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protected by copyright. All rights are reserved. Copying or other 
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LIMITED LIABILITY The liability of DHI is limited as specified in Section III of your 
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MAY NOT APPLY TO YOU. BY YOUR OPENING OF THIS 

SEALED PACKAGE OR INSTALLING OR USING THE 

SOFTWARE, YOU HAVE ACCEPTED THAT THE ABOVE 

LIMITATIONS OR THE MAXIMUM LEGALLY APPLICABLE 

SUBSET OF THESE LIMITATIONS APPLY TO YOUR 

PURCHASE OF THIS SOFTWARE.’ 

 

 

 



  

 i 

 

 

CONTENTS 
 

UAS in MIKE 
Underwater Acoustic Simulation Module 
Scientific Documentation 
 

 

1 Introduction ...................................................................................................................... 1 

2 Parabolic Equation Technique ........................................................................................ 3 
2.1 Water Attenuation Loss ........................................................................................................................ 4 
2.1.1 Absorption Coefficient of Water ........................................................................................................... 4 
2.1.2 Implementation of Water Attenuation Loss .......................................................................................... 5 
2.2 Numerical Discretisation....................................................................................................................... 5 
2.3 Model Assumptions .............................................................................................................................. 6 

3 Validation .......................................................................................................................... 9 
3.1 Lloyd’s Mirror Pattern ........................................................................................................................... 9 
3.2 Ideal Wedge ....................................................................................................................................... 11 

4 References ...................................................................................................................... 14 
 

 

 



Introduction  

© DHI - UAS in MIKE Underwater Acoustic Simulation Module 1 

1 Introduction 

The present underwater acoustic model developed by DHI focuses on the noise 

propagation in the far-field with the aim of providing a basis for conducting a risk 

assessment of environmental noise impacts. The sources of sound that may affect the 

surrounding marine life may be noise emanating from pile driving related to offshore wind 

turbine installation, dredging, seismic survey, ship propulsion, etc. 

 

A very effective and popular wave-theory technique for solving range-dependent
1
 

propagation problems in ocean acoustics is the parabolic equation method (Tappert, 

1977). The method requires environments slowly varying with range and azimuth and that 

a preferred direction of propagation exists. Two criteria that underlie the widespread use 

of parabolic approximations in this context are: (1) outgoing energy dominates over 

backscattered energy, hence backscattering in the far-field is negligible, and (2) long-

range sound propagation in the ocean waveguide is dominated by energy travelling at 

small angles to the horizontal. A noise source is often of spherical nature in the near field, 

however, as the acoustic waves propagate further away the wave fronts become 

cylindrical as they are confined between the seabed and water surface - further 

supporting a 2D modelling approach. 

 

The present model is based on solving the Parabolic Equation (PE). The governing wave 

equation of parabolic nature is derived from the Helmholtz equation. There exists an 

infinity of parabolic approximations to this three-dimensional, elliptic partial differential 

equation, and the Underwater Acoustic Simulator (UAS) in MIKE is based on the 2D, 

very-wide angle formulation by Collins (1989). The very-wide angle approximation is 

important for propagation very near the source and propagation out to very long ranges.  

 

Collins (1993) further refined his higher-order PE formulation based on a Padé series by 

a split-step Padé solution for the PE method. The paper was complemented by a 

corresponding algorithm of the split-step Padé solution, which forms the basis for UAS. 

The RAM
2
 algorithm is outlined in Collins (1999a). By applying a higher-order Padé 

approximation (leading to higher-order PE) both numerical errors and asymptotic errors 

(e.g. phase errors due to wide-angle propagation) are reduced, and at the same time high 

computational efficiency is achieved. The splitting solution requires the numerical solution 

of the governing equation for each term of the Padé approximation.  

 

The principal advantage of the parabolic wave equation over the elliptic Helmholtz 

equation is that the PE is a one-way wave equation (first-order in range) which can be 

solved by a range-marching solution technique - step by step from the source. The PE 

method is based on factoring the operator in the frequency-domain wave equation in 

order to obtain an outgoing wave equation. With this follows requirements of specification 

of both initial and boundary conditions for the ocean environment considered. In other 

words, the one-way wave equation for the envelope of the acoustic pressure implies 

numerically solving an initial value problem instead of an elliptic boundary value problem. 

 

 

The original split-step Padé solution accounts for attenuation in the seabed. Volume 

attenuation
3
 in the water column has a significant impact on sound wave propagation of 

                                                      
1 Situations where the lateral variability along the propagation path strongly influences the acoustic sound field pattern. Environmental 

parameters such as sound-speed profile, water depth, and bottom composition are not invariant with range. 

2
 Range-dependent Acoustic Model 

3
 Volume attenuation of sound in seawater is governed by viscosity, temperature, pressure, salinity, and acidity (pH value). 
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above 1 kHz (Ainslie 2010) and is important to take into account when modelling broad 

band noise. The split-step Padé solution algorithm was expanded to consider the 

attenuation of acoustic waves in water. UAS includes propagation in the seabed, but 

handles only compressional waves and not shear waves, i.e. ocean bottom sediments 

are modelled as fluids. 

 

The original paper by Collins (1993) describing the split-step Padé solution and the paper 

outlining part of the finite difference discretisation used (Collins, 1989) are both 

referenced in Chapter 4.   
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2 Parabolic Equation Technique  

The core of the UAS is a 2D (vertical) range-dependent acoustic model simulating 

transmission loss (TL) in a vertical transect (r-z plane) for a given omnidirectional sound 

source located at the start of the transect and ambient conditions. UAS allows for 

simulating the effect of a noise source with broad band signature.  

 

At a certain distance from the source, the complex pressure, p, satisfies the following far-

field equation in each 2D range-independent region (Collins, 1993;1999a): 

 
𝜕2𝑝

𝜕𝑟2
+ 𝜌

𝜕

𝜕𝑧
(

1

𝜌

𝜕𝑝

𝜕𝑧
) + 𝑘2𝑝 = 0  (2.1) 

 

where 𝜌 is the density, 𝑘 = (1 + 𝑖𝜂𝛽)𝜔 𝑐⁄  is the wave number, 𝑖 is the imaginary unit, 𝜔 is 

the circular frequency, 𝑐 is the sound speed,  is the attenuation in dB per wave length, 

and  𝜂 = (40𝜋 log10 𝑒)−1. Factoring the operator in Eq. (2.1) will result in: 

 

(
𝜕

𝜕𝑟
+ 𝑖𝑘0(1 + 𝑋)1/2) (

𝜕

𝜕𝑟
− 𝑖𝑘0(1 + 𝑋)1/2) 𝑝 = 0 (2.2) 

 

𝑋 = 𝑘0
−2 (𝜌

𝜕

𝜕𝑧

1

𝜌

𝜕

𝜕𝑧
+ 𝑘2 − 𝑘0

2) (2.3) 

 

with 𝑘0 = 𝜔 𝑐0⁄  and 𝑐0 as the representing phase speed. Assuming that the outgoing 

energy is dominating the back-scattered energy, the outgoing wave equation can be 

written as: 

 
𝜕𝑝

𝜕𝑟
= 𝑖𝑘0(1 + 𝑋)1/2𝑝 (2.4) 

 

The formal solution of Eq. (2.4) is: 

 

𝑝(𝑟 + ∆𝑟, 𝑧) = 𝑒𝑥𝑝(𝑖𝑘0∆𝑟(1 + 𝑋)1/2)𝑝(𝑟, 𝑧) (2.5) 

 

where r is the range step. Applying an n-term rational function to approximate the 

exponential function will transform Eq. (2.5) to: 

 

𝑝(𝑟 + ∆𝑟, 𝑧) = 𝑒𝑥𝑝(𝑖𝑘0∆𝑟) ∏
1 + 𝛼𝑗,𝑛𝑋

1 + 𝛽𝑗,𝑛𝑋

𝑛

𝑗=1

𝑝(𝑟, 𝑧)  (2.6) 

 

This Padé approximation consists of a sum of n rational-linear terms defined by the 
complex coefficients, 𝛼𝑗,𝑛 and 𝛽𝑗,𝑛. For further details we refer to Collins (1993,1999a) and 

pages 460 and 463-465 in Jensen et al. (2011). The depth operator, 𝑋, is discretised 

using the finite-differences scheme described in Collins and Westwood (1991). UAS 

solves the parabolic approximation using a forward-marching finite difference scheme to 

solve the acoustic field in discretised steps of range and depth. 

 

As stated earlier, the one-way wave equation requires specification of both initial and 

boundary conditions for the ocean environment considered. Establishing initial data for 

the parabolic equation involves a specification of the complex pressure over depth at the 

starting range of the computation transect. A self-starter is an accurate and efficient 

approach for obtaining an initial condition (starting field). The self-starter developed by 

Collins (1992, 1999b) is obtained by solving a boundary-value problem involving the PE 
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depth operator (hence the name) with a forcing delta function, 𝛿(𝑧 − 𝑧0). The self-starter 

for a point source is of the form: 

 

𝑝(𝑟0, 𝑧) = 𝑒𝑥𝑝(𝑖𝑘0𝑟0(1 + 𝑋)1/2)(𝑘0
1/2(1 + 𝑋)1/4)

−1
𝛿(𝑧 − 𝑧0) (2.7) 

 

The sea surface is treated as a pressure-release (zero pressure) boundary, since the 

density of the air is much smaller than that of the water. The boundary condition is 

implemented in the numerical solution scheme.   

 

UAS accounts for range-dependent change in speed of sound in the water column and 

bathymetry. The composition of the seafloor is treated in terms of a number of constant-

density layers of sediments. UAS includes propagation in the seabed, but only handles 

compressional waves and not shear waves, i.e. ocean bottom sediments are modelled as 

fluids. The geo-acoustic profile for each soil layer includes compressed wave speed and 

compressional attenuation. Besides accounting for attenuation constants in the bottom 

layers, it is important to include density changes at the water-bottom interface as well as 

within the bottom itself for a realistic treatment of bottom effects on propagation. The 

lower boundary condition involves termination of the physical solution domain by an 

artificial absorption layer of several wavelengths thickness so as to ensure that no 

significant energy is reflected from the lower boundary. The attenuation is increased 

linearly over the lower few wavelengths of the grid. 

 

UAS provides the option to include volume attenuation in the water column using the 

empirical model by (Francois & Garrison 1982b; Francois & Garrison 1982a). The details 

are described in the next section. 

 

2.1 Water Attenuation Loss  

2.1.1 Absorption Coefficient of Water 

In the model of Francois-Garrison (Francois and Garrison, 1982a and 1982b), the 

absorption coefficient is decomposed into three terms, corresponding to the contributions 

of boric acid, magnesium sulphate and pure water (Lurton, 2010): 

 

𝛼𝑎𝑡𝑡 = 𝐴1𝑃1

𝑓1𝑓2

𝑓1
2 + 𝑓2

+ 𝐴2𝑃2

𝑓2𝑓2

𝑓2
2 + 𝑓2

+ 𝐴3𝑃3𝑓2 (2.8) 

 

where αatt is the attenuation in dB/km and f is the frequency in kHz. 

 

The contribution of boric acid B(OH)3 is defined as: 

 

𝐴1 =
8.86

𝑐
10(0.78𝑝𝐻−5) (2.9) 

 

𝑃1 = 1 (2.10) 

 

𝑓1 = 2.8√
𝑆

35
10(4−

1245
𝑇+273

)
 (2.11) 

 

𝑐 = 1412 + 3.21𝑇 + 1.19𝑆 + 0.0167𝑧 (2.12) 

where pH is the pH value, z is the depth in m, S is the salinity in psu and T is the 
temperature in ⁰C. 
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The contribution of magnesium sulphate Mg(SO)4 is defined as: 

 

𝐴2 = 21.44
𝑆

𝑐
(1 + 0.025𝑇) (2.13) 

 

𝑃2 = 1 − 1.37 × 10−4𝑧 + 6.2 × 10−9𝑧2 (2.14) 

 

𝑓2 =
8.17 × 10(8−

1990
𝑇+273

)

1 + 0.0018(𝑆 − 35)
 (2.15) 

 

The contribution of pure water viscosity is defined as: 

 

𝑃3 = 1 − 3.83 × 10−5𝑧 + 4.9 × 10−10𝑧2 (2.16) 

 

with T  20⁰C: 

 

 

𝐴3 = 4.937 × 10−4 − 2.59 × 10−5𝑇 + 9.11 × 10−7𝑇2 − 1.5 × 10−8𝑇3 (2.17) 

 
and T > 20⁰C: 

 

𝐴3 = 3.964 × 10−4 − 1.146 × 10−5𝑇 + 1.45 × 10−7𝑇2 − 6.5 × 10−10𝑇3 (2.18) 

 

2.1.2 Implementation of Water Attenuation Loss  

The attenuation loss in water is neglected in the paper by Collins (1999a) and the wave 

number is defined as: 

 

𝑘 = 𝜔 𝑐⁄  (2.19) 

 

whereas UAS considers the water attenuation loss by defining the wave number as: 

 

𝑘 = (1 + 𝑖𝜂𝛽)𝜔 𝑐⁄  (2.20) 

 

where 𝑖 is the imaginary unit, 𝜂 = (40𝜋 log10 𝑒)−1, 𝛽 =  𝛼𝑎𝑏 ∙  𝜆  (αab is the absorption 

coefficient in dB/m, 𝜆 = 𝑐 𝑓⁄  is the wave length in m).  

 

For the definition of α please refer to Eq. (2.8), 𝜔 is the circular frequency, and 𝑐 is the 

sound speed.  

2.2 Numerical Discretisation 

UAS requires an equidistant computational grid in horizontal and vertical direction. A 

schematic of the solution domain is shown in Figure 2.1. The spatial discretisation used in 

the finite difference model is defined in terms of the wavelength,𝜆, being modelled. 

Hence, the simulations take into account sensitivity to frequency components to obtain an 

accurate numerical solution. The depth resolution is:  

 

𝑑𝑧 = 𝛾𝜆 (2.21) 

 

and the radial resolution is then defined as:   

 

𝑑𝑟 = 𝜑𝑑𝑧 (2.22) 
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where 𝛾 determines the number of fractions in which the acoustic wave is resolved in the 

vertical direction. In the radial direction the spatial gradients are weaker compared to the 

vertical direction and 𝜑 is used to relax the resolution of the propagating wave. 

 

The numerical accuracy of the solution is not only determined by the resolution of the 

computational grid but is also governed by the number of Padé terms in the PE 

approximation. Deep water situations often require a larger number of terms in Padé 

series due to wide-angle propagation, in order to obtain a numerical accurate solution. An 

increase in terms of the Padé approximation comes at an additional computational cost. 

Convergence tests form the basis for an accurate numerical solution. This part is 

automated in the UAS algorithm, building on an extensive convergence study with focus 

on grid resolution, Padé series expansion and depth (seabed interaction) relevant to EIA
4
 

applications.   

 

  
 
Figure 2.1 Schematic of solution domain for the UAS PE range-dependent wave propagation 

model 

 

2.3 Model Assumptions 

UAS is based on the following simplified conditions. The list also provides some hints to 

where special care must be taken in modelling of underwater sound propagation. 

 

• The sea surface is treated as a simple, horizontal perfectly reflecting boundary 

ignoring the sea states, where in addition to surface gravity waves the upper ocean 

                                                      
4
 Environmental Impact Assessment.. 
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will have an infusion of air bubbles which has a significant impact on the speed of 

sound in the surface part of the water column. It is judged that this approach will lead 

to conservative noise impact ranges. 

- Layers of bubbles near the surface may result in significant noise attenuation 

due to scattering off of surface bubble layer. Besides the enhanced 

transmission loss due to scattering, the sound is further attenuated by refraction 

caused by a spatially-varying sound velocity. Although the volume concentration 

of the infused air bubbles is relatively small – usually a small fraction of 1% – it 

has a dramatic effect on the speed of sound even for small air concentrations 

(Jensen et al. 2011). Particularly high-frequency acoustic propagation is highly 

affected by the air bubble sound attenuation mechanisms. 

- A roughness of the sea surface can be important for high frequencies (> 1 kHz).  

• The impact of internal waves on sound propagation is neglected. In areas with 

strong stratifications the model must be used with care. 

• Only compressional waves are modelled in UAS. Elastic (shear) wave propagation 

may be important when the bottom consists of consolidated sediments which are 

having enough rigidity to transmit acoustic shear waves. 

- When sound interacts with the seafloor, the structure of the ocean bottom 

becomes important. Ocean bottom sediments are modelled in UAS as fluids 

which means that they support only one type of sound wave – a compressional 

wave. This is often a good approximation since the rigidity (and hence the shear 

speed) of the sediment is usually considerably less than that of a solid, such as 

rock. In the latter case, which applies to the ocean basement or the case where 

there is no sediment overlying the basement, the medium must be modelled as 

elastic, which means that it supports both compressional and shear waves. 

• The seabed is divided into soil layers with different acoustic properties. UAS 

accounts for the large-scale bathymetry, but does not resolve localised areas with 

large stones on the bottom or accounts for the effect of underwater sea plants on the 

ocean floor. 

- In shallow waters, the ocean bottom boundary condition plays a dominant role, 

as propagating sound waves to a larger extent interact with the ocean surface 

and bottom due to the short distance between the two boundaries. When sound 

interacts with the seafloor multiple times over short distances, the structure of 

the ocean bottom becomes as important as the bathymetry. Thus sound may 

spread significantly not only through the water but also through the underlying 

sediments, resulting in attenuation of its level as a result of energy being lost 

into the underlying sediments.  

• The code is a 2D model ignoring 3D effects, due to e.g. horizontal refraction of 

sound rays reflected by a sloped sea bottom.  

- The seabed is in general quite flat, even close to seamounts, ridges, and the 

continental slopes, with a slope seldom exceeding 10o. The importance of 

treating the ocean bottom accurately in the numerical model depends on factors 

such as source-receiver separation, source frequency, and ocean depth. 

- When the seafloor is shoaling, as is the case for the ocean over a sloping beach 

and the continental slope, and around seamounts and islands, a ray travelling 

obliquely across the slope experiences the phenomenon of horizontal refraction. 
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• Effects of underwater ambient noise and masking are not addressed in UAS. For the 

most energetic part of the noise source frequencies of concern in most EIAs, the 

ambient level is approximately 100 dB lower, hence it is judged to have 

insignificantly small impact on the calculated results. 

• Near-field effects are neglected. At impact ranges of interest (e.g. > 100 m), the 

sound intensity effects and oblique radiated sound waves dominating the near-field 

are to some extent diluted. The effect of the near-field on the far-field sound 

pressure level is EIA case dependent. 
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3 Validation 

The Underwater Acoustic Simulator (UAS) has been successfully tested in a number of 

basic, idealised situations for which simulated results may be compared to analytical 

solutions or information from the literature. 

 

This section presents a comparison between UAS solutions and reference solutions for 

two idealised cases: A deep water case (Lloyd’s mirror pattern) and a shallow water case 

(ideal wedge). 

 

3.1 Lloyd’s Mirror Pattern 

This test case simulates the acoustic interference pattern created by a point source 

placed near a smooth, perfectly reflecting sea surface in a deep water domain with a flat, 

absorbing bottom. The resulting beam pattern arises as an interference effect between 

the two possible sound paths from source to receiver, i.e. the direct path and the surface 

reflected path. 

 

The analytical solution to the acoustic problem is (Jensen et al, 2011): 

 

|p| =
2

√𝑟2 + 𝑧𝑟
2

+ |sin (
k𝑧𝑠𝑧𝑟

√𝑟2 + 𝑧𝑟
2

)|, 

 

𝑇𝐿 = −20log (
|𝑝|

𝑝𝑟𝑒𝑓

) 

(3.1) 

 

where p is pressure, r is range, zr is depth of the receiver, k is wave number, zs is source 

depth, TL is transmission loss and pref is the reference pressure. 

 

The model domain has a constant water depth of 5000 m and a maximum range of 

30 km. In the water column a constant sound speed of 1500 m/s and an attenuation of 

zero are applied. In order to minimise reflections at the sea floor the bottom description 

comprises a bed layer with a thickness of 50 m (sound speed of 1500 m/s; density of 

1200 kg/m
3
; compressional attenuation of 0.5 dB/λ) and a termination layer with a 

thickness of 100 λ and an attenuation of 3 dB/λ, where λ is the acoustic wave length. 

 

Two pure tone sound sources of 150 Hz and 3600 Hz placed at 25 m and 10 m water 

depth, respectively, were simulated.  

 

The applied numerical settings are 𝛾 = 0.02, 𝜑= 2, np = 5, ns = 1 and rs = 0. The mother 

grid (output) resolution is 1 m in the horizontal and 0.5 m in the vertical.  

 

In Figure 3.1 the simulated transmission loss field solution for the two source frequencies 

is shown. In both plots the Lloyd’s mirror beams (areas of low transmission loss) are 

clearly observed radiating from the location of the source. The number of beams, M, is 

found as (Jensen et al, 2011): 

 

𝑀 = 𝑖𝑛𝑡 {
2𝑧𝑠

𝜆
+ 0.5} (3.2) 

 

For the 150 Hz and 3600 Hz sources the number of beams is 5 and 48, respectively. In 

both plots a triangular area of irregular transmission losses is observed below the source. 
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Although the numerical scheme of UAS is valid for wide-angle sound propagation, these 

triangular areas represent source angles that are too wide (well above 60° from 

horizontal) for the calculated transmission losses to be accurate.  

 

 
 
Figure 3.1 Simulated transmission loss (dB re 1 μPa

2
s) field solutions by UAS for the Lloyd’s 

mirror problem. The top and bottom plots show the Lloyd’s mirror pattern for the 
150 Hz and 3600 Hz sound sources, respectively 

 

 

In Figure 3.2 comparisons between analytic and simulated transmission loss for the two 

sound sources at a receiver depth of 200m are shown. Also in these plots the Lloyd’s 

mirror beams are clearly distinguishable. It is observed that the UAS results compare well 

to the analytic solutions for the applied source frequencies except for the first 50 m, which 

represent the area where the source angle is too wide for the results to be accurate. In 

view of UAS being a far-field propagation model the simulated results show excellent 

agreement with theory.  

 

 



Validation  

© DHI - UAS in MIKE Underwater Acoustic Simulation Module 11 

 
 
Figure 3.2 Comparison of analytic and UAS solutions for the Lloyd’s mirror problem. The top 

and bottom plots show transmission loss at 200 m depth for the 150 Hz and 3600 Hz 
sources, respectively. 

3.2 Ideal Wedge 

The applied wedge problem is described by Jensen and Ferla (1990). The problem deals 

with upslope acoustic propagation in a wedge geometry with a fully reflecting, flat sea 

surface, a homogeneous water column (sound speed of 1500 m/s; no attenuation) and a 

penetrable, lossy bottom (sound speed of 1700 m/s; density of 1500 kg/m
3
; 

compressional attenuation of 0.5 dB/λ). The water depth at the source position is 200 m 

decreasing linearly to 0 m at a range of 4 km. The source frequency is 25 Hz and the 

source depth is 100 m (mid-depth). This test configuration is referred to as “Benchmark 3” 

by Jensen and Ferla (1990) and is the most realistic of the benchmark wedge problems 

described in the paper. 

 

In order to avoid spurious boundary reflections at the seafloor in the UAS test simulation 

the bottom description comprises a bed layer with a thickness of 5000 m and a 

termination layer with a thickness of 20 λ and an attenuation of 3 dB/λ. The applied 

numerical settings are 𝛾 = 0.02, 𝜑 = 5, np = 5, ns = 1 and rs = 0. The mother grid (output) 

resolution is 6 m in the horizontal and 1.2 m in the vertical. 
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In Figure 3.3 the simulated transmission loss (TL) field solution is shown down to about 

285 m below the sea surface. It may be noticed in the figure that the radiation into the 

bottom is particularly evident at short ranges and at a range of about 3.5 km.  

 

 
 
Figure 3.3 Simulated transmission loss (dB re 1 μPa

2
s) field solution by UAS for the wedge 

problem with a lossy bottom. The seafloor is indicated by a black line and the location 
of the source by a red star 

 

In Figure 3.4 the transmission loss at receiver depths of 30 m and 150 m is shown. Both 

the UAS solution and the reference solution by Jensen and Ferla (1990) are shown. It is 

observed in the figure that the transmission loss as simulated by UAS agrees well with 

the reference solution. 
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Figure 3.4 Comparison of transmission loss at 30 m and 150 m depth for the wedge problem with a lossy bottom. The 

left panel shows the UAS solution and the right panel (solid line) shows the reference solution (COUPLE 
full two-way solution) by Jensen and Ferla (1990). The paper states that the accuracy of the COUPLE (2-
way) solution is within a few tenths of a decibel 
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