width. 

The total dimensionless shear stress , can thus be written as:

(12.11)

The Equation (12.11) is now used instead of Equation (11.9). The Equations 
(10.11), (11.7), (11.8), (12.11) and (11.10) and can be solved now within a few 
iterations.

12.2.1 The Equilibrium Dune Height

With the model presented by Fredsøe (1979) the equilibrium dune height can 
easily be found as a function of top (the dimensionless shear stress taken at 
the dune top).

Figure 12.1 Sketch of a dune

The friction factor is assumed to be constant near the dune top. This means 
that the local dimensionless shear stress  is proportional to the velocity 
squared:

(12.12)



----- q2Y

2L
-------------- 1

Y
---- 1

Y H+
--------------– 

  2 U2H2

2YL
-----------------


s 1– gd

------------------------   U2H2

2 s 1– gdYL
-----------------------------------+= =

 top
q2

Y z– 2
-------------------- Y H– 2

q2
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1 H Y– 2

1 z H– 2
----------------------------==
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The Engelund & Fredsøe Flow Resistance
where: 

Y = the water depth (m), 
H = the dune height (m),
q = the discharge per unit width (m2/s).

In the case of small transport rates, i.e. bed load only, the local sediment 
transport can be expressed as a function of :

(12.13)

The spatial variation of b near the top of the dune is expressed by:

(12.14)

where z is the local height of the dune (m).

The migration velocity of the dune c is calculated under the assumption that 
all of the bed load transport is deposited on the lee side of the dune:

(12.15)

where qb = b  and  is the porosity of the bed material.

The change in the bed level near the dune top (on the upstream side) can be 
expressed as:

(12.16)

by use of the continuity equation for sediment:

(12.17)

Equation (12.14) and Equation (12.16) can be related to each other as it fol-
lows:

(12.18)
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The Engelund & Fredsøe Model
or:

(12.19)

Equation (12.19) expresses the equilibrium height of the dunes in the case of 
pure bed load. At the dune top zx = 0 in which case Equation (12.19) does 
not apply. However, the equation must still hold a short distance upstream of 
the top where the local dune height is nearly equal to H.

The Dune Height From the Meyer-Peter Bed Load Formula

Fredsøe (1982) used the Meyer-Peter bed load transport rate to give an esti-
mation of the dune height. The Meyer-Peter bed load equation yields:

(12.20)

Using the Meyer-Peter formulation and Equation (12.19) an expression for 
the equilibrium dune height can be given as:

(12.21)

Influence of Suspended Load

If the sediment transport consists of both bed load and suspended load the 
equations are modified as follows: 

 The total sediment transport (t = b + s ) is still assumed to be a func-
tion of the local bed shear stress: t = t (')

 b is replaced by t in Equation (12.19).

 qb is retained in Equations (12.14) and (12.16) as it is assumed that only 
the bed load is deposited at the lee side of the dune.

The general equation describing the equilibrium dune height thus reads:

(12.22)

The variation of H/Y as a function of  is shown in Figure 12.2 for sand with a 
mean diameter of 0.3 mm using the Engelund & Fredsøe transport model.
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The Engelund & Fredsøe Flow Resistance
Figure 12.2 H/Y as a function of ’. d50 = 0.3 mm

12.2.2 The Equilibrium Dune Length

Fredsøe (1982) has obtained an expression for the equilibrium dune length 
through a consideration of the dune shape. The end of the dune is defined as 
the point where z/x is equal to zero, where z is the local dune height. Nega-
tive values of z/x will result in diverging flow and, consequently, in very 
small transport rates. The transported sediment avalanches down the lee 
slope due to gravity so that the lee slope is very steep.

The dune shape is calculated by use of the continuity equation for sediment 
in the following way:

a)   It has been shown (Engelund & Hansen, 1967) that for bed forms which 
are travelling downstream with a constant form and celerity c, the height is 
proportional to the total bed material sediment transport qt:

(12.23)

where: 

H = dune height,
e = porosity.

If only bed load qb, is considered, the transport is zero in the troughs and the 
constant is, therefore, also zero. Thus:

(12.24)

b)   Fredsøe (1982) found that the length and the form of a dune can be cal-
culated when the dune height, the water depth and the maximum bed shear 
stress are known.

qt 1 – cH const+=

qb 1 – cH=
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The Engelund & Fredsøe Model
Fredsøe measured the bed shear stress behind a rearward facing step. He 
suggested a variation in the local dimensionless bed shear stress * past a 
dune as:

(12.25)

The function f(x/H) is shown in Figure 12.3.

Figure 12.3 Measurements of bed shear stress downstream rearward facing step at 
different water depths

An expression to f(x/H) has been given by Fredsøe:

(12.26)

An alternative expression of f(x/H) has been approximated by Rolf Deigaard:

(12.27)

The function f was assumed to be general, regardless of the shape and size 
of the dune. The bed load transport along the dune was calculated by use of 
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The Engelund & Fredsøe Flow Resistance
the Meyer-Peter bed load formula. The effect of gravity on the bed load qb, 
was taken into account by adding to  the correction:

(12.28)

where b is the dimensionless bed load transport, and

(12.29)

For c = 0.05 , µ is approx. = 0.1 .

By combining Equations (12.19) and (12.25) a first order differential equation 
describing z/x is found:

(12.30)

The boundary conditions for the problem are: 

1. Upstream, where no sediment transport takes place, h is equal to zero at 
= *

2. top is equal to * at the dune top where the dune becomes horizontal.

The value of max is not known at the beginning of the integration. A first 
guess can be max = top. An iteration must be carried out in order to achieve 
the condition: * = top at the dune top. Which at the same time gives: 

(12.31)

If the dune height (h/H) after the integration is less than 1 when dh/dx 
becomes negative, then the qmax must be increased. If the dune height is 
greater than 1, then the value of qmax must be decreased. The iteration is 
finished when h/H = 1 for dh/dx = 0.

The function f, has a maximum at x = 17 H so this is the length of the dune if 
the effect of gravity and suspended load is neglected. For small top 
values, however, the effect of gravity is important and causes the dune length 
to be larger than 17 H.
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The Engelund & Fredsøe Model
As indicated above, the calculations are rather laborious and, therefore, the 
following approximation is suggested for the ratio between the dune height 
and length for bed load transport only:

(12.32)

Influence of Suspended Load

The sediment transport has its maximum at the dune crest, see Equation 
(12.26). The bed load is a function of the local bed shear stress so that the 
dune crest is the position with maximum bed shear stress for the case of bed 
load only.

The suspended load is not a function of the local bed shear stress. A spatial 
lag , exists between the hydraulic parameters and the suspended load 
because it takes some time for the suspended particles to settle or to be 
picked up from the bed. The spatial lag is given by:

(12.33)

where Ub is the 'slip velocity' and it is defined as: 

(12.34)

where: 

 = the average eddy viscosity:  = 0.077·Uf·Y , 
U = current velocity,
Uf = friction velocity, 
Y = the water depth, 
ks = the equivalent sand roughness.

Consequently, the point of maximum transport is moved downstream from 
the point of maximum bed shear stress. The lag distance is determined from 
the ratio between the bed load and the suspended load trans-port so that the 
dune length is given by:

(12.35)

where L0 is the dune length for the case of bed load transport only, deter-
mined by Equation (12.34).
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The Engelund & Fredsøe Flow Resistance
The dune length as a function of ' is depicted in Figure 12.4 for 0.3 mm 
sand.

Figure 12.4 The ratio of the dune height and the dune lenght as a function of ’. 
d50=0.3mm

12.2.3 Non-Equilibrium Dunes

If the actual dune dimensions deviate from the equilibrium dimensions there 
is a natural tendency for them to return to the equilibrium condition. This pro-
cess takes a finite time so a time lag is introduced between the flow condi-
tions and the hydraulic resistance resulting in a hysteretic effect, i.e. the 
stage-discharge relationship for a water coarse as the discharge increases 
differs from that as discharge falls.

Non-Equilibrium Dune Height

The rate of change of the dune height has been analysed by Fredsøe (1979). 
It can be described by the equations used to calculate the equilibrium dune 
height.

The rate of change of the bed level z, near the dune top is expressed as:

(12.36)

where the celerity of the dune front is

(12.37)

z
t
------ c– z

x
------ dz

dt
------+=

c
qbt

1 – H
---------------------=
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The Engelund & Fredsøe Model
where qbt is the transport rate at the dune top,  is the sediment porosity and 
z/t is found from the equation of continuity:

(12.38)

Equations (12.36), (12.37) and (12.38) yield:

(12.39)

In order to obtain a value of the change of the dune height representative for 
most of the dunes, the 'integrated' value for h/x: H/L is used in Equation 
(12.41) leading to:

(12.40)

Non-Equilibrium Dune Length

At present no satisfactory theory for the change of dune length exists. The 
dune length is of less importance for the hydraulic resistance than the dune 
height, so an approximate description will be sufficient.

A possible definition of the dune length is the total length of a reach divided 
by the number of dunes within that reach. By this definition, the dune length 
can (under uniform conditions) only be changed if dunes disappear or new 
ones are created. Consequently, it seems reasonable to include the average 
lifetime of a dune in the expression for dL/dt. A plausible assumption is that 
the average lifetime, T1, of the dunes can also be used as the time scale for 
the change in dune length:

(12.41)

where Le is the equilibrium dune length. 

A stability analysis shows, if the position of the dune front of a single dune in 
a row of regular dunes in equilibrium is perturbed, the celerity of the dune c 
will be reduced regardless of whether the dune front has been advanced or 
retarded. This implies the dunes are unstable. If the dune front is retarded, 
the dune will be overtaken by the following dune.

The time required for this process has been estimated from the calculated 
celerity of the dune when the length has been reduced to Le/2. This celerity is 
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The Engelund & Fredsøe Flow Resistance
about 85-90% of the celerity of the equilibrium dunes. It has, therefore, been 
estimated that the dune will move a distance of the order of magnitude 10 Le 
before it is overtaken. T1 is thus approximately 10 Le/c, yielding:

(12.42)

where  is the sediment porosity.
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-------
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The Initiation of Motion
13 The van Rijn Sediment Transport Model

In the van Rijn sediment transport model (van Rijn, 1984a and 1984b) the 
sediment transport is divided into bed load and suspended load. The bed 
load is calculated from the saltation height, the particle velocity and the bed 
load concentration. The bed load computations follow the approach of Bag-
nold (1973), which assumes that the motion of the bed load particles is domi-
nated by the gravity forces. When the bed shear velocity exceeds the fall 
velocity sediment is transported in suspension. The suspended load is calcu-
lated as the depth integration of the local concentration and flow velocity. The 
method uses the reference concentration computed from the bed load trans-
port. The model has been verified for particles in the range 200 - 2000µm. 
The verification based on 600 data sets, showed that 77% of the predicted 
bed load rates were within 0.5 and 2 times the observed values, van Rijn 
(1984a). The verification for the suspended load, using 800 data sets showed 
that 76% of the predicted values were within 0.5 and 2 times the observed 
values, van Rijn (1984b).

13.1 The Initiation of Motion

The individual grains lying on the bed are assumed to move when the effec-
tive bed shear velocity exceeds the critical bed shear velocity, according to 
Shields (1936) relationship. Hence,

(13.1)

where the critical bed shear velocity is given by:

(13.2)

and the effective bed shear velocity u'f is defined below. u'f is defined in order 
to eliminate the resistance from bed forms since the resistance from the form 
drag does not contribute to bed load transport.

(13.3)

where C' is the Chézy coefficient related to grain roughness given by:

(13.4)

and Rb is the hydraulic radius related to the bed.

uf ufcr

ufcr c s 1– gd=

uf
u g
C

-----------=

C 5.75 g  
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------------- 
 log=
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The van Rijn Sediment Transport Model
van Rijn assumed the grain roughness height ks of a plane movable bed to be 
3·D90, which changes Equation (13.4) to

(13.5)

The critical bed shear stress c is obtained from an analytical function of D* 
given by:

(13.6)

For further information on the analytical expression for the critical bed shear 
stress see the section 7.4 The Critical Bed Shear Stress (p. 30). Note: D* is 
similar to Dgr defined by Ackers and White in Equation (10.3).  

13.2 Bed Load Transport

The bed load is considered to be transported by rolling, sliding and saltation. 
In the model the bed load transport qb is computed from the product of parti-
cle velocity ubs, the saltation height b and the bed load concentration cb. 
Expressions for the particle velocity and saltation height were obtained by 
numerical solution of the equations of motion for a solitary particle. The bed 
load is calculated as follows:

(13.7)

where cb and b are given as functions of the dimensionless particle diameter 
D* and the dimensionless transport stage parameter T defined by:  

(13.8)

By the use of measured bed load transport rates an expression for the bed 
load concentration cb was obtained: 

(13.9)
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Bed Load Transport
Extensive analysis of the flume measurements for bed load transport, van 
Rijn (1981), has shown that the bed load concentration can be represented 
by:

(13.10)

in which c0 = 0.65, is the maximum bed concentration.

The saltation height b was established by plotting the saltation height as a 
function of the parameters D* and T. For the flume experiments it was found 
that the saltation height could be approximated within 10% by the expression:

(13.11)

The particle velocity was found by use of the general relation derived by Bag-
nold (1973): 

(13.12)

By using the equations of motion for a single particle and the measurements 
on gravel carried out by Fernandez Luque (1974, 1976) and Francis (1973) 
the particle velocity was approximated within an inaccuracy of 10% by the 
expression:

(13.13)

Equation (13.13) was approximated with 20% accuracy by the simpler 
approximation:

(13.14)

Combining the above Equations gives the following expression for bed load 
transport:

(13.15)
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The van Rijn Sediment Transport Model
or in a dimensionless form:

(13.16)

13.3 Suspended Load Transport

According to Bagnold (1966), the mode of the sediment transport is assumed 
to be suspended load when the bed shear velocity exceeds the fall velocity. 
The calculation of the suspended load is based on the computation of a refer-
ence concentration determined from the bed load transport. The reference 
concentration ca, is a function of the dimensionless particle diameter D*, and 
the transport stage parameter, T:

(13.17)

where uf' is the bed shear velocity related to the grains and u'f,cr is the critical 
bed shear velocity.

The mode of transport of a particle is defined as suspended when the particle 
is moved a distance of 100 times the particle diameter. The criterion for the 
initiation of suspension was determined from experimental results (Delft 
1982) to be:

(13.18)

and

(13.19)

van Rijn defines the level of reference the concentration, a, as the level below 
which all sediment is considered to be transported as bed load. When the 
height of the bed forms is known the reference level is approximated by:

(13.20)

where H is the bed form height. 
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Suspended Load Transport
If the bed form height is not known then van Rijn suggests that the level of the 
reference concentration can be taken as the roughness height, ks:

(13.21)

with a minimum value of:

(13.22)

where Y is the water depth (m).

The reference concentration is defined from:

(13.23)

where:

cb = the bed concentration, 
ubs = the velocity of bed load particles, 
b = the saltation height. 

The expressions for these parameters are given under 13.2 Bed Load Trans-
port (p. 68). This assumes that the effective particle velocity, ua at reference 
level a can be given as:

(13.24)

By use of the proposed relation for the bed load concentration ca can be 
expressed as:

(13.25)

From an examination of flume and field data a value for  of 2.3 was deter-
mined, giving:

(13.26)
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The van Rijn Sediment Transport Model
The representative particle size of suspended load is generally finer than the 
size of the bed load particles. van Rijn relates this particle size ds to the d50 
and the geometric standard deviation s of the bed material:

(13.27)

in which s is given by:

(13.28)

The ds value is then used to calculate fall velocity according to the Equations 
(7.8), (7.9) and (10.3). The description of the suspended load is based on the 
solution of the integral:

(13.29)

van Rijn solves the integral as:

(13.30)

In the expression above, Z expresses the influence of the upward turbulent 
fluid forces and the downward gravitational forces. Z is defined as:

(13.31)

where:

uf' = the overall bed shear velocity, 
  = von Karman's constant,
 = a coefficient related to the diffusion of sediment particles. 
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Flow Resistance - van Rijn
An expression for was derived as:

(13.32)

Z' is the modified suspension number given as:

(13.33)

where the overall correction factor represents all additional effects (volume 
occupied by particles, reduction of fall velocity and damping of turbulence).  
was found to be a function of the main hydraulic parameters:

(13.34)

where c0 = 0.65, is the maximum bed concentration.

An approximation to Equation (13.32) was given by van Rijn within an accu-
racy of 25%:

(13.35)

F is given by:

(13.36)

13.4 Flow Resistance - van Rijn

13.4.1 Bed Forms and Alluvial Roughness

van Rijn (1984) assumes that the bed form dimension are mainly controlled 
by the bed load transport.  The bed load is described as:

(13.37)
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The van Rijn Sediment Transport Model
qb = the bed load, 
cb = the bed load concentration, 
b = the thickness of the bed layer,
ub = the velocity of the bed load particles. 

By use of kinematic considerations the continuity equation for bed load can 
also be formulated as:

(13.38)

where: 

 = the porosity, 
 = shape factor for the dunes, 
H = the height of the bed forms,
ud = the migration velocity of the dunes. 

By the use of the functional relationships derived for the bed load transport, 
van Rijn found that the height and the length of the bed forms can be 
expressed as:

(13.39)

(13.40)

where:

H = the height of the bed forms, 
L = the length of the bed forms. 

van Rijn used a large quantity of field data to decide the functional relation-
ships for the dune height and the dune length. He found no significant influ-
ence from D* on the bed form dimensions, and found the following best fitting 
equations: 

The dune height:

(13.41)

The dune length:

(13.42)
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Flow Resistance - van Rijn
or by inserting equation (13.42) into equation (13.41): 

(13.43)

The height of the bed forms has a maximum at T = 5 and it is assumed that 
the surface of the bed is almost flat for T < 0 or T > 25. 

13.4.2 Alluvial Resistance From Bed Forms

van Rijn calculates the total alluvial friction as the sum of the skin friction and 
the form friction:

(13.44)

For a flat movable bed, van Rijn relates the effective grain roughness to the 
skin friction with the expression:

(13.45)

In order to describe the form roughness, van Rijn uses the functional relation-
ship introduced by Yalin (1972):

(13.46)

From flume and field data van Rijn found the form friction to be:

(13.47)

The total alluvial friction can then be written as:

(13.48)

Finally the Chézy coefficient can be computed as:

(13.49)
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Sediment Transport in Manholes
14 Sediment Transport at Structures

14.1 Sediment Transport in Manholes

The sediment transport in manholes is routed straight through the manhole 
without any deposition. This is done as the level of turbulence is high in man-
holes and hence it is assumed that the sediment is transported in 
suspension. Further, insufficient field data is available to predict deposition, if 
any, in manholes. The sediment transport from a manhole is distributed 
according to the ratio of the outflowing discharges. A userdefined disribu-tion 
can also be specified by giving the coefficients and exponents (K and n val-
ues) in the following relationship:

(14.1)

Figure 14.1 Distribution of sediment according to discharge

14.2 Sediment Transport in Basins

Sediment can be removed from basins according to the formula:

(14.2)
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Sediment Transport at Structures
where:

E = the sediment trap efficiency,
w = the fall velocity,
q = the discharge into the tank,
a = the surface area of the basin,

n = turbulence constant indication the settling performance of 
the basin:

n = 1, for poor performance,
n = 3, for good performance,
n > 5, very good performance,
n = , ideal performance.

The sediments removed by the Equation (14.2) are taken out of the computa-
tions. Hence, no morphological modelling takes place of the deposited sedi-
ment and it is not possible to re-suspend this sediment.  

14.3 Sediment Transport in Overflow Structures

The sediment transport over a weir can be modelled in three different ways:

a) Sweir = (1 - reductionfactor) · STotal into weir

b) Sweir = (1 - Eff(Q) ) · STotal into weir

c) Sweir = (1 - Eff(w/v0) ) · STotal into weir

ad a)the reduction factor is constant throughout the whole simula-
tion,

ad b) the reduction factor is a function of the discharge flowing into 
the weir,

ad c) the reduction factor is given as the expression below:

(14.3)

Where K, µ and  are dimensionless variables given as:

(14.4)

Where k1, k2, µ1, µ2, 1 and 2 are user defined constants.
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Sediment Transport in Pumps
Equation (14.3) has been approximated for the central weir and the swirl sep-
arator as, Ref. Morten Steen Sørensen, 1991.

The Central Weir:

(14.5)

The Swirl Separator:

(14.6)

14.4 Sediment Transport in Pumps

The sediment transport in pumps is modelled as an instantaneous transport 
from the pump node to the destination (tail) node of the pump. This simplifica-
tion is done as insufficient data is available in MOUSE to model the transport 
in the rising mains. It is important to keep this constraint in mind when simu-
lating sediment transport in pumped systems.

K -140.697 Qout Qin 133.86+=

 -2.308= Qin Qin Qout–  3.17+

 1.617= Qin Qin Qout–  0.27–

K -79.782 Qout Qin 133.54+=

 5.015–= Qin Qin Qout–  3.92+

 2.659= Qin Qin Qout–  0.22–
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Sediment Transport in Pumps
15 Modelling of Adhesive Sediments

In sewers, adhesive forces may exist between the particles in the sediment 
deposits. The critical bed shear stress has been found to be much larger for 
particles with adhesive properties than the Shields criterion. It has been 
shown that when the critical bed shear stress has been exceeded for the sed-
iment with the adhesive properties they are transported as non-cohesive sed-
iment particles.

The adhesive forces are dependent on various different parameters such as: 
the time since the deposition, the chemical and biological process in the 
sewer and the sediment characteristics. Insufficient data exist to give a 
description of the development of the adhesive forces between the sediment 
particles. Hence, the development of adhesion between the sediment parti-
cles is not modelled in MOUSE ST, but it is possible to give variation of the 
critical bed shear stress in the initial sediment deposits in the sewer system. 
As long as only erosion occurs, the critical bed shear stress is calculated 
according to the function given for the critical bed shear stress given for the 
adhesive sediments. If deposition occurs, the critical bed shear stress is set 
equal to the Shields critical bed shear stress, and Shields critical bed shear 
stress will be used as long as the depth of the sediment deposit is larger than 
the maximum depth to which the initial sediment deposit has been eroded. 
The formulation of the critical bed shear stress is given below. 

If the actual sediment depth is larger than the maximum eroded sediment 
depth, then

(15.1)

where:

bot = the critical bed shear stress at the bottom of the pipe,
top = the critical bed shear stress at top of the initial sediment

deposit,
ysediment = the actual depth of the sediment deposit,
yinitial depth = the initial depth of the sediment deposit.

c c Shields=
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Sediment Transport in Pumps
16 Sediment Transport in Pipes With a Thin Layer of 
Sediment

If the sediment depth in a pipe is less that the equilibrium dune height for the 
corresponding flow conditions the morphological sediment transport is modi-
fied in the following way:

(16.1)

(16.2)

(16.3)

The Equations (16.1) - (16.3) describe the reduction in the sediment transport 
due to the fact that the sediment depth in the pipe is less than the bed load 
transport layer (the equilibrium dune height). The reduction factor is shown as 
a function of the sediment depth over the equilibrium dune height in 
Figure 16.1.
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-----------------------=

If  Fixbed 0.5   then

Sedreduction  factor 2 Fix2
bed=

else

Sedreduction  factor 1 1 Fixbed– 2–=

S Sreduction factor Sfull  transport capacity=
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Sediment Transport in Pipes With a Thin Layer of Sediment
Figure 16.1 The reduction in sediment transport as a function of the sediment depth 
over the dune height
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Numerical Solution
17 The Morphological Model

17.1 Numerical Solution

The morphological model is the numerical solution of the continuity equation 
for sediment transport. The continuity equation for sediment yields:

(17.1)

The sediment continuity equation is solved by use of a Preissmann Scheme, 
see Figure 17.1.

(17.2)

Where:

W = the flow width (m),
zn+1 = the change in bed level (m),
sn

j = the sediment transport rate per unit width (m2/s),
Sn

j = W·sn
j,

 = the porosity of the sediment,
 = the space centring coefficient (0.5    1),

  the time centring coefficient (0.5    1).

W
S
x
------- 1 –  Z

t
------ 0=+

1 –  1 – 
Wzj

n 1+

t
---------------------- +

Wzj 1+
n 1+

t
----------------------


Sj 1+

n 1+ Sj
n 1+–

x
-------------------------------- 1 – 

Sj 1+
n Sj

n–

x
------------------------ 0=+ +
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Figure 17.1 The Preissmann scheme

The transport at  t = (n+1)t is approximated by:

(17.3)

or, introducing the term :

(17.4)

U/z and Y/z are by default calculated assuming locally steady flow (back-
water curve). In this case, Y/z and (U/z)·(Y/U) will normally be close to -1 
and 1, respectively. It is also possible to select:

(17.5)

what is probably a better approximation in strongly unsteady flow.

s/U and s/Y are obtained by numerical differentiation, e.g.

(17.6)

or

(17.7)

Sj
n j+ sj

n s
U
-------U

z
------- s

Y
-------Y

z
-------+ 

 
j
zj

n 1++=

sj
n 1+ sj

n zj
n 1++=

Y
z
------- 1–= and

U
z
-------Y

U
---- +1=

s
U
------- s U U Y+  s U Y –

U
-----------------------------------------------------------

s
U
------- s U fac Y  s U Y –

U fac U–
----------------------------------------------------------
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where

(17.8)

17.2 The Boundary Conditions To the Morphological Model

The unknown variable in the finite difference scheme is the bed level, z. This 
becomes evident by substituting Equation (17.2) into Equation (17.1). The 
boundary conditions should therefore be given in terms of bed level varia-
tions. However, a sediment transport boundary condition may be given. In 
this case the difference between the transport specified at the boundary and 
the calculated transport at the in-flow point is assumed to erode/deposit at the 
inflow point, (one point continuity), i.e.

(17.9)

Equation (17.2) is solved for .

The boundary conditions must be given at all inflow boundaries. Hence, 
boundary conditions should also be given on a boundary where the water 
level is varying as a function of time if alternating in- and outflow occur.

The Preissmann scheme is well suited for the solution of hyperbolic problems 
with only one characteristic. However, it has a drawback. At small Courant 
numbers it may generate short wave oscillations (wave length 2x). The 
oscillations can be damped by space forward centring the scheme (i.e. by 
using a large value of ). This, however, gives rise to numerical dispersion at 
high Courant numbers. An option for automatic selection of the optimum 
value of can be incorporated, i.e. the value which just prevents the short 
wave oscillations to occur. The factor "fac", used in the numerical differentia-
tion of the sediment transport formula, should not be made too small because 
this will give rise to "overshoot" phenomena in the numerical solution. A value 
of about 1.5 will be on the safe side in most cases unless very strong gradi-
ents occur. The sediment transport Courant number is of the order of magni-
tude:

(17.10)

This implies that the morphological model can run with a much larger time 
step than the hydrodynamic model. Often the time step will be limited only by 
the ability to resolve the boundary conditions, together with the disturbance 
from the updating of the bed level. This disturbance should be sufficiently 
small in order not to introduce instabilities in the hydrodynamics. A time step 

fac U U+
U

-------------------=

SBND W Sj
n zj

n 1++ – x
t
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n 1+=

zj
n 1+

5
t
x
------- s

Y
---- 1

1 –
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87



The Morphological Model
in the order of 6-10 times the time step in the hydrodynamic calcula-tion is 
suggested.
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18 Graded Sediments

Real sewer sediments are often non-uniform and the sediment transport is 
much more complex than the case of uniform sediments. E.g. smaller parti-
cles are sheltered by bigger particles and therefore transported at another 
rate. Larger particles are exposed to larger fluid dynamic forces compared to 
uniform sediment and hence they are transported at a larger rate. At low val-
ues of the bed shear stress the coarse fraction might not move at all and 
hence an armouring of the bed might take place. When the bed shear is 
much lager than the critical bed shear stress the use of a single representa-
tive grain size is acceptable.

Non-uniform sediments in which the sediment transport can be calculated by 
fraction and the variation in time and space of the particle size distribution 
determined. As an approximate guide the graded sediment module should be 
used where the bed shear stress is close to the critical value for erosion. 

For the simulation of graded sediments and sediment sorting the bed material 
is considered to comprise two layers: an active layer overlying a passive 
layer. This is illustrated in Figure 18.1. The active layer is the layer within 
which most transport occurs. Its depth is intuitively defined as 1/6 of the water 
depth on a plane bed the dune height. If erosion of the bed material occurs, 
the composition of the material in the passive layer stays the same. However, 
if deposition occurs active bed material is (instantaneously) mixed with the 
material in the passive layer and the composition is modified accordingly.

The additional input data required to simulate the transport of graded sedi-
ment are the initial percentage size distributions of both the active and pas-
sive layer (they may have the same distribution initially). The data are 
specified as a number of fractions N, and the corresponding percentage and 
mean grain size of fraction. This percentage varies as sediment is trans-
ported selectively and mixed between layers.

Figure 18.1 The active and the passive layers for the simulation of graded sedi-
ments
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The transport and mixing of graded sediments is simulated in the following 
manner. The sediment transport is calculated for each specified class size 
separately. The calculation is modified in two ways from the calculation of a 
uniform material. Firstly, the criterion for the threshold of movement (c or A in 
the Ackers and White Model) is modified to allow for the hiding of finer parti-
cles and the greater exposure of larger particles as well as the mutual inter-
ference between particles of different size. c is modified by applying 
Egiazaroff's (1965) correction factor, as follows:

(18.1)

where:

ci = the dimensionless critical bed shear stress for class i,
c = the dimensionless critical bed shear stress for uniform 

sediment,
di = the representative grain size in class i,
dmed = the representative class size of the total sediment population.

For the Ackers and White Model, the modified value of A is expressed as fol-
lows (Ackers and White, 1980):

(18.2)

where:

Ai = the critical flow mobility number for class i,
A = the critical flow mobility number for uniform sediment.

The second modification is to multiply each class sediment transport, qti by its 
percentage contribution pi. After the transport rate in each class has been cal-
culated, the total transport qt is determined by summation over all classes N:

(18.3)

The sediment continuity equation is then solved in the same way as for uni-
form sediment, using the total transport to obtain the change in bed level z. 
Once z is known, the sediment continuity equation is then solved for each 
class size, using the class transport rate qti and the total bed level change z 

ci c
19 ln

19di

dmed

------------ 
 ln

-----------------------

2

=

Ai A di dmed  0.2–
=

qt qti pi
i 1=

N

=
90 MIKE URBAN - © DHI



The Boundary Conditions To the Morphological Model
to obtain the new percentage contribution of the active layer pi. The sediment 
continuity equation for each fraction may be expressed as:

(18.4)

where:

 = sediment porosity.
W = channel width.

= the average proportion of class i in both passive and active
layer (i.e. over depth Z).

Expanding the first term of Equation (18.4) gives:

(18.5)

in which the time derivative is expressed by:

(18.6)

For the time derivative in Equation (18.4) the following expressions apply. For 
the case of erosion:

(18.7)

and for deposition:

(18.8)

In the above expressions, Z and Za are as defined in Figure 18.1, and Za is 
the depth of the active layer. pacti and pbedi are the percentage contributions of 
class i in the active and passive layers respectively, and n+1 refers to the time 
level at n+t.

Similarly, a weighted time average is used to expand the space derivative in 
the transport term in Equation (18.4).

(18.9)
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Graded Sediments
where  is approximated by:

(18.10)

(18.11)

and is calculated for each fraction.

The above expressions, are then solved for the unknowns pacti and pbedi time 
level n+1. 

qti
n 1+
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n 1+ qt
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19 Nomenclature

athickness of the bed layer,

Acritical flow mobility number in Ackers and White model,

Ahydraulic area,

Aicritical flow mobility number in Ackers and Whitemodel for class i,

cconcentration of suspended sediment,

cmigration velocity of dune,

cbconcentration of suspended sediment at the bed,

Cmodel parameter in Ackers and White Model,

dgrain size,

direpresentative grain size in class i,

dmedrepresentative grain size of total population,

dngrain diameter for which n% of the sample is finer,

Dgrdimensionless grain diameter,

Dpipe diameter,

D*particle number,

FFroude number,

FDdrag force (N),

Fgrgeneral mobility parameter,

gacceleration due to gravity (9.81 m/s2),

Ggrgeneral transport parameter,

hlocal dune height,

Hmaximum dune height,

Ithe slope of the energy line,

IB the bed slope,

kthe wave number,
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Nomenclature
ksequivalent sand roughness,

Ldune length,

Leequilibrium dune length,

mmodel parameter in Ackers and White model,

Mthe Manning number (1/n),

nManning roughness coefficient (1/M),

nmodel parameter in Ackers and White model,

Nnumber of classes in a graded sediment,

pprobability for particles to move,

pipercentage contribution in class i,

Pwetted perimeter,

qflow discharge per unit width,

qbbed load transport rate,

qssuspended load transport rate,

qttotal load transport rate,

qtitotal load transport rate in class i,

Qflow discharge,

Rhydraulic radius,

Re Reynolds Number,

srelative density of sediment,

sn
jsediment transport rate per unit of width at grid point j and time 

interval n,

sn
j si,jsediment transport rate per unit of width at grid point j and time 

interval n in class i,

sj
nsediment transport rate at grid point j and time interval j (= Wsjn),

tsediment bed thickness,

Tparameter dependent on u, Y, d (see equation (10.14) under flow 
Resistance - White et al.),
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The Boundary Conditions To the Morphological Model
umean flow velocity,

ubvelocity of bed load particles,

uffriction velocity,

wfall velocity,

weeffective bed width,

Wwidth of the flow,

xcoordinate in flow direction,

Xsediment transport, mass flux per unit mass flow rate,

ydistance above bed level,

y'thickness of the boundary layer,

Ywater depth,

zthe bed level,

zlocal height of a dune,

Zthe Rouse number,

zchange in bottom level,

Zadepth of active layer,

velocity distribution coefficient,

dynamic friction coefficient,

spatial lag,

porosity of sediment,

Eeddy viscosity,

blinear concentration related to cb,

Cspace centring coefficient,

fluid density,

time centring coefficient,

dimensionless bed shear stress,

ccritical dimensionless bed shear stress,
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Nomenclature
cicritical dimensionless bed shear stress for class i,

'dimensionless skin friction,

''dimensionless form friction,

maxmaximum dimensionless shear stress at the dune,

topdimensionless shear stress at the dune top,

*local dimensionless shear stress,

µconstant defined in Equation (12.29),

vkinematic viscosity,

bed shear stress,

ccritical bed shear stress,

'skin friction,

''form drag,

dimensionless sediment transport rate,

bdimensionless bed load sediment transport rate,

sdimensionless suspended sediment load transport rate,

tdimensionless total sediment transport rate.
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20 Introduction

Driven by ever-increasing legal requirements and public interest, emissions 
of pollution from urban sewer and drainage systems into the receiving waters 
become, both in quantitative and qualitative terms, a focus of particular inter-
est in many evaluations of the system’s performance. The knowledge of tem-
poral and spatial distribution of water discharges at outlets and at combined 
sewer overflows (CSOs), generated by hydrodynamic model simulations, 
provides useful information about the system operation under given condi-
tions. However, this information is insufficient for the evaluation of e.g. 
dynamics of the pollution loads at the wastewater treatment plant or the real 
scale of the problem associated with CSOs. In order to fulfil the articulated 
demand, the simulation tools must include the description of the pollution 
transport process.

Transport of pollutants in sewer networks is an extremely complex process 
and cannot be described with a single transport mechanism. This complexity 
is due to the nature of the transported pollutants. These occur both as dis-
solved matter and as pollutant particles. The particulate phase of sewage-
borne pollution includes a wide range of particle sizes, which implies various 
transport mechanisms. E.g. extremely fine suspended pollutant particles (so 
called “wash-load”) behave practically as dissolved. On the other hand, pol-
lutants are attached to the sediments of various grain sizes, which can either 
be transported as suspended or as bed load, depending on the actual grain 
size and hydraulic conditions.

The variety of pollutants and their forms in sewage include further complica-
tion to the understanding of pollution transport in sewers. Certain types of pol-
lutants occur exclusively in dissolved form, while some other appear only as 
particles. Organic pollution (e.g. expressed as BOD) is present both in dis-
solved and particulate phase, with the possibility to move between the sus-
pended and bed load. 

Hence, a comprehensive description of the pollution transport process, 
appropriate for practical numerical modelling applications, must essentially 
be constituted of several fundamentally different formulations. Transport of 
dissolved pollutants can successfully be described by the Advection-Disper-
sion (AD) formulation. This formulation, implemented in MOUSE AD, is based 
on mass continuity and advection-dispersion equations, where phenomena 
like mass conservation, advective transport, molecular and turbulent diffusion 
and the diffusive effect from the non-uniform velocity distribution are included.

Experience shows that the AD formulation can also be used for the simulation 
of suspended (fine) fraction of particulate pollutants and sediments. Hence, 
MOUSE AD is essential for the simulation of sediment transport processes 
(suspended sediment fractions), with or without interaction of sediments and 
pollutants.   
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Thus, MOUSE AD is a cornerstone of the MOUSE Pollution Transport suite, 
essential for the analysis of temporal and spatial distribution of pollution emis-
sions, WWTP loading patterns, morphological studies, etc.

The AD module is also the basic foundation of the water age module.

This Technical Reference manual provides an insight into the theoretical 
aspects of the numerical solution implemented in MOUSE AD. In association 
with the user guide, this manual should be sufficient for a sensible and effec-
tive use of the AD module.
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Dissolved Substances in Surface Runoff
21 Sources of Dissolved Substances in Sewer Systems

Dissolved substances in sewers originate from several sources. These are:

 surface runoff,

 build up in gully pots during dry weather,

 infiltration,

 waste water.

The sources are described in more detail below.

21.1 Dissolved Substances in Surface Runoff

Dissolved substances in surface runoff consist of two components:

 dissolved substances in the precipitation,

 wash-off from the surface.

Precipitation is far from clean. As it passes though the atmosphere, there is 
an uptake of substances such as nutrients, organic material, solids, metals 
and pesticides. American researchers have found higher levels of ammonia 
in precipitation than in runoff from the residential areas and they found that 
nitrate in the precipitation in some urban areas accounted for 20-90 % of the 
nitrate in the storm water runoff. The remaining part of the dissolved sub-
stances in the surface runoff comes from the erosion of mass on the surface 
by surface runoff.

21.2 Build up of Dissolved Substances in Gully Pots

The purpose of a gully pot is to trap particles and to prevent them from enter-
ing the pipe system. Also, gully pots prevent the release of odour from the 
pipe system. During dry weather, the amount of dissolved pollutants (e.g. 
ammonia) builds up in the gully pot liquid. The rate of build up is dependent 
on the type of pollutant, the biological/chemical conditions in the gully pot and 
the temperature. During rain storms, the gully pot liquid mixes with the incom-
ing rain water and the polluted water is released. Under some circumstances 
this phenomena contributes significantly to the First Foul Flush.

21.3 Infiltration Into the Sewer System 

Few data are available describing the concentrations in infiltration water. It is 
often assumed to be clean due to its origin in the soil layers. Infiltration origi-
nates from three sources:

 antecedent precipitation,

 frozen residual moisture,
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 ground water.

If the quality of the ground water is known or an infiltration study has been 
carried out, the concentrations of the infiltration can be estimated from these.

21.4 Wastewater

Wastewater originates from residential, commercial and industrial sources. 
The concentrations of the dissolved substances in the wastewater strongly 
depend on the local conditions e.g. land use type, number of inhabitants in 
the catchment and type of industry. Typically, concentrations in wastewater 
vary on an hourly and daily basis.
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22 Transport of Dissolved Substances in Sewer Systems

The transport of dissolved substances is traditionally described by the advec-
tion-dispersion equations. These equations describe the one-dimensional 
mass-conservative transport of dissolved material. 

The advection-dispersion equation needs inputs from a hydrodynamic model 
in terms of water levels and discharges. The hydrodynamic basis of the 
MOUSE advection-dispersion model is the hydrodynamic model in MOUSE. 
This model solves the full St. Venant equations for looped systems with free 
surface flow or pressurized flow. The hydrodynamic model is described in the 
MOUSE user guide and reference manual. 

The main assumptions of the one dimensional advection-dispersion equation 
are:

 the considered substance is completely mixed over the water column. 
This implies that a source/sink term is considered to mix instantaneously,

 the substance is considered to be conservative or subject to a first order 
decay,

 Fick’s diffusion law can be applied, i.e. the dispersive transport is propor-
tional to the gradient of the concentration.

If the flow passes rapidly through the sewer system, the decay will seldom be 
important. In general, the dissolved substances/pollutants can be 
modelled as conservative or with a first order decay. The decay can be used 
e.g. for the description of the de-oxygenation of BOD.

22.1 The Continuity Equation for the Transport of Dissolved 
Substances

The one-dimensional, vertically-integrated equation for the conservation of 
mass of a substance in solution is given as:

(22.1)

where:

C = the concentration (arbitrary unit),
A = the area of the cross-section (m2),
T = the transport,
K = the linear decay coefficient (s-1),
Cs = the source/sink concentration,
q = the lateral inflow (m2/s),
x = the space co-ordinate (m),
t = the time co-ordinate (s).

 AC 
t

---------------- T
x
------+ A– K C Cs q+ =
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22.2 The Advection-Dispersion Equation

The advection-dispersion equation reflects two transport mechanisms:

 the advective transport of the dissolved substances with the mean flow 
velocity,

 the dispersive transport due to concentration gradients of the dissolved 
substance in the water.

The dispersion again reflects several phenomena, i.e. molecular diffusion, 
turbulent diffusion and the effect from the non-uniform velocity distribution 
over the cross-section.

The two first mentioned diffusion processes are rather insignificant compared 
to the effect from the non-uniform velocity distribution. The dispersion coeffi-
cient for the turbulent flow in a full running pipe was found through theoretical 
analysis by Taylor in 1954 to be:

(22.2)

where:

kx = the dimensionless dispersion coefficient,
D = the dispersion coefficient (m2/s),
uf = the friction velocity (m/s),
R = the hydraulic radius (m).

The theoretical analysis by Taylor was verified against experimental data. For 
a 1-meter pipe with a slope of 1.0E-2 the dispersion coefficient D is:

(22.3)

The effect of the dispersion term is probably small for sewer systems with 
high flow velocities, but it may become important in systems with small gradi-
ents and backwater effects. The one-dimensional vertically integrated equa-
tion for the conservation of mass of a substance in solution, i.e. the one 
dimensional advection-dispersion equation reads:

(22.4)

In the present numerical model, a more general description of the dispersion 
coefficient has been implemented. The dispersion coefficient is determined 
as a function of the mean flow velocity:

(22.5)
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where: 

u = the mean velocity (m/s),
a,b = user specified constants.

Equation (22.5) can be turned into Equation (22.2) by selecting:

(22.6)

22.3 Boundary Conditions for the Advection-Dispersion Equation

The advection-dispersion model needs boundary conditions at all external 
boundaries. At external boundaries several different boundary conditions can 
be applied:

 outflow from an open boundary,

 flow into an open boundary,

 closed boundary.

22.3.1 Outflow From an Open Boundary

When outflow occur, the concentration is only dependent on the concentra-
tion in the model area. The open boundary outflow condition is:

(22.7)

This specifies that the gradient of the concentration with respect to the dis-
tance is constant at the outflow boundary and that the transport across the 
boundary is pure advection.

22.3.2 Flow Into an Open Boundary

At an open inflow boundary the concentration must be specified as function of 
time. If the flow direction changes an outflow boundary becomes an inflow 
boundary and vice versa. This scenario will typically happen when the receiv-
ing water is tidal influenced. The boundary condition then changes between 
the concentration in the sewer system and the concentration in the receiving 
water according to:

(22.8)

a 20.0
g

M
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where:

Cr = the concentration in the receiving water,
Cs = the concentration in the sewer system immediately

before the flow direction changed,
Kmix = a time scale (hrs-1),
tmix = the elapsed time since the flow direction changed (hrs).

Equation (22.8) reflects that the first water, which enters the sewer system 
has the concentration of the water which last has left the sewer before the 
flow reversal occurred. By selecting a small value of Kmix, the inflow concen-
tration changes almost immediately to the concentration in the receiving 
water. On the contrary, by selecting a large Kmix, the inflow concentration 
changes very slowly from the concentration in the sewer system to the con-
centration in the recipient.

22.3.3 Closed  Boundaries

No mass is transported across a closed boundary, hence it is characterized 
by q = 0.0 and

(22.9)

22.4 Solution of the Advection-Dispersion Equation at Structures 
and Manholes

The solution of the advection-dispersion equation has to be modified at 
hydraulic structures in sewer systems. The general way to describe the trans-
port at a nodal point is to set up a local continuity equation. Further, special 
cases exist where the local continuity equation has to be modified, e.g. when 
free flow into a manhole is present. The modification to the advection-disper-
sion equation is described below.

22.4.1 Manholes and Structures - General Solution 

At manholes a local continuity equation is applied. It is assumed that the sub-
stance in the nodal point is fully mixed over the volume. This assumption 
might not always be fulfilled, e.g. when flooding occurs. The continuity equa-
tion for a manhole reads:

(22.10)

where:

C
x
------- 0=

 VNCN 
t

----------------------- T

i 1=

i kk=

 V– N CN KN =+
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Solution of the Advection-Dispersion Equation at Structures and Manholes
VN = the volume of the structure (m3/s),
CN = the concentration in the node,
T = the transport into the node (kg/s),
KN = the decay constant for the node,
kk = the number of connecting pipes.

The continuity equation for the water flow to and from a node can be written 
as:

(22.11)

where Q (m3/s) is the discharge in the connecting branches.

The continuity equation for a nodal point, Equation (22.10), can be re-
arranged by use of the continuity equation for water, Equation (22.11): 

(22.12)

22.4.2 Free Flow Into a Manhole

When free flow into a structure occurs, i.e. the water level in the structure is 
lower than the water level in the inlet pipe, the concentration in the pipe is 
independent of the concentration at the structure. Hence, the dispersion term 
in the formulation of the transport is neglected, i.e. the transport is pure 
advection, see Figure 22.1. The transport at a structure is now formulated as:

(22.13)

Figure 22.1 Free inflow to a manhole

VN

t
---------- Q

i 1=

i kk=

 0=+

VN
CN

t
---------- CN Q

i 1=

i kk=

 T

i 1=

i kk=

 VN– CN KN =+–

T Q C=
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22.4.3 No Outflow From a Structure to a Pipe 

This condition occurs when the water level at the structure is lower than the 
bottom invert of the outlet pipe, see Figure 22.2. When such a situation 
arises, a local continuity equation is applied. The transport into the outlet pipe 
is described by: 

(22.14)

where Qpipe (m3/s) is the discharge at the first grid point in the outlet pipe.

In reality the discharge in the outlet pipe ought to be zero. However, due to 
the stability of the numerical scheme in the hydrodynamic model a minimum 
water depth of 0.5% of the pipe diameter (maximum 0.5 cm) will always be 
present in the pipes. The minimum water depth is user-specified in the 
dhiapp.ini file. Hence, a small discharge will be present.  

Figure 22.2 No flow from the manhole to the outlet pipe

22.5 Formulation of the Transport of Dissolved Substances 
Through Pumps

In general, the formulation of the transport of a dissolved substance is based 
on the hydrodynamic solutions of the MOUSE model. In the hydrodynamic 
model of MOUSE, pumps are normally described as functions between two 
nodes, i.e. without explicit definition of rising mains. This simplification implies 
instantaneous water transport and consequently, the impossibility to apply the 
advection-dispersion equations in such cases. The only information available 
is the distance between the pump and the tail node (approx. the length of the 
rising main) and the discharge of the pump. Hence, dissolved matter is routed 
through such a system with no time lag between the pump and the end of the 
conduit. This results in significant errors in the transport time for dissolved 
substances in the pipe, if the retention time of water in the conduit is much 
larger than the time step of the simulation. The pumped mass qs·cs is added 
to the source term of the continuity equation at the tail node.

T Qpipe CN=
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22.6 Formulation of the Transport of Dissolved Substances Over 
Weirs

Transport over a weir is formulated as routing between the weir node and the 
destination node. The transport rate is determined on the basis of the con-
centration in the weir node and the weir flow. The mass flowing over the weir 
qs·cs is added to the source term of the continuity equation at the destination 
node. 

22.7 Water Age Simulation

The development of water age is described by the advection-dispertion equa-
tion, where the first order decay term is substituted by a zero order growth 
term.

Thus the one-dimensional vertically integrated equation for modeling the 
water age is given as

(22.15)

where

S = the age of the water
A = the cross section 
T = the transport of the water that uses S
Q = the flow of the water
SS = the age of any source/sink
q = the source/sink
x = the coefficient
t = the time

All equations described in previous sections 21.1 to 22.6 are also valid for the 
special version of the advection-dispertion equation, except that the first 
order decay term must be substituted by the zero order growth term.

 A S 
t

--------------------  T 
x

----------- A Ss q+=+
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Numerical Scheme
23 The Numerical Solution for the Advection-Dispersion 
Model

23.1 Numerical Scheme

The advection-dispersion equation is solved using an implicit finite-difference 
scheme, which is centred in time and space in order to avoid the numerical 
dispersion. The concentrations are defined in each grid point, i.e. the grid is a 
non-staggered grid. A third-order correction term has been included in order 
to eliminate the third-order truncation error. A sketch of the numerical scheme 
is shown in Figure 23.1.

Figure 23.1 The numerical scheme for the advection-dispersion

The two equations considered are the continuity equation and the advection-
dispersion equation. The continuity equation is given in Equation (22.1). A 
sketch of the transport of dissolved substances through a small element of 
water is shown in Figure 23.2. 

Figure 23.2 Sketch of the transport of dissolved substances through a small ele-
ment of water
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The Numerical Solution for the Advection-Dispersion Model
The continuity equation can be written in discrete form as given below:

(23.1)

where:

T = the transport through the box walls,
j = the grid point number,
n = the time level.

The advection-dispersion equation is given below in discrete form:

(23.2)

where: 

= the discharge at the right wall of the box (m3/s),

= the cross sectional area of the right wall (m2),

= the dispersion coefficient (m2/s) given by 
Equation (23.3),

= an upstream interpolated concentration given by 
Equations (23.52) and (23.53).

The dispersion coefficient is calculated as:

(23.3)

where a and b are constants.
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Discretization of the Boundary Conditions
23.2 Discretization of the Boundary Conditions

23.2.1 Outflow From an Open Boundary

The open outflow boundary condition is given by Equation (22.7). The dis-
crete form of Equation (22.7) is: 

(23.4)

where  is the transport given as:

(23.5)

23.2.2 Flow Into an Open Boundary

The discrete form of the inflow boundary condition is:

(23.6)

where CB is the concentration at the boundary. If a flow reversal occurs at the 
boundary the outflow boundary changes to an inflow boundary and the 
boundary condition is given as in Equation (22.8). The discrete form of Equa-
tion (22.8) is: 

(23.7)

23.2.3 Closed Boundaries

The closed boundary condition is given in Equation (22.9). The discrete form 
for the closed boundary is equivalent to the discrete form of the continuity 
equation for a manhole, which is given in the next section.

V NCN 
n 1+ V NCN 

n
–

t
----------------------------------------------------------- T n 1 2+ Qs
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Tn 1 2+

Tn 1 2+ Qj 1 2–
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* QN
n 1 2+ CN

n 1 2+–=

CN
n 1 2+ CB

n 1 2+=
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n 1 2+ Cr
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tmix–
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-------------

–+=
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The Numerical Solution for the Advection-Dispersion Model
23.3 Discretization at Manholes and Structures

The continuity equation around manholes and structures, Equation (22.10), is 
given in the discrete form below:

(23.8)

The transport T to and from the node is given as:

(23.9)

where N-1 is the grid point in pipe k at a distance Dx from the node.

23.3.1 Free Flow Into a Manhole 

When free inflow to the node occurs the dispersion term in the formulation of 
the transport is neglected. The discrete form of the transport then yields:

(23.10)

23.3.2 No Outflow From a Structure to a Pipe 

When the water level in the structure is lower than the invert of the outlet 
pipe, a local continuity equation is applied. The discrete form of the transport 
into the outlet pipe is: 

(23.11)

23.4 Solution of the Finite Difference Equations

Substitution and re-arrangement of the above equations give a general 
implicit finite difference equation which relates the concentration in three 
neighbouring grid points to each other at any time level as follows:

(23.12)

VN
n 1 2+ CN

n 1+ CN
n–

t
--------------------------- 1 2 CN

n 1+ CN
n+ 
VN

t
---------- T

k 1=

k kk=

++

QsCs 1 2 KVN
n 1 2+ CN

n CN 1+
n+ –=

T 1 4 Qj 1 2+
n 1 2+ CN

n 1+ CN
n CN 1–

n 1+ CN 1–
n+ + + 

AN 1 2–
n 1 2+ DN 1 2–

n 1 2+ 1 2 CN
n 1+ CN

n+  1 2 CN 1–
n 1+ CN 1–

n+ –
1 2 x

--------------------------------------------------------------------------------------------------+

=

Tj
n 1 2+ 1 2 Qj

n 1 2+ Cj
n 1+ Cj

n+ =

Tj
n 1 2+ Qj

n 1 2+ 1 2 CN
n 1+ CN

n+ =

jCj 1–
n 1+ jCj

n 1+ Cj 1+
n 1+ n=++
114 MIKE URBAN - © DHI



The Accuracy of the Numerical Scheme
where ,  and are constants.

Equation (23.12) gives a tri-diagonal matrix, i.e. a system of linear equations 
which is solved by the “double sweep” algorithm, as described in the the pipe-
flow reference manual. 

23.5 The Accuracy of the Numerical Scheme

The third order Taylor series expansion is used to ensure that the scheme 
has a third order accuracy. Elimination of the third order truncation error 
makes it possible to simulate concentration profiles with steep fronts. In gen-
eral, the third order terms are associated with phase errors and wiggles in the 
scheme while the second order terms lead to numerical diffusion. The Taylor 
expansions yields:

(23.13)

(23.14)

(23.15)

(23.16)

(23.17)

(23.18)
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The Numerical Solution for the Advection-Dispersion Model
By assuming that the velocity is constant locally, the second and third order 
derivatives in Equations (23.13) to (23.18) can be transformed to a more con-
venient form. The transformations used are:

(23.19)

(23.20)

(23.21)

(23.22)

(23.23)

Equation (23.19) can be turned into the general formulation: 

(23.24)

The results of the Taylor expansions are inserted in the advection dispersion 
equation, e.g. Equation (23.13) is rewritten as:

(23.25)

The explicit third order correction term can be found from the solution to four 
equations with four variables. The solution to the equations is:

(23.26)

where  is the convective Courant number defined in Equation (23.54).
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The Stability of the Numerical Scheme
23.6 The Stability of the Numerical Scheme

23.6.1 Linear Stability Analysis of the Numerical Scheme

The stability of the advection equation is evaluated by applying the von Neu-
mann condition for stability. The stability criteria is only evaluated for the 
advection and not for the advection-dispersion equation, since the case with 
pure advection sets the strongest stability criteria. The advection equation is 
given below:

(23.27)

The analytical solution to Equation (23.27) is:

(23.28)

The harmonic solution to Equation (23.27) is:

(23.29)

where:

x =  j·Dx,
t = n·Dt.

The numerical harmonic solution to Equation (23.27) can be written as: 

(23.30)

If the analytical equation is equal to the numerical solution the following equa-
tion has to be fulfilled:

(23.31)

The concentration in grid point j at time level n can now be written as:

(23.32)
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The Numerical Solution for the Advection-Dispersion Model
with:

(23.33)

The von Neumann stability condition is based on a linear stability analysis in 
which it is assumed that the solution to the finite difference scheme can be 
written as a Fourier series in complex, exponential form for any time level, n, 
in the form:

(23.34)

where:

 = the dimensionless wave number,
k = a finite index.

The linear stability analysis determines how the Fourier coefficients behave in 
time for a fixed wave number. The concentration at grid point j at time n for 
the wave number k = 1, can be written as:

(23.35)

In a similar way, the concentration at grid point j at time level n+1 and the con-
centration at grid point j+1 at time level n can be written as:

(23.36)

and

(23.37)

23.6.2 The Stability of the Advection Equation

The one-dimensional advection equation is given by: 

(23.38)
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The Stability of the Numerical Scheme
The discretization of the one-dimensional advection equation, accurate to the 
third order, is given by:

(23.39)

Equation (23.39) is transformed to complex numbers by using the following 
substitutions:

(23.40)

(23.41)

(23.42)

(23.43)

(23.44)

Using the Equations (23.40) to (23.44), the equation (23.39) can be written 
as:

(23.45)

where  is the Courant number (u·Dt/Dx). 

Short waves:
For the shortest resolvable wave (the Nyquist frequency) the wave length, L, 
is given as:

(23.46)

Equation (23.45) now gives:

(23.47)

where (1 - 8s) is the amplification factor E. 
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The Numerical Solution for the Advection-Dispersion Model
The stability criterion is:

(23.48)

The solution to Equation (23.48) is:

(23.49)

Long waves:
For the longest the wave length, L, is given as:

(23.50)

Equation (23.45) now gives:

(23.51)

The approximation to the upstream-interpolated concentration can now be 
given as:

If  < 1 then:

(23.52)

If  1 then

(23.53)

The phase and the amplitude portraits of the numerical scheme are shown in 
Figure 23.3 and Figure 23.4.
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The Stability of the Numerical Scheme
Figure 23.3 The amplitude portrait of the advection-dispersion scheme

Figure 23.4 The phase portrait of the advection-dispersion scheme

Even if the scheme is stable there are some restrictions on the selection of 
the time step, t, and the grid size, x. The stability criterion is expressed in 
terms of the convective Courant number, defined as:

(23.54)

The stability criterion is:

(23.54a)

 u t
x

----------------=

Cc
u t
x

---------------- 1=
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Another dimensionless number used to describe the numerical scheme is the 
Peclet number. This is defined as:

(23.55)

The numerical scheme is stable even for large Peclet numbers, i.e. Pe > 2. 
However, the Peclet number is associated with numerical oscillations, wig-
gles, which grow or decay spatially with a wave length of 2x. In a diffusion-
free scheme which is stable in the von Neumann, wiggles are likely to occur 
when large gradients in the concentration are present. The criterion for the 
absence of wiggles is:

(23.56)

The wiggles can be eliminated from the numerical scheme by an upstream 
centring of the numerical scheme, which introduces numerical diffusion into 
the scheme or by use of the n-1 time step in the computations. 

Pe u x
D

-----------------=

Pe 2
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24 Nomenclature

A cross-sectional area (m2),
a constant in Equation (23.3),
b constant in Equation (23.3),
c concentration (arbitrary unit),
cr boundary concentrations,
cN concentration in the node,
cq concentration of lateral inflow source,
cs concentration at the boundary immediately before the

flow direction changed,
cs source/sink concentration,
D dispersion coefficient (m2/s),
E amplification factor,
j grid point number,
K linear decay coefficient (s-1),
Kmix a time scale (hours-1),
KN decay constant for the node (s-1),
kk number of connecting pipes,
kx dimensionless dispersion coefficient,
n time level,
Pe the Peclet number,
Q discharge (m3/s),
Qpipe discharge at the first grid point in the outlet pipe, (m3/s)
q discharge per unit width (m2/s),
R hydraulic radius (m),
T transport through box walls,
t time coordinate (s),
tmix time passed since the flow direction changed (s),
u mean velocity (m/s),
uf friction velocity (m/s),
V volume (m3/s),
VN volume of the structure (m3/s),
x space coordinate (m),
 constant in Equation (23.12),
 constant in Equation (23.12),
 constant in Equation (23.12),
d convective Courant number.
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