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1 Introduction 

Traditionally, sediment transport is defined in three modes of transport: Bed load, 

suspended load and wash load. Among others, a comprehensive description is given by 

Engelund & Hansen (1967) and Jansen et al. (1979), see Figure 1.1. 

 

Sediment transport

(Origin)

Bed Material

Wash Load

Bed Load

Suspended Load

Sediment transport

(Mechanism)

 
 
Figure 1.1 Classification of sediment transport. From Jansen et al. (1979) 

 

The latter defines bed load transport as the transport of bed material that is rolling and 

sliding along the bed. Suspended load transport is defined as the transport of sediment, 

which is suspended in the fluid for some time. According to the mechanism of 

suspension, suspended sediment may belong to the bed material load and the wash 

load. Wash load is defined as the transport of material finer than the bed material. It has 

no relation to the transport capacity of the stream. Usually, a grain diameter of around 

0.06 mm divides the region of wash load and bed material load. The Sand Transport 

Module only considers the bed material load. 

 

1.1 Model Type 

MIKE 21 & MIKE 3 Flow Model FM, Sand Transport Module, calculates the sediment 

transport rates using two different model types: 

 

• Pure current 

• Combined current and waves 

 

The sediment transport calculations are based on the hydrodynamic conditions, sediment 

properties and, for ‘Combined current and waves’, wave conditions in the individual 

elements.  

 

The sand transport calculations are carried out using a mean horizontal velocity 

component. The sand transport calculations in MIKE 3 Flow Model FM are thus not truly 

three-dimensional, but carried out in two dimensions in the horizontal direction. However, 

the findings that a more detailed 3D model can give of the hydrodynamic conditions are 

included.  

 

The sediment transport rates are calculated for sand fractions without taking inertia 

effects into account. This means that transport rates for shingle sized material often will 

be overestimated. 
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For the ‘Pure current’ option the sediment transport rates are calculated directly during 

the simulation based on the actual conditions. The scientific background behind the 

calculation of the sediment transport rates for this option is given in Section 2. 

 

For the ‘Combined current and waves’ option the sediment transport rates are found by 

linear interpolation in a sediment transport table. This table is generated beforehand by 

the MIKE 21 Toolbox utility program ‘Generation of Q3D Sediment Tables’. The scientific 

background behind the calculation of the values in the sediment transport table is given in 

Section 3. 

 

1.2 Input Velocity 

The sand transport in a flow will mainly take place near the bed, even the part of the sand 

transport that takes place as suspended load. 

 

The sand transport calculations in MIKE 21 and MIKE 3 Flow Model FM, Sand Transport 

Module, are carried out using a mean horizontal velocity component, assuming the 

vertical velocity profile to be logarithmic. In cases where the vertical velocity profile differs 

significantly from a logarithmic velocity profile the findings from a 3D model setup may 

give considerably different results compared to a 2D model setup. 

 

The sand transport calculations in MIKE 3 Flow Model FM are thus not truly three-

dimensional, but carried out in two dimensions in the horizontal direction. However, the 

findings that a more detailed 3D model can give of the hydrodynamic conditions are 

included.  

 

In MIKE 21 Flow Model FM the mean horizontal velocity component is set to the depth-

averaged velocity from the hydrodynamic module.  

 

In MIKE 3 Flow Model FM the mean horizontal velocity component may be calculated in 

one of two ways: 

 

• Depth-averaged velocity calculated from the 3D flow field from the hydrodynamic 

module 

• Mean velocity derived from the bottom stress value from the hydrodynamic module 

 

In the first case the mean velocity component is found from the 3D flow field by 

integration over depth: 

 


h

dzzVV
0

)(  (1.1) 

 

Where V(z) is the velocity component at distance z above the bed and h is the local water 

depth. 

 

In the latter case the mean velocity component is determined by the bottom stress value:  

 

fb cV   /  (1.2) 

 

Where b is the bottom stress value,  is the density of water and cf  is the drag 

coefficient.  

 

The calculation of the drag coefficient depends on the choice of Model Type and, in the 

case of ‘Pure current’, also the local bed resistance for the sand transport. 
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For the ‘Pure current’ option, the drag coefficient is taken directly from the hydrodynamic 

simulation or found by one of the equations below. 

 

2C

g
c f   (1.3) 

 

 26/1Mh

g
c f   (1.4) 

 

 2b
f

ha

g
c


  (1.5) 

 

Where g is gravity, C the Chezy number, M the Manning number, a the resistance 

coefficient and b the resistance power.  

 

For the ‘Combined current and waves’ option, the drag coefficient is calculated as: 
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(1.6) 

 

Where ks is derived from the hydrodynamic simulation. 
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2 Pure Current 

2.1 Introduction 

For the pure current case (river flow) sediment transport rates are calculated continuously 

through the simulation based on sediment transport formulae derived from either 

empirical or deterministic principles. The sediment transport modelling is divided into bed 

load and suspended load due to their different nature. The bed load, which mainly is 

controlled by the bed shear stress or stream power per unit area, reacts instantaneously 

with the flow. In modelling terms this is referred to as an equilibrium transport description. 

The suspended load on the other hand is characterised by a phase-lag in the transport 

compared to the flow, because it takes some time or distance to adapt the concentration 

profile over the vertical to the flow. Model concepts that include the phase-lag effect on 

the transport of suspended sediment are termed non-equilibrium models and are 

characterised by a sediment concentration that can differ from the equilibrium 

concentration. If the actual concentration is greater than the equilibrium concentration, 

the system will be over-loaded and tend to deposit sediment on the bed; while if under-

loaded, it will try to erode the bed. 

 

Both the flow velocity and the concentration profile vary over the water depth. The flow 

can typically be divided into a logarithmic profile in the main stream direction and a 

secondary flow profile in the transverse direction. The strength of the secondary flow will 

mainly be related to the flow curvature and the bed resistance. The concentration profile 

can typically be approximated with a Vanoni profile. The suspended sediment transport 

components can be obtained by integrating the product of the velocity components and 

the concentration over the water depth. However, in order to do so detailed information 

about the vertical velocity profile is required. The sediment model is therefore extended 

with a model for the helical flow (secondary flow of the first kind) that includes these 

effects in the sediment transport through a pseudo 3D description. Furthermore, the bed 

load is corrected for gravitational bed slope effects. 

 

In the 2D model the helical flow is handled separately in the sediment transport module 

and does not have any impact on the HD-model. In reality, the secondary flow will have 

an impact on the flow distribution, because in a river bend the secondary flow will be 

responsible for moving high-momentum water towards the outside of the bend and low-

momentum water towards the inside of the bend. When using 3D HD-models this 

phenomenon is automatically included and the AD-model for the helical flow becomes 

irrelevant. 

 

2.2 Hydrodynamics 

2.2.1 Helical flow 

Mathematical modelling of flow in a river bend requires insight into the physics of the 

water motion. For this purpose a physical explanation of the flow distribution in a bend is 

given below. 

 

When water flows into a river bend, an imbalance of centripetal force starts to generate 

an outward motion near the free surface and an inward motion near the bed. The reason 

is that the main stream velocities in the upper part of the flow are greater than velocities 

in the lower part of the flow. Therefore, water particles in the upper part of the water 
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column must follow a path with a larger radius of curvature than water particles in the 

lower part to maintain nearly constant centripetal force over the depth. With velocity V 

and radius of curvature R, centripetal acceleration is V 
2
/R. 

 

Simultaneously with the generation of helical motion, a lateral free surface slope is 

created to maintain equilibrium between the lateral pressure force, centripetal force and 

lateral shear force generated from friction along the bed. The classical analytical solution 

to this flow problem predicts a single helical vortex, which transports fluid downstream in 

spiral trajectories. This spiral (or helical) flow pattern can be considered as the sum of a 

longitudinal flow component (main flow) and a circulation in a plane perpendicular to the 

main flow direction (secondary flow). The secondary flow is directed towards the centre of 

curvature near the bottom and outwards in the upper part of the cross-section as 

illustrated in Figure 2.1. 

 

For changing bend curvature and bed topography, the flow distribution will lag slightly 

behind the change in topography due to the inertia of the main flow. Analytical 

expressions for helical flow intensity and the length scale for adaptation of secondary flow 

to changes in topography are discussed below. 

 

The intensity of the helical flow is the magnitude of the transverse velocity component. 

This is defined by de Vriend (1981) as: 

 

R

h
V = i

s

s   (2.1) 

 

 

Where 

V Main flow velocity 

Rs Radius of curvature of streamlines  

is Helical flow intensity 

 

 

 
 
Figure 2.1 Helical flow in river bends 

 

In Section 2.2.2 the vertical distribution of the helical flow is described. Secondary flow 

due to curving streamlines causes a small deviation s in flow direction near the bed, 

away from the main stream direction. This also causes deviation in the bed shear stress 

direction. 
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Figure 2.2 Deviation of bed shear stress due to helical flow 

 

The direction of bed shear stress in a curved flow field plays an important role in a bed 

topography model for river bends. The logarithmic model obtained by Rozovskii (1957), 

among others, yields a bed shear stress direction given by: 

 

R

h
  = 

s
s tan  (2.2) 

 

Where  

h Water depth 

Rs Radius of curvature of flow stream lines 

δs Angle between bed shear stress and depth averaged shear stress (or 

flow) 

 

The parameter β is defined as: 

 

)
C

g
-(1

2
 = 

2 
   (2.3) 

 

Where 

 Von Kárman's constant, 0.4 

g Acceleration of gravity (9.81 m/s
2
) 

C Chezy number 

 Calibration constant 

 

The approximate value of  is 10. Other models for the vertical velocity profile, such as 

the power model, give slightly different values of . Increasing flow resistance, 

represented by a decreasing Chezy number, gives a smaller -value (i.e. less helical flow 

intensity and a smaller deviation in the direction of bed shear stress), as discussed by 

Olesen (1987). In the morphological model,  is specified as an expert user calibration 

parameter (constant or varying in space). The default value is 1.  

 

In regions with changing curvature of the streamlines, the secondary flow will adapt 

gradually. The inertia of the secondary flow has been investigated analytically by (among 

others) Rozovskii (1957) and Nouh & Townsend (1979). De Vriend (1981), Booij & 

Kalkwijk (1982) and Kalkwijk & Booij (1986) have carried out numerical investigations on 

this topic. Further investigations are discussed in Olesen (1987). 
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Modelling of the adaptation of secondary flow is complicated by the fact that (according to 

numerical experiments) adaptation of the secondary flow profile is considerably faster 

near the bed (where bed shear stresses act) than higher up in the water column. Strictly 

speaking, the process of adaptation cannot be characterised by one length scale only. 

Adaptation length is a function of water depth and friction number. In the present 

morphological model, the following differential length scale is applied: 

 

g

C h 1.2
 = sf  (2.4) 

 

Where 

λsf Length scale for secondary flow adaptation 

h Water depth 

C Chezy number 

g Acceleration of gravity 

 

Consequently, the direction of bed shear stress for continuously varying curvature in 

steady flow conditions can be calculated by:  

 

R

h
 =  + 

s

)(
 

s
s

s

s
sf 







 tan

tan
 (2.5) 

 

Where 

ss  Stream-wise coordinate along the streamline  

Rs  Radius of curvature of the streamlines 

h  Water depth 

sf Length scale for secondary flow adaptation 

 

The equation is transformed into a general Cartesian (x, y) coordinate system through the 

following equations: 

 

0 = 
R

h

 + 
y

 
s

y
+ 

xs

x

sf

s
s

s

s

s

s 





















tan
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(2.6) 

 

 

Using 
22 qp

p

s

x

s 





 and 

22 qp

q

s

y

s 





 (2.7) 

 

Where p and q are the two Cartesian flux components working in the horizontal plane as 

shown in Figure 2.3, we get: 

 

0 = 
R

h

 + 
yq+p

q
 + 

xq+p

p

sf

s
s

s

22

s

22 













tan

tantan
 (2.8) 

 

By rearranging the equation and including an unsteady term this finally leads to: 

 

0 = )
R

h
(

h

q+p
 + 

y
v + 

x
u

t s
s

sf

22

sss 

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 (2.9) 
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The equation is solved time-true numerically with the MIKE-FM AD (advection-dispersion) 

model. It is seen that that the equation contains no dispersion and the helical flow is 

generated from the source term.  

 

 
 
Figure 2.3 Transformation from stream-wise coordinates (ss, ns) to general Cartesian 

coordinates (x, y) 

 

 
 
Figure 2.4 Streamline curvature based on velocity vector 

 

The curvature of streamlines is calculated as a cross product between velocity and 

acceleration vector, as illustrated in Figure 2.4: 

 

|u|

|u x u|
  =  

R

1
3

t

s

 (2.10) 

 

In the Cartesian (x, y) coordinate system, the acceleration vector is (see Figure 2.4): 

 

T

du dv
 =  , u

dt dt

 
 
 

 (2.11) 

 

Assuming quasi-steady conditions the Cartesian acceleration components can be 

reduced to: 
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 (2.12) 
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The cross product between the velocity vector and the acceleration vector can hereafter 

be obtained as: 

 

y

u
v

x

u

y

v
uv

x

v
u

dt

dv

dt

du
vu

k

dt

du
u

j

dt

dv
v

iuu T



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




















 22

0

0

0

0 
 (2.14) 

 

Finally, the radius of curvature can be calculated from: 

 

  5.122
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1

vu

y

u
v
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u
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uv
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Rs 
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
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
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


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(2.15) 

 

Note that the radius of curvature is calculated with a sign, stating that the curvature and 

helical flow is positive when flow is bending to the left and negative when bending to the 

right. Note further that the computed deviation in bed shear stress due to helical flow, 

tan s, is based on the assumption of quasi-steady hydrodynamic conditions. In rapidly 

varying flow conditions, the expression does not apply. 

 

Once the deviation in bed shear stress is determined, the corresponding helical flow 

intensity can be estimated from: 

 




s

s

s

V
 = 

R

hV
 = i tan


 (2.16) 

 

The helical flow intensity is of importance for the analysis and parameterisation of the 

secondary flow velocity profiles. 

 

2.2.2 Vertical velocity profiles 

The hydrodynamic model used for sediment transport applications is based on depth-

averaged flow equations. However, information about the vertical velocity profiles is 

required for determining the bed shear stress and for the suspended sediment transport 

calculations in the morphological model. Even though the sediment model is formulated 

in general Cartesian coordinates, a local coordinate system (s, n) aligned with the main 

streamline is applied for the analysis of the vertical velocity profiles.  

 

Introducing the Reynolds stress concept and the Prandtl mixing length hypothesis, and 

assuming that viscous (laminar) friction is much smaller than turbulent friction, the shear 

stresses in the fluid can be expressed by: 

 

z

u
E = s



  (2.17) 

 

Where 

 Density of water 

u Velocity in main flow direction 

z Vertical coordinate 

E Turbulent (eddy) viscosity coefficient 

s Shear stress in main flow direction 

 

A similar relation for n applies for the transverse direction. Introducing this into the 

Navier-Stokes equations (see Olesen, 1987) and assuming steady conditions, the 
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following flow equations for the flow in the longitudinal direction, s, and the transverse 

direction, n, emerge: 

 

)
z

u
(E

z
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s
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+
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
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
 

(2.18) 

 

Where 

u Velocity in longitudinal flow direction 

v Velocity in transverse flow direction 

w Velocity in vertical direction 

P Hydrostatic pressure 

s Coordinate in stream wise direction 

n Coordinate in transverse direction 

R Radius of curvature of the main streamline 

 

By assuming a hydrostatic pressure distribution P over the vertical, water pressure is 

simply a function of the water depth. 

 

The vertical distribution of flow velocity can be obtained by asymptotic expansion. First, 

the zero order approximation of the longitudinal velocity is obtained from the momentum 

equation in the mainstream direction, assuming v and w and the gradient of the main 

velocity (du/ds) to be zero (i.e. fully developed flow). Next, the transverse velocity is 

computed from the momentum equation in the transverse direction with the zero-order 

longitudinal velocity inserted and disregarding v dv/dn and w dv/dz. 

 

A first order approximation of the longitudinal velocity can be obtained by introducing the 

first order secondary flow velocity v into the simplified momentum equation in the 

mainstream direction. De Vriend (1981) and De Vriend & Struiksma (1983) have a 

thorough description of this. The two listed references show that the form of the first order 

solution differs slightly from the zero order solution. 

 

The boundary conditions for the momentum equations are zero shear stress at the free 

water surface and no slip at the bottom (z0, the roughness height). 

 

The reference level zb, shown in Figure 2.5, defines the limit between suspended load 

and bed load transport. In the model the reference level is chosen as the height above 

the defined bed at which the no-slip condition occurs. Thus, h defines the height at which 

suspended sediment transport occurs, and H is the total water depth. In the following the 

non-dimensional vertical coordinate  is introduced. The -system is positioned with its 

origin at the bed and is defined by  = z/H. 
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zb

 
 
Figure 2.5 Vertical velocity profile in the stream wise direction 

 

The height of the reference is chosen as the height above the defined bed at which the 

no-slip condition occurs, i.e. η0 = zb /H in order to fit with the theory of Galapatti (1983), 

who couples suspended sediment transport to the vertical velocity and concentration 

profiles. 

 

The velocity profile can be related to the depth-averaged velocity by applying a unit 

profile function p1(η), as shown below. 

 

H

z
=     ,)(pV = u(z)

1
  (2.19) 

 

Solution of the momentum equation in the mainstream direction requires information 

about the vertical eddy viscosity or the mixing length (using Prandtl's definitions). 

Applying a logarithmic velocity profile (fully developed rough flow), the unit profile 

becomes: 

 

0 0
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   
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   
 (2.20) 

 

The value of 0 is obtained from the closure criterion: 
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 (2.21) 

 

The equation for determination of the no-slip level is solved by iteration. 

 

As seen from the unit profile expression, the mainstream velocity profile only depends on 

the vertical coordinate  and the resistance number, which is convenient for numerical 

purposes. This means that the mainstream velocity profile for fully developed turbulent 

flow can be parameterised by the universal function: 
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Where the symbols uf and C represents the friction velocity and the Chezy number, 

respectively. 

 

The unit mainstream velocity profile function is evaluated at a number of discrete points 

located along a vertical logarithmic axis, so that the most intense resolution is obtained 

near the bottom, where the largest velocity gradients occur. Initially, the discrete vertical 

points are distributed along the vertical -coordinate axis by the simple relation: 

 

 1 j+  = 
j1+j   (2.23) 

 

Where 

 Non-dimensional coordinate = z/H 

Δ = 1.246∙10
-5

 Initial vertical spacing 

n = 400 Number of numerical points 

j Index for vertical level with 1=0 and n=1 

 

But after the no-slip level, where 0 has been obtained, the discrete points are 

redistributed, so that all discrete points are used to resolve the vertical velocity profiles 

from the no-slip level and up to the free water surface. This is done by the relation: 

 

   1 1 0 1 0
1 ,new new old old new

j j j j
with      

 
      (2.24) 

 

A schematisation of the secondary flow and the vertical velocity profiles are shown in 

Figure 2.6 and Figure 2.7: 

 
Figure 2.6 Sketch of the river channel 

 

 

(primary) 

(secondary) 
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Figure 2.7 Main and secondary velocity profiles 

 

 

The truncated first order version of the momentum equation in the transverse direction 

expresses the equilibrium between pressure forces, friction forces and centripetal forces: 

 

0 = 
R

V
 - 

z
 

1
- 

n

P1

s

n
2







 


 (2.25) 

 

Where the transverse shear stress is given by: 

 

z

v(z)
E = n




  (2.26) 

 

And the symbols represent: 

 

z = H Vertical coordinate 

P = gS Hydrostatic water pressure 

S Surface elevation 

V Depth-averaged mainstream velocity 

v Transverse (secondary) velocity 

Rs Radius of curvature of stream line 

n Transverse (horizontal) coordinate 

 

The vertical eddy viscosity coefficient is assumed to be parabolic: 

 

   uH = -1uH = E ff  (2.27) 

 

Where 

ε Non-dimensional eddy viscosity 

 Von Kárman's constant, 0.4 

H Water depth 

 

An equilibrium flow condition is achieved when the sum of the pressure, friction and 

centripetal force term equals zero.  

 

Likewise the primary flow profile p1, a normalised profile p2 for the secondary velocity 

profile v, is applied: 

 

)(pi = )(p 
R

H V
 = v s2

s


2

  (2.28) 

 

Where is, is the helical flow intensity. 

 

Insertion of the three equations above into the equation for the transverse force balance 

results in the following expression after some re-arranging: 
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 (2.29) 

 

Averaged over the depth, the secondary flow is by definition zero. Near the bottom at  = 

0 the velocity vanishes. Thus, the following two conditions must be fulfilled: 
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0

1

0

2  


dp  (2.30) 

 

and 

 

  002 p  (2.31) 

 

The first term in the transverse force balance is constant over the depth. This means that 

the term can be substituted by a constant denoted A: 
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Integration of the transverse force balance from an arbitrary level in the water column  to 

the water surface  = 1 and substituting the constant denoted A into the equation results 

in the following expression: 
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Where the shear stress term used on the left side is equal to zero at the free surface, 

which is due to the fact that no shear forces (like wind) is assumed to act on the free 

water surface. 

 

The force balance can be rewritten as:  
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The secondary velocity profile described by p2() can now be obtained by integration from 

the no-slip level at which p2( =0) to a point in the water column . Hereby, we obtain: 

 

 














 





 










00

1

2

1

11
)( dA - ddp

u

V
 = p

f

2
 (2.35) 

 

The function p2() is conveniently split up into two functions:  

 

)(pA - )(p = )(p 22212
   (2.36) 

 

Where the function p21() is given by 
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and the function p22() is given by 
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The integration constant A, representing the transverse surface slope, can now be 

obtained from the two functions p21() and p22() utilizing that the depth-integrated 

secondary flow velocity is zero: 

 

 
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

dp

dp

 = A
1

1

22
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 (2.39) 

 

The function p21() is singular for  = 1, which therefore requires special numerical 

treatment. Furthermore, p21() consists of integrals with no analytical solution and 

therefore only can be solved by numerical integration. However, the inner integral in the 

expression for p21() can be solved analytically. This results in: 
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 (2.40) 

 

Inserting the right hand side into the expression for p21() yields: 

 

 

0

0 0

2

0 0

3

2

03

2 2ln ln

ln ln
2 1 ln

1 1

21

g
( ) = dp

C

g
d d

C





 

 

 
 

 

 
  

  

 


 
  

   



 

 (2.41) 

 

The first integral in the new expression for p21() has the analytical solution: 
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The two remaining integrals in the equation for p21() do not have any analytical solutions 

and are evaluated by numerical integration. For  = 1 some problems can occur due to 

the singularity. However, by use of the rule of L´Hospital, it can be found that: 
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1

ln2
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 (2.43) 

 

The shape function for the primary and secondary velocity profiles, which are used for the 

evaluation of the suspended sediment transport rates, are plotted in Figure 2.8 and 

Figure 2.9, respectively, for four different Chezy numbers. 
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Figure 2.8 Shapes of the primary velocity profile for varying Chezy numbers (m

½
/s) 

 

 

 
 
Figure 2.9  Shapes of the secondary velocity profile for varying Chezy numbers (m

½
/s) 

 

 

As shown, the absolute value of the profile functions near the bottom increases for 

increasing Chezy number, i.e. reduced flow resistance. 

 

The shape of the velocity profiles is also sketched in Figure 2.10 for two Chezy numbers 

(from Olesen, 1987) and compared with the profiles obtained using a power assumption 

on the velocity profile instead. Only slight differences between the flow profiles of the 

different mixing length models (power profile versus logarithmic velocity profile) can be 

observed in the figure, although the logarithmic model seems to result in a somewhat 

larger secondary flow. 
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Figure 2.10 Vertical distribution of eddy viscosity and flow velocity profiles for a logarithmic and a 

power profile assumption, respectively (from Olesen, 1987) 

 

The depth integration of the mathematical model is based on an assumption that the 

horizontal streamlines are approximately parallel through the water column. This means 

that the secondary velocity component v is much smaller than the main flow component 

u. Due to the non-uniform velocity distribution over the depth, some velocity distribution 

coefficients on the flow convection terms emerge, as discussed by Olesen (1987). 

Applying depth integration the momentum equations can be transformed into: 
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and  
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The two velocity distribution coefficients kuu and ksn are defined as: 
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 (2.46) 

 

and 

 




dpp = k

1

sn )()( 21

0

  (2.47) 

 

The coefficient kuu is very close to unity and can in most cases be disregarded (default 1). 

The ksn coefficient is related to the convection of the main flow momentum by the 

secondary flow. Kalkwijk et al. (1980) and Olesen (1987) investigated the influence of the 

secondary flow convection. The latter also compared velocities from flume tests with 
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numerical experiments using different models of the ksn coefficient. For narrow and 

smooth channels, the ksn coefficient has some importance, whereas for natural rivers the 

effect is negligible. Consequently, the convection of momentum by secondary flow is not 

included in the present model. 

 

2.3 Sediment Transport 

For morphological development of alluvial rivers with interaction between bed bathymetry 

and hydrodynamics, only bed material transport is of interest. Thus, only bed load and the 

part of the suspended load originating from the bed material is considered. The behaviour 

of suspended load is fundamentally different from that of bed load, which has to be taken 

into consideration in the sediment transport modelling. 

 

A description of bed load transport modelling is provided in Section 2.3.1. A description of 

the suspended load transport modelling is provided in Section 2.3.2. A number of explicit 

sediment transport formulas for bed load, suspended load and total load have been 

developed over the years. The formulas implemented in the present modelling system, at 

the core of the sediment transport modelling, are described in Section 2.3.3. 

 

2.3.1 Bed load transport 

The interaction between the bed load and the alluvial bed is one of the most fundamental 

aspects of the morphological behaviour of a river bend (see Engelund, 1974 and 

Struiksma et al., 1985). 

 

In contrast to the suspended load, it is assumed that the bed load responds immediately 

to changes in local hydraulic conditions. Thus, there is no need for advection-dispersion 

modelling in connection with bed load. However, two important effects must be taken into 

account: 

 

1. The deviation of the direction of the bed shear stress from the mean flow direction 

due to helical flow; and 

2. The effect of a sloping river bed. 

 

The first issue requires separate modelling of helical flow prior to bed load computations 

(see Section 2.2.1). 

 

When discussing the local bed load sediment transport capacity of a flow, it is convenient 

only to consider sediment transport in uniform shear flow. For this schematised case 

numerous transport relations have been presented during past decades. For a review of 

this topic, suggested references are Vanoni (1975 and 1984). The transport relations 

implemented in the present modelling system are presented in Section 2.3.3. 

 

The bed load sediment transport is assumed to be the same as the sediment transport 

capacity mentioned above (unless supply-limited modelling is applied), except for bed 

slope effect and helical flow effect. This is illustrated in Figure 2.11. 

 

The bed slope influences the sediment transport rate and direction (the latter being the 

most important for morphological modelling). Only a few models of the influence of bed 

slopes on sediment transport rate have been proposed, see Lane (1953), Luque (1976), 

Koch (1980), Ikeda (1980), and Olesen (1987). In principle, two approaches have been 

adopted. The first modifies the critical shear stress for initiation of motion: 
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Where 

c Modified critical Shields parameter 

c0 Critical Shields parameter in uniform shear flow 

zb Bed level 

s Stream-wise (horizontal) coordinate 

 





v

 
 
Figure 2.11 Direction of bed load transport influenced by helical flow and transverse bed slope 

 

The slope effect on the sediment transport rate given by the relation above cannot be 

directly incorporated into a model that does not assume zero bed load transport at a 

critical shear stress (e.g. the Engelund and Hansen formula). For this kind of formula, the 

following correction can be applied: 

 

S 
s

z
 - 1 = S bl

b
s 


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






  (2.49) 

 

Where 

 Model calibration parameter 

Sbl Bed load as calculated from sediment transport formula 

Ss Bed load along streamline, s 

 

This equation is implemented in the present modelling system. In the model the 

coefficient  is defined as an expert user coefficient, which cannot be changed in the GUI 

(Graphical user Interface). An estimate of the coefficient can be obtained by estimating 

the velocity exponent b in the generalised sediment transport formula = au
b
 (u, is flow 

velocity, a, a constant factor, and , the non-dimensional sediment transport) by 

comparison with the Meyer-Peter & Müller (1948) formula = 8(' - c0)
1.5

. This gives: 

 





c-

3
 = b



 (2.50) 

 

Where 

' Effective skin friction 

c Critical Shields parameter 

b Velocity exponent in the transport formula = au
b
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a Constant factor 

u Flow velocity 

 Non-dimensional sediment transport rate 

 

Using the total load formula of Engelund and Hansen (1967) the velocity exponent b is 5 

(constant). Using the relation for b, it can be seen that b varies from infinity at the 

threshold of motion to 3 for very high shear stresses. 

 

Secondly, the modified critical Shields parameter c is substituted into the Meyer-Peter & 

Muller (1947) formula. If the relation for c is linearised with respect to the bed slope 

dz/ds, the following expression for the  coefficient is obtained: 

 







 0c

2

b
 =  (2.51) 

 

The coefficient varies from around = 1.5 for ' = 2c0 down to ≈ 0.2 for ' = 9c0. In the 

present modelling system however, the  coefficient is specified as a constant throughout 

the modelling period. 

 

The prediction of transverse depth distribution in alluvial channel bends has had 

considerable attention from river engineers, as it is essential in investigations of 

navigability improvement in river bends and in design of optimal channel bank protection. 

Since the pioneering work of van Bendegom (1947), many models of transverse bed 

slope have been proposed. Most of these can be reformulated, so that they also predict 

the direction of sediment transport. Olesen (1987) gives an exhaustive description of the 

proposed models. Talmon et al. (1995) has carried out extensive bed levelling 

experiments for verification of mathematical models of the transverse bed slope effect, 

which in line with Kikkawa et al. (1976), Parker (1983), Odgaard (1981), and Ikeda (1980) 

suggested the following suitable formula: 
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z
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a-
sn 












tan  (2.52) 

 

Where 

G Transverse bed slope factor (calibration coefficient) 

a  Transverse bed slope exponent (calibration parameter)  

tan s  Bed shear direction change due to helical flow strength, see Section 2.2.1 

 

The values of the transverse bed slope factor G and the exponent a, differ somewhat 

between the various authors. Especially, when results from laboratory flumes are 

compared with the results from prototypes. For the laboratory flume case the best fit 

seems to be obtained by: 

 

G = 0.6 and a = 0.5 (2.53) 

 

Talmon et al. (1995) conclude from their experiments that a distinction should be made 

between laboratory conditions and natural rivers. The magnitude of the transverse slope 

effect (G) and the direction coefficient () of the secondary flow seem to differ by a factor 

of two. Also, the distribution between suspended and bed load transport is important. The 

G factor is at least a factor 2 stronger for conditions with prevailing suspended load, 

indicating that either the transverse slope effect is also acting on the suspended load part 

or the transverse slope effect is simply stronger. This means that the following values 

should be used for natural rivers: 

 

G = 1.25 and a = 0.5 (2.54) 
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If the angle between flow direction and the x-axis is  in a fixed Cartesian coordinate 

system, the bed slope in the streamline direction can be computed as: 
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 (2.55) 

 

Where 

s The horizontal coordinate along the streamline 

n The horizontal coordinate in the transverse direction 

x The first horizontal coordinate 

y The other horizontal coordinate 

z The bed level 

 Angle of stream line compared to (x, y) coordinate system 

 

Likewise, the bed slope in the transverse direction is obtained by: 
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Transformation from streamline coordinates to general Cartesian coordinates results in 

the following expressions for the transport rates in the two axis-directions: 

 

 sincos  S   S = S nsbx   

 
 sincos  S   S = S snby   

(2.57) 

 

Finally, the magnitude of the bed load transport is obtained as: 

 
22

bybxbl SS = S   (2.58) 

 

The magnitude of the bed load transport rate is mainly relevant for contour plotting of the 

transport rates. 

 

2.3.2 Suspended load transport 

The model for suspended sediment transport is based on the theory of Galapatti (1983). 

Modelling of non-cohesive suspended sediment in a fluid can be described by a transport 

equation for the volumetric sediment concentration c. If the sediment is treated as a 

passive scalar in the flow, a transport equation can be established from a mass balance 

on a rectangular flow element. In the general case the sediment balance contains 

contributions from the three transport mechanisms: advection, settling, and diffusion. 

Written as a transport equation for a small water element this can be expressed: 

 

     
z

c
w

z

c

z
+

y

c

y
+

x

c

x
=

z

wc
+

y

vc
+

x

uc
+

t

c
s




































































  (2.59) 

 

Where c is the volumetric concentration, t is time, x and y are spatial horizontally 

coordinates, z is a vertical coordinate, u, v, and w are flow velocities in the x, y, and z 

direction, respectively. x, y, and z are turbulent diffusion coefficients, and ws is the 

settling velocity of the suspended sediment. 
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If we ignore the horizontal diffusion terms, which are assumed small compared to the 

vertical diffusion terms, and shift the formulation to a coordinate system following the 

streamline, we obtain the simplified equation: 
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Here, s, is a streamwise coordinate, n, is a transverse coordinate, us, is the flow velocity 

in the main stream direction, and un, is a secondary flow velocity normal to the 

mainstream direction. 

 

The two horizontal flow velocities us and un can be expressed by the profile functions p1 

and p2 derived in Section 2.2.2 assuming the flow to be turbulent and fully developed, i.e.: 
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for the primary flow component, and 

 

)(p
R

Vh
 = )(v

2
s

n   (2.62) 

 

for the secondary flow component. 

 

In order to solve the advection-dispersion equation for the concentration of the 

suspended load, boundary conditions are needed at the water surface and at the bed. At 

the free water surface a no flux condition can be applied: 
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The boundary condition at the bed is simply given as a bottom concentration slightly 

above the bed at  = 0 : 

 

bedcc   (2.64) 

 

The method for calculation of cbed depends of the theory applied (transport formula) to 

describe the transport of the suspended sediment. The level at which cbed is calculated 

corresponds to the level, where the transport mechanism shifts from bed load to 

suspended load. 

 

A special asymptotic approximation technique developed by Galappatti (1983) can be 

used to provide information about the concentration profile. This technique is applicable 

for conditions, where the vertical diffusion coefficient and the fall velocity term are the 

dominating terms in the transport equation for the concentration of the suspended 

sediment), or that non-dimensional parameter e is very small. The parameter e is defined 

by: 
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Where h is the height of the water column at which suspended transport occurs, L is a 

length scale for variations in the mean flow direction, ws is the settling velocity of the 

suspended sediment, and V is the depth-averaged flow velocity. 

 

The theory applied to describe the suspended load in the model is based on an extension 

of the model developed by Galappatti, who did not account for the effects from helical 

flow. The general solution for slowly varying flow is based on the assumption that the 

concentration profile can be obtained as a sum of concentration profiles of increasing 

orders: 

 

c = c i

n

0=i

  (2.66) 

 

Where c0 is the zero-order contribution to c, c1 is the first order contribution, c2 the second 

order contribution, etc. 

 

The concentration of different orders is found by solving the advection-dispersion 

equation for the suspended sediment by an asymptotic technique. First, the c0 

concentration profile is obtained ignoring the temporal and spatial varying terms and only 

considering the remaining two terms representing equilibrium between settling of 

suspended sediment and vertical diffusion, i.e. 
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Secondly, the zero-order concentration c0 profile, which can be obtained by solving the 

equation, is substituted into the left side of the advection-dispersion equation, while the 

right side now is represented by the first order concentration profile terms. Hereby, we 

obtain rearranging the terms: 

 

z

c
w

n

c
v+

s

c
u+

t

c
=

z

c

z
+

z

c
w

000011
s




































  (2.68) 

 

This procedure is repeated for the first order concentration c1, so that the equation for the 

second order concentration c2 now becomes: 
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Equations for the higher order concentration profile can be found in the same manner, but 

usually one stops with the first or second order contribution assuming the higher order 

contributions to be extremely small. 

 

The following non-dimensional parameters are introduced: 

 

Suspension time scale: 

 

t
h

w
 = s   (2.70) 

 

Two horizontal length scales  and  for suspended sediment in the stream-wise and 

transverse direction, respectively: 
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s
Vh

w
 = s 

 
 

n
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w
 = s   

(2.71) 

 

Finally, the vertical length scale is defined by: 

 

h

z
 =   (2.72) 

 

Furthermore, the differential operator D is introduced: 
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Where ' is a non-dimensional turbulent diffusion coefficient /(wsh) 

Applying the differential operator and the non-dimensional parameters the equation for 

the zero order concentration profile c0 can be expressed as: 

 
0 =] cD[ 0  (2.74) 

 

For the higher order concentration profiles the following general expression can be 

obtained: 
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Where i, represents orders greater than or equal to 1. In the further analysis the last term 

on the right side is ignored assuming that the vertical velocities are much smaller than the 

settling velocity of the suspended sediment ws. The boundary condition at the free water 

surface must be valid for all orders of the concentration, i.e. 

 

0 = 
c

 + c
i

i






  (2.76) 

 

Furthermore, it is assumed that higher order concentration profiles do not contribute to 

the depth-integrated concentration, i.e. 

 

1for  ,  0

1

0

 idci   (2.77) 

 

As for the velocity profiles, it is convenient to operate with unit concentration profiles. 

Thus, the zero order concentration profile is the product between the depth-averaged 

concentration and a unit profile function 0(): 

 

)(),(c = c 00    (2.78) 

 

The following discussion considers concentration terms of higher order: 

 

Galappatti (1983) shows that a differential equation of the type D[F()] = G(), with a free 

surface (= 1) boundary condition F + 'dF/dand a restriction that F is zero when 

integrated from = 0 to = 1, has the solution: 
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Where the constant B is obtained from the requirement: 
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 (2.80) 

 

Higher order concentrations ci (i > 0) can be obtained using this solution technique once 

the zero order concentration c0 is known. For the first order profile we obtain: 
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Thus, if we determine the vertical concentration profile of the suspended sediment as the 

sum of zero order profile at the first order profile, we obtain the following expression: 
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Where the higher order concentration profiles t , 1 , and 2 are obtained by solving: 
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(2.83) 

 

If we assume quasi-steady conditions so that the spatial changes are dominant compared 

to the temporal changes, the expression for the vertical concentration profile of the 

suspended sediment can be further simplified to: 
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The zero order solution for the concentration profile is in the model based on an 

exponential profile with modified Rouse parameter Z (Galappatti 1983, who refers to Delft 

Hydraulics Laboratory, 1980): 

 

] )f( Z[ = )(0   exp  (2.85) 

 

Where the function f() is defined by the following two expressions for the lower and 

upper part of the fluid, respectively: 
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and 
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The modified Rouse number is defined by: 
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Where uf is the friction velocity and ws is the settling velocity of the suspended sediment. 

The settling velocity is obtained from the following relations: 

 

The fall velocity w for any grain fraction with a diameter d is found by Eq. (2.89), Rubey's 

formula (1933): 
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 (2.89) 

 

Where s is the relative sediment density, g is gravity and  is kinematic viscosity. 

 

Near the bed at  =0 the concentration will adapt instantaneous to the equilibrium 

conditions, so that: 
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Inserting this into the equation obtained for the vertical concentration profile Eq. (2.84), 

we get the following relation: 
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By analysing the terms it can be seen that the right hand side expresses the suspended 

sediment flux contribution from/to the bed, while the two terms on the left side expresses 

spatial changes due to erosion or deposition of suspended sediment. When cce  the 

system is under-loaded and will try to pick up loose sediment from the bed, while if cce 

the system is overloaded and will deposit sediment on the bed. 
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Figure 2.12 Mass balance of suspended sediment on a vertical water column 

 

 

The knowledge of the vertical flux of sediment from the bed and into the water column 

can be used in combination with the knowledge of the vertical concentration profile and 

the primary and secondary velocity profile to establish a mass balance for the transport of 

suspended sediment. If we look at the vertical water column shown in Figure 2.12 with 

faces parallel to the (s,n)-coordinate system, we find that: 
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Where the physical interpretation of the terms from the left to the right is as follows: 

temporal change of sediment volume in suspension, spatial variation of depth-integrated 

sediment fluxes across the water column, and sediment flux deposited or eroded from the 

bed covered by the water column. 

 

If we insert the previously obtained expressions for the concentration profile and the 

mainstream and secondary velocity profile into the mass balance equation, we get the 

following expression: 
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(2.93) 

 

By introduction of the coefficients ij this mass balance can be further simplified to: 
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The coefficients ij are obtained by numerical integration of the integrals: 
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So far the analysis has mainly been carried out based on a coordinate system coinciding 

with the streamlines. A transformation to the general Cartesian coordinate system (see 

Figure 2.13) can be obtained by: 

 

 

 

Figure 2.13 Transformation from stream wise (s,n) coordinates to fixed (x,y) coordinate system 
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and 
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Where u and v represents the depth-averaged flow velocity in the x and y direction, 

respectively.  
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Based on these two expressions, the transport equation for the suspended sediment can 

now be transformed to Cartesian coordinates, which yields: 
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(2.97) 

 

This equation can be further simplified by collecting the terms and changing the 

formulation from velocities to fluxes. The Cartesian flux components p and q are defined 

by: 

 

p = uh 

q = vh 

 

Substitution of the fluxes into the transport equation leads to: 
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(2.98) 
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Even though the transport equation looks complicated, it is in reality a standard 

advection-dispersion equation for the transport of sediment containing terms for temporal 

change, advection, dispersion, and source or sink. The complexity of the terms is only a 

result of taking the variation of the vertical concentration profile and the primary and 

secondary flow velocity distribution into account. 

 

If we define the modified fluxes: 

 

R

h
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(2.99) 

 

and the dispersion coefficients: 
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(2.100) 
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The transport equation can be rewritten as: 
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(2.101) 

 

From the expressions for the dispersion coefficients it is seen that dispersion is 

anisotropic. Furthermore, it is seen that the advective transport is controlled by a modified 

flux field, which is different due to the inclusion of pseudo three-dimensional effects. 

 

2.3.3 Sediment transport formulae 

Sediment transport capacity in uniform shear flow has been extensively investigated over 

the years. For instance, reviews are given in Vanoni (1984). This section discusses the 

sediment transport formulas used for calculation of bed load and suspended load 

transport capacity (equilibrium concentration at the riverbed), which are implemented in 

the present modelling system. 

 

The following symbols are applied. 

Symbols 

Sbl Bed load <m
2
/s> 

kb Bed load calibration factor < - > 

Ssl Suspended load <m
2
/s> 

ks Suspended load calibration factor < - > 

s Relative density of the sediment < - > 

Stl Total load <m
2
/s> 

ce Equilibrium mass concentration <g/m
3
> 

C Chezy number <m
½
/s> 

V Velocity <m/s> 

 

All sediment transport formulas described herein exclude the effect of riverbed porosity, 

which is included in the continuity equation for update of bed level instead. 

 

Some of the formulas only predict total load (bed load + suspended load), whereas 

information about both bed load and suspended load is required. The total load formulas 

can still be applied by using the calibration factors kb and ks for bed load and suspended 

load, respectively, in order to differentiate between the two modes of transport. Assume 

for instance a total load formula. By specifying kb = 0.1 and ks = 0.9, it is understood that 

10% of the transport takes place as bed load. 

 

Due to the non-uniform vertical distribution of the suspended sediment concentration, the 

effective fall height of grains will be different from the mean fall height h/2 (where h is 

water depth). For a uniform vertical concentration profile, the time scale for settling is 

defined as h/ws (ws is the settling velocity). With information about the Rouse number Z, 

the actual concentration profile can be predicted and therefore a better estimate for the 

settling time scale ts can be obtained if using the height of the centroid. However, the time 

scale effect on the settling has already been included in the modelling using the 

described profile functions, and the Φ(η0) factor on the sink/source term in the advection-

dispersion equation for the concentration of the suspended sediment. 

 

The Shields parameter  is defined as: 



Pure Current  

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 32 

 

50)1( dsg
 = 




  (2.102) 

 

Where 

τ The flow shear stress 

ρ Density of water, approx. 1000 kg/m
3
 

g Acceleration of gravity, 9.81 m/s
2
 

s /s relative density of the sediment 

s Density of sediment, for quartz sand 2650 kg/m
3
 

 

Flow shear stress is divided into form drag '' and skin friction '. The total shear stress = 

' + '' is estimated from the local flow velocity u and the local Chezy number C: 

 

C

V
g = 

2

2

  (2.103) 

 

For skin friction the following approximate friction formula (Engelund & Hansen, 1967) is 

applied unless otherwise calculated (i.e. in the model of van Rijn or the model of 

Engelund and Fredsøe, where more sophisticated models are used to describe the 

physical processes): 

 

 20.4 + 0.06 =   (2.104) 

 

The non-dimensional sediment transport rate is defined as: 

 

d1)g-(s

S
 = 

3
  (2.105) 

 

Where 

S Sediment transport (bed load, total or suspended load) 

d Characteristic grain size 

 Non-dimensional sediment transport 

 

Engelund and Hansen model 

The model by Engelund and Hansen (1967) is a total load model that needs user-

specified information in order to divide the sediment transport into bed load and 

suspended load. The transport rates are obtained from the relations: 

 

Sk = S tlbbl   

 

Sk = S tlssl   
(2.106) 

 

Where the total sediment transport is obtained by: 

 

d g 1)-(s  
g

C
 0.05 = S

3
502

52

tl   (2.107) 
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The equilibrium concentration is simply specified as the suspended load divided by the 

water flux and converted from volumetric concentration to mass concentration: 

 

10 s 
hV

S
 = c

6sl
e 


 (2.108) 

 

Van-Rijn model 

Van-Rijn (1984) proposed the following models for sediment transport of bed load and 

suspended load: 

 

3

503.0

*

1.2

)1(053.0 dgs
D

T
Sbl   (2.109) 

 

Where T is the non-dimensional transport stage parameter and given by: 

 

1 - 
u

u
 = T

cf,

f

2













 
 (2.110) 

 

The critical friction velocity uf,c is determined as: 

 

d g 1)-(s  = u 50ccf,   (2.111) 

 

The effective friction velocity is estimated from: 

 

C

g
 V = u f


  (2.112) 

 

Where the resistance (Chezy number) originating from skin friction is based on a 

logarithmic velocity profile assuming a certain bed roughness: 

 













90

4
log18

d

h
C  (2.113) 

 

The non-dimensional particle parameter D* in the van Rijn bed load transport formula is 

defined as: 

 











2

3

1

50*

g 1)-(s
 d = D  (2.114) 

 

Where  is the kinematic viscosity and approximately equal to 10
-6

 m
2
/s for water. 

 

Instead of using a constant critical Shields parameter c (approximately equal to 0.06), 

van Rijn assumes the following variation as a function of D*, see Table 2.1. 
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Table 2.1 Relations for determination of critical Shields stress 

Range of D* c 

D* < 4 0.24/D* 

4 < D* < 10 0.14D*
-0.64

 

10 < D* < 20 0.04D*
-0.1

 

20 < D* < 150 0.013D*
0.29

 

D* > 150 0.055 

 

 

Suspended sediment transport occurs only if one of the following criteria is satisfied: 

 

10for      
4

*

*

 D
D

w
u s

f  (2.115) 

 

10for      4.0 *  Dwu sf  (2.116) 

 

The reference level, at which the bed concentration is determined, is expressed as: 

 















d 2

h 0.01
 = a

50

max  (2.117) 

 

The volumetric bed concentration is obtained from the relation: 

 

3.0

*D a

T d
0.015 = c

1.5
50

a   (2.118) 

 

In Figure 2.14 the reference level and the bed concentration are sketched. 

 

 
 
Figure 2.14 Definition of the reference level a for the bed concentration Ca 
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A correction coefficient, denoted  is applied to the hydrodynamic diffusion coefficient in 

order to transform the coefficient into a diffusion coefficient for the suspended sediment: 

 

 
u

w
2 + 1 = 

f

s

2


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




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  (2.119) 

 

Van Rijn defines a correction factor   for the concentration profile, which is determined 

by: 
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o
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s

0.8

  (2.120) 

 

Where co (if expressed as volumetric concentration) is the concentration corresponding to 

firm packing of the sediment, i.e.: 

 

m

m
 0.65 = c 3

3

o  (2.121) 

 

When applying the correction coefficients defined above, a Rouse suspension parameter 

Z can be obtained by: 

 




 + 
u  

w
 = Z

f

s  (2.122) 

 

Finally, the depth-integrated transport of suspended load is computed as: 

 

hVcf = S asl   (2.123) 

 

Where the correction factor for suspended load is obtained from: 
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 (2.124) 

 

The equilibrium concentration ce is calculated from the approximation formulas given in 

Table 2.2 below: 

 

 
Table 2.2 Polynomial approximations for determination of the equilibrium concentration 

Condition Corresponding value of Ce and h* 

Z   1  ce = ca(2.21Z - 6.41)Z + 7.21)Z - 3.95]Z + 0.97]  

1  Z   3 ce = ca (0.007Z – 0.06)Z + 0.220)Z - 0.347]Z + 0.22]  

Z  > 3 ce = ca (410-6 Z - 1.210-4)Z + 1.410-3)Z - 7.6710-3]Z + 0.018]  
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Engelund and Fredsøe model 

The probability of a moving sediment grain can, according to Engelund and Fredsøe 

(1976), be determined by the expression: 
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c

d

= p  (2.125) 

 

The dynamic friction coefficient d is assumed to be equal to d= 0.51 = tan27. The 

non-dimensional skin shear stress is defined by: 

 

d g 1)-(s

u
 = 

50

f

2 '

   (2.126) 

 

Where the friction velocity related to skin friction is calculated from the assumption of a 

logarithmic velocity profile: 
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
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d

h

V
 =u

50

f

5.2
ln5.26
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(2.127) 

 

The bed load transport rate is estimated from: 

 

d g 1)-(s )0.7 - (p 5 = S
3
50cbl   (2.128) 

 

The reference concentration near the bed is calculated from an empirical relation 

obtained by Zyserman and Fredsøe (1994): 

 

 
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331.0
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c

c
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0.
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(2.129) 

 

The empirical relation was established from analysis of the experimental data sets of Guy 

et al. (1966) and covers a range from pure bed load to dominant suspended transport. 

The influence of lateral bed slope is included in the relation through a reduced critical 

Shields stress for onset of motion. 

 

Numerical integration is performed along a logarithmic vertical scale, because a greater 

density of computational points is required close to the bottom, where the largest velocity 

gradients occur. The non-dimensional vertical coordinate is obtained from the relation: 

 

  +  = j
1-jj

106.1   (2.130) 

 

Where the step height  is determined by: 
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(2.131) 
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Due to the specific value of the exponent, it is seen that the depth is divided into 99 

segments. The velocity profile is assumed to be: 

 









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



0

ln
4.0

)(

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g
 = u  (2.132) 

 

Where the no-slip level 0, is obtained from: 
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g

C 0.4
-1-  = oo
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and solved by iteration. 

 

The normalised vertical concentration profile is specified in the following way: 
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Where the reference level a, is defined by: 

 

h

d 2
 = a 50

 (2.135) 

 

The Rouse suspension parameter Z, is defined as: 

 

u 

w
  =  Z

f

s


 (2.136) 

 

The suspended load transport rate Ssl, is obtained from: 

 




dcu h V c = S bsl )()(
1

0
   (2.137) 

 

The equilibrium mass concentration ce, is determined from: 

 

10  s
h V

S
 = c

6sl
e   (2.138) 
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Meyer-Peter and Müller model 

The Meyer-Peter and Müller model (1948) relates the non-dimensional bed load transport 

 to the dimensionless shear stress acting on the grains through the relation: 

 

  5.1
8 cbl    (2.139) 

 

or expressed as a transport rate: 

 

    3

50

5.1
18 gdsS cbl    (2.140) 

 

Where '' is the part of the Shields stress related to skin friction. The relation is only valid 

for fluvial systems with dominating bed load and slopes ranging from 0.0004 to 0.02. 
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3 Combined Wave and Current 

3.1 Introduction 

For the case of combined current and waves (coastal application) sediment transport 

rates are derived by linear interpolation in a sediment transport table. The values in the 

table are calculated by the MIKE 21 Toolbox utility program ‘Generation of Q3D Sediment 

table’. The core of this utility program is a quasi three-dimensional sediment transport 

model (STPQ3D).  

 

The model (STPQ3D) calculates instantaneous and time-averaged hydrodynamics and 

sediment transport in two horizontal directions. As the model calculates the bed load and 

suspended load separately, the values in the sediment transport table are total load. 

 

The essence of the Quasi-3D hydrodynamics model is the solution of the force balance 

across the water column  

 

z

U
v

t



   (3.1) 

 

from which the time averaged flow velocity U  is found by integration. 

 

The temporal and vertical variations of shear stress, turbulence, flow velocity and 

sediment concentrations are resolved. The time evolution of the boundary layer due to 

combined wave/current motion is solved by means of the integrated momentum approach 

of Fredsøe (1984). The force balance includes contributions from the near bed wave 

orbital motion, forces associated with wave breaking (gradients of radiation stresses) and 

the sloping water surface. 

 

In the following the different aspects of the STPQ3D model are described.  

 

3.2 Hydrodynamics 

3.2.1 Mean flow 

Prior to the sediment transport calculations the hydrodynamic flow conditions must be 

calculated. The mean horizontal velocity component is input parameter to the model. For 

two-dimensional flow this value is defined as the depth-averaged current velocity and for 

three-dimensional flow the value can be calculated on basis of either the 3D flow field or 

from the bottom stress value. The pre-defined mean discharge is obtained by 

superposing the wave motion by a steady current driven by a gradient in the water 

surface elevation and solving the turbulent boundary layer for the combined wave/current 

motion. The interaction of the undertow, the longshore current and the waves are 

automatically taken into account. The wave induced mass transport and the discharge in 

the surface rollers are included in the calculation of the mean flow. The gradients in the 

water surface elevations in the x and y directions are not known beforehand and are 

found through iteration to obtain the prescribed fluxes. 
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The time-averaged flow velocity distribution is calculated from the vertical distribution of 

the driving forces and the mean eddy viscosity. By using the no slip condition at the bed, 

the mean velocity profile is solved by integrating Eq.(3.1).  

 

Figure 3.1 shows an example of the time varying velocity profiles across the vertical in 

the current direction.  

 
Figure 3.1 Example of velocity profiles in the current direction during one wave period. Test 

conditions are: Cnoidal 5th order wave theory, Hrms=1.0 m, Tz=6 s, Angle=10 deg., 
D=2 m, V=0.5 m/s. No wave breaking 

 

Figure 3.2 shows the corresponding velocity profiles perpendicular to the current 

direction. 

 
 
Figure 3.2 Example of velocity profiles perpendicular to the current direction during one wave 

period. Test conditions as in Figure 3.1 
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3.2.2 Wave motion 

In the model, the wave motion is defined through a number of general wave parameters 

such as wave height H (or Hrms ), wave period T (or Tz ) and angle of incidence  (or 

MWD). The values in parentheses refer to an irregular wave description. 

 

In shallow water the wave motion becomes non-linear, e.g. the velocities under the wave 

crest are higher than under the wave trough. This phenomenon is very important in the 

calculation of cross-shore sediment transport. The time varying water surface and orbital 

velocities can be calculated from various wave theories.  

 

The wave motion outside the boundary layer is assumed to be inviscid (potential flow). In 

order to fulfil the requirements of potential theory, the mean bed shear stress due to the 

wave motion must be zero for pure oscillatory flow. In case of progressive waves, a small 

but significant mean bed shear stress occurs due to the non-uniformity of the wave 

boundary layer.  

 

In the model, a small additional constant velocity is added to the wave orbital motion. This 

velocity is not known beforehand, but must be found by iteration, such that the mean bed 

shear stress, calculated from the turbulent boundary layer model, corresponds to the pre-

defined value. The concept of the additional potential velocity is described in Brøker 

(1985). 

 

In case of breaking waves, energy is extracted from the organized wave motion and is 

converted into turbulence. The turbulent energy generated at the water surface is 

transported downwards into the water column. The amount of turbulence produced at the 

water surface is calculated from general wave parameters such as wave height and 

period and the water depth. The production of energy can be calculated according to a 

regular or an irregular wave description. 

 

Near bed orbital velocities 

The wave motion outside the bottom boundary layer can be calculated from a number of 

wave theories. Both classical wave theories as well as semi-empirical theories are 

available.  

 

The use of non-linear wave theory is important to resolve higher order velocity moments 

(skewness, asymmetry), which are important for sediment transport. Unfortunately, no 

wave theory exists today that covers all hydrodynamic conditions satisfactorily. Therefore, 

a number of the existing ones are included in the model. Each of them is valid in a limited 

range of hydrodynamic conditions. 

 

The available wave theories and their area of application are listed below. 

 

Classic theories: 
• Stokes theory 1

st
, 3

rd
 and 5

th
 Order (Fenton 1985).  

Deep water/ Non-breaking waves 

• Cnoidal theory (1
st
, 3

rd
 and 5

th
 Order (Fenton 1990).  

Shallow water/ Non-breaking waves 

• Vocoidal theory (Swart 1982).  

All water depths/Non breaking waves 
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Semi-empirical theories: 
• Isobe and Horikawa (1982).  

All water depths/Breaking and Non-breaking waves 

• Doering and Bowen (1995).  

All water depths/Breaking and Non-breaking waves 

Detailed descriptions of the wave theories can be found in the referred literature. Figure 

3.3 shows an example of the near bed velocity, u0, during a wave period. 

 

 
 
Figure 3.3 Example of near bed velocity u0 for 5 different wave theories 

 

The terms 'shallow' and 'deep' water refer to the Ursell number, Us, which is defined as:  

 

3

2

D

HL
U

s
  (3.2) 

 

Where is the wave height, L is the wave length and D is the water depth. 

 

Deep water corresponds to Us < 25, shallow water corresponds to Us > 25. 

 

Stokes' and Cnoidal wave theories descriptions of orbital velocities can be used for Us < 

25 and Us > 25, respectively. In the model an option is available that automatically applies 

either Stokes' or Cnoidal wave theory, according to the above mentioned validity range. 

In some cases it is desirable to use linear wave theory regardless of the Ursell number. 

The model also provides an option for this. 

 

Vocoidal wave theory has the advantage that it is applicable in all water depths, which 

means that the same theory is used in both deep and shallow water.  

 

The model of Isobe and Horikawa (1982) includes the effect of the bed slope on the time 

varying orbital velocity. The model is semi-empirical and has not been tested for 

applications including breaking and broken waves. 

 

The model of Doering and Bowen (1995) relates the skewness of the wave orbital motion 

to general wave parameters (H,T,D), but does not describe time varying near bed orbital 

velocities. The description of velocity skewness is valid for both breaking and non-
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breaking waves. In order to calculate the velocity variation, the semi-empirical description 

of Isobe and Horikawa (1982) is used in the model, where the ratio between the 

maximum velocities at wave crest and wave trough are found by iteration such that the 

skewness of the velocity distribution corresponds to the model of Doering and Bowen 

(1995). 

 

Mass transport 

For progressive waves a net mass transport (drift) occurs between the wave trough and 

the wave crest (Eulerian definition). Under uniform conditions in the longshore direction 

the net cross-shore discharge must be zero. The mass flux is calculated from the applied 

wave theory. For the semi-empirical wave theories the mass flux is estimated by using 

linear wave theory, as no descriptions of mass flux exist for these wave theories.  

 

The mass transport can be included or excluded from the calculation when generating the 

sediment transport table.  

 

Surface roller area 

In case of breaking waves a surface roller is present at the water surface. The mass flux 

in the surface roller and the shear stress exerted on the water surface by the roller are 

important in the calculation of the undertow. In the present model the surface roller area 

is calculated according to the model of Dally and Brown (1995), in which the surface roller 

area A is related to the energy dissipation through: 

 

d

Diss
A


   (3.3) 

 

Where Diss is the dissipation of wave energy through breaking and d is an empirical 

constant between 0.1 and 0.2, which is an input parameter to the model. The default 

value is 0.15 according to Deigaard (1986). The surface roller area is thus defined in the 

model by the parameter d and the energy dissipation, which is calculated either from a 

regular or an irregular wave description. 

 

3.2.3 Bottom boundary layer 

The development in time of the boundary layer in combined wave-current motion is 

described by the following first-order differential equation, Fredsøe (1984). 
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 (3.4) 

 

Where 

 is von Kármán constant 

t is time 

z is a parameter related to the boundary layer thickness , see Eq. (3.6) 

U0 is the near-bed wave orbital velocity 
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Uf0 is the friction velocity due to the current inside the wave boundary layer 

 is the angle between the current and the waves 

k is the bed roughness, taken to be equal to 2.5 d50 for a plane bed, and 

2.5 d50 + kR for a ripple-covered bed 

d50 is the median grain size, and  

kR  is the ripple-related roughness, see Eq. (3.34)  

 

The near-bed wave-induced velocity U0 varies in time according to Eq. (3.5): 

 

   tUtU ,0
0

  (3.5) 

 

Equation (3.4) is solved by the application of a fourth-order Runge-Kutta method over the 

wave period. The time step is defined by dividing the wave period T into two times n/2 

(defining n/2+1 evenly spaced calculation points in one half period). It is assumed that a 

new boundary layer begins to develop each time the flow reverses. 

 

Once z(t) is known, the boundary layer thickness   is calculated for every time step: 

 

 1
30

 ze
k

  (3.6) 

 

Figure 3.4 shows an example of the boundary layer thickness during a wave period 

applying Cnoidal wave theory. 

 

 
 
Figure 3.4 Example of boundary layer thickness , using Cnoidal wave theory 

 

The friction velocity Uf(t) is derived from the boundary condition for the velocity at the top 

of the boundary layer. 
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zU

U

f




sin
sin 0  (3.9) 

 

 

Figure 3.5 and Figure 3.6 show examples of the friction velocity Uf in the cross-shore and 

longshore direction, respectively, for the 5 different wave theories. 

 

 
 
Figure 3.5 Example of friction velocity Uf in the cross-shore direction 

 

 

 
 
Figure 3.6 Example of friction velocity Uf in the longshore direction 

 

Additional parameters determined by the model are: 
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Where 

 is the instantaneous thickness of the boundary layer 

m is the mean boundary layer thickness 

Uf is the friction velocity 

Ufc is the friction velocity of the mean current V 

D is the local water depth 

kw is the apparent bed roughness 

 is the angle between the instantaneous flow in the boundary layer and 

the mean current. 

 

The value of the friction velocity of the current inside the boundary layer Uf0 is not known 

beforehand and is found by iteration. 

 

The calculations are repeated until the difference between the value of Ufc is given and 

the value determined through Eq. (3.10) becomes smaller than the chosen tolerance . 

 

3.2.4 Turbulence 

The turbulence originates from 3 different sources:  

 

1. The wave boundary layer  

2. The energy dissipation due to wave breaking 

3. The mean flow 

 

The three contributions to the eddy viscosity are calculated more or less independently 

from each other. The contribution from the wave boundary layer is calculated from the 

boundary layer model of Fredsøe (1984). The contribution from the mean flow is 

modelled by applying a mixing length concept, see Elfrink et al. (1996) and the eddy 

viscosity due to wave breaking is calculated from the transport equation for turbulent 

kinetic energy, see Deigaard et al. (1986). The total instantaneous eddy viscosity is 

calculated by summing the three contributions at the energy level: 

 
2 2 2 2

t bl c br
       (3.13) 

 

Where t is the total instantaneous eddy viscosity, bl the eddy viscosity in the bottom 

boundary layer, c the eddy viscosity due to the mean current and br the eddy viscosity 

due to wave breaking. 

 

Figure 3.7 shows an example of the mean total eddy viscosity distribution across the 

depth for a non-breaking and breaking wave, respectively. 
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Figure 3.7 Example of mean total eddy viscosity for a non-breaking and breaking wave 

 

Eddy viscosity in bottom boundary layer 

Inside the bottom boundary layer the eddy viscosity is calculated as: 

 

1
bl f

z
U z 



 
  

 
 (3.14) 

 

Where  is the instantaneous boundary layer thickness, Uf  the instantaneous shear 

velocity due to the combined wave-current motion and z is the height above the bed. 

 

The shear velocity Uf and the boundary layer thickness  are calculated from the model of 

Fredsøe (1984).  

 

In the case of a ripple-covered bed, an extra contribution to the eddy viscosity bl is added 

according to Eq. (3.37). 

Eddy viscosity due to mean current 

Outside the boundary layer the eddy viscosity due to the mean current is calculated from 

the mixing length concept: 

 

dz

Ud
lv

c

2  (3.15) 

 

Where l is the mixing length defined as l = k z (1 - z/D) and U is the mean current velocity 

 

Eddy viscosity due to wave breaking 

The time-averaged production of turbulent kinetic energy at the water surface is 

calculated from a regular or an irregular wave description. For regular waves the 

production of turbulent energy is defined at the input level as a dimensionless factor fbr , 

which is defined as the ratio of the actual energy dissipation and the energy dissipation in 

a steady hydraulic jump, Dissj, which yields:  
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3

2 24
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T D H

  
  

 
 (3.16) 

 

The energy dissipation in the model can thus be varied gradually from fbr = 0 for non-

breaking waves to fbr = 1 for fully developed breaking waves. 

 

For irregular waves the production of turbulent energy is calculated according to the 

model of Battjes and Janssen (1978), which yields: 

 

2 max

max
0.25

b

Hg
Diss Q H

T D


    (3.17) 

 

Where Hmax is the maximal wave height, Qb the fraction of breaking waves and  the 

dimension less parameter, taken as 1. 

 

The maximal wave height is: 
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 (3.18) 

 

Where k is the wave number and D the water depth. 

 

In case kD > 2 the eddy viscosity due to wave breaking is omitted from the calculations. 

 

The fraction of breaking waves Qb is:  
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 (3.19) 

 

The two parameters 1 and 2, which describe the maximum wave steepness H/L and 

height/depth ratio H/D, respectively, are input parameters to the model. As default, the 

theoretical value of 1= 0.88 is used. The second parameter, 2 is calculated from the 

expression as presented in Battjes and Stive (1984): 

 

 2 0
0.5 0.4tanh 33s    (3.20) 

 

Where s0 is the deep-water wave steepness, H/L0, where L0 is the deep-water wave 

length. 

 

The eddy viscosity due to wave breaking is calculated from the diffusion equation for 

turbulent kinetic energy according to the model of Deigaard et al. (1986): 
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 (3.21) 

 

t
l k   (3.22) 

 

Where PROD is the production of turbulent kinetic energy due to wave breaking, i.e. total 

production of turbulent energy equals the dissipation of energy. The 'production' is 
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assumed to take place during the time Tdiss after passage of the crest and limited to 

above the trough level. 

 

In case of irregular waves, the time scale Tdiss over which the turbulent energy is 

produced, diffused and dissipated is taken as: Tdiss = Tp/Qb.  

 

3.2.5 Shear stress 

The driving forces for the mean flow basically consist of three contributions:  

 

1. The time averaged shear stress associated with the wave motion 

2. The shear stress associated with wave breaking 

3. The shear stress due to gradients in the water surface 

 

The vertical distribution of the time mean shear stress is illustrated in Figure 3.8. 

 

 

 
 

Figure 3.8 Illustration of vertical distribution of mean shear stress 

 

 

For details reference is given to Fredsøe and Deigaard (1992). 

 

Wave motion 

Asymmetric wave orbital motion 
The non-linear wave motion will give rise to a mean bed shear stress in the wave 

direction. In order to fulfil the requirements of potential theory, a small additional velocity 

is added to the oscillatory wave motion such that the mean bed shear stress becomes 

zero. 
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Figure 3.9 Sketch of components in asymmetric wave motion 

 

Streaming in the boundary layer 
In case of progressive waves, a small net shear stress is generated due to the non-

uniformity of the wave boundary layer. Brøker (1985) showed that this streaming induced 

shear stress at the bed can be expressed as: 

 

0str f f
U U U

c


   (3.23) 

 

The user can turn the effect of streaming on or off.  

Radiation stresses 

Deigaard and Fredsøe (1989) determined the time mean shear stress necessary to 

balance the gradients in the radiation stresses. It was found that the vertical transfer of 

horizontal momentum gives a significant contribution to the momentum balance. 

Deigaard (1994) derived expressions for time mean shear stress at the wave trough level 

in case of oblique waves by considering the momentum balance for the surface rollers. 

The shear stress is constant over the water column. In the wave direction it yields:  

 

s Diss

c




   (3.24) 

 

Where c is the wave celerity and Diss is the time averaged energy dissipation due to 

wave breaking. 

 

Water level gradients 

On uniform beaches the mean flow in the cross shore direction must balance the mass 

transport associated with the wave motion and the discharge in the surface roller. In the 

longshore direction the mean flow corresponds to the time averaged longshore current 

velocity. In the model the predefined mean flow discharge is obtained by superposing a 

shear stress arising from a sloping water surface to the shear stress associated with the 

wave motion (radiation stress, surface roller, streaming). It is noted that this water level 

gradient not automatically corresponds to the gradient in radiation stress.  
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This shear stress due to the sloping water surface is zero at the water surface and varies 

linearly through the water column (hydrostatic pressure). In this model, the pre-defined 

current may have any magnitude and direction.  

 

3.2.6 Ripples 

Wave-generated ripples exist for values of the Shield's parameter  max less than 

approximately 1, Nielsen (1979): 

 

 

2
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f
U
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 


 (3.25) 

 

Where s is the relative density of the bed material, g is the acceleration of gravity and d50 

is the mean grain size. 

 

For similar values of max the ripples are the largest for pure wave motion and are 

smoothed out when current superposes the wave motion. 

 

The ripples act on the flow as large roughness elements. The influence of ripples on the 

sediment transport is considered by calculating: 

• The dimensions of the ripples as a function of the characteristics of the waves and 

the current 

• The increased roughness experienced by the flow due to the presence of ripples 

• The contribution to the eddy viscosity due to ripples 

• The mean concentration at the level of the ripple crest 

Ripple dimensions 

In pure wave motion the ripple dimensions are determined according to Nielsen (1979): 
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Where 

 is  2

1 50
/ 1

m
U s gd  

hr  is ripple height 

 is ripple length 

´ is Shield's parameter for plane bed case (k = 2.5 d50) 

a  is amplitude of wave orbital motion near the bed 

U1m maximum orbital velocity 

 

In the estimates of ripple dimensions ´pn is calculated using Swart's formula for the 

friction factor (1982): 

 
0.194

50
2.5

exp 5.213 5.977
w

d
f

a

  
      

 (3.28) 
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In cases where current superposes the wave motion, the ripple height is decreased. In 

the model the effect of current is included by introduction of a 'reduced ripple height'. 

 

The reduced ripple height in combined wave-current motion is estimated as: 
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The reduction factor, Rf, is given as follows: 

 

1

1 1 2

2 1

2

1

0.5 0.5 cos

0

fc

fw

fc fc

f

fw fw

fc

fw

U
for C

U

U U
R C for C C

U C C U

U
for C

U









   

              







 (3.31) 

 

Where C1 and C2 are user-defined constants, having default values of C1 = 0.1 and C2 = 

2. 

 

When C2 is set to zero, the influence of ripples on the transport is neglected. 

 

In Eqs. (3.30) and (3.31), Ufc is estimated as: 
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(3.32) 

 

Where kr is ripple roughness corresponding to ripples in pure wave motion. Ufw is found 

from: 
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Roughness due to ripples 

The roughness due to ripples according to Raudkivi (1988) is given by: 
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Where C3 is a constant and the default value is 16. 
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Eddy viscosity from ripples 

In the case of a ripple-covered bed, an extra contribution r to the eddy viscosity is added 

according to the empirical formulation of Nielsen (1979). 
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 (3.35) 

 

It is assumed that the eddy viscosity related to the presence of wave ripples decreases 

with the distance above the bed according to: 
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Where C4 is an empirical constant and the default value is 3. 

 

The eddy viscosity near the bed is corrected for the presence of ripples according to 

 

     , ,
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z t z t z     (3.37) 

 

For y > 2+C4 hr the ripples have no effect on the eddy viscosity. 

 

3.3 Sediment Transport 

The sediment transport is calculated as: 

 

t b s
q q q   (3.38) 

 

Where qt is the total sediment transport, qb the bed load transport and qs is the sediment 

transport in suspension. 

 

In the STPQ3D model the bed load transport model of Engelund and Fredsøe (1976) is 

used, where the bed load transport is calculated from the instantaneous Shields 

parameter. 

 

In case of shingle sized material only bed load is considered to exist and the calculation 

of the bed load is different from the default description for sand. 

 

The vertical variation of the suspended sediment concentration is calculated from the 

vertical diffusion equation for suspended sediment, according to Fredsøe et al. (1985).  

 

The omission of the convective terms in the diffusion equation is compensated by adding 

the Lagrangian flow velocity times the mean concentration to the time averaged product 

of instantaneous velocity and concentrations. 

 

The suspended sediment transport is calculated as the product of the instantaneous flow 

velocities and the instantaneous sediment concentration: 
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The time integration of the diffusion equation for suspended sediment is repeated until a 

periodic solution is obtained. 

 

3.3.1 Bed load transport  

The dimensional bed load transport b is found by a deterministic approach: 

 

 5 ' 0.7
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p      (3.40) 

 

Where p is found from Eq. (3.48). 

 

From b the following time-averaged quantities are calculated:  
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Where 

(t) is the direction of the instantaneous flow 

b1 is the dimension less bed load in the mean current direction  

b2 is the dimension less bed load normal to the mean current direction  

q b1 is the bed load in the mean current direction 

q b2 is the bed load normal to the mean current direction 

 

The presence of ripples does not influence the bed transport. This is the reason why b, 

p and  are evaluated based on ´. 

 

Effect of sloping bed 

The bed load transport is influenced by the effect of both a longitudinal slope, L and a 

transverse slope, T on the bed-load transport and on the critical value of the Shields 

parameter c. The effect on the suspended load is attained indirectly through the inclusion 

of c, which accounts for the effect of a sloping bed, in the expression for the bed 

concentration of suspended sediment, cb. 

 

All the equations presented in the following are valid for small bed slopes, either 

transverse or longitudinal. 

 

For the general case where the flow is at an angle  to the slope , the critical Shields 

parameter is given by: 
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Where s is a static friction coefficient (s = tans, s = angle of repose) and c,0 is the 

critical Shields parameter for a plane bed. 

 

The influence of a transversal slope on the bed-load transport is exhibited through a 

deflection of the transport direction, i.e. that a down-slope component of the transport will 

appear. This component can be expressed as: 

 

tan

1.6 '

T

by bx
q q




  (3.46) 

 

Where ' is the dimension less bed shear stress related to skin friction, and qbx is the rate 

of bed-load transport in the x direction, which is along the strike of the slope. 

 

The influence of a longitudinal slope on the bed-load transport is simply accounted for by 

modifying the threshold value c according to Eq. (3.45) and then using this modified 

value in the bed transport formulation. See Fredsøe and Deigaard (1992) for more 

details. 

 

3.3.2 Suspended load transport 

Reference bed concentration 

Once the variation of the friction velocity Uf over the wave period has been determined by 

the boundary layer module over a flat bed, the following properties may be derived for 

every time step, see Engelund and Fredsøe (1976). 

 

Shield's parameter: 

 

 

2

50

'
1

f
U

s gd
 


 (3.47) 

 

The deterministic description of the bed concentration is given by Eqs. (3.48) - (3.50): 
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 



  
  
    
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 (3.48) 
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
  




 
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(3.49) 

 

 
3

0.65

1 1/
b

c





 (3.50) 

 

Where 

 is the relative density of the sediment 

g  is the acceleration of gravity 

d50  is the median grain diameter 

´  is Shield's parameter determined for a plane bed 
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c  is its critical value 

p  is the probability that all the particles of a layer are moving 

 is the linear concentration 

cb is the bed concentration. 

 

Eq. (3.51) gives an alternative empirical description of the bed concentration by 

Zyserman & Fredsøe (1994): 

 

 

 

1.75

1.75

0.331 ' 0.045

0.331
1 ' 0.045

0.46

b
c








 

 
(3.51) 

 

The empirical description of the bed concentration was developed based on a critical 

Shields parameter c0 for plane bed to be equal to 0.045. This value is set automatically 

by the model and overrules any other input of c0, if an empirical description is chosen for 

Cb. 

 

In Figure 3.10 the bed concentration Cb versus Shield's parameter ´ for both the 

deterministic approach and the empirical approach is shown. 

 

 
 
Figure 3.10 Bed concentration cb versus '. 

 

Bed concentration in case of ripples 
The contribution from the ripples to cb is included according to: 

 

      50 50
2 / 2

b b o r r
c t d c t c h h d        (3.52) 

 

In Eq. (3.52) hr the ripple height is calculated as described in Section 3.2.6. The 

contribution from the ripples to the bed concentration c0 is given by 

 

  1

0

2
0.028 ' cos

'

c

pn c

pn

c


 
 

    (3.53) 

 

with ´pn determined by Eq. (3.29). 
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Concentrations of suspended sediment 

The present section describes the calculation of the concentration varying in time and 

over the depth. The program iterates over several wave cycles until a periodic solution is 

found, i.e. until the time variation of the concentration is repeated from one wave cycle to 

another at any position above the bed.  

 

At the bottom the time-averaged bed concentration cb is used as a boundary condition for 

the initial profile: 

 

 0
b

c c  (3.54) 

 

The time varying concentration is calculated from the diffusion equation: 

 

s

c c c
w

t y y y

    

  
    

 (3.55) 

 

The turbulent diffusion coefficient for the sediment s is taken equal to the eddy viscosity 

. 

 

The boundary condition at the bottom is given by the instantaneous bed concentration: 

 

   1 1 0
b

c i c i at y     (3.56) 

 

At the top the second boundary condition demands zero sediment flux through the water 

surface: 

 

0
c

wc at y D
y




  


 (3.57) 

 

The determination of the concentration over the wave period is continued until a periodic 

solution is reached. In order to speed up the convergence towards periodic conditions, 

the initial concentration profile is determined by over-relaxation, using the previous initial 

profile c'(0,j) and the profile determined at the end of the previous calculation period 

c'(n,j), according to: 

 

     
3 1

0, ' , ' 0,
2 2

c j c n j c j   (3.58) 

 

The primes indicate concentration values determined from the previous wave cycle. 

 

The process of accelerating the convergence is stopped when the number of periods 

calculated reaches 0.75 times the maximum number of wave cycles prescribed. The 

initial concentration profile is taken as: 

 

   0, ' ,c j c n j  (3.59) 

 

The iteration is stopped when the relative deviation in the suspended transport in the 

mean current direction qs at time t = T/4 is less than equal to the prescribed tolerance . 

qs is calculated as: 
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   
    

   
  (3.60) 
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U1 is the instantaneous total velocity in the direction of the mean current. 

 

The relative deviation is determined with respect to the transport q's1 determined at t = T/4 

in the previous wave cycle 

 

1 '1

'1

s s

s

q q

q



  (3.61) 

 

Mean concentration profile and centre of gravity 

Having determined the variation of the concentration over time and depth as described in 

Eq. (3.56), the time-averaged concentration over the vertical is found as: 

 

   
0

1
,

T

c y c y t dt
T

    (3.62) 

 

Figure 3.11 shows an example of the time-averaged concentration over the vertical for a 

non-breaking and breaking wave, respectively. 

 

 
 
Figure 3.11 Example of time-averaged concentration profile for a non-breaking and breaking 

wave, respectively 

 

 

The centre of concentration yc is calculated as the height of the centre of gravity of the 

mean concentration profile above the bottom 

 

/
c

y S A  (3.63) 

 

with 

 

 
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D

d
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 
502

D

d
S c y y dy  (3.65) 

 

Where A is the total amount of suspended material per unit width, and S is the first-order 

moment of the mean concentration profile with respect to the bed level. 

 

Time averaged transport 

The instantaneous suspended load transport in the x and y direction is defined as: 

 

     
2

, ,
D

x x
d

t U z t c z t dz    (3.66) 

 

     
2

, ,
D

y y
d

t U z t c z t dz    (3.67) 

 

Where Ux and Uy are the instantaneous resulting velocities in the x and y direction, 

respectively. 

 

The resulting suspended transport over the wave period in both directions is calculated 

as: 

 

   
0 2

1
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T D

sx x
d

q U z t c z t dz dt
T

  
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q U z t c z t dz dt
T

  
     (3.69) 

 

The dimension less suspended transport is calculated as: 

 

  3

50
/ 1

sx sx
q s gd    (3.70) 
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Combined Wave and Current  

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 60 

 

3.3.3 Graded sediment description 

For a 'uniform' sediment description the geometrical characteristics of the bed material 

are represented through the median grain size d50 when calculating the concentration of 

suspended sediment and the sediment transport numerically. 

 

By using a 'graded' sediment description, it is possible to describe the effect that the 

presence of different grain size fractions have on the amount of bed load and suspended 

material and on the total rate of sediment transport. (Zyserman et. al. 1996). 

 

In the following it is described how the graded sediment description is included in the 

calculations. 

 

Grain curve 

The sediment distribution is described by a log-normal grain curve, which is calculated on 

basis of the mean grain size, d50 and the geometrical deviation or spreading g defined as 

(d84/d16)
½
.  

 

Where d84 and d16 express the weight percentages 84% and 16%, respectively, by which 

the material is finer. Figure 3.12 shows the grading curves for d50 = 0.2 mm and different 

values of g. 

 

 
 
Figure 3.12 Grading curve on basis of d50 and g 

 

 

The fall velocity w for any grain fraction with a diameter d is found by Eq. (3.72), Rubey's 

formula (1933): 

 

 
   

½ ½
2 2

3 3

2 36 36
1

3 1 1
w g s d

g s d g s d

     
                 

 (3.72) 

 

Where s is the relative sediment density, g is gravity and  is kinematic viscosity found by 

Eq. (3.73): 
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 2 6 3 61.78 0.0570812 0.00106177 8.27141 10 10T T T         (3.73) 

 

Where T is the water temperature in degrees Celsius. 

 

Bed concentration 

The limiting grain size that can be brought into suspension by the flow is found using the 

criterion: 

 

,max
0.80 '

s f
w U  (3.74) 

 

Where U'f,max is the maximum value attained by the instantaneous skin friction velocity 

over the wave period. The criterion simply states that only the particles having a fall 

velocity ws less than the threshold value given by Eq. (3.74) will be picked up from the 

bed. The critical diameter for suspension is indicated as dcrit, and the associated 

probability is called fcrit. 

 

The value of fcrit is then divided in N equal parts, where N is the selected number of 

suspended fractions, and a representative grain diameter di (i=1,...,N) is related to every 

suspended fraction, see Figure 3.13.  

 

 

 
 
Figure 3.13 Definition of fractions of suspended sediment for N=4, d50=0.22 mm, g=1.60, 

fcrit=80% and dcrit=0.33 mm. Df=fcrit/N 

 

Next, the diffusion equation for suspended sediment is solved for each of the N fractions, 

with the settling velocity wi and the bed concentration cb,i calculated on the basis of di. 

Two conditions are applied to the concentration values and should be calculated as 

follows: 

 

a. The composition of the sediment in suspension is assumed to be equal to the 

composition of the original bed material (i.e. for that part finer than dcrit). If fi is a 

proportionality factor for fraction i, this results in the following requirement for each of 

the N fractions in suspension: 

 

1 1 2 2 3 3 N N
M M M M        (3.75) 
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Mi is the time-averaged total amount of sediment in suspension for fraction i, defined 

as: 

 

502

D

i i

d

M c dz   (3.76) 

 

Where D is the local water depth, c is concentration, z is the vertical co-ordinate 

measured upwards from the bed and the over bar indicates time average. By making 

N = 1 in Eq. (3.75), the remaining i can be readily calculated.  

 

b. At z=2d50, the bed concentration must be equal to the one determined on the basis 

of d50 and taking into account the gradation of the sediment, i.e.: 

 

, ,50

1

N

b b i i b

i

Kc c c


 
 

 
  (3.77) 

 

Where 
bc

K  is a constant, and cb50 is the value of cb based on d50.  

 

Condition (a) is a reasonable assumption under equilibrium situations, because the 

dispersive stresses associated with the coarser suspended fractions, which are kept in 

suspension closer to the bed than the finer ones, limit the capacity of the flow to pick up 

large amounts of fine sediment from the bed. 

 

If the empirical description of cb is chosen, cb50 is found directly by calculating ' on the 

basis of d50 and using Eq. (3.51). 

 

If the deterministic description of cb is chosen, cb50 is calculated taken into account the 

fact that the different grain fractions di cover different % of the area of the bed, using Eqs. 

(3.47) - (3.61) where d50 is replaced by di.  

 

Once Kcb has been found, the bed concentration cb for each representative grain 

diameter di is found by 

 

,b b b i i
c Kc c     (3.78) 

 

Concentration of suspended material 

The concentration of suspended sediment for each of the representative grain diameters, 

ci, is found by inserting the bed concentration cb from Eq. (3.78) into Eqs. (3.54) and 

(3.56). 

 

The different contributions of the suspended concentration ci(z,t) are added directly 

without additional weighting by i. 
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4 Morphology 

A morphological model is a combined hydrodynamic/sediment transport model. The 

hydrodynamic flow field is updated continuously according to the changes in bed 

bathymetry. 

 

In case of a combined wave/current simulation, the wave field may be updated as well to 

reflect the changes in bed bathymetry. 

 

Morphological models are traditionally divided into coupled and uncoupled models. In 

coupled models, the governing equations for flow and sediment transport are merged into 

a set of equations, which are solved simultaneously. In uncoupled models, the solution of 

the hydrodynamics is solved at a certain time step prior to the sediment transport 

equations. Subsequently, a new bed level is computed and the hydrodynamic model 

proceeds with the next time step. The latter approach is applied in the present modelling 

system. 

 

4.1 Sediment Continuity Equation 

The key parameter for determination of the bed level changes is the rate of bed level 

change 
t

z




 at the element cell centres. This parameter can be obtained in a number of 

ways, but in general all methods are based on the Exner equation (sediment continuity 

equation), which can be written: 

 

 1
yx

SSz
n S

t x y


     

  
 (4.1) 

 

Where 

n Bed porosity 

z Bed level 

t Time 

Sx Bed load or total load transport in the x direction 

Sy Bed load or total load transport in the y direction 

x, y Horizontal Cartesian coordinate 

ΔS Sediment sink or source rate 

 

For an equilibrium description of the sediment transport, the sink/source term is zero 

unless lateral sediment supply is included in the model, for example from bank erosion 

processes (see Section 4.3). The description of the sediment transport rates for a 

combined wave/current model is always an equilibrium description. 

 

For a non-equilibrium description, i.e. solution of an advection-dispersion equation for the 

suspended load, the sediment sink/source term can be written: 

 

   es ccwS  00   (4.2) 

 

Where 

η0 Normalised no slip level above the bed 

Φ0 Unit profile function for the sediment concentration 

ws Settling velocity for the suspended sediment 
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c Depth-averaged sediment concentration 

ce Depth-averaged equilibrium concentration 

 

The term expresses that sediment deposits at the bed if the actual concentration in the 

water column is larger than the equilibrium concentration, and the opposite if it is lower. 

 

After having solved the advection-dispersion equation, the term can be calculated directly 

at all the element cell centres such that only the contribution from the bed load needs to 

be included in order to find the bed level rate. 

 

4.2 Morphological Bed Update 

The bed is updated continuously through a morphological simulation (at every HD-time 

step) based on the estimated bed level change rates. New values for the bed level 

change rates are estimated at every N
th
 HD-time step, where N is a user defined time 

step factor. The new bed levels are obtained with a forward in time difference scheme 

stating: 

 

HDoldnew t
t

z

n
zz 








1

1
 (4.3) 

 

For this reason, it is only necessary to calculate the bed load transport at the same time 

step as 
t

z




, while the advection-dispersion equation for the concentration of the 

suspended sediment needs to be calculated at every time step. 

 

The contribution from the bed load transport to the bed level change rate is obtained by 

taking the divergence of the sediment fluxes on the element faces. The divergence can 

be obtained by summing up all the fluxes crossing the element faces, as shown in Figure 

4.1. Hereby, we obtain: 
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y

S
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S
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 (4.4) 

 

Where 

Sin Sediment flux normal to the element face (positive outward) 

dsi Element face length 

m Number of faces on element 
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Figure 4.1 Normal sediment fluxes at the cell faces used to obtain the divergence 

 

 

The model is based on a cell centred formulation, so some sort of weighting scheme is 

needed to obtain the sediment fluxes at the element faces. The following approach is 

applied: First the upwind and downwind elements are identified from the sum of the two 

flux components normal to the element face, as shown in Figure 4.2. 

 

 
 
Figure 4.2 Sediment fluxes used to identify the upwind and downwind elements 

 

 

If the sediment flux Sn obtained by Equation (4.5) is greater than zero, element 1 (left 

element in Figure 4.2) is located upwind compared to element 2, while located downwind 

if the flux is less than zero. Equation (4.5) reads: 

 

yyxxyyxxn nSnSnSnSS 2211   (4.5) 

 

After having identified the upwind element, the sediment flux normal to the element face 

is calculated by the weighting scheme: 

 

  21 1 nnin SSS    (4.6) 
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Where α is a weighting coefficient depending on the ratio between the two sediment 

fluxes Sn1/Sn2. The value α is obtained from the expression: 

 


























































2

1

2

2

2

1 ,max5493.0tanh
n

n

n

n

S

S

S

S
  (4.7) 

 

From Equation (4.7) it is seen that the expression converges against an upwind 

formulation whenever there is a relative large difference in magnitude between the two 

transport rates. 

 

4.3 Slope Failure 

4.3.1 Simple bank erosion 

In addition to the general morphological update of the bed, it is possible to include bank 

slope failure effects acting on elements in the region from flooded (real wet) elements to 

dry elements.  

 

The criterion for activation of slope failure is determined by a user defined angle of 

repose, which can be specified either as a constant or with spatially variations through a 

map. In the case where a map is prescribed the critical angle is determined as the 

average value of the angle of repose in two adjacent elements. In Figure 4.3 a part of a 

mesh where bank slope failure might occur is shown. If bank slope failure is included in 

the model, bank slope should be calculated at all adjacent elements covering transition 

from flood to dry. The bank slope  in the present model is obtained as: 

 

 
ds

zz fd 
tan  (4.8) 

 

Where zd and zf are bed levels at the dry and flooded element, respectively. If the bank 

slope is larger than the critical angle (angle of repose), a land slide adjusting the slope to 

the angle of repose   takes place - otherwise nothing happens. The new bed levels z´ in 

the elements are obtained as: 
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 (4.9) 

 

Where Af and Ad are the areas of the flooded and dry element, respectively, and ds the 

distance between the two cell centres. 
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Figure 4.3 Sketch showing principles for calculation of bank slope failure 

 

 

Please note that a correct behaviour of the bank slope failure is only obtained if the bank 

area is satisfactorily resolved. A too coarse mesh resolution implies that locally steep 

slopes are not resolved and thereby that the bank slope failure never becomes activated. 

The module has shown to be useful for modelling of the development of breach failure 

through sand barriers. 

4.3.2 Extended bank erosion 

The bank erosion is calculated by the same process as described above for simple bank 

erosion however the region is extended to consider both real wet elements and wet 

elements next to dry elements.  

4.3.3 General slope failure 

The slope failure is calculated by the same process as described above for simple bank 

erosion however all elements in the domain are considered. I.e. slope failure can occur in 

totally flooded regions as well as near dry elements. 
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5 Shoreline Morphology 

5.1 Introduction 

The Shoreline Morphology (SM) module for FM combines a one-line model description for 

the shoreline with a 2D description of the wave, current and sediment transport field to 

create a flexible and robust shoreline model capable of handling shorelines with large 

curvature, off-shore reefs, breakwaters, seawalls, groins, rocky outcrops and much more. 

The model can be used to describe long term shoreline evolution ranging from days to 

centuries and more.  

 

Without the SM module, the morphology in the Sand Transport Module simply updates 

the bed level in each mesh element according to the local sediment continuity equation 

as described in the previous section. This strategy works well in the short term, say on 

the timescale of a single storm, but for long-term simulations the coastal profile tends to 

degenerate to a non-realistic shape. With the SM module, the sediment volume deposited 

during each time step is integrated across the shoreface and the morphology is updated 

according to the continuity equation for the shoreline using a predefined coastal profile. 

Thereby the effect of the cross-shore transport is eliminated from the morphology 

allowing for long term simulations. 

 

5.2 Model Description 

The model solves a modified version of the one-line equation for the shoreline (see 

Kaergaard and Fredsoe, 2013): 

 

zA

vol








t

n
 (5.1) 

 

Where ∆𝑛 is the distance the shoreline is moved perpendicular to the local shoreline 

orientation, ∆𝑡 is the time step, 𝑣𝑜𝑙 is the volume of sediment deposited on the shoreface 

in front of the shoreline edge and 𝑑𝐴𝑧 is the area of the strip of shoreface in front of the 

shoreline edge projected onto the plane defined by the shoreline edge and the vertical 

axis, see also Figure 5.1.  

 

The direction the shoreline is moved is perpendicular to the local orientation of a 

baseline. The baseline is defined by a set of points forming a polyline. The position of the 

baseline points is fixed during the simulation.  
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Figure 5.1 Sketch of a strip of shoreface with definitions of model parameters 

 

5.3 Model Inputs 

A number of input files are required for the SM module. These can be prepared in the 

Mesh Generator using the tools under the Shoreline menu. 

5.3.1 Initial Bathymetry 

The initial bathymetry specified by the mesh will only be used outside the shoreline model 

domain, inside the shoreline model domain; the bathymetry is set by the combination of 

the initial shoreline position and the coastal profiles. At the edges of the shoreline model 

domain large jumps may therefore be seen in the bathymetry after the shoreline model 

has set the bathymetry inside its domain. This should be avoided by setting the 

bathymetry in the mesh to match the bathymetry specified by the shoreline model as 

accurate as possible. 

 

5.3.2 Baseline and Coastline 

The local orientation of the baseline determines the direction in which the coastline points 

are moved on-shore and off-shore. The coastline points are always moved perpendicular 

to the local orientation of the baseline; the positions of the baseline points remain fixed 

throughout a simulation. 

  

The coastline and baseline points are staggered as shown in Figure 5.2. Furthermore the 

coastline has two boundary points outside the shoreline model domain these are used for 

boundary condition purposes. The boundary condition in the model is zero gradient in the 

littoral drift across the boundary; it means that the orientation of the shoreline at the 

boundary remains constant throughout the simulation.  

 

The staggered grid and coastline boundary points mean that there is one more coastline 

point than baseline points. 
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The baseline is specified as an xyz file while the coastline can be specified as either a 

xyz file or as a dfs1 file.  

 

 
 
Figure 5.2 Coastline points and baseline points are staggered 

 

5.3.3 Edge Map 

The edge map defines the baseline edge to which each mesh element belongs. It is a 

dfsu file with the same structure as the mesh. Baseline edge #1 is the edge going from 

point 1 to point 2 in the baseline. The coastline position of edge #1 is point #2 in the 

coastline due to the boundary ghost point, see Figure 5.3.  
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Figure 5.3 Edge Map with baseline points (purple squares) and coastline points (dark blue 
squares) 

5.3.4 Coastal Profile 

The coastal profile is one of the most important inputs in the shoreline model and 

choosing it or them correctly is usually part of the calibration process for the model. 

Because the coastal profile is constant in time in the model, but usually varies a lot in the 

real world, the specified coastal profiles have to represent the bathymetry in such a way 

that the desired sediment transport / coastal morphology is obtained in the model. 

  

The closure depth and dune height are also important factors for the coastal profile: 

 

• Closure depth, 𝐷𝑐𝑙𝑑. Distance from mean sea level to bottom of the active profile.  

• Dune height, 𝐻𝑑𝑢𝑛𝑒. Distance from mean sea level to top of the active profile. 

The closure depth specifies the off-shore boundary for the active profile and the dune 

height specifies the on-shore boundary for the active profile. Together they define the 

active height of the coastal profile as shown in Figure 5.4 which also shows how the 

model handles the case where the initial bathymetry is not perfectly flat seaward of the 

position of the closure depth or landward of the position of the dune height.  

 

 

 
 
Figure 5.4 Accreted and eroded coastal profile. 

 

It is seen that the specified coastal profile extends below the closure depth and above the 

dune height. At the off-shore boundary the specified profile is used to specify the water 

depth in the area between the initial bathymetry and the closure depth, so the specified 

closure depth is actually only used when eroding the initial bathymetry. At the inshore 

boundary the specified profile is used to determine the bathymetry between the dune 

height and the original bathymetry when the profile erodes, while this part of the specified 

coastal profile is ignored when the profile accretes.  

 

The above behaviour should be taken into account when constructing the coastal profile 

to use in the model: The slope of the profile below the closure depth and above the dune 

height should be relatively large and larger than the slope of the initial bathymetry in the 

respective areas. 

 

If the specified coastal profile is too short, a sharp edge will occur at the inshore and off-

shore boundaries as shown in Figure 5.5. If the steps at either boundary become too 

large, it can cause convergence problems in the iteration of the sediment volume when 

new elements are entering the active profile at either boundary. 
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Figure 5.5 Accreted and eroded coastal profile for a specified coastal profile which is too short 

compared with the initial bathymetry and the morphological changes 

 

The coastal profile is defined as a combination of  

• The distance to the shoreline 

• The bed level 

The profile can be specified as an xyz file if a single profile is used along the shoreline, or 

as a dfs2 file with one row per shoreline node if the profile varies along the shoreline.  

5.4 Conserving Sediment 

The conservation of sediment in the hybrid model is ensured by an iterative procedure. 

Small errors in the sediment balance are induced by the curved baseline as well as the 

way the model treats the regions around the closure depth and dune height. 

 

The iterative procedure works on the change in shoreline position. After each iteration the 

actual sediment volume deposited/eroded on each strip of shoreface is compared with 

the sediment volume available for deposition/erosion due to gradients in the sediment 

transport and sediment availability. The error in the sediment volume is thereby 

determined and the corrected shoreline position is then found as: 

 

z

error
ii

dA

vol
dndn  5.01  (5.2) 

 

Where dn is the change in shoreline position. volerror is the error in the deposited volume 

and dAz is the vertical area of the strip of shoreface in question. The index i indicates the 

number in the iteration. 

 

The tolerance is the iteration criteria which is based on rms(volume error) in m
3
. A 

suitable criteria depends on the individual case; criteria between 0.001 and 0.1 have 

been used in practical projects, it is recommended to make a few tests to find a suitable 

value. The calculated error can be output in the coastline output and based on this output 

the overall sediment conservation for the shoreline model can be estimated.  

 

The difference between using 0.1 and 0.001 is evident in Figure 5.6 which shows the 

cumulative sediment conservation error for two different tolerances. It is noted that during 

the simulation more than 500,000 m
3
 of sediment passes through the system, with a 

significant amount being eroded and accreted during different times, so even the 12,000 
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m
3
 error is not critical for the results which is seen in the bottom plot of Figure 5.6, which 

compares the total change in shoreline position for the two runs, only minor differences 

are observed.  

 

 
Figure 5.6 Top and middle: The sediment volume conservation error for two different tolerances 

for a practical example. Bottom: The total change in shoreline position (dntot) for the 
two runs 
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6 Validation 

6.1 Equilibrium Slope 

The aim of this example is to verify that the Sand Transport module in MIKE 21 Flow 

Model FM is able to predict the equilibrium slope of a straight flume. 

 

The model is a straight flume, 30 m long and 2 m wide, which has a moveable bed. 

Initially, the bed level is -0.4 m along the entire flume. Now a fixed discharge of 0.5 m
3
/s 

(corresponding to q = 0.25 m
3
/s/m) is entered in the upstream end, while the downstream 

water level is fixed to 0.0 m. Under these conditions, as the bed of the flume is initially 

horizontal, an accelerating flow is created causing an increasing sediment transport rate 

along the flume and subsequent erosion of the bed. This process continues until the bed 

of the flume matches the slope of the surface water level indicating stable conditions. 

 

The problem is to simulate the equilibrium bed level of the flume under the given 

conditions. 

 

6.1.1 Numerical solution 

The unstructured mesh shown in Figure 6.1 was used for the model. The bed resistance 

type was defined as a Manning number M with a constant value of 32 m
1/3

/s. The model 

was run for a simulation time of 42 hours. 

 

 
 
Figure 6.1 Mesh grid bathymetry 
 

 

The water level adapts itself to the change in bed level during the morphological 

simulation. The change in the upstream water level during time is shown in Figure 6.2. 

 

As the water level downstream is fixed to 0.0 m, Figure 6.2 shows that the resulting slope 

of the water level, I, is 0.03 m to 30 m, i.e. I0 = 0.001. 

 

 
 
Figure 6.2 Water level at the upstream boundary during simulation 
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Figure 6.3 shows the development of the bed level during the simulation. 

 

 
 
Figure 6.3 Longitudinal profile of the bed of a simulated flume at 5 times during a morphological 

simulation showing the development towards an equilibrium slope 

 

 

Figure 6.3 shows that after 36 hours a stable solution is reached with a constant slope of 

the bed level. It can be seen that the bed level at the downstream point has eroded a little 

more than 0.03 cm, which corresponds to the resulting rise in water level at the upstream 

point.  

 

6.1.2 Theoretical solution 

The standard equation for natural depth, y0, in a wide flume is: 

 
3/ 5

0

0

q
y

M I

 
  
 
 

 (6.1) 

 

 

Then, if the hydrodynamic conditions from the simulation are inserted, the theoretical 

natural depth will be y0 = 0.43 m, which is in very good agreement with the findings from 

the numerical morphological model. 
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