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1 Curvilinear Grid Generator 

The purpose of this note is to give the user some insight to the mathematical and 

numerical background applied for the Curvilinear Grid Generator. Basically, it should be 

thought of as the mathematical/numerical developers guide. It is not the intention to 

provide detailed mathematical theory. This can easily be obtained from the vast amount of 

literature on the subject, e.g. Thompson et al. (1985). 

 

The scientific background for the Curvilinear Grid Generator has been divided into two 

sections covering the mathematical theory and the numerical aspects. 

 

The description of the mathematics is straightforward, and only a very short presentation 

is needed. The main section covers the numerical aspects, where the solution method is 

described in detail covering the Stone method for the elliptic equations and the Newton-

Raphson method for the boundary conditions. In combination, these form a powerful 

solution scheme. General attention is given to all the aspects in the grid generation 

process. These include the discretisation, solution, initial conditions, smoothing methods, 

and residual evaluation. 

1.1 Mathematical Formulation 

The grid generator for MIKE 21C is constructed by the following system of partial 

differential equations 
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where x and y are the Cartesian coordinates, and g is a weight factor defined by 
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The boundary condition for this system is the non-linear orthogonality condition 

 

0  yyxx  (1.4) 

 

  0, yxf  (1.5) 

 

where Eq. (1.4) expressed the condition of orthogonality, and Eq. (1.5) expresses that x 

and y are located on a specific curve. With this system, the distribution of boundary points 

cannot in general be known in advance. The system produces an orthogonal grid, and is 

equivalent to simple potential theory where the  and  lines can be though of a 

streamlines and potential lines. The boundary condition is equivalent to the kinematic 

boundary condition, i.e. where the streamlines are parallel to a boundary. 
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A special case occurs when the grid weight (g) is unity. In that case the system is conformal, 

meaning that 

 

ns   (1.6) 

 

for all cells. In order to add more flexibility to the - otherwise quite restricted (see below) - 

conformal system, the weight function g has been added to the system. 

 

A river is in fact very good for illustrating the constraint of the conformal mapping. Take a 

reach of a river, say 50 km, and let the river width be 1 km. Now, one would typically use 

in the order of magnitude 50 grid points across the river width. If conformal mapping is 

applied, the amount of grid points in the direction of the river would be 2500. The total 

amount of grid points in the computational grid would thus be 125.000, and this is an 

extremely fine grid that would probably not be feasible to use save on very powerful 

computers. The constraint on the conformal mapping may be expressed mathematically 

as 

 

y

x

L

L

M

N
  (1.7) 

 

where N and M are the number of grid points in each direction, and Lx and Ly the extend 

of the geometry. 

 

The advantage of conformal mapping is that the Laplacian operator is invariant to the 

change of coordinate system. This attribute may be attractive for some purposes, but the 

price to pay for this is that the grid dimensions are necessarily tied to the overall aspect 

ratio of the geometry. Furthermore, for complex geometries, it is virtually impossible to 

find a conformal mapping. 

 

The weight function serves two purposes. First of all the global appearance of the 

geometry will dictate a weight function, as illustrated by the river example. Secondly the 

local appearance of the solution found on the grid (water depth, velocity, etc.) may result 

in a wish for changing the local grid weight to concentrate grid lines. 

 

The first part of the grid weight is purely linked to the geometry, and is therefore normally 

handled entirely by the program. 

 

1.2 Numerical Aspects 

This section serves to present the solution method used in Curvilinear Grid Generator. 

The order of appearance has been chosen such that it follows the grid generation 

process. Stone’s strongly implicit method is employed for solving the partial differential 

Eqs. (1.1) and (1.2) with a special Newton-Raphson procedure for the boundary 

conditions. The elliptic solution method is described thoroughly by Stone (1968). 

 

1.2.1 Discrete equations 

The discretisation of the grid equations is straight forward, resulting in 

 

WWSSEENNp xaxaxaxax   (1.8) 
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WWSSEENNp yayayayay   (1.9) 

 

Note that the source term is identically zero for both equations. The coefficients in these 

equations are given by 
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kjW ga ½,  (1.13) 

 

the diagonal coefficient is implicit understood to be unity (achieved by normalisation after 

the calculation of the coefficients), i.e. 

 

 1nba  (1.14) 

 

At the boundary points, the boundary conditions are treated as Dirichlet conditions that 

change during the solution process. Thus, at the boundary points the equation can be 

written 

 

bkj xx ,  (1.15) 

 

bkj yy ,  (1.16) 

 

meaning that the transport coefficients (aN -aW) are all identically zero, while the source is 

S = xb. In the Fortran code, there is no need for doing it like that. Instead, the boundary 

points are not relaxed in the iteration step covering the elliptic equations (the loop go from 

1 to N-1), and thus the source term can be taken as being always identically zero. 

1.2.2 Initial conditions 

The initial conditions for the elliptic system serve two purposes. Obviously, the elliptic 

system requires initial conditions for the iterative solution. It is, however, not crucial to 

choose good initial conditions for the Stone's strongly implicit procedure used for the 

iterative solution of the equations (directly related to the principle of fast short wave error 

decay in elliptic solution methods). 

 

A much more important purpose of the initial condition is to obtain the grid weights. 

 

NOTE: In simple geometries the grid weight may actually be set to a constant value in the 

entire domain, but it is generally not possible for complex geometries. It becomes even more 

pronounced in multiblock structures. 

 

The strategy in Gridgen is to use an algebraic mapping system for the initial conditions, and 

from this calculate the grid weights, which are then finally run through an adaptive filter (see 
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Section 1.2.5). The use of algebraic mapping to generate the initial conditions is a general 

practise in elliptic grid generation. 

 

The algebraic grid generator used for the generation of the initial conditions is the frequently 

used transfinite interpolation method 
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The advantage of the algebraic mapping method is that it is extremely fast compared to 

the elliptic methods. However, the grids are normally not as smooth as those obtained by 

using the elliptic grid generators. This is part of the reason why the grid weights are 

smoothed prior to the solution of the elliptic system. 

 

1.2.3 Calculation of the grid weight function 

For the present single block version of the grid generator, the grid weights have been 

located at the cell corners, where the coordinates x and y are also found. 

 

With the grid weight function located at the cell corner, the grid weight function is 

calculated by using central differences in the interior and one-sided differences at the 

boundaries, i.e. 
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The transport coefficients for the discrete grid equations are thus given by 
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N
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 (1.19) 
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 (1.20) 

 

After calculating the transport coefficients, normalisation is performed. 

 

1.2.4 Solution of the grid equations 

The partial differential equations governing the grid are fully elliptic, and generally 

anisotropic. These two features automatically call for a strong elliptic equation solution 

method, especially on fine grids. The grids that are used for MIKE 21C calculations will 

typically have more than 10000 cells, so the grids are very fine. 

 

The solution method used for the grid generator is Stone's strongly implicit procedure 

(abbr. SSIP, see Stone, 1968). In all aspects this method is a very good choice for the 

grid generator. First of all it is extremely fast compared to the point/line implicit methods, 

and secondly the incomplete factorisation used in the method need be performed only 

once. 
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The rest of the grid generation process consists of performing forward/back sweeps and 

updating boundary conditions. The amount of computational work per iteration is thus in 

the same order of magnitude as would be the case for a line implicit method, but the rate 

of convergence is considerably higher.  

 

1.2.5 Adaptive filters 

Adaptive filters are important parts of the Curvilinear Grid Generator. The filters are 

applied for the boundary lines, and for the grid weight function. 

 

For the boundaries, the adaptive filter uses the relative curvature of the boundary line, i.e. 
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to evaluate the smoothness. If a certain criterion is not fulfilled, the boundary point is 

subjected to the running average 
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The procedure is repeated until all boundary points have a relative curvature below the 

limit. During the process of smoothing the boundary lines, the corner points are fixed. 

 

For the smoothing of the grid weight function the adaptive filter uses the relative curvature 

given by 

 

1
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P
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g

g
c  (1.24) 

 

Please note that g is always positive, since g = 0 cannot occur for well-defined grids. If 

this is larger than a critical value, |c| > cmax, then the weight in the grid point is recalculated 

from an average 
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Again, the process is repeated until the criterion is met for every grid point in the domain. 

During the process the boundary values for the filter are equivalent to the specification of 

Neuman conditions. Thus, if the maximum allowed curvature is zero, the grid weight will 

end up becoming a constant in the entire domain (corresponding to the solution of a 

homogenous von Neumann problem for the Laplacian). 

 

NOTE: It is important to have a smooth weight function. Rapid changes in the weight 

function are the same as rapid changes in the grid. Such are not desirable, because the 
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solution found on the grid will be off poorer quality. This is a point of fundamental 

importance in computational hydrodynamics. 

 

1.2.6 Numerical treatment of the boundary conditions 

The Curvilinear Grid Generator uses splines for representing the boundary lines. Before 

the splines are adapted to the boundary lines, these are smoothed with a curvature 

adaptive filter (see previous section). The boundary lines can thus be expresses as 

 

      tgtfyx ,, r  (1.26) 

 

where t is running along the boundary line (parameter description), and 0 < t < N, where N 

is the number of points on the boundary. The tangential vector for the boundary line is 

thus proportional to the time derivative of r, i.e. 

 

dt

dr
s   (1.27) 

 

The vector normal to the boundary line is given by 
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where (x0,y0) is the first point in the interior seen from the boundary. 

 

The orthogonality condition can now be written as one single equation by demanding that the 

dot product of the normal vector and the tangent vector is identically zero 

 

            000  tgtgytftfxtF  (1.29) 

 

which gives the t-value for the grid point on the boundary. The equation is non-linear and 

is solved by using a special version of the Newton-Raphson solution algorithm. The 

Newton-Raphson algorithm results in 
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ttt nn 1  (1.32) 

 

The special part of the algorithm is that the iteration is stopped if one of the following 

occurs 

 

1t  (1.33) 

 

0t  (1.34) 

 

Nt   (1.35) 
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These situations may occur because the convergence radius of the Newton-Raphson 

may sometimes be very small. If the Newton-Raphson is stopped, the time-position is set 

to the position of the boundary nearest point, but the x and y values are not updated. This 

gives a better chance of getting a converged Newton-Raphson in the next iteration. 

 

The advantage of using Neton-Raphson is obvious for MIKE 21C applications with 

moving boundaries. As the changes in the grid are small, the iteration will be very 

efficient. The special treatment ensures that the method is much more robust than would 

normally be the case for the Newton-Raphson. 

 

1.2.7 Residual evaluation and normalisation 

There are two conditions to satisfy for the grid generation system. These are the fulfilment 

of the elliptic equations, and the satisfaction of the boundary conditions. It is therefore not 

straightforward to evaluate whether the grid generator has converged. 

 

Instead of using the residuals for the equation involved, the change in the grid between 

two global iterations is evaluated. The residual field is now introduced as 
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where L is the linear cell length scale of the geometry, i.e. 

 

cells

Area
L

#
  (1.37) 

 

The residual field can thus be though of as the change in the point position compared to 

the typical length of the cell vertex. 

 

The stop criterion is defined by the following two conditions 

 

10
max

r  (1.38) 

 


mean

r  (1.39) 

 

If e.g.  = 10
-3

 then the grid generator should stop when both the maximum relative 

change in the position is less than 1% of the cell linear length scale, and the mean relative 

change is less than 0.1% of the cell linear length scale. 

 

1.2.8 Relaxation and time-stepping 

Considering the nature of the grid generation system, it can be deduced that there is no 

need for time-stepping or under-relaxation in the elliptic equations as these are linear. For 

the boundary conditions, the situation is that they are non- linear. This is why the Newton-

Raphson method is applied for the boundary conditions. However, the overall treatment of 

the system is to handle the elliptic equations and the boundary conditions in two individual 

steps, and therefore it is necessary to slightly under relax the boundary conditions, i.e. 
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   tfxx bb   1  (1.40) 

 

   tgyy bb   1  (1.41) 
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2 2D Hydrodynamic Model 

The hydrodynamics of meanders and braided channels are characterised by a complex 

three-dimensional flow pattern. This has to be taken into account when studying channel 

morphology. However, to apply a fully three-dimensional model for long-term simulations 

(several months) of river morphology requires unfeasible computational efforts. By 

introducing simplifications to the Navier-Stokes equations (Section 2.1), the governing 

hydrodynamic equations can be reduced to two-dimensional equations of conservation of 

momentum and mass in the two horizontal directions. Three-dimensional (secondary flow) 

effects are maintained in the depth-averaged model by introducing a separate model of 

the helical flow component (Section 2.2) and by assuming similarity of the vertical 

distribution of the flow velocities (Section 2.3). 

 

2.1 Governing Flow Equations 

The two horizontal axes (denoted s- and n-axis) are described in a curvilinear orthogonal 

coordinate system, where one axis can follow the bank lines of the river. This gives a 

better (more accurate) description of the flow field near the boundaries, which is 

especially important when computing bank erosion. 

 

 
 
Figure 2.1 Location of flow parameters: fluxes P and Q, and flow depth H in a curvilinear 

coordinate system (s, n) 

 

Use of an orthogonal coordinate system, where the s- and n-axes are at right angles to 

each other in every point, makes the mathematical and numerical description substantially 

simpler. Truncation errors of the finite difference scheme (see below) are smaller and 

accuracy is higher than in an orthogonal grid. A Cartesian, rectangular coordinate system 

(x, y) can be applied in the modelling system if required by the user. 

 

Transformations between Cartesian and curvilinear coordinate systems are shown below. 

Scalar functions such as depth h (denoted H in the curvilinear coordinate system) and 
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vector functions such as the velocity components (u, v) (denoted U, V in the curvilinear 

coordinate system) are transformed different between the two coordinate systems. Rs and 

Rn denote radius of curvature of the s-lines and the n-lines, respectively, at the considered 

grid point. 
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The hydrodynamic model solves the vertically integrated equations of continuity and 

conservation of momentum (the Saint Venant equations) in two directions. Three main 

approximations are adopted: 

 

• Shallow water approximation 

Lateral exchange of momentum due to friction in the fluid is neglected. The error 

introduced is a function of the ratio (h/R)
2
, where h is the water depth and R the 

radius of curvature of the streamlines. Wall effects along the riverbanks are 

neglected. 

 

• Hydrostatic pressure distribution 

The gradients of the vertical velocity component are neglected. Close to the side 

walls, the error is of the order of h/R. In regions with flow over gently varying bed 

topography the error is much smaller. 

 

• Rigid lid approximation 

The rigid lid approximation for the water surface condition implies that the water 

surface is considered as being a rigid impermeable and shear stress free plate only 

with normal stresses. The error introduced by the rigid lid approximation will be small 

when the deviation between the local water surface level and the 'average' water 

surface level is small. This is the case when the Froude number and the ratio 

between water depth and radius of curvature (h/R) are small. 

 

To summarise, the flow model is valid for shallow, gently varying topography and mildly 

curved and wide river channels with small Froude numbers. The following effects are 

included in the equations when used for river applications: 

 

• Flow acceleration 

• Convection and cross-momentum 

• Pressure gradients (water surface slopes) 

• Bed shear stress 

• Momentum dispersion 

• Coriolis forces 
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• Wind forces
*
 

• Flow curvature and helical flow 

 

The equations solved in the curvilinear hydrodynamic model are: 
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 (2.5) 
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 (2.6) 
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 (2.7) 

 

Where 

s, n Coordinates in the curvilinear coordinate system 

p, q Mass fluxes in the s- and n-direction, respectively 

H Water level 

h Water depth 

g Acceleration of gravity 

C Chezy roughness coefficient 

Rs, Rn Radius of curvature of s- and n-line, respectively 

RHS The right hand side in the force balance, which contains (among others) 

Reynolds stresses (see below), Coriolis force and atmospheric pressure. 

See the MIKE 21 Hydrodynamic Module for a more thorough description. 

 

The Reynolds stresses, included in the RHS terms, can be described in a curvilinear grid 

assuming a smooth grid (Rs and Rn large and slowly varying). For the p-direction: 
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 (2.8) 

 

(P, Q) are fluxes described in a Cartesian (x, y) system and (p, q) are fluxes described in 

curvilinear (s, n) coordinate system. A similar equation is found for the q-direction: 

 

                                                      
*
 The wind force is only included in the present version of the modelling system when a rectangular Cartesian 

computational grid is used. In river applications, where curvilinear computational grids are required, the wind 
forces are usually not the governing driving forces. 
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 (2.9) 

 

The curvature of the coordinate lines gives rise to additional terms in the partial differential 

equation for flow. The equations are solved by an implicit finite difference technique with 

variables (water flux density P and Q in two horizontal directions and water depth H) 

defined on a space staggered computational grid, as shown in Figure 2.2. 

 

The flow variables Pj,k, Qj,k and Hj,k are defined in all grid points and are referred to by the grid 

coordinates (j, k). The space steps sj,k and nj,k vary in the whole domain due to the 

curvilinear grid. In comparison, the standard MIKE 21 HD model uses a fixed x and y. 

Furthermore, each grid point is characterised by a set of physical coordinates (xj,k, yj,k) as well 

as the radius of curvature Rs(j,k) of s-lines (or j-lines) and the radius of curvature Rn(j,k) of n-

lines (or k-lines). The time step tHD in the numerical solution of hydrodynamics is constant. 

 

 
 
Figure 2.2 Finite Difference Grid in (s, n) space. P and Q are water fluxes in two horizontal 

directions. H is water depth 

 

Except for the varying space steps s and n (x and y in standard MIKE 21) and the 

additional terms in the equations of motion due to the curving grid lines, the numerical 

solution of the governing equations is similar to the standard MIKE 21 Hydrodynamic 

model. Therefore, the reader is referred to the Scientific Background, Appendix A, of the 

MIKE 21 Hydrodynamics, Users Guide and Reference Manual. 

 

2.2 Helical Flow 

Mathematical modelling of flow in a river bend requires insight into the physics of the 

water motion. For this purpose a physical explanation of the flow distribution in a bend is 

given below. 

 

When water flows into a river bend, an imbalance of centripetal force starts to generate an 

outward motion near the free surface and an inward motion near the bed. The reason is 

that the main stream velocities in the upper part of the flow are greater than velocities in 

s 

n 
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qj,k-1 
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hj,k+1 

hj+1,k 
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the lower part of the flow. Therefore, water particles in the upper part of the water column 

must follow a path with a larger radius of curvature than water particles in the lower part to 

maintain nearly constant centripetal force over the depth. With velocity v and radius of 

curvature R, centripetal acceleration is v
2
/R. 

 

Simultaneously with generation of helical motion, a lateral free surface slope is created to 

maintain equilibrium between lateral pressure force, centripetal force and lateral shear 

force generated from friction along the bed. The classical analytical solution to this flow 

problem predicts a single helical vortex, which transports fluid downstream in spiral 

trajectories. This spiral (or helical) flow pattern can be considered as the sum of a 

longitudinal flow component (main flow) and a circulation in a plane perpendicular to the 

main flow direction (secondary flow). The secondary flow is directed towards the centre of 

curvature near the bottom and outwards in the upper part of the cross-section as 

illustrated in Figure 2.3.  

 

 
 
Figure 2.3 Helical flow in river bends 

 

For changing bend curvature and bed topography, the flow distribution will lag slightly 

behind the change in topography due to the inertia of the main flow. Analytical 

expressions for helical flow intensity and the length scale for adaptation of secondary flow 

to changes in topography are discussed below. 

 

The intensity of the helical flow is the magnitude of the transverse velocity component. It 

is defined by de Vriend (1981) as: 

 

R

h
u = i

s

s   (2.10) 

 

Where 

u Main flow velocity 

Rs Radius of curvature of streamlines  

is Helical flow intensity 

 

In Section 2.3 the vertical distribution of the helical flow is described. Secondary flow due 

to curving streamlines causes a small deviation s in flow direction near the bed, away 

from the main stream direction. This also causes deviation in the bed shear stress 

direction. 
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Figure 2.4 Deviation of bed shear stress due to helical flow 

 

The direction of bed shear stress in a curved flow field plays an important role in a bed 

topography model for river bends. The logarithmic model obtained by Rozovskii (1957) 

and others yields a bed shear stress direction given by: 

 

R

h
 - = 

s

s tan  (2.11) 

 

Where  

h Water depth 

Rs Radius of curvature of flow stream lines 

δs Angle between bed shear stress and depth averaged shear stress (or flow) 

 

The parameter β is defined as: 

 

)
C

g
-(1

2
 = 

2 
   (2.12) 

 

Where 

 Von Kárman’s constant, 0.4 

g Acceleration of gravity, 9.81 

C Chezy number 

 Calibration constant 

 

The approximate value of  is 10. Other models of vertical velocity profile, such as the 

power model, give slightly different values of . Increasing flow resistance, represented by 

a decreasing Chezy number, gives a smaller -value (i.e. less helical flow intensity and a 

smaller deviation in the direction of bed shear stress), as discussed by Olesen (1987). In 

the morphological model,  is specified as a calibration parameter (constant or varying in 

space). The default value is 1.  

 

In regions of changing curvature of streamlines, the secondary flow will adapt gradually. 

The inertia of the secondary flow has been investigated analytically by (among others) 

Rozovski (1957) and Nouh & Townsend (1979). De Vriend (1981a), Booij & Kalkwijk 

(1982) and Kalkwijk & Booij (1986) have carried out numerical investigations of this topic. 

Further investigations are discussed in Olesen (1987). 
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Modelling the adaptation of secondary flow is complicated by the fact that (according to 

numerical experiments) adaptation of the secondary flow profile is considerably faster near 

the bed (where bed shear stresses act) than compared to higher up in the water column. 

Strictly speaking, the process of adaptation cannot be characterised by one length scale 

only. Adaptation length is a function of water depth and friction number. In the present 

morphological model, the following differential length scale is applied: 

 

g

C h 1.2
 = sf  (2.13) 

 

Where 

λsf Length scale for secondary flow adaptation 

h Water depth 

C Chezy number 

g Acceleration of gravity 

 

Consequently, the direction of bed shear stress for continuously varying curvature in 

steady flow conditions can be calculated by: 
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s
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s

s

s

s
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


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
 tan
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 (2.14) 

 

Where  

ss  Stream-wise coordinate along the streamline,  

Rs  Radius of curvature of the streamlines 

h  Water depth 

sf Length scale for secondary flow adaptation 

 

The equation is transformed into a fixed (s, n) coordinate system through the following 

equations: 
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(2.15) 
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


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22 qp

q

s

n

s 





 where p and q are the fluxes in the two 

horizontal directions as shown in Figure 2.2 we get: 
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Which finally leads to: 
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n
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s
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22
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 (2.17) 

 

The equation is solved numerically with the MIKE21 AD (advection-dispersion) model with 

  0=t/s  tan , no dispersion and a source term.  
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Figure 2.5 Transformation from streamwise coordinates (ss, ns) to fixed curvilinear coordinates 

(s, n) 

 

 

 
 
Figure 2.6 Stream line curvature based on velocity vector 

 

The curvature of streamlines is calculated as a cross product between velocity and 

acceleration vector, as illustrated in Figure 2.6: 

 

|u|

|u x u|
  =  

R

1
3
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s

 (2.18) 

 

In a Cartesian (x, y) coordinate system, the acceleration vector is: 
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In a (s, n) curvilinear coordinate system, the time derivatives become: 
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Rs, and Rn are the radius of curvature of the s-axis and the n-axis, respectively. 

 

Note that the computed deviation in bed shear stress due to helical flow, tans, is based 

on the assumption of quasi-steady hydrodynamic conditions. In rapidly varying flow 

conditions, the expression does not apply. 

 

Once the deviation in bed shear stress is determined, the corresponding helical flow 

intensity can be estimated from: 
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s

s

s
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R
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 (2.24) 

 

The helical flow intensity is of importance for the analysis and parameterisation of the 

secondary flow velocity profiles. 

2.3 Vertical Velocity Profiles 

The hydrodynamic model is based on depth-averaged flow equations. However, 

information about the vertical velocity profiles is required for determining the bed shear 

stress and for the suspended sediment transport calculations in the morphological model. 

 

Introducing the Reynolds stress concept and the Prandtl mixing length hypothesis, and 

assuming that viscous (laminar) friction is much smaller than turbulent friction, the shear 

stresses in the fluid can be expressed by: 
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u
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Where 

 Density of water 

u Velocity in main flow direction 

z Vertical coordinate 

E Turbulent (eddy) viscosity coefficient 

s Shear stress in main flow direction 

 

A similar relation for n applies for the transverse direction. Introducing this into the 

Navier-Stokes equations (see Olesen, 1987) and assuming steady conditions, the 

following flow equations for the flow in the longitudinal, s, and the transverse direction, n, 

emerge: 
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Where 

 Density of water 

u Velocity in longitudinal flow direction 

v Velocity in transverse flow direction 

w Velocity in vertical direction 

P Pressure 

s Coordinate in stream wise direction 

n Coordinate in transverse direction 

z Vertical coordinate 

R Radius of curvature of the main streamline 

E Turbulent (eddy) viscosity coefficient 

 

By assuming a hydrostatic pressure distribution P over the vertical, water pressure is 

simply a function of the water depth. 

The vertical distribution of flow velocity can be obtained by asymptotic expansion. First, 

the zero order approximation of the longitudinal velocity is obtained from Eq. (2.26), 

assuming v and w and the gradient of the main velocity (du/ds) to be zero (i.e. fully 

developed flow). Next, the transverse velocity is computed from Eq. (2.27) with the zero-

order longitudinal velocity inserted and disregarding v dv/dn and w dv/dz. 

 

A first order approximation of the longitudinal velocity could be obtained by introducing the 

first order secondary flow velocity v into Eq. (2.26). De Vriend (1981a) and De Vriend & 

Struiksma (1983) describe this. The references show that the form of the first order 

solution differs slightly from the zero order solution. 

 

The boundary conditions for Eq. (2.26) are zero shear stress at the free water surface and 

no slip at the bottom (z0, the roughness height). 

 

zb

 
 
Figure 2.7 Vertical velocity profile, stream wise direction 

 

The reference level zb shown in Figure 2.7 defines the limit between suspended load and 

bed load transport. Thus, h is the height at which suspended sediment transport occurs, 

and H is the total water depth. In the following two non-dimensional vertical coordinates  

and  are introduced. The -system has its origin at zb and is defined as  = z/h, while the 

-system has its origin at the bed and is defined as  = z/H. 
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The height of the reference is chosen as zb = 0.02H in order to fit with the theory of 

Galapatti (1983), who couples suspended sediment transport to the vertical velocity and 

concentration profiles. 

 

The velocity profile can be related to the depth-averaged velocity by applying a unit profile 

function p1(), as shown below. 
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z
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1
  (2.28) 

 

Solution of Eq. (2.26) requires information about the vertical eddy viscosity or the mixing 

length (using Prandtl’s definitions). Applying a logarithmic velocity profile (fully developed 

rough flow), the unit profile becomes: 
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The value of 0 is obtained from the closure criterion: 
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The equation is solved by iteration. 

 

As seen from Eq. (2.29) and Eq. (2.30), the velocity profile only depends on vertical 

coordinate  and resistance number, which is convenient for numerical purposes. 

Therefore, the mainstream velocity profile for fully developed turbulent flow can be 

parameterised by the universal function: 
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Where uf is the friction velocity and C the Chezy number. 

 

The profile specified by Eq. (2.29) is evaluated at a number of discrete points located 

along a logarithmic axis, so that the most intense resolution is obtained near the bottom 

where the largest velocity gradients occur. In the  coordinate system, discrete vertical 

points are obtained from the relation: 
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Where 

 Non-dimensional coordinate =z/h 

n Number of numerical points. Default is 200 

j Index for vertical level with 1=0 and n=1 

 

The coordinates of the -system are transformed to the -system using: 
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   102.0  (2.33) 

 

It follows that Eq. (2.29) can be used to calculate the velocity profile. 

 

The profile of the secondary flow is illustrated in Figure 2.8 and Figure 2.9: 

 

secondary

s

n
primary

 
 
Figure 2.8 Sketch of the river channel 

 

 

 

(primary)

(secondary)

 
 
Figure 2.9 Main and secondary velocity profiles 

 

The truncated first order version of the momentum equation in the transverse direction 

express the equilibrium between pressure forces, friction forces and centripetal forces: 
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Where the transverse shear stress is given by: 
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And the symbols represent: 

 

z = H Vertical coordinate 

P = gS Hydrostatic water pressure 

S Surface elevation 

u  Depth-averaged velocity 

v Transverse (secondary) velocity 

Rs Radius of curvature of stream line 

n Transverse (horizontal) coordinate 

 

The vertical eddy viscosity coefficient is assumed to be parabolic: 

 

   uH = -1uH = E ff  (2.36) 

 

Where 

 Non-dimensional eddy viscosity 

 Von Kárman’s constant (=0.4) 

 

Equilibrium is achieved when the sum of pressure, friction and centripetal force equals 

zero.  

 

Likewise the primary flow profile, a normalised profile p2 for the secondary velocity profile 

v, is applied: 
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Where 

u  Depth-averaged velocity 

Rs Radius of curvature of stream line 

H Water depth 

is Helical flow intensity  

 

By insertion of Eqs. (2.35) - (2.37) into Eq. (2.34) the following expression is produced: 
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Averaged over the depth, the secondary flow is by definition zero. Near the bottom at  

=0 the velocity vanishes. Thus, the following two conditions must be fulfilled: 
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  002 p  (2.40) 

 

The first term in Eq. (2.38) is constant over the depth. This means that the term can be 

substituted by a constant denoted A: 
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Integration of Eq. (2.38) from an arbitrary level in the water column  to the water surface 

 = 1 and substituting Eq. (2.41) into Eq. (2.38) results in the following expression: 
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Where the shear stress term used on the left side is equal to zero at the free surface, 

which is due to the fact that no shear forces is assumed to act on the free surface. 

 

Eq. (2.42) can be rewritten as:  
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The secondary velocity profile described by p2() can now be obtained by integration of 

Eq. (2.43) from the level with no slip velocity ( = 0) at which p2(0) = 0. This yields: 

 

 














 





 










00

11
)(

1
2

1 dA - ddp
u

u
 = p

f

2
 (2.44) 

 

The function p2() is conveniently split up into two functions:   
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Where the function p21() is given by: 
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And the function p22() is given by: 
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The integration constant A representing the transverse surface slope is determined by the 

identity from Eq. (2.41) and results in the following expression: 
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The function p21() is singular for  = 1, which requires special numerical treatment. 

Furthermore, p21() consists of integrals with no analytical solution and therefore only can 

be solved by numerical integration. However, the inner integral in Eq. (2.46) can be 

solved analytically. This yields: 

 

     












2
00

2
022

1

0

2

22

1

2
1

lnlnln2ln2lnln221

ln)(













 

C

g

d
C

g
dp

 (2.49) 

 

Inserting the right hand side of Eq. (2.49) into Eq. (2.46) yields: 

 

 





















 

































0 00

1

ln

1

ln
ln12

lnln22 2

03

0
2

0

3
dd

C

g
d

C

g
 = )(p21

 
(2.50) 

 

The first integral in Eq. (2.50) has the analytical solution: 
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The two remaining integrals in Eq. (2.50) do not have any analytical solutions and are 

evaluated by numerical integration. For  = 1 some problems can occur due to the 

singularity. However, by use of the rule of L´Hospital, it can be found that: 
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Due to the fact that only the part of the water column from min = 0.02 and up to the free 

surface is resolved the contribution from the flow below this level is evaluated as: 
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and 
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The shape of the primary and secondary velocity profiles that are used for the evaluation 

of the suspended sediment transport rates are plotted in Figure 2.10 and Figure 2.11, 

respectively for four different Chezy numbers. 
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Figure 2.10 Shapes of the primary velocity profile for varying Chezy numbers 

 

 

 
Figure 2.11  Shapes of the secondary velocity profile for varying Chezy numbers 

 

As shown, the absolute value of the profile functions near the bottom increases for 

increasing Chezy number, i.e. reduced flow resistance. 

 

The shape of the velocity profiles is sketched in Figure 2.12 for two Chezy numbers (from 

Olesen, 1987) and compared with the profiles obtained using a power assumption on the 

velocity profile instead. Only slight differences between the flow profiles of the different 

mixing length models (power profile versus logarithmic velocity profile) can be observed in 

the figure, although the logarithmic model seems to result in a somewhat larger 

secondary flow. 
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Figure 2.12 Vertical distribution of eddy viscosity and flow velocity (from Olesen, 1987) 

 

The depth integration of the mathematical model is based on an assumption that the 

horizontal streamlines are approximately parallel through the water column. This means 

that the secondary velocity component v is much smaller than the main flow component u. 

Due to the non-uniform velocity distribution over the depth, some velocity distribution 

coefficients on the flow convection terms emerge, as discussed by Olesen (1987). Eqs 

(2.26) and (2.27) are by depth integration transformed into: 
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In Eq. (2.55) and (2.56) the velocity distribution coefficients are defined as: 
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and 
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The coefficient kuu is very close to unity and in most cases can be disregarded (default 1). 

The ksn coefficient is related to the convection of the main flow momentum by the 

secondary flow. Kalkwijk et al. (1980) and Olesen (1987) investigated the influence of the 
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secondary flow convection. The latter also compared velocities from flume tests with 

numerical experiments using different models of the ksn coefficient. For narrow and 

smooth channels, the ksn coefficient has some importance, whereas for natural rivers the 

effect is negligible. Consequently, the convection of momentum by secondary flow is not 

included in the present model. 
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3 Sediment Transport 

Traditionally, three types of sediment transport are defined: Bed load, suspended load 

and wash load. Among others, a comprehensive description is given by Engelund & 

Hansen (1967) and Jansen et al. (1979). 

 

The latter defines bed load transport as the transport of bed material that is rolling and sliding 

along the bed. Suspended load transport is defined as the transport of sediment, which is 

suspended in the fluid for some time. According to the mechanism of suspension, suspended 

sediment may belong to the bed material load and the wash load. Wash load is defined as 

the transport of material finer than the bed material. It has no relation to the transport 

capacity of the stream. Usually, a grain diameter of around 0.06 mm divides the region of 

wash load and bed material load. 

 

Sediment transport

(Origin)

Bed Material

Wash Load

Bed Load

Suspended Load

Sediment transport

(Mechanism)

 

 

Figure 3.1 Classification of sediment transport. From Jansen et al. (1979) 

 

For morphological development of alluvial rivers with interaction between bed bathymetry 

and hydrodynamics, only bed material transport is of interest. Thus, only bed load and the 

part of the suspended load originating from the bed material is considered. The behaviour 

of suspended load is fundamentally different from that of bed load, which has to be taken 

into consideration in the sediment transport modelling. 

 

A description of the suspended load transport modelling is provided in Section 3.1. A 

description of bed load transport modelling is provided in Section 3.2. A number of explicit 

sediment transport formulas for bed load, suspended load and total load have been 

developed over the years. The formulas implemented in the present modelling system, at 

the core of the sediment transport modelling, are described in Section 3.3. 

3.1 Suspended Load Transport 

The model for suspended sediment transport is based on the theory described by 

Galappatti (1983). The partial differential equation that governs the transport of 

suspended sediment by convection and turbulent diffusion is: 
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Where 

z Vertical coordinate 

c Concentration of suspended sediment 
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 Turbulent diffusion coefficient 

ws Fall velocity of sediment particles in suspension 

u, v, w Flow velocity in x, y and z direction, respectively 

 

If the diffusion terms other than the vertical diffusion term are neglected, then the equation 

along a streamline is: 
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Where 

 

s Stream-wise coordinate 

n Transverse coordinate 

u Main flow velocity in stream wise direction 

v Secondary flow velocity in transverse direction 

 

Velocities are represented in the following way as discussed in Section 2.3: 

 

)(pu = u(z)
1
  (3.3) 

 

)(p
R

Hu
 = v(z)

2
s

  (3.4) 

 

Where 

u  Depth-averaged flow velocity 

Rs Radius of curvature of stream line 

H Water depth 

p1 Primary velocity profile (longitudinal) 

p2 Secondary velocity profile (transverse) 

 Non-dimensional vertical coordinate z/H 

 

The surface boundary condition of Eq. (3.2) specifies zero sediment flux across the 

boundary: 

 

z=z  for    ,0 = 
z

c
 + cw surfaces



   (3.5) 

 

The boundary condition at the bed is a bottom concentration: 

 

zz     cc Abed  for  (3.6) 

 

Where 

zA  The level just above the river bed, which divides the region of suspended 

load and bed load. 

 

A special asymptotic approximation technique developed by Galappatti (1983) provides 

information about the concentration profile. This technique is applicable for conditions where 

the vertical diffusion coefficient and the fall velocity term are the dominating terms in Eq. 

(3.1), or that e, defined in Eq. (3.7), is very small: 
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 (3.7) 

 

Where 

h The height of the water column at which suspended transport occurs 

L length scale of variations in main flow direction 

ws fall velocity 

U average flow velocity 

e non-dimensional number 

 

The model developed by Galappatti has been extended in the third dimension. The 

general solution for slowly varying flow is based on the assumption that the concentration 

profile is made up of a sum of profiles of increasing orders: 
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Where c0 is the zero-order contribution to c, c1 is the first order contribution, c2 the second 

order contribution, etc. 

 

The concentration of different orders is found by solving Eq. (3.2). First the c0 

concentration is obtained by considering equilibrium between settling of suspended 

sediment and vertical diffusion: 
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The zero-order concentration c0 obtained from the solution of Eq. (3.9) is substituted on 

the left side of Eq. (3.2):  
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This is repeated for the first order concentration c1, so that the equation for the second 

order concentration c2 now becomes: 
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Equations for the higher order concentration profile can be found in the same manner, but 

usually one stops with the second order contribution. 

 

The following non-dimensional parameters are introduced: 

Suspension time scale: 

 

t
h

w
 = s   (3.12) 

 

Two horizontal length scales for suspended sediment in the stream-wise and transverse 

directions, respectively: 
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Vertical length scale: 
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A differential operator D is introduced: 
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Where 

' Non-dimensional turbulent diffusion coefficient /(wsh) 

 

The Eqs. (3.9), (3.10) and (3.11) can now be transformed into a non-dimensional form: 
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Eq. (2.18) is valid for orders of ci greater than or equal to 1. The last term will be omitted, 

which implies that the vertical velocity w is much smaller than the fall velocity of the 

suspended sediment ws. The boundary condition at the free water surface specified in Eq. 

(2.5) must be valid for all orders of the concentration, i.e. 
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Furthermore, it is assumed that higher order concentration profiles do not contribute to the 

mean (zero order) concentration, i.e. 
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As for the velocity profiles, it is convenient to operate with unit concentration profiles for 

the suspended sediment. Thus, the zero order concentration profile is the product 

between the depth-averaged concentration and a unit profile function 0():  
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The following discussion considers concentration terms of higher order: 
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Galappatti (1983) shows that a differential equation of the type D[F()] = G(), with a free 

surface (= 1) boundary condition F + 'dF/d and a restriction that F is zero when 

integrated from = 0 to = 1, has the solution: 
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Where the constant B is obtained from the requirement: 
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Higher order concentrations ci (i > 0) can be obtained using this solution technique once 

the zero order concentration c0 is known, i.e. from Eq. (3.18): 
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Thus, if we do not distinguish between H and h, the first order expression for vertical 

concentration profile based on the asymptotic approximation technique becomes: 
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Where the higher order concentration profiles i are solved from Eq. (2.22): 
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The zero order solution to Eqs. (3.9) and (3.17) is based on an exponential profile with 

modified Rouse parameter (Galappatti 1983, who refers to Delft Hydraulics Laboratory, 

1980): 

 

] )f( Z[ = )(0   exp  (3.29) 

 

Where f() can be expressed as a function of  or of the non-dimensional vertical 

coordinate  that was used to obtain the vertical velocity profiles. The function is split into 

two expressions for the lower and upper part of the fluid: 
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The modified Rouse number is defined by: 
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Where 

uf Friction velocity 

z Non-dimensional concentration reference level over the river bed 

(zb/H)/(1-zb/H) 

 

The first term in Eq. (3.25), i.e. the zero order term, describes the equilibrium profile, 

whereas the first order terms represent the temporal as well as spatial variations in the 

concentration profile. 

 

The profile functions o, 1 and 2 are used in the model to transform from depth varying 

c to the depth averaged. For calculation of the depth-averaged concentration, the bed 

boundary condition is solved by the following equation system: 

 

(0) c = 0) = (c = 0)=c( oee   (3.33) 

 

Inserting Eq. (3.33) into Eq. (3.25) the following is achieved at the bed boundary: 
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Or by introducing the following four coefficients: 

 

0  = 0(0), t = t(0), 1 = 1(0), 2 = 2(0)  

 

Eq. (3.34) now yields: 
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Until now, the transport equation has referred to a coordinate system (s, n) coinciding with 

the streamlines. Transformation from stream coordinates to fixed (x, y) coordinates as 

sketched in Figure 3.2 is determined by: 
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Where U is the speed determined by: 

 

v + u = U
2 2 

 (3.38) 

 

 

 
 
Figure 3.2 Transformation from stream wise (s,n) coordinates to fixed (x,y) coordinate system 

 

 

Substitution of Eqs. (3.36) and (3.37) Eq. (3.34) yields: 
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By further reduction using 
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The profile functions change the standard advection-dispersion equation. The time 

derivative is multiplied by a factor (less than one), which incorporates the time delay due 

to vertical transport (which corresponds to a distorted time scale according to 0).  

 

The convection terms are modified due to secondary flow, which 'disturbs' the 

concentration profile (represented by 2). Numerically, the velocities in the two directions 

in the advection-dispersion model are modified compared to the hydrodynamic model. 

 

The last term (erosion/deposition) is multiplied by a factor that incorporates differences in 

the time scale for adaptation to the equilibrium profile. With a high fall velocity (coarse 
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sediment), the model will respond faster to any changes in the local equilibrium 

concentration, ce. This is commonly referred to as the time lag of the sediment model. 

 

The non-uniform vertical profile of concentration implies that the effective fall height of 

grains will be less than the water depth, due to more suspended grains close to the bed. 

This is included in the 0 term. When the transport is computed by integrating velocity and 

concentration, the non-uniform profiles in general cause less advection and more 

dispersion, which is determined by the 1 term. 

 

Additional dispersion (which may be necessary during calibration) can be specified using 

normal dispersion coefficients in the model input specification. Note that the coefficients 

should not include dispersion due to non-uniform vertical profile, which is included 

implicitly. 

 

For a uniform distribution of sediment over the vertical (wash load), all  coefficients are 1 

except 2 (net convection over the vertical due to helical flow), which is zero. The 

adaptation to changes in equilibrium concentration would be very slow due to the reduced 

erosion-deposition term. 

 

As discussed later, a quasi-steady approach can be adopted in the sediment transport 

model to perform long-term simulations. Therefore, the first coefficient on the temporal 

term dc/dt is not implemented in the present model. It is still possible to simulate either the 

quasi-steady profile (by iteration of Eq. (2.40) or the actual profile by neglecting the 

modification of concentration profile due to temporal variations. 

The suspended sediment transport in the stream wise direction is found by integrating: 
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Substituting the concentration in Eq. (3.24) into Eq. (3.41) gives: 
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Eq. (3.42) can be rewritten in a more compact form: 

 






















c

wR

hu
 + 

c

w

h u
 + 

t

c

w

h u
 + c h u = S

ss

32

21

s

22

11

s

2

ts 101  (3.43) 

 

Where: 
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Due to helical flow there is also suspended sediment transport in the transverse direction 

(across the depth-averaged streamline). This transport can be found by: 
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Where v(z) represents the helical velocity profile. Substitution of Eq. (3.25)into Eq. (3.48), 

yields: 
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Eq. (3.49) can also be written as: 
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Where 
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Transformation of stream wise Ss and transverse Sn sediment transport rates into a fixed 

(x, y) coordinate system gives: 
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Which by substitution gives: 
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and 

 








































































































U

u

y

c
 + 

U

v

x

c
- 

U

u

w R

h U + 
U

v

wR

h U +

U

v

y

c
+

U

u

x

c

U

u

wR

hU+
U

v

w

hU +

t

c

U

u

wR

hU
+

U

v

w

hU
+c

U

u

R

hU
+

U

v
hu =S

s
2

42

22

s

32

21

s

32

12

s

22

11

s

3

t

s

2

t

2

y





 210201

 (3.60) 

 

Rearrangement and substituting h u = p and h v = q  into Eqs. (3.59) and (3.60) gives the 

equations used in the sediment model: 
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The coefficients i in the advection-dispersion Eq. (3.40) and the ij coefficients in Eqs. 

(3.59) and (3.60) are integrals, which are solved numerically. The distribution of vertical 

discrete points is similar to the approach described for the velocity profiles. Instead of 

computing the coefficients at all time steps and all grid points in the modelling area (which 

would require substantial computer power), the coefficients are solved once at the 

beginning of the simulation for a certain number (and combination) of input parameters. 

The obtained values are stored in tables from which interpolated values can be extracted 

during the simulation. 

 

3.2 Bed Load Transport 

The interaction between the bed load and the alluvial bed is one of the most fundamental 

aspects of the morphological behaviour of a river bend (see Engelund, 1974 and 

Struiksma et al., 1985). 

 

In contrast to the suspended load, it is assumed that the bed load responds immediately 

to changes in local hydraulic conditions. Thus, there is no need for advection-dispersion 

modelling in connection with bed load. However, two important effects must be taken into 

account: 

 

1. The deviation of the direction of the bed shear stress from the mean flow direction 

due to helical flow; and 

2. The effect of a sloping river bed. 

 

The first issue requires separate modelling of helical flow prior to bed load computations 

(see Section 2.2). 
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When discussing the local bed load sediment transport capacity of a flow it is convenient 

only to consider sediment transport in uniform shear flow. For this schematised case 

numerous transport relations have been presented during past decades. For a review of 

this topic, suggested references are Vanoni (1975 and 1984). The transport relations 

implemented in the present modelling system are presented in Section 3.3. 

 

The bed load sediment transport is assumed to be the same as the sediment transport 

capacity mentioned above, except for bed slope effect and helical flow effect. This is 

illustrated in Figure 3.3. 

 





v

 

 

Figure 3.3 Direction of bed load transport influenced by helical flow and transverse bed slope 

 

Bed slope influences the sediment transport rate and direction (the latter being the most 

important for morphological modelling). Only a few models of the influence of bed slopes 

on sediment transport rate have been proposed, see Lane (1953), Luque (1976), Koch 

(1980), Ikeda (1980), and Olesen (1987). In principle, two approaches have been 

adopted. The first modifies the critical shear stress for initiation of motion: 
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Where 

c Modified critical Shields parameter 

c0 Critical Shields parameter in uniform shear flow 

zb Bed level 

s Stream-wise (horizontal) coordinate 

 

The slope effect on sediment transport rate given by Eq. (3.63) cannot be directly 

incorporated into a model that does not assume zero bed load transport at a critical shear 

stress (e.g. the Engelund and Hansen formula). For this kind of formula, the following 

correction can be applied: 

 

S 
s

z
 - 1 = S bl

*

s 











  (3.64) 

 



Sediment Transport  

 39 

Where 

 Model calibration parameter  

Sbl Bed load as calculated from sediment transport formula 

Ss Bed load along streamline, s 

 

The Eq. (3.64) is implemented in the present modelling system. The coefficient  has to 

be specified. An estimate of the coefficient can be obtained by estimating the velocity 

exponent b in the generalised sediment transport formula = au
b
 (u, is flow velocity, a, a 

constant factor, and , the non-dimensional sediment transport) by comparison with the 

Meyer-Peter & Muller (1948) formula = 8(' - c)
1.5

. This gives: 
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3
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 (3.65) 

 

Where 

' Effective skin friction 

c Critical Shields parameter 

b Velocity exponent in = au
b
 

a Constant factor 

u Flow velocity 

 Non-dimensional sediment transport rate 

 

Using the total load formula of Engelund and Hansen (1967) the velocity exponent b is 5 

(constant). Using Eq. (3.65), b varies from infinity at the threshold of motion to 3 for very 

high shear stresses. 

 

Secondly, the modified critical Shields parameter from Eq. (3.63) is substituted into the 

Meyer-Peter & Muller (1947) formula. If Eq. (3.63) is linearised with respect to the bed 

slope dz/ds, the following expression for the  coefficient is obtained: 

 







 0c

2

b
 =  (3.66) 

 

The coefficient varies from around = 1.5 for ' = 2c0 down to ≈ 0.2 for ' = 9c0. In the 

present modelling system however, the  coefficient is specified as a constant throughout 

the modelling period. 

 

The prediction of transverse depth distribution in alluvial channel bends has had 

considerable attention from river engineers, as it is essential in investigations of 

navigability improvement in river bends and in design of optimal channel bank protection. 

Since the pioneering work of van Bendegom (1947), many models of transverse bed 

slope have been proposed. Most of these can be reformulated so that they also predict 

the direction of sediment transport. Olesen (1987) gives an exhaustive description of the 

proposed models. Talmon et al. (1995) has carried out extensive bed levelling 

experiments for verification of mathematical models of the transverse bed slope effect, 

which in line with Kikkawa et al. (1976), Parker (1982), Odgaard (1981), and Ikeda (1981) 

suggested the following suitable formula: 

 

S 
n

z
G -  = S bl

*
a-

sn 











tan  (3.67) 

 

Where 

G Transverse bed slope factor (calibration coefficient) 
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a  Transverse bed slope exponent (calibration parameter)  

tans  Bed shear direction change due to helical flow strength, see Section 2.2.  

 

The values of the transverse bed slope factor G and the exponent a, differs somewhat 

between the various authors. Especially, when results from laboratory flumes are compared 

with the results from prototypes. For the laboratory flume case the best fit seems to be 

obtained by: 

 

G = 0.6 and a = 0.5 

 

Talmon et al. (1995) concludes from their experiments that a distinction should be made 

between laboratory conditions and natural rivers. The magnitude of the transverse slope 

effect (G) and the direction coefficient () of the secondary flow seem to differ by a factor 

of two. Also, the distribution between suspended and bed load transport is important. The 

G factor is at least a factor 2 stronger for conditions with prevailing suspended load, 

indicating that either the transverse slope effect is also acting on the suspended load part 

or the transverse slope effect is simply stronger. This means that the following values 

should be used for natural rivers: 

 

G = 1.25 and a = 0.5 

 

If the angle between flow direction and the x-axis is  in a fixed (x, y) coordinate system, 

bed slopes are computed as: 

 

 sincos  
y

z
 +  

x

z
 = 

s

z
*












 (3.68) 

 

Where 

z
*
 Bed level at the centre point in the numerical scheme 

s The horizontal coordinate along the streamline 

n The horizontal coordinate in the transverse direction 

x The first horizontal coordinate 

y The other horizontal coordinate 

z The bed level as computed by the morphological model 

 Angle of stream line compared to (x, y) coordinate system 

 

The bed slope calculation in the stream wise direction is fully centred in the considered 

grid point. The bed slope in the transverse direction, which is upstream centred, is: 

 

 sincos  
x

z
 -  

y

z
 = 

n

z
*












 (3.69) 

 

Transformation from streamline coordinates to fixed coordinates gives the following 

expression for the transport in x- and y-direction: 

 

 sincos  S +  S = S nsx  (3.70) 

 

 sincos  S -  S = S sny  (3.71) 
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3.3 Sediment Transport Formulae 

Sediment transport capacity in uniform shear flow has been extensively investigated over 

the years. For instance, reviews are given in Vanoni (1984). This section discusses the 

sediment transport formulas used for calculation of bed load and suspended load 

transport capacity (equilibrium concentration at the riverbed) which are implemented in 

the present modelling system. 

 

The following symbols are applied. 

Symbols 

Sbl : Bed load <m
2
/s> 

kb : Bed load calibration factor < -  > 

Ssl : Suspended load <m
2
/s> 

ks : Suspended load calibration factor < -  > 

ts : Time scale < s  > 

s : Relative density of the sediment < -  > 

Stl : Total load <m
2
/s> 

ce : Equilibrium mass concentration <g/m
3
> 

C : Chezy number <m
½
/s> 

u : Velocity <m/s> 

 

All sediment transport formulas described herein exclude the effect of riverbed porosity, 

which is included in the continuity equation for update of bed level instead. 

 

Some of the formulas only predict total load (bed load + suspended load), whereas 

information about both bed load and suspended load is required. The total load formulas can 

still be applied by using the calibration factors kb and ks for bed load and suspended load, 

respectively, in order to differentiate between the two modes of transport. Assume for 

instance a total load formula. By specifying kb = 0.1 and ks = 0.9, it is understood that 10% of 

the transport is bed load. 

 

Due to the non-uniform vertical distribution of the suspended sediment concentration, the 

effective fall height of grains will be different from the mean fall height h/2 (where h is water 

depth). For a uniform vertical concentration profile, the time scale for settling is defined as 

h/ws (ws is the settling velocity). With information about the Rouse number Z, the actual 

concentration profile can be predicted and therefore a better estimate for the time scale ts 

can be obtained. It should, however, be noted that in the suspended load transport model 

described in Section 3.1, the time scale is automatically accounted for by using the described 

profile functions, i.e. ts = (h/ws)(1/0). In that case the time scale ts, as predicted from the 

formulas below, are not used. 

 

The Shields parameter  is defined as: 

 

50)1( dsg
 = 




  (3.72) 

 

Where 

 The flow shear stress 

 Density of water, approx. 1000 kg/m
3
 

g Acceleration of gravity, 9.81 m/s
2
 

s /s relative density of the sediment 

s Density of sediment, for normal sand 2650 kg/m
3
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Flow shear stress is divided into form drag '' and skin friction '. The total shear stress = 

' + '' is estimated from the local flow velocity u and the local Chezy number C: 

 

C

u
g = 

2

2

  (3.73) 

 

For skin friction, the following approximate friction formula (Engelund & Hansen, 1967) is 

applied unless otherwise calculated (i.e. in the model of van Rijn or the model of 

Engelund and Fredsøe, where more sophisticated models are used to describe the 

physical processes): 

 

 20.4 + 0.06 =   (3.74) 

 

The non-dimensional sediment transport rate is defined as: 

 

d1)g-(s

S
 = 

3
  (3.75) 

 

Where 

S Sediment transport (bed load, total or suspended load) 

d Characteristic grain size 

 Non-dimensional sediment transport 

 

3.3.1 Engelund and Hansen model 

The model by Engelund and Hansen (1967) is a total load model that divides the 

sediment transport into bed load and suspended load by the relations: 

 

Sk = S tlbbl   (3.76) 

 

Sk = S tlssl   (3.77) 

 

Where the total sediment transport is obtained by: 

 

d g 1)-(s  
g

C
 0.05 = S

3
502

52

tl   (3.78) 

 

The time scale ts for adaptation to the equilibrium concentration profile is determined by:  

 

s

s
w

h
 = t
2

 (3.79) 

 

The equilibrium concentration is simply specified as the suspended load divided by the 

water flux and converted from volumetric concentration to mass concentration: 

 

10 s 
hu

S
 = c

6sl
e 


 (3.80) 
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3.3.2 Van Rijn model 

Van Rijn (1984) proposed the following models for sediment transport of bed load and 

suspended load: 

 

3

503.0
*

1.2

)1(053.0 dgs
D

T
Sbl   (3.81) 

 

Where T is the non-dimensional transport stage parameter and given by: 

 

1 - 
u

u
 = T

cf,

f

2













 
 (3.82) 

 

In Eq. (3.82) the critical friction velocity uf,c is determined as: 

 

d g 1)-(s  = u 50ccf,   (3.83) 

 

The effective friction velocity is estimated from: 

 

C

g
u  = u f


  (3.84) 

 

Where the resistance (Chezy number) originating from skin friction is based on a 

logarithmic velocity profile assuming a certain bed roughness: 

 













90

4
log18

d

h
C  (3.85) 

 

The non-dimensional particle parameter D* in the bed load transport formula specified in 

Eq. (3.81) is defined as: 

 











2

3

1

50*

g 1)-(s
 d = D  (3.86) 

 

Where  is the kinematic viscosity and approximately equal to 10
-6
 m

2
/s for water. 

 

Instead of using a constant critical Shields parameter c (approximately equal to 0.06), van 

Rijn assumes the following variation as a function of D*, see Table 3.1. 
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Table 3.1 Relations for determination of critical Shields stress 

 

Range of D* θc 

D* < 4 0.24/D* 

4 < D* < 10 0.14 D*
-0.64

 

10 < D* < 20 0.04 D*
-0.1

 

20 < D* < 150 0.013 D*
0.29

 

D* > 150 0.055 

 

Suspended sediment transport occurs only if one of the following criteria below is fulfilled. 

 

10for      
4

*

*

 D
D

w
u s

f  (3.87) 

 

10for      4.0 *  Dwu sf  (3.88) 

 

The reference level, at which the bed concentration is determined, is expressed as: 

 















d 2

h 0.01
 = a

50

max  (3.89) 

 

The volumetric bed concentration is obtained from the relation: 

 

 33

3.0
*

/ mm
D a

T d
0.015 = c

1.5
50

a   (3.90) 

 

In Figure 3.4 the reference level and the bed concentration are sketched. 

 

 

 
 
Figure 3.4 Definition of the reference level a for the bed concentration Ca 
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A correction coefficient, denoted  is applied to the hydrodynamic diffusion coefficient in 

order to transform the coefficient into a diffusion coefficient for the suspended sediment: 

 

 
u

w
2 + 1 = 

f

s

2














  (3.91) 

 

Van Rijn defines a correction factor  for the concentration profile, which is determined 

by: 

 





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




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




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c
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u

w
 

2

5
 = 

o

a

0.4

f

s

0.8

  (3.92) 

 

Where c0 (if expressed as volumetric concentration) is the concentration corresponding to 

firm packing of the sediment, i.e.: 

 

mm 0.65 = c
33

o /  (3.93) 

 

Applying the correction coefficients defined above a Rouse suspension parameter Z, can 

be obtained by: 

 




 + 
u  

w
 = Z

f

s
 (3.94) 

 

Finally, the depth-integrated transport of suspended load is computed as: 

 

hucf = S asl   (3.95) 

 

Where the correction factor for suspended load is obtained from: 

 

 Z-1.2 
h

a
-1

h

a
 - 

h

a

 = f
Z

1.2Z



























 (3.96) 

 

The equilibrium concentration ce and the height above the bed of the centroid of the 

concentration profile are calculated from the approximations formulas given in the Table 

3.2 below: 
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Table 3.2 Polynomial approximations for determination of the equilibrium concentration and 

centroid height 

 

Condition Corresponding value of Ce and h* 

Z   1  Ce = Ca(2.21Z - 6.41)Z + 7.21)Z - 3.95]Z + 0.97]  

h* = h(0.119Z - 0.085)Z – 0.400)Z + 0.505] 

1  Z   3 Ce = Ca(0.007Z - 0.06)Z + 0.220)Z - 0.347]Z + 0.22]  

h* = h(-0.027Z + 0.208)Z – 0.536)Z + 0.493] 

Z  > 3 Ce = Ca(410
-6 

Z - 1.210
-4

)Z + 1.410
-3

)Z - 7.6710
-3

]Z + 0.018]  

h* = h(-4.8710
-5 

Z + 0.0011)Z – 0.0091)Z + 0.0361] 

 

The time scale for adaptation to the equilibrium profile is: 

 

s

s
w

h
 = t

*  (3.97) 

 

3.3.3 Engelund, Fredsøe and Zyserman model 

The probability of a moving sediment grain can, according to Engelund and Fredsøe 

(1976), be determined by the expression: 
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
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

c

d

= p  (3.98) 

 

 

The dynamic friction coefficient d is assumed to be equal to: d= 0.51 = tan27. The 

non-dimensional skin shear stress is defined by: 

 

d g 1)-(s

u
 = 

50

f

2 '

   (3.99) 

 

Where the friction velocity related to skin friction is calculated from the assumption of a 

logarithmic velocity profile: 

 











d

h

u
 =u

50

f

5.2
ln5.26

'  
(3.100) 

 

The bed load transport rate is estimated from: 

 

d g 1)-(s )0.7 - (p 5 = S
3
50cbl    (3.101) 
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The reference concentration near the bed is calculated from an empirical relation obtained 

by Zyserman and Fredsøe (1994): 

 

 

  75.1

75.1

46.0

331.0
1

331

c

c
b

0.
 = c








 

(3.102) 

 

The empirical relation was established from analysis of the experimental data sets of Guy 

et al. (1966) and covers a range from pure bed load to dominant suspended transport. 

The influence of lateral bed slope is included in the relation through a reduced critical 

Shields stress for onset of motion. 

 

Numerical integration is performed along a logarithmic vertical scale, because a greater 

density of computational points is required close to the bottom, where the largest velocity 

gradients occur. The non-dimensional vertical coordinate is obtained from the relation: 

 

  +  = j

1-jj

108.1   (3.103) 

 

Where the step height  is determined by: 
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01.-1

1
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(3.104) 

 

Due to the specific value of the exponent in Eq. (3.104), it is seen that the depth is divided 

into 99 segments. The velocity profile is assumed to be: 

 





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
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
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Where the no slip level 0, is obtained from: 

 















g

C 0.4
-1-  = oo

 exp  (3.106) 

 

Eq. (3.106) is solved by iteration. 

 

The normalised vertical concentration profile is specified in the following way: 

 
Z

a

a
  = c 














1

1
)(




  (3.107) 

 

Where the reference level a, is defined by: 

 

h

d 2
 = a 50

 (3.108) 

 

The Rouse suspension parameter is defined as: 
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u 

w
  =  Z

f

s


 (3.109) 

 

The suspended load transport rate is obtained from: 

 




dcu hu  c = S bsl )()(
1

0
   (3.110) 

 

The equilibrium mass concentration ce, is determined from: 

 

 3/ mg10  s
hu 

S
 = c

6sl
e   (3.111) 

 

The time scale ts, is defined as: 

 

s

s
w

h
 = t

*  (3.112) 

 

In Eq. (3.112) the height of the centroid h* of the concentration profile above the bed is 

determined, as suggested by van Rijn. 

3.3.4 Meyer-Peter and Müller model 

The Meyer-Peter and Müller model (1948) relates the non-dimensional bed load transport 

 to the dimensionless shear stress acting on the grains through the relation: 

 

  5.1
8 cbl    (3.113) 

 

or expressed as a transport rate: 

 

    3
50

5.1
18 gdsS cbl    (3.114) 

 

where '' is the part of the Shields stress related to skin friction. The relation is only valid 

for fluvial systems with dominating bed load and slopes ranging from 0.0004 to 0.02. 

 

3.3.5 Empirical relations (Smart and Jaeggi model) 

Based on fluvial laboratory experiments Smart and Jaeggi obtained that the Meyer-Peter 

and Müller formula underestimates the sediment transport rates significantly for slopes 

steeper than 0.03. Smart and Jaeggi (1983) therefore proposed a new transport relation 

based on Eq. (3.113) that includes effects of non-uniformity of the sediment as well as the 

slope induced effect on the sediment transport. The model yields: 

 

  c
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d
 = 




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 6.0
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4  (3.115) 

 

Where 

d90 90 % fractile of the sediment 
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d30 30 % fractile of the sediment 

I Slope (water surface or bottom level) 

C Chezy number 

 

The model is only recommended for fluvial systems with a median grain diameter greater 

than 0.4 mm and sediment non-uniformity d90 /d30 less than 8.5. The application range 

with regards to slopes is from 0.0004 and up to 0.2, i.e. it is the best approach for 

mountainous rivers. The model is the default choice when selecting the empirical relation. 

 

The empirical relation is a general extended relation of the Smart and Jaeggi model that is 

specified by eight coefficients and exponents. The allowance of flexible coefficients and 

exponents makes it possible for the modeller to use special sediment transport formulas, 

which have been established for a specific location. The empirical model is made so 

flexible that different relations can be used for the bed load and the suspended load and 

for each specified fraction. The general empirical bed load formulation yields: 
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Where a1 - a8 are user specified coefficients. 

 

For the Smart and Jaeggi model the coefficients and exponents should be given as: 

 

 a1 = 4.00, a2 = 0.20, a3 = 0.60, a4 = 1.00, 

 a5 = 0.50, a6 = 1.00, a7 = 1.00, a8 = 1.00 

 

The Meyer-Peter and Müller model can be established if the coefficients and exponents 

are chosen as: 

 

 a1 = 8.00, a2 = 0.00, a3 = 0.00, a4 = 0.00 

 a5 = 0.00, a6 = 1.00, a7 = 1.00, a8 = 1.50 

 

Two additional parameters should be specified when using the empirical model or Smart 

and Jaeggi model. The first specifies whether the slope is should be related to bed slope 

or water surface slope, and the second specifies whether  should be related to the total 

Shields stress or only the skin friction '. Normally, skin friction is applied for bed load 

formulas only. 

 

The empirical relation for the suspended load formula is similar to the bed load formula, 

but can be specified with different coefficients: 
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The equilibrium concentration for the suspended sediment is determined by: 

 

10s
hu 

S
 = c

6sl
e   (3.118) 

 

Where 

s Relative density of sediment, approximately 2.65 for sand 

h Water depth 
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u Flow velocity 

 

The time scale is obtained from: 

 

w

h
 = t

s

*
s  (3.119) 

 

Where the height of the centroid above the bed is given by: 

 

2

h
 = h*  (3.120) 

 

3.3.6 Yang's model for sand transport 

Yang (1983) observed that most published sediment transport formulas for bed load or 

total load correlates the sediment transport to a single hydraulic variable in a form like: 

 

 n

crs XXaq   (3.121) 

 

Where a is a coefficient, n is an exponent and X is either water discharge, mean velocity, 

energy or surface slope, bed shear stress, stream power per unit bed area, or unit stream 

power defined as the product between the mean velocity V and the slope I. Xcr represents 

a critical value for one of the mentioned hydraulic parameters. Based on laboratory flume 

test with 0.93 mm. sand, Yang observed that the water discharge and surface slope are 

poor predictors for the sediment transport rate, because that more than one sediment 

transport rate can occur for a single value of water discharge or water surface slope. For 

both the mean velocity and the shear stress a single value relationship for the sediment 

transport rate exists. However, Yang found that the resulting curves based on these two 

parameters are quite steep, and thereby sensitive to the predicted rates. Yang found that 

the best correlations were achieved by using the stream power. However, the unit stream 

power was found to be a better predictor. Based on this analysis suggested a general 

transport formula of the form: 
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Where cppm is the bed material concentration, excluding wash load (in ppm by weight), ws 

is the settling velocity and A, B dimensionless variables related to flow and sediment 

characteristics. The coefficient values were determined by regression analysis of 463 data 

sets of laboratory data, and resulted in the following formula: 
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(3.123) 

 

Where  is the kinematic viscosity, d50 the median grain size, and uf the friction velocity. 

The product VcrI is the critical unit stream power at incipient motion. The ratio Vcr/ws is 

obtained from: 
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and 
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Which shows that it is related to the grain shear Reynolds number. 

 

The total load is obtained from the relation: 

 

610


s

Vhc
S

ppm

tl  (3.126) 

 

Where h is the flow depth and s the relative density of the sediment. The total load is 

divided into bed load and suspended load through the user-specified weight coefficients: 

 

tlbbl SkS   (3.127) 

 

tlssl SkS   (3.128) 

 

Likewise is the equilibrium concentration obtained as: 

 

ppmse ckc   (3.129) 

 

The time scale for the adaptation to the equilibrium concentration profile is obtained from: 

 

s

s
w

h
t

2
  (3.130) 

 

Even though Yang's model for sand is one of the most accurate sediment transport 

formulas, it might not be the best choice for the MIKE 21C model that uses a non-

equilibrium sediment transport description for the suspended sediment. The reason for 

this is that the transport relation gives no information on how the transport should be 

distributed between bed load and suspended load. 

 

3.3.7 Yang's model for gravel transport 

Yang (1984) adopted a transport equation of similar form for transport of gravel, but with 

modified coefficients. The model is specified by the following formula for the gravel 

concentration. 
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(3.131) 

 

Except from the modified coefficients the model is similar to the model for sand. 
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4 Morphology 

A morphological model is a combined hydrodynamic/sediment transport model. The 

hydrodynamic flow field is updated continuously according to changes in bed bathymetry. 

 

Morphological models are traditionally divided into coupled and uncoupled models. In 

coupled models, the governing equations for flow and sediment transport are merged into 

one set of equations, which are solved simultaneously. In uncoupled models, the solution 

of hydrodynamics is solved at a certain time step prior to solution of the sediment 

transport equations. Subsequently, a new bed level is computed and the hydrodynamic 

model proceeds with the next time step. The latter approach is applied in the present 

modelling system. Other sub-models such as bank erosion, bank line update, alluvial bed 

resistance, bed forms, graded sediment are also included as described in this chapter. 

 

4.1 Sediment Continuity Equation 

Following calculation of sediment transport of bed material (bed load and suspended 

load), the bed level change can be computed from the equation: 

 

S = 
y

S
 + 

x

S
 + 

t

z
n)-(1 e

yx 











  (4.1) 

 

Where 

Sx Total sediment transport in x-direction 

Sy Total sediment transport in y-direction 

n Bed porosity 

z Bed level 

t Time 

(x, y) Cartesian coordinate system 

Se Lateral sediment supply from bank erosion 

 

The total sediment transport is the sum of bed load and suspended load. For a curvilinear 

(s, n) grid, Eq. (4.1) is slightly different due to curving grid lines. This is handled 

numerically by using different s and n at inflow and outflow boundaries to each grid 

cell, see Figure 4.2.  

 



 MIKE 21C 

54 Curvilinear Model - © DHI 

 

 

Figure 4.1 Solution of sediment continuity equation 

 

 

A space centred - time forwarded difference scheme is applied. The time step is limited by 

the Courant criterion, i.e. that the Courant number should be less than 1. The wave celerity 

number can be estimated by considering the one-dimensional version of Eq. (4.1): 
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By assuming h/t = -z/t and that sediment transport is a function of Shields stress () 

only, the celerity cbw of bed form waves is found to be: 

 

h

S
=

h

S
=

z

S
=cbw

















 


 (4.3) 

 

If the Chezy number is assumed constant, then  is inversely proportional to h
2
, i.e. /h 

= -2/h. For the transport formula of the Engelund and Hansen formula, we get: 

 

h

S
5 = 

h

2S2.5
 = cbw 

 


 (4.4) 

 

Where 

S Sediment transport rate 

h Water depth 

cbw Roughly estimated bed form celerity 
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Figure 4.2 Sediment continuity equation defined in curvilinear grid 

 

 

Based on the notations shown in Figure 4.2, the continuity equation for the sediment in a 

curvilinear grid can be expressed by the following difference equation: 

 

0 = 
)n+n)(s+s0.25(

sSn-sSn+nSs-nSs
 

t

kj,z-z
n)-(1

k1,-jkj,1-kj,kj,

1-kj,1-kj,kj,kj,k1,-jk1,-jkj,kj,

n1+n
kj,







 (4.5) 

 

Where 

Ss Sediment transport rate in s-direction 

Sn Sediment transport rate in n-direction 

n Bed porosity 

t Time 

(s, n) Curvilinear coordinates 

s Space step in s-direction 

n Space step in n-direction 

(j, k) Grid coordinates 

 

To close the system a boundary condition is required at the upstream boundary. Two 

options are possible: specification of the rate of bed level change (z/t), or simply the 

transport rate (S) into the system.  

 

Theoretically, only upstream sediment transport boundary conditions are required. 

However, as the model allows change in the flow direction during a simulation, the 

sediment transport is specified at all boundaries. Each specific boundary condition 

becomes active only during inflow into the model domain. 
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4.1.1 Sediment transport boundary 

The boundary condition can be specified in every single boundary point or as the sum 

over the whole boundary. If a width-integrated value is specified (either as a constant or a 

time series), model units are m
3
/s. The model will automatically distribute the specified 

sediment transport proportionally to the local sediment transport capacity in the following 

manner: 

 

xq

q
Q=q

i
e

is,

n

1=i

e

is,

sis,


  

(4.6) 

 

Where 

qs,i Actual sediment transport rate (m
2
/s) at point i on the boundary line (i.e. 

equivalent to either Ss or Sn) 

Qs Integrated sediment transport (m
3
/s) across the boundary 

q
e
s,i Sediment transport capacity rate (m

2
/s) at point i on the boundary line 

n Number of grid points on the boundary line 

xi Spacing between grid points along the boundary (equivalent to either s or 

n) 

 

The sediment transport capacity (also called equilibrium sediment transport, because the 

sediment transport is in equilibrium with local hydraulic conditions) is calculated explicitly 

from the applied sediment transport formula. The specified sediment transport may be 

greater (or less) than the sediment transport capacity. If this is the case, erosion (or 

deposition) will take place just at the boundary line. 

 

No distinction is made between suspended load and bed load when specifying the 

sediment transport boundary condition, as it is applied directly in Eq. (4.1) or Eq. (4.2). 

However, the suspended sediment model requires a separate boundary condition for 

concentration when solving the advection-dispersion equation describing the transport of 

suspended sediment.  

 

This boundary condition for concentration is calculated automatically from the bed load 

and total sediment transport in the following way: 

 

qq=q beds,ssuss


,  (4.7) 

 

10
q

q-q
=C 3

s

beds,s
   (4.8) 

 

Where 

qs,sus Actual suspended sediment transport rate (m
2
/s) at point i  

qs,bed Bed load sediment transport rate (m
2
/s) at point i 

C Mass concentration of suspended sediment (g/m
3
) 

q Water flux (m
2
/s) at point i 

s Sediment bulk density (kg/m
3
) 

 

The actual bed load transport is the same as the bed load sediment transport capacity 

calculated from the local hydraulic conditions. Only suspended sediment can have over or 

under loading of sediment due to the time and space lag. This means that if a boundary 
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condition that exceeds the total sediment transport capacity is specified, the extra sediment 

will enter the model as additional suspended sediment.  

 

4.1.2 Bed level change boundary 

If the boundary condition is specified as a z/t condition Eq. (4.2) is not solved, as the 

specified boundary condition can be used directly to calculate the new bed level at the 

boundary. 

 

Also in this case, a separate boundary condition for mass concentration is required in 

order to solve the advection-dispersion equation for suspended sediment transport. The 

boundary condition is derived in the following way: 

 

q86400

y

t

z
+C=C e









 (4.9) 

 

Where 

C Mass concentration of suspended sediment (g/m
3
) 

C
e
 Equilibrium concentration of suspended sediment (g/m

3
) 

z/t Specified rate for bed level change (m/day) 

86400 Number of seconds per day 

q Water flux (m
2
/s) at point i 

y Spacing (m) between grid points across the boundary 

 

The relationship is based on the assumption that bed load transport is always in local 

equilibrium and that sediment continuity is preserved. A specified increase in bed level at 

the boundary therefore involves an overload of suspended sediment at the boundary. As 

with a sediment transport boundary condition, the specified value is used directly in the 

sediment continuity equation and the above formula is used only when specifying 

boundary conditions for the suspended load sub-model. 

 

4.1.3 Flood and dry points 

Points that are shallow and subject to flooding and drying require special treatment in the 

numerical model.  

 

In the hydrodynamic model, a flooding depth and a drying depth are applied to handle 

hydraulic conditions with varying water stages and consequently different extents of 

flooded areas: 

 

• Dry depth: When the local water depth becomes less than this, the point is land. 

 

• Flood depth: When the local water depth becomes greater than this, the point is wet. 

 

To ensure stability of the hydrodynamic model it is necessary to give a finite value of the dry 

and flood depth (normally between 0.2 and 0.6 m). Furthermore, it is usually necessary to 

have a small difference between dry depth and flood depth values to avoid alternating 

swapping, which can lead to instability.  

 

In shallow water the characteristics of the morphological changes becomes slightly different 

to those in deeper water. Drainage channel forms are generally much smaller than the main 
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channels and therefore require more detailed model resolution. However, these have little 

influence on the overall morphology and are excluded.  

 

The approach adopted is that no sediment transport occurs over dry grid cells, and that the 

bed level does not change unless grid cells are wet. The only restraint is that grid points 

along open boundaries must always be either constantly flooded or constantly dried. 

However, if the quasi-steady flow solver is used to solve the hydrodynamics, the model does 

allow open boundary cells to wet and dry during the simulation. 

 

4.1.4 Availability of sediment 

The model can be used for applications with reduced availability of sediment. An example 

of this is when scouring occurs down to bedrock. 

 

For rivers with a normal sandy bed, there is no need to use this facility. If required, an 

initial layer thickness of the sediment on the bed is specified by a constant or a map. 

 

4.2 Bank Erosion 
The sediment transport model can include bank erosion in the continuity equation: 

 

  + 
h

S
 + 

t

z
- = Eb 




  (4.10) 

 

Where 

Eb  Bank erosion rate in m/s 

z  Local bed level 

S  Near bank sediment transport  

h Local water depth 

, ,  Calibration coefficients specified in the model 

 

The extra sediment released when bank erosion occurs contributes to the sediment 

balance of Eq. (4.1). The contribution is obtained from the relation: 

 

n

)h+(hE
 = S

bb
e




  (4.11) 

 

Where 

hb  Height of the bank above the water level 

n Width of cell next to bank line 
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Figure 4.3 Sketch of bank erosion 

 

 

The near bank slope dependency is included in the first term. The dependency upon the 

near bank shear stress exerted from the river flow is implicitly included in the second 

term. The last term  represents a constant erosion rate, which is independent of the 

hydraulic conditions. 

 

The first term is based on the assumption that the shape of the transverse bed profile is 

preserved. Therefore, from geometrical considerations the bank erosion rate is 

proportional to the bed erosion. The -coefficient corresponds to the transverse bed slope 

at the bank. Transverse bed slopes in natural rivers are typically of the order of 5-20 along 

eroding banks. This means that the -coefficient should be chosen in the range from 0 to 

20. 

 

The second term is derived by considering that the eroded material Eb, is moved 

downstream by the flow determined sediment transport rate S, or at least a fraction  of it. 

This means that the -coefficient should be chosen in the range from 0 to 1. Note that the 

bank erosion module assumes that the bank material is the same as the sediment on the 

river bed. 

 

Observed bank erosion rates are used to calibrate the coefficients  and . If no evidence 

for a relationship to z/t or to S is found, it is possible to specify a constant bank erosion 

rate . 

 

Bank erosion is computed at every time step, and the debris is included in the sediment 

continuity equation along the bank, see Eq. (4.1). If the accumulated bank erosion at a 

certain location exceeds a predefined critical width (related to the width of a computational 

grid cell along the bank), the curvilinear grid is updated with new bank lines. This implies 

the following steps in the model: 

 

• Generation of a new orthogonal grid based on the new bank lines. 

 

• Recalculation of grid parameters, such as space step s, n, and radius of curvature 

of grid lines Rs and Rn. 

 

• Transformation of the model bathymetry from the old to the new curvilinear grid. 
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• Initialisation of accumulated bank erosion record, (which is being used to test, when 

grid updating is required). 

 

Updating of the plan form can be excluded if bank erosion only influences the 

morphological development very close to the eroding bank and not the overall hydraulics. 

 

4.3 Linear Stability Analysis 

In order to understand the physical background for the output from the morphological 

model, it is useful to carry out a stability analysis on the flow and sediment transport 

equations. A very brief introduction is presented below. For more detailed information, see 

(among others) Olesen (1987). 

 

The methodology is as follows: 

 

• The length scale associated with the two-dimensional (depth-averaged) flow is 

derived. 

 

• The length scale associated with the morphology of the riverbed is derived. 

 

• In order to obtain length scales steady state flow conditions are assumed. 

 

• Finally, the two approaches are combined to derive the overall morphological 

behaviour of the river from the linearised equations. 

 

The momentum equation in the longitudinal direction is given by: 
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Eq. (4.12) is linearised by considering all dependent variables as a sum of the mean value 

and a fluctuation (perturbation): 

 

uuu  0  (4.13) 

 

vvv  0  (4.14) 

 

PPP  0  (4.15) 

 

hhh  0  (4.16) 

 

If Eqs. (4.13) - (4.16) are inserted into Eq. (4.12) we get: 
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Ignoring terms of higher order than one and assuming that v0 = 0 (we consider flow along 

a streamline), Eq. (4.17) yields: 

 

   
 

0 = uu
Ch

g
+

Chh

gu

n

u
v+

s

u
u

s

uu
u+

s

PP1
22



















0

00

2
0000

0
0


 (4.18) 

 

The fifth term in Eq. (4.18) is made linear, by: 
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If Eq. (4.19) is inserted into Eq. (4.18) and time-averaged, the sum of the zero order terms 

are equal to zero and can be cancelled. This yields the following linear differential 

equation for the perturbations: 

 

0 = h
Ch

gu
-uu

Ch

2g
+

s

u
u+

s

P1
2

2

0
02

0

0 







2
0


 (4.20) 

 

Assume that pressure force is insignificant. This means that the derived equations are 

only valid for friction dominated flow controlled by flow inertia and bed resistance. Eq. 

(4.20) now yields: 
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Where the length scale w is given by: 

 

2g

Ch
 = 

2
0

w  (4.22) 

 

The parameter w is a measure of the length scale for adaptation of the flow field to changes 

in the bed topography, see the example sketched in Figure 4.4. 

 

 

 
Figure 4.4 Adaptation of flow field due to changes in bed topography and definition of adaptation 

length w 

 

 

w 
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The length scale is important in different ways. If a shallow bar is developing, the inertia of 

the flow tends to smooth the riverbed, while the friction force enhances further growth of 

the bar. In numerical terms, the velocity over the shallow grid points can either increase 

because water depth is reduced and the same flux has to cross, or the velocity can 

decrease because flow is deflected away from the bar. 

 

Not unexpected, the length scale for adaptation is proportional to the local depth. The bed 

resistance represented by the Chezy number also influences the length scale. In case of 

high bed resistance over a bar (low Chezy number), the length scale is small and flow is 

easily deflected. For the opposite case (low bed resistance), the adaptation length scale is 

much larger (or the intensity of flow deflection is much weaker). 

 

Formations on the riverbed are governed not only by the flow hydraulics, but also of the 

sediment transport and the sediment continuity equation: 
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Eq. (4.23)is based on sediment transport rates defined in a curvilinear coordinate system 

that follows the stream line s of the fluid. The transverse sediment transport rate Sn is 

determined by the strength of the helical flow and the transverse bed slope, see Eq. (3.67) 

Section 3.2: 

 













 

n

h
G

u

v
S = S

a
sn   (4.24) 

 

As an approximation the sediment transport along the streamline is now assumed to depend 

on the relation: 
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Where the proportionality factor, a1 and the exponent, b is assumed constant. Taking the 

derivative of Eq. (4.25) with respect to the curvilinear coordinate s, we obtain: 
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If the influence of the Shields parameter  in Eq. (4.24) is neglected, and Eqs. (4.23), 

(4.24) and (4.26) is combined and linearised the following equation can be obtained: 
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The continuity equation for the fluid, yields: 
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Rewritten in a linearised form Eq. (4.28) reads: 
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Combining Eqs. (4.27) and (4.29) results in the following coupled differential equation: 

 

s

u
1)-(b

u

h
 = 

n

h
hG-

s

h

0

0

2

2

0













 (4.30) 

 

In addition to the differential of Eq. (4.30), there is a boundary condition. For the case with 

a sinusoidal variation of the depth across the upstream boundary, a solution can be 

written in the form: 
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Where 

i Imaginary number 

w Width of the river 

n Transverse coordinate 

s Longitudinal coordinate 

 

By substitution Eq. (4.30) becomes: 
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Where the coupling to the hydrodynamics is defined through the parameter: 
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While the length scale for changes of the bed disturbance is given by: 
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The solution of Eq. (4.32) is: 
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An example of the solution is sketched in Figure 4.5. 
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Water level Bed level

Flow Directions

 
 
Figure 4.5 Adaptation of bed topography due to changes imposed on hydrodynamics 

 

 

The adaptation length s indicates the distance downstream that any disturbance can be 

felt, before it has been levelled out due to the sediment transport. The transverse bed 

slope factor G which, in combination with the strength of the helical flow, controls the bed 

shear stress deviation (and thus the sediment transport direction), is seen to be quite 

important for the adaptation length scale. In theory, the length scale would become infinite 

if the bed shear stress direction was unaffected by the transverse slope of the river bed. 

Without this, any disturbance would remain. For a large value of G, with strong deviation 

of bed shear stress mainly related to gravity effects on a transverse bed slope, the 

adaptation length will be short and disturbances will quickly disappear.  

 

As seen from Eq. (4.34), the aspect ratio (width/depth ratio) is as well as the depth alone 

important to the value of the length scale. In fact, the imposed boundary condition of the 

present solution determines the importance of w/h. 

 

If Eq. (4.33) is inserted into the equation for the response of bed topography to disturbances 

in flow field, Eq. (4.32), then differentiated with respect to s, we obtain: 
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The equation for the response of flow field to changes in bed topography, Eq. (4.21), is also 

differentiated with respect to s: 
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The solution to Eq. (4.38) is complex, and given by: 
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Where 

j Solution number, for a second order differential equation two roots exists. 

 

The complex wave number is divided into a real part representing the wavelength, and an 

imaginary part representing the damping of the wave: 

 

k+k=k ir   (4.40) 

 

Substitution of Eq. (4.39) into Eq. (4.37) gives a polynomial equation to determine the 

wave numbers: 
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The complex determinant is: 
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Eq. (4.41) has the complex solution: 
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 the real part of the wave number is determined by: 
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While the imaginary part of the wave number is: 
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The solution is sketched in Figure 4.6. 
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Wave Length Damping

wrk  wik 

 
 
Figure 4.6 Sketch of wavelength, kr and wave damping, ki as function of the ratio between the 

length scales λw/λs 

 

 

For s/w greater than 1, the solution becomes unstable as the damping becomes 

negative, and the assumptions adopted during linearisation of the equations are no longer 

valid. 

 

4.4 Alluvial Resistance 

The Chezy number or the Manning number can be updated in two ways, either as a 

simple function of depth or as a function of computed dune dimensions. 

 

The update according to depth is done in the following manner: 

 

hA=C b  (4.46) 

 

Where: 

A Resistance coefficient 

b Resistance exponent 

 

Application of varying bed resistance affects the simulated scour and deposition pattern. 

With resistance update included, flow is deflected more over shallow parts and sediment 

transport will increase due to the larger bed shear stresses. In general, this will reduce the 

overshoot effects of beginning bed scour and the topography of a point bar crest becomes 

more rounded, as reported by Talmon (1992). 

 

4.5 Supply Limited Sediment Transport 

Supply limited sediment transport means that the local sediment transport capacity is 

calculated as the product of local sediment layer thickness relative to an equilibrium layer 

thickness and the sediment transport capacity calculated from the selected formula. 

Supply limited sediment transport is activated when there is one bed layer of sediment 

instead of the default of zero. The sediment transport formula is altered to: 
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Which is a scaling of the sediment transport, S, relative to capacity, Scap. The scaling is 

done by the function f and the sediment layer thickness  relative to the layer thickness 

that has been specified for full capacity, eq. When < eq the sediment transport will be 

below capacity, and the f-function is simply /eq. There is no impact on the sediment load 

when the layer thickness is higher than the capacity thickness. 

 

The equilibrium layer thickness is calculated as a fraction of the water depth, default being 

eq = h/12. h/12 is used because dune height typically corresponds to 1/6 of the water 

depth. In addition to the equilibrium layer thickness relative to the water depth, a minimum 

and maximum value for the equilibrium thickness can be specified. By selecting the same 

value for the minimum and maximum, a constant layer thickness can be specified. Note 

that very thin layers of sediment can move very fast over a riverbed, and hence require 

low morphological time-steps. 

 

The supply limited sediment transport model can be used for modelling a thin layer of 

sediment, such as in sewers, on top of an armoured riverbed, or of non-erodible features 

in a model area. The supply-limited model keeps track of the local layer thickness, and is 

thus able to reproduce thin sediment layers that facilitate transport in such cases. There 

are two main applications of the supply limited sediment transport model: 

 

4.5.1 Local non-erodible areas 

An example is a vegetation-covered island located in a river, which can be represented by 

using supply limited sediment transport. A map of initial sediment layer thickness can be 

specified, where layer thickness is zero on the island and has a very high number 

elsewhere, e.g. 100 m. This means that the island cannot be eroded, but additional 

sediment can deposit on the island (and be subsequently re-eroded). 

 

4.5.2 Supply to the morphological system is lower than the sediment transport capacity 

This is the most important application of the supply-limited model. Here the sediment will 

form a varying layer on an armoured riverbed (or concrete pipe). Layer thickness is 

determined by the incoming sediment supply. This is important in armoured rivers and 

can be used in such rivers for modelling of sandbars.  
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5 Quasi-Steady HD Solver 

The theoretical background for the quasi-steady HD solver in MIKE 21C is described. The 

solver is a predictor-corrector algorithm that originates from methods for incompressible 

fluid flow. 

 

Quasi-steady flow is where flow conditions vary slowly. An example is a long term flood 

(weeks to months), where relatively gradual changes in flow regime occurs. A dynamic 

solver has restrictions limiting the length of the timestep, which can make long term 

simulation computationally frightening. The quasi-steady solver is designed to perform 

simulations using a much longer timestep than a dynamic solver, thus reducing 

computational effort.  

 

The solver uses a semi-implicit method for the continuity equation. Increasing the 

timestep means that surface wave celerity is substantially increased in the calculation. 

 

The reason why the system reacts the way it does, is the dynamic term in the continuity 

equation. For a stationary solution we know very well that the term is zero, so why do we 

take the term into account at all? Well, the design of the MIKE 21 engine does not allow 

the removal of the dynamic term because it is the only link between the pressure and the 

continuity equation. If the term is removed, it becomes difficult to use the continuity 

equation for obtaining the pressure. 

 

If the dynamic term is removed, it demands the use of a completely different solution 

strategy, namely one that allows the pressure to be determined from the continuity 

equation. In incompressible fluid flows, the continuity equation is actually exactly like how 

it would look for MIKE 21, if the dynamic term were removed. For incompressible flow, 

advanced solution methods have been developed and they include schemes such as 

SIMPLE, SIMPLER and PISO. Refer to Patankar (1980) for an overview and to Michelsen 

(1989) for details about the method applied herein. 

 

5.1 Governing Equations 

The depth integrated flow equations are given by: 
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In Eqs. (5.1) and (5.2) the total time derivative is given by: 
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The original solver is based on the work of Michelsen (1989), and it was originally applied 

for incompressible flow. 2D depth-integrated flow is equivalent to compressible 2D flow, 

and the extension of the solver to compressible flow is fairly straightforward. In principle, 

one could omit the dynamic term already at this point and only work with the stationary 

continuity equation. However, for some cases, it is wise to have the dynamic term and by 

keeping it the solver is in principle also applicable for dynamic solutions. 

 

The Smagorinsky viscosity formulation yields the viscosity from the following expression: 
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Otherwise the eddy viscosity is given as a constant or as function of space, i.e. E(j,k). The 

Smagorinsky formulation can be useful in some cases, but for most applications in rivers, 

we have experienced that the eddy viscosity does not have a large role to play. 

 

5.2 Curvilinear Transformations 

Using scalar transformation rules does the transformation of the flow equations to 

curvilinear coordinates. In reality the velocity field is a vector, but if vector transformation 

is applied, the equations become more complex. The velocity field is simply kept in the 

Cartesian base also for the curvilinear equations. When the scalar transformation rules 

are applied, the transformed equation will not have any curvature terms, which is a major 

advantage because these tend to be difficult to handle due to their complexity. MIKE 21C 

uses vector-transformed velocities in its original engine. 

 

When working with a Cartesian base velocity field, the staggering of the velocity field has 

to be omitted as it can never be guaranteed that the velocity will be pointing in the grid 

direction. All variables will be allocated in cell centres for the quasi-steady solver. 

 

5.2.1 Transformation rules 

The transformation between rectangular and general coordinates is quite simple to derive. 

Basically, the Cartesian values of the coordinates are functions of the general 

coordinates, i.e.: 
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),( yy   (5.7) 

 

A transported property is thus given as a function of: 

 

)),(),,((),(  yxyx   (5.8) 

 

The differentiation of the dependent variable is thus: 
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This linear system of equations can be solved in order to obtain the expressions for the 

derivatives with respect to x and y, yielding: 
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Where J is the Jacobian (the cell volume, or the cross product of the direction vectors) 
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These can also be used in conservation form, i.e. with the derivatives under the 

parentheses. The conservative form is used in most cases, but in a few cases the non-

conservative is applied. This holds for the inner derivative in the diffusion terms. 

 

It is from the above expressions that all the terms in the equations are transformed. 

 

The dynamic acceleration and bed friction terms are unaffected by the curvilinear 

transformation. 

 

5.2.2 Transformed convection 

The following operator describes the convection terms: 
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If the conservative transformation rule is applied directly, we obtain: 
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It is noted that the terms in the parentheses are proportional to the velocities in the grid 

directions. They are in fact the discharges through the cell faces. The two terms are used 

internally in the code because they appear in many connections. 

 

If we define the two fluxes P and Q, by: 

 

qxpyP    (5.16) 
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pyqxQ    (5.17) 

 

The convection terms can be written: 

 


























 







h

Q

h

P
CJ )(  (5.18) 

 

Eq. (5.18) is a fundamental form for the convection terms. If the water depth is constant, 

the expression becomes: 
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5.2.3 Pressure gradients 

The pressure gradients do not yield the same logic forms as the transport terms do. The 

pressure gradients are found directly by using the non-conservative form of the 

transformation rule: 
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These cannot be reduced, because the flow in the Cartesian x-direction will necessarily 

depend on the pressure gradient in the x-direction, which in general will be a function of 

the pressure gradients in both grid directions. If a grid-aligned base had been used for the 

velocity field, the pressure gradients would be in the grid directions only, as is already the 

case in the original engine of MIKE 21C. It is the presence of both pressure gradients in 

both momentum equations that first of all prohibits the use of staggered grids. The 

staggered allocation only makes sense when the staggered velocity/flux can be directly 

tied to the pressure gradient over the cell face. 

 

5.2.4 Transformed diffusion 

A diffusion term looks in general like: 
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The transformation is straightforward, though it requires some algebra. The inner 

derivatives are transformed by using the non-conservative form, while the outer 

derivatives are transformed using the conservative form. The transformed operator 

becomes: 
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During the process of obtaining this expression, some terms have vanished due to 

orthogonality. Eq. (5.23) now expresses diffusion in the () system. It is seen that, it is 

much like the original expression. The geometric terms that appear are cell face lengths, 

so it is in fact a more fundamental form of the diffusion term, which is due to the general 

coordinates. 

 

It is natural to introduce the diffusion coefficients: 
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By use of Eqs. (5.24) and (5.25) the diffusion term can be written: 
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5.2.5 Momentum equations 

The transformed momentum equations can now be written as: 
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5.2.6 Continuity equation 

The transformation of the continuity equation is straightforward. The terms are simply 

transformed by using the conservation form of the transformation rule for the first order 

derivative, yielding: 
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Eq. (5.29) may also be seen as the cell volume changes according to how much enters 

the cell. This is a very simple and fundamental form of the continuity equation. 
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5.3 Discrete Equations 

The discrete forms of the equations are obtained by performing an integration over the 

cells first. 

 

5.3.1 Time derivative 

For the time-derivative, which is written as J /t, an implicit Euler scheme is applied, i.e.: 
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5.3.2 Convection 

The first order upwind scheme will be applied in the present version. First, the operator is 

written in finite-volume form as: 
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The scheme is semi-implicit. For the cell face discharges and water depth old values are 

used, while the convected variable is taken implicitly. The key in Eq. (5.31) is to find the 

four cell face values of . With the upwind scheme it is done by: 

 










0

0

eE

eP

e
P

P




  (5.32) 

 

and so forth. 

 

5.3.3 Pressure gradients 

The pressure gradients are written directly as: 
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Linear interpolation is used for the evaluation of the pressure at the four cell faces. A 

special procedure applies, when the neighbouring cell is not a water point. 

 

Please note that the use of linear interpolation leads to central estimates for the pressure 

gradient. This will lead to instability if something special is not done. Here the so-called 

“momentum interpolation technique” will be applied. It will be described under the section 

about pressure correction. 
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The pressure gradient is calculated in more steps during a time-step. First, it is calculated 

with old values, and then it is calculated with corrected pressure values, which may 

continue in the PISO algorithm. 

5.3.4 Diffusion term 

The diffusion term is given by: 
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This is written in discrete form by using the standard approach of obtaining the fluxes over 

the cell faces, i.e.: 
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Please note that the reference to the diffusion coefficients, D and D, does not have to be 

done specifically. Whenever a diffusion coefficient is addressed on a cell face, it will be 

given automatically which one it is from the face.  

 

The discrete diffusion can be written into the fundamental format that will be used for all 

equations: 

 

PPNNSSEEWW aaaaaDJ  )(  (5.37) 

 

In which: 
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nsewP DDDDa   (5.42) 

 

Please note that for a diffusion term in general, the identity aP =  anb will be fulfilled. It is a 

simple consequence of the diffusion only being able to redistribute. For the present case, 

the identity is not fulfilled because the diffusion does not redistribute flux; it redistributes 

momentum. It is seen that, if the water depth is constant, the identity will be fulfilled. The 

above approach is also used in MIKE 21C, where it has been implemented implicitly. If 

the depth dependency is omitted, the so-called flux-based viscosity emerges. It is the 

experience with MIKE 21C that the flux-based eddy viscosity produces too unrealistic flow 

velocity distributions in rivers. Therefore use of the flux-based form should be avoided in 

general. 

 

5.3.5 Bed friction 

The discrete form of bed friction is very simple: 
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By expressing the term like this, we make sure that the dissipative effect of the bed 

friction gets to work implicitly. This is crucial for stability, and the implicit method ensures 

very fine stability as noted by Patankar (1980). The implicit description is also used in 

MIKE 21. 

 

5.4 Solution Procedure 

Having derived all the discrete terms of the momentum equations, we can now write the 

equations in a standard equation format: 
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Where: 

ap Diagonal contribution from convection and diffusion 

F Implicit bed friction term 

Jp/t Dynamic change contribution 

anb Neighbour coefficients from convection and diffusion 

Sp,q Pressure terms, for the predictor step, the old pressure is used 

 

Solving the momentum equations as they are shown above constitutes the predictor step 

of the present predictor-correct algorithm. The predictor step is simply: Advance the 
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hydrodynamics according to the momentum equations, without taking the continuity 

equation into account. 

 

5.4.1 Boundary conditions 

There are only two types of momentum boundary conditions used in MIKE 21, and these 

are Dirichlet and homogenous von Neumann conditions. At a discharge boundary, the 

fluxes in the flow equations will receive Dirichlet conditions, and at a water level boundary, 

a standard zero gradient condition applies. 

 

Since MIKE 21C uses grid aligned velocities, the direction of the flow at the inlet will also 

be grid aligned. This means that only one component of the velocity field will be assigned 

a value at the boundary, the other will be zero. This will not hold in general for a Cartesian 

base model. However, it is straightforward to derive how the boundary condition should 

be divided into p and q. The easiest way is to use the cell face discharge field, because it 

is grid aligned. 
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pyqxQ    (5.48) 

 

When solving this system of equations to obtain p and q, we find: 
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Eqs. (5.49) and (5.50) are used to translate the discharge boundary condition into 

conditions for p and q. The derivation can also be more detailed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Flux through a west boundary cell, calculation of boundary conditions for the 
Cartesian fluxes from the discharge through the cell at the boundary 
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The unity normal vector can be expressed from the geometry as: 
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Since the direction of the unity normal vector is the same as the direction of the flux 

vector, we can write: 
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Hereby the two flux components becomes: 
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5.4.2 Pressure correction algorithm 

The power of the present solver lies in the pressure correction algorithm. 

 

The first step in a primitive variable solver like the present is to advance the flux field (p, 

q) by solving the momentum equations, now written in the form that is used for the 

solution in the code itself: 
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p

n
qnbnbPp FSqaqa   (5.56) 

 

Where 

ap Diagonal coefficient for convection, diffusion, bed friction and the dynamic 

term. 

anb Neighbour coefficients of convection and diffusion 

Sp, Sq Source term, here only consisting of the dynamic term, i.e. no pressure 

included 

Fp, Fq Source term only containing pressure gradients 

 

The superscript (*) refers to the predicted flux field that has been calculated by marching 

the momentum equations ahead in time using the pressure field (also superscript *) from 

the former time-step. The continuity equation will be used as a corrector, which is 

described in the following. 

 

The (*) pressure terms are given by: 
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After having marched the momentum equations ahead in time, the equations are rewritten 

into a direct expression of the dependency of the flux field on the pressure gradient, i.e.: 
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Where the superscript (**) refers to corrected fluxes and pressure field. The (**) pressure 

field is found from the pressure equation, which is derived in the following. Before doing 

so, it is convenient to rewrite the corrector equation into a slightly different form: 
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Where the superscript (0) flux field denotes a provisory flux field that is basically the 

correct flux field without contributions from pressure gradients. The provisory flux field is 

thus likely to be very far from the correct flux field (the pressure gradient being the driving 

force), but it is convenient to introduce, which one will become apparent, when we insert it 

into the continuity equation. 

 

The continuity equation is written in discrete form as: 
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The expressions for the superscript (**) fluxes are given in the cell centres, whereas the 

continuity equations requires fluxes at the cell faces. The (**) fluxes on the cell faces can 

be written: 
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The pseudo flux has been interpolated directly between the cell centres, while the 

pressure gradient is written directly at the cell face instead of using interpolation, which 

gives the dependency of the flux through the cell face directly as a function of the 
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pressure gradient over the cell face. This is termed “momentum interpolation” by 

Majumdar et al. (1992). On the north faces we find similarly: 
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The fluxes are now used to express the cell face discharges as a function of the cell face 

pressure gradient, yielding: 
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The terms involving the pressure gradients calculated from interpolated corner values 

have vanished, because of grid orthogonality. Due to the fact that the cell face discharges 

are grid-aligned, they will be dependent only on the pressure gradient across the cell face 

for orthogonal grids. Michelsen (1989) gives the expressions for the fluxes for non-

orthogonal grids. The above equations are the discharge correction equations that 

express how the discharge should be corrected according to the corrected pressure field. 

 

When the correction equations for the cell face discharges are inserted into the continuity 

equation, we obtain: 
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It is seen that this is a Poisson equation for the pressure correction. Eq. (5.70) is solved 

with boundary conditions, and the pressure updated. There are only two types of 

boundary conditions for the pressure equation: 1) water level, where there is a water level 

boundary and 2) zero flux elsewhere. 
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5.4.3 Under-relaxation and time-stepping 

A dynamic term is kept in all the equations. Dynamic terms are equivalent of under-

relaxation terms, which is shown here. The general equation in dynamic form can be 

written: 
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The steady form of the equation reads: 
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Under-relaxation means that the new value of the transported property can be written as: 
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Hence, it is easily shown that the relation between under-relaxation and dynamic 

acceleration is: 
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5.4.4 Solution of the linear equations 

The linear equations in the quasi-steady solver all have the following form: 
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There are two linear equation solvers available in the quasi-steady solver: 

 

• Line successive over relaxation (Line SOR) 

• Stone’s Strongly Implicit Procedure (SSIP) 

 

In the Line SOR sweeping along lines solves the equations, while SSIP is a more 

powerful solver, see Stone (1968). The parameters used for the solution of the equations 

are: 

 

• Solver (Line SOR or SSIP) 

• Time-step, t 

• Maximum number of iterations on the linear system of equations, N 

• Stop criterion,  

 

The procedure is to perform a single iteration on the system of equations with the linear 

equation solver. The residual is then calculated as the average error in the steady form of 

the equation, i.e.: 
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This is then compared with the specified stop criterion, and the iteration is stopped if one 

of the following two conditions is fulfilled: 

 

• The residual becomes lower than the stop criterion, r <  

• The amount of iterations becomes bigger than N 

 

There are separate time-steps for the momentum and pressure equations. 

 

The time-step for the momentum equations is limited by the non-linearity of the 

momentum equations. The time-step will usually be in the same order of magnitude as 

that for the standard HD solver. 

 

The pressure time-step can, in most cases, be selected higher than the momentum time-

step. The purpose of doing so is to speed up the speed of the surface waves to get quasi-

steady solutions faster. Some experimentation is necessary to figure out how high the 

pressure time-step can be chosen. In some cases it can be chosen as high as an hour 

with a momentum time-step of 20 seconds, and in other cases it is not possible to set the 

pressure time-step much higher than the momentum equation time-step. 
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6 Planform Module 

The Planform module of MIKE 21C allows the representation of lateral processes in 

morphological models. Bank erosion can be calculated and included in the riverbed 

sediment budget and the curvilinear grid can be updated to account for the movement in 

the bank line. This is handled by using the grid generator for a specified local area of the 

grid. 

 

 
 
Figure 6.1 The long-term simulations of braiding were carried out with MIKE 21C. The model is 

capable of reproducing the chaotic behaviour of a braided river 

 

Herein is described the principles that should be followed when using the module. The 

individual parameters are described in detail. The theoretical background for the grid 

generator is given in Chapter 1, and is not covered here. 

 

6.1 Introduction 

The Planform module (see Figure 6.2) of MIKE 21C has two elements: 

 

• A bank erosion model 

• A link to the MIKE 21C grid generator 

 

In the bank erosion model the user specifies how many eroding banks are in the model. If 

there are no eroding banks, the specifications for the eroding banks as well as the update of 

the grid are not selectable. 
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Figure 6.2 The dialogue window associated with the Planform module 

 

 

The same “subroutine” (located in the dynamic link library “M21C_GridUpd.dll”) performs the 

generation of the grid in the grid generator and the update of the grid in the planform module 

of MIKE 21C. It is therefore strongly recommended to use the same key parameters for the 

generation of the grid and for the update of it. The stop criterion, boundary smoothness and 

weight smoothness should be the same, otherwise too large changes will occur in the grid 

during the first few updates. It is noted that the maximum number of iterations do not have to 

be as high as for the initial generation of the grid in the grid generator. The changes to the 

grid are usually very small and 10-20 iterations with the grid generator should normally 

capture the changes. 

 

The update of the grid is designed to be able to capture moderate changes to the planform 

caused by bank erosion. It is not designed to handle things like occurrence of new channels, 

bifurcations etc. The module is basically designed to be able to account for bank line 

changes that can be represented with the same topology, as for the original grid. 

 

6.2 Bank Erosion Model 

The bank erosion model implemented in MIKE 21C uses the following model expression 

for the bank erosion rate [m/s]: 
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(6.1) 

 

Where separate values of the parameters ,  and  can be specified for each eroding 

bank. 

 

The  -term stems from the link between scour and bank erosion. In sandy rivers, it is 

often found that the transverse slope of an eroding bank remains constant when the bank 

line erodes. This means that the bank erosion and scour are directly proportional. The 

value of  is theoretically the transverse slope (1:), but it should be calibrated for the 

particular application. 

 

The -term expresses that a certain fraction () of the sediment transport capacity is used 

for transporting the material eroded from a bank. 
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The -term is simply a constant bank erosion rate [m/s] that can be specified. 

 

6.2.1 Specification of eroding banks 

The eroding bank must be defined as a series of cells that all have the same j-value or the 

same k-value, i.e. a grid oriented line. The eroding bank cannot have both the same j-

value and the same k-value (point). 

 

All cells on one side of the line must be true land cells; this determines the orientation of 

bank erosion, and the direction of movement of the bank line. At least one cell on the 

other side of the line must have bed level below true land. It is allowed to let a bank line 

pass through an area with true land both in the line that is defined, and on both sides. 

 

 
 
Figure 6.3 Specification of a series of cells that form an eroding bank (red). The series of cells 

go along a line that has true land. The example is from the Chaktomuk project 
(CPMU/DHI/Haecon NV, January 2002), and in that project the green part (including 
the red part) of the grid was updated during the simulation to account for the 
movement of the indicated bank line 
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Figure 6.4 Specification of eroding banks (red cells) for the Jamuna Bridge model, DHI/SWMC 

(October 1999). The western bank is specified so it goes through the cross-dam of 
the bridge, which is accepted because the model can still identify the direction of 
erosion from the other cells. On the eastern bank the eroding bank has to be divided 
into two because of the work harbour. The whole internal part of the grid (all cells that 
are not dark) was updated for this project. Bank erosion in Jamuna River is 
substantial, typically up to 500-1000 meters during a monsoon season 

 

6.2.2 Inclusion of erosion products 

The inclusion of erosion products means that the erosion of the riverbank will supply 

sediment to the riverbed. In MIKE 21C calculating the sediment volume that is released 

when the bank is eroded is found from: 

 

sthhEVolume  )(
 (6.2) 

 

Please note that here the porosity should not be taken into account, as the sediment 

comes from the riverbank, and not the water. The corresponding volume change on the 

riverbed is calculated from: 
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nszVolume   (6.3) 

 

So we find that the bed level change in the cell adjacent to the eroding bank becomes: 

 

 
s

thhE
z






 
(6.4) 

 

Where 

z Change to the bed level due to the erosion products 

t Morphological time-step 

E Bank erosion rate [m/s] 

h Water depth in cell adjacent to the riverbank 

h Bank height above water, specified by the user 

s Length of cell adjacent to the eroding bank 

 

The bank height above the water should be specified for each eroding bank to account for 

the fact that erosion usually releases more sediment onto the riverbed than the water 

depth would imply. 

 

By default MIKE 21C will assume that eroding banks feeding sediment to the riverbed 

through the inclusion of erosion products will contain 100% sandy material with the same 

properties as the sand on the riverbed. Jamuna River in Bangladesh has such 

characteristics, and the inclusion of erosion products in the sediment budget is of 

paramount importance for the behaviour of this river. 

 

Some sandy rivers have cohesive banks, which is quite often encountered in Europe. For 

such rivers one should not include erosion products, as the cohesive material that is 

eroded from the riverbank simply adds to the wash-load of the river, which does not 

participate in the morphological development. The eroded sediment should not be 

included in the sediment budget for a river with cohesive banks. 

 

6.2.3 Fraction of sand in eroding bank 

Some rivers have banks that are partly cohesive and partly sandy. For such riverbanks 

the “Bank_Fraction” option can be used for specifying that a certain fraction of the bank 

material is sandy, with the same properties as the sand on the riverbed. A riverbank that 

is composed of a mixture of sandy and cohesive material can be modelled by using this 

option. 

 

6.2.4 Hints from the expert users 

The following hints are given with respect to the bank erosion model: 

 

• Avoid specifying eroding banks that come too close to the open boundaries. Bank 

erosion and its feedback to the hydrodynamics can cause problems at the open 

boundaries, especially when coupled with updating of the grid. If there is a lot of 

erosion on a riverbank that is close to your open boundary, you should consider 

moving the open boundary, if the erosion is important. 

 

• The constant erosion should not be used for practical projects. It is mostly for testing 

purposes. 
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• The bank erosion model must be calibrated to match observed bank erosion rates. 

Bank erosion can be obtained from satellite imagery, aerial photographs, bathymetry 

data, maps etc. In some cases there are no firm data. Local observations from 

people living where bank erosion takes place can sometimes be the most important 

source. 

 

• The -term will usually be dominating in rivers with sandy banks. In that case use the 

bank slope as the initial estimate for the -parameter. An -value that lies very far 

from the bank slope should give rise to concern. Expect some deviation, but at least 

the value should be in the right order of magnitude. 

 

• Likewise with the -value. In the expression lies that a certain fraction of the transport 

capacity is allocated for erosion products, so a -value that lies above unity should 

give rise to concern. 

 

• Limit your application of bank erosion to banks where you are absolutely certain that 

erosion takes place, and where it is essential. 

 

6.3 Automatic Updating of the Grid during Simulations 

The updating of the grid during the simulation is handled by calling a “subroutine” located 

in a dynamic link library belonging to the MIKE 21C grid generator. It is the same 

subroutine that updates the grid in the m21gg grid generator. 

 

Updating of the grid is essentially a matter of generating a grid based on an existing grid 

(“hot-start”) to account for the slow changes that are associated with bank erosion. 

 

 

 
 
Figure 6.5 The specification of the local part of the grid to be updated and the up to four 

cosmetic areas around the grid 
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6.3.1 Definition of the local curvilinear grid 

The Planform module is designed to be able to handle updating of a local part of the 

curvilinear grid. The first thing the user should do is to define this local part of the grid. 

The local part must be chosen such that the eroding banks are boundary lines in the local 

grid. Only by doing this can you ensure that the erosion on your banks will be accounted 

for in the grid. 

 

Two cell coordinates define the local grid: 

 

Lower left cell  (j1,k1) 

Upper right cell  (j2,k2) 

 

These are cell centre coordinates; i.e. refers to cells in the bathymetry. Remember that 

the grid coordinates are cell vertex allocated. The corresponding vertex coordinates can 

be calculated from 

 

Lower left vertex (j1,k1) 

Upper right vertex (j2+1,k2+1) 

 

Example: For the Jamuna River model the whole grid except the two layers of land cells 

is to be updated. The Jamuna bathymetry is 0-233x0-84 in size. There are 5 land cells on 

the western bank and 10 land cells on the eastern. The local part of the grid to be updated 

will hence be: 

 

Lower left cell (0,5) 

Upper right cell (233,74) 

 

6.3.2 Cosmetic issues 

The update of the local part of the grid can cause the grid points in that part to migrate 

into the neighbouring areas due to bank erosion. The definition of areas with interpolation 

or extrapolation has been added to combat this. Note that it is purely cosmetic, but 

important for graphical presentation. 

 

Up to four cosmetic areas can be defined, one in each direction from the local part that is 

updated. The areas are defined by an amount of cells in each direction from the local part, 

see also Figure 6.5. 

 

The way this works is that the specified areas will be subjected to either interpolation or 

extrapolation. 

 

If only one cell is specified, the area will be extrapolated. This is equivalent to 

extrapolation of one layer of land cells in the grid generator. This will be used in cases 

where one has a layer of land cells at a bank and needs to keep recalculating these, as 

the bank erodes. 

 

If more than one layer of cells is specified, the model will interpolate the grid points in the 

specified area by using transfinite interpolation, see e.g. Thompson et al (1985). This was 

employed in the Jamuna Bridge model where the land cells around the main model were 

interpolated so the cells in those layers did not interfere with the main model area. 
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Example: For the Jamuna Bridge model there was a layer of 5 land cells at the western 

bank and 10 land cells at the eastern bank. The specifications for this model were: 

 

Cells west and east: (0,0) 

Cells south and north: (5,10) 

 

 

The orientation of the Jamuna model was such that the topological south boundary was at 

the western bank, and the topological north boundary at the eastern bank. 

 

6.3.3 Land cells in the local grid 

Land cells are allowed in the local grid to be updated during a simulation. By default the 

model will freeze these land points in the grid generation process. This can be changed 

by the following setting in the pfs file, under the Planform section: 

 

Freeze_Internal_True_Land = false 

 

It is recommended to freeze internal true land, as internal true land will usually represent 

structures in the model area, and these do not move. 

 

The model handles fixed land points the same way that the grid generator does, but it 

cannot yet update the grid weight during the grid generation process. This will usually not 

cause problems because the grid weight is updated each time the grid is updated anyway 

in the planform module. 

 

6.3.4 The Courant criterion for updating the grid 

The automatic update procedure for the grid operates on the largest time-scale in the 

model, i.e. the planform time-scale. Therefore it is not necessary to perform the update on 

every morphological time-step. At each morphological time-step the model will evaluate 

whether it is necessary to update the curvilinear grid. Comparing the accumulated bank 

erosion to the width of each cell at the eroding bank does this. A Courant number is 

calculated for the accumulated bank erosion: 

 

i

i

n

b
Courant




  (6.5) 

 

Here bi denotes the accumulated bank erosion in the cell and ni the transverse width of 

the cell. The Courant number hence expressed how much the grid vertex point is going to 

move relative to the grid spacing. It is not allowed to move the grid vertex more than the 

transverse grid spacing, i.e. the Courant number should be below unity. The use of a 

Courant criterion here is an excellent way of achieving the optimal performance from the 

automatic grid updating procedure. As long as the bank erosion is small relative to the 

grid spacing, there will be no need for updating the grid. 

 

The default value of the Courant criterion is 0.01. It is not recommended to use values 

larger than 0.1 for this criterion and too small values will waste a lot of time updating a 

grid that really does not need to be updated, as the accumulated changes to the grid are 

very small. The use of a Courant criterion is a full exploitation of the fact that the update of 

the grid takes place on the largest time-scale in the system, and still has to be handled 
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dynamically. The procedure adapts fully to the speed at which planform changes take 

place. 

 

6.3.5 Pre-processing of the grid 

Some pre-processing is carried out before the grid is passed to the grid generator. Two 

smoothing parameters are used for this: 

 

• Sweeps on bank erosion 

• Sweeps on grid weight 

 

The sweeps on bank erosion simply means that the accumulated bank erosion since the 

last time the grid was updated will be subjected to a number of running-average sweeps, 

i.e. 
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This is subjected to restrictions in the form that fixed boundary points remain fixed. The 

smoothing pre-processing is not crucial. It is there to avoid irregularities that can arise due 

to the fast variations in the bank erosion rate. The limit on bank erosion (m/day) is also an 

important factor here, and probably more important than the filtering. 

 

The procedure is the same for the grid weight, though the grid weight is a 2D field, i.e. 
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Again it is not crucial to perform this smoothing. It just adds extra security, which is good 

to have when performing an automated update of a curvilinear grid, which is not a 

straightforward procedure. 

 

6.3.6 Arguments passed to the grid generator 

The following parameters are passed to the grid generator: 

 

• Maximum number of iterations. Exactly the same as is used in the grid generator. 

The default is 10 iterations, which is usually enough when the grid is to be updated to 

account for small changes. 

 

• Stop Criterion. Exactly the same as used under the grid generator. 

 

• Maximum boundary curvature. Also the same parameter as in the grid generator. It 

is strongly recommended to use exactly the same value as you did when the initial 

grid was generated. 

 

• Maximum grid weight curvature. Also the same. 

 

These parameters are also described in the scientific background for the grid generator. 

 

 



 MIKE 21C 

92 Curvilinear Model - © DHI 

6.3.7 Interpolation of the bathymetry when the grid moves 

The updating of the grid means that the curvilinear coordinate system moves in the 

horizontal direction. The model bathymetry is a bed level value given in each 

computational cell. The cells will move when the grid is updated, and hence there will be a 

need for changing the bathymetry accordingly. 

 

The updating of the bathymetry is handled automatically, but the user can deactivate the 

procedure by changing the pfs file in a text editor. The flag that signals the update of the 

bathymetry is simply not available in the GUI for MIKE 21C. 

 

The bathymetry in MIKE 21C is an array with a value in each cell centre. The coordinates 

of the cell centres are changed when the grid is updated, and hence an error will be 

introduced into the representation of the topography in the model. To counteract this it is 

necessary to move the bathymetry in the opposite direction of the curvilinear cell centres 

when the grid is updated. The movement of the bathymetry is described by the following 

pure convection equation 
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The velocity field in this convection equation is the negative of the grid movement velocity 

field that is given by the change in coordinate relative to change in time, i.e. 
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The equation is further elaborated into a form without the time-step appearing: 

 

0










y

z
y

x

z
xz  (6.10) 

 

What is stated now is that the local bathymetry changes according to how much the grid 

cells move and the gradient of the bathymetry, i.e. simple convection in the opposite 

direction of the grid. 

 

Using a Second Order Upwind (SOU) scheme now solves this convection equation. The 

boundary condition is zero flux on all boundaries. If there is a convecting velocity at a 

boundary, it means that the boundary is moving, i.e. erosion takes place. The boundary 

conditions means that the bed level at the eroding bank will be assumed to also apply for 

the area into which the bank is moving. In other words the erosion is assumed to create a 

river channel with the same bed level as that adjacent to the eroding bank. In case there 

is no grid velocity at the eroding bank, the boundary condition really becomes irrelevant. 

The grid does not move in this case, and therefore the bathymetry will not change either. 
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6.3.8 Hints from the expert users 

• Always use the same parameters for the update of the grid that you used when it 

was generated. If you apply very different values, i.e. demand a much smoother 

boundary for the grid, you will trigger large changes in the grid during the first update. 

This will cause problems for the procedure that performs interpolation of the 

bathymetry from the old to the new grid. Only the maximum number of iterations 

should be different, and preferably lower than when you generated the grid. 

 

The automatic grid generation process is designed to be able to account for changes in 

the grid, which are not associated with completely new developments. In technical terms 

the procedure requires that the topology of the grid is unchanged, i.e. the fundamental 

structure of the geometry is unchanged due to the planform changes. The model cannot 

yet handle things like creation of new channels etc. 
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