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1 Introduction 

This document presents the scientific background for the new MIKE 21 & MIKE 3 Flow 

Model FM1 modelling system developed by DHI Water & Environment. The objective is to 

provide the user with a detailed description of the flow and transport model equations, 

numerical discretization and solution methods. Also, model validation is discussed in this 

document.  

 

The MIKE 21 & MIKE 3 Flow Model FM is based on a flexible mesh approach and it has 

been developed for applications within oceanographic, coastal and estuarine 

environments. The modelling system may also be applied for studies of overland flooding. 

 

The system is based on the numerical solution of the two/three-dimensional 

incompressible Reynolds averaged Navier-Stokes equations invoking the assumptions of 

Boussinesq and of hydrostatic pressure. Thus, the model consists of continuity, 

momentum, temperature, salinity and density equations and it is closed by a turbulent 

closure scheme. For the 3D model the free surface is taken into account using a sigma 

coordinate transformation approach.   

 

The spatial discretization of the primitive equations is performed using a cell-centred finite 

volume method. The spatial domain is discretized by subdivision of the continuum into 

non-overlapping elements/cells. In the horizontal plane, an unstructured grid is used, 

while in the vertical domain in the 3D model a structured mesh is used. In the 2D model, 

the elements can be triangles or quadrilateral elements. In the 3D model, the elements 

can be prisms or bricks, whose horizontal faces are triangles and quadrilateral elements, 

respectively.  

 

                                                      

1 Including the MIKE 21 Flow Model FM (two-dimensional flow) and MIKE 3 Flow Model FM (three-
dimensional flow)  
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2 Governing Equations 

2.1 3D Governing Equations in Cartesian Coordinates 

2.1.1 Shallow water equations 

The model is based on the solution of the three-dimensional incompressible Reynolds 

averaged Navier-Stokes equations, subject to the assumptions of Boussinesq and of 

hydrostatic pressure.  

 

The local continuity equation is written as 

 

u v w
S

x y z

  
  
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 (2.1) 

 

and the two horizontal momentum equations for the x- and y-component, respectively 
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 (2.3) 

 
where t is the time; x, y and z are the Cartesian coordinates;   is the surface elevation; 

d  is the still water depth; dh   is the total water depth; u, v and w are the velocity 

components in the x, y and z direction; sin2f  is the Coriolis parameter (  is the 

angular rate of revolution and   the geographic latitude); g is the gravitational 

acceleration;   is the density of water; , , andxx xy yx yys s s s are components of the 

radiation stress tensor; t  is the vertical turbulent (or eddy) viscosity; ap  is the 

atmospheric pressure; o  is the reference density of water. S  is the magnitude of the 

discharge due to point sources and  ss vu ,  is the velocity by which the water is 

discharged into the ambient water. The horizontal stress terms are described using a 

gradient-stress relation, which is simplified to 
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 (2.4) 
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where A is the horizontal eddy viscosity. 

 

The surface and bottom boundary condition for u, v and w are 

 
At z : 
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(2.6) 

 

At dz  : 
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(2.7) 

 

where  sysx  ,  and  bybx  ,  are the x and y components of the surface wind and 

bottom stresses. 

 

The total water depth, h, can be obtained from the kinematic boundary condition at the 

surface, once the velocity field is known from the momentum and continuity equations. 

However, a more robust equation is obtained by vertical integration of the local continuity 

equation 
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 (2.8) 

 

where P


 and E


 are precipitation and evaporation rates, respectively, and u  and v  are 

the depth-averaged velocities 
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 d
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 d
vdzvh  (2.9) 

 
The fluid is assumed to be incompressible. Hence, the density,  , does not depend on 

the pressure, but only on the temperature, T, and the salinity, s, via the equation of state 

 

),( sT   (2.10) 

 

Here the UNESCO equation of state is used (see UNESCO, 1981). 
  



Governing Equations  

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Hydrodynamic and Transport Module 4 

2.1.2 Transport equations for salt and temperature 

The transports of temperature, T, and salinity, s, follow the general transport-diffusion 

equations as 
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where vD  is the vertical turbulent (eddy) diffusion coefficient. H


 is a source term due to 

heat exchange with the atmosphere. sT  and ss  are the temperature and the salinity of 

the source. F are the horizontal diffusion terms defined by 
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where hD  is the horizontal diffusion coefficient. The diffusion coefficients can be related 

to the eddy viscosity 
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where T  is the Prandtl number. In many applications a constant Prandtl number can be 

used (see Rodi (1984)). 

 

The surface and bottom boundary conditions for the temperature are 

 
At z : 
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At dz  : 
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where nQ  is the surface net heat flux and )/(4217 KkgJcp   is the specific heat of 

the water. A detailed description for determination of H


 and nQ  is given in Section 2.10. 
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The surface and bottom boundary conditions for the salinity are 

 
At z : 
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At dz  : 
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When heat exchange from the atmosphere is included, the evaporation is defined as 
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where vq  is the latent heat flux and 
6105.2 vl  is the latent heat of vaporisation of 

water. 

 

2.1.3 Transport equation for a scalar quantity 

The conservation equation for a scalar quantity is given by 
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where C is the concentration of the scalar quantity, pk  is the linear decay rate of the 

scalar quantity, sC is the concentration of the scalar quantity at the source and vD  is the 

vertical diffusion coefficient. FC is the horizontal diffusion term defined by 
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where hD  is the horizontal diffusion coefficient. 

2.1.4 Turbulence model 

The turbulence is modelled using an eddy viscosity concept. The eddy viscosity is often 

described separately for the vertical and the horizontal transport. Here several turbulence 

models can be applied: a constant viscosity, a vertically parabolic viscosity and a 

standard k- model (Rodi, 1984). In many numerical simulations the small-scale 

turbulence cannot be resolved with the chosen spatial resolution. This kind of turbulence 

can be approximated using sub-grid scale models. 
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Vertical eddy viscosity 

The eddy viscosity derived from the log-law is calculated by 
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where  bs UUU  ,max  and 1c  and 2c  are two constants. sU and bU  are the 

friction velocities associated with the surface and bottom stresses, 41.01 c  and 

41.02 c  give the standard parabolic profile.  

 

In applications with stratification the effects of buoyancy can be included explicitly. This is 

done through the introduction of a Richardson number dependent damping of the eddy 

viscosity coefficient, when a stable stratification occurs. The damping is a generalisation 

of the Munk-Anderson formulation (Munk and Anderson, 1948) 
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where *

t  is the undamped eddy viscosity and Ri is the local gradient Richardson number 
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10a  and 5.0b  are empirical constants.  

 

In the k- model the eddy-viscosity is derived from turbulence parameters k and  as 
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where k is the turbulent kinetic energy per unit mass (TKE),   is the dissipation of TKE 

and c  is an empirical constant. 

 
The turbulent kinetic energy, k, and the dissipation of TKE,  , are obtained from the 

following transport equations 
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where the shear production, P, and the buoyancy production, B, are given as 
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with the Brunt-Väisälä frequency, N, defined by 
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t  is the turbulent Prandtl number and k ,  , 1c , 2c  and 3c  are empirical 

constants. F are the horizontal diffusion terms defined by 

 

),(),(  k
y

D
yx

D
x

FF hhk 








































  (2.31) 

 

The horizontal diffusion coefficients are given by kh AD /  and /ADh  , 

respectively. 

 

Several carefully calibrated empirical coefficients enter the k-e turbulence model. The 

empirical constants are listed in (2.47) (see Rodi, 1984). 

 

 
Table 2.1 Empirical constants in the k- model. 

 

c  1c  2c  3c  t  k    

0.09 1.44 1.92 0 0.9 1.0 1.3 

 

 

At the surface the boundary conditions for the turbulent kinetic energy and its rate of 

dissipation depend on the wind shear, Us 

 

At  z = : 
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where  =0.4 is the von Kármán constant, 07.0a  is and empirical constant and sz  

is the distance from the surface where the boundary condition is imposed. At the seabed 

the boundary conditions are 
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At dz  : 
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where bz  is the distance from the bottom where the boundary condition is imposed. 

 

Horizontal eddy viscosity 

In many applications a constant eddy viscosity can be used for the horizontal eddy 

viscosity. Alternatively, Smagorinsky (1963) proposed to express sub-grid scale 

transports by an effective eddy viscosity related to a characteristic length scale. The 

subgrid scale eddy viscosity is given by 

 

ijijs SSlcA 222  (2.35) 

 

where cs is a constant, l is a characteristic length and the deformation rate is given by  
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j

j
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ij  (2.36) 

 

2.1.5 Governing equations in Cartesian and sigma coordinates  

The equations are solved using a vertical -transformation 
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h

zz b 


 ,,  (2.37) 

 
where   varies between 0 at the bottom and 1 at the surface. The coordinate 

transformation implies relations such as 
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 (2.38) 
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,  (2.39) 

 

In this new coordinate system the governing equations are given as  
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(2.42) 
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The modified vertical velocity is defined by 
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 (2.48) 

 

The modified vertical velocity is the velocity across a level of constant  

. The horizontal diffusion terms are defined as 
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 (2.51) 

 

The boundary condition at the free surface and at the bottom are given as follows 

 
At  =1: 
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(2.52) 

 
At  =0: 
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t
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(2.53) 

 

The equation for determination of the water depth is not changed by the coordinate 

transformation. Hence, it is identical to Eq. (2.6). 

 

2.2 3D Governing Equations in Spherical and Sigma Coordinates 

In spherical coordinates the independent variables are the longitude, , and the latitude,

 . The horizontal velocity field (u,v) is defined by 

 

dt

d
Ru


cos   

dt

d
Rv


  (2.54) 

 

where R is the radius of the earth. 

 

In this coordinate system the governing equations are given as (all superscripts indicating 

the horizontal coordinate in the new coordinate system are dropped in the following for 

notational convenience) 
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(2.56) 
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The modified vertical velocity in spherical coordinates is defined by 
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(2.63) 

 

The equation determining the water depth in spherical coordinates is given as 
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2.3 2D Governing Equations in Cartesian Coordinates 

2.3.1 Shallow water equations 

Integration of the horizontal momentum equations and the continuity equation over depth 

dh  the following two-dimensional shallow water equations are obtained 
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(2.66) 

 

   

2

0

2

0 0 0 0

1

2

a

sy by yx yy

xy yy s

hv huv hv h p
fuh gh

t x y y y

s sgh

y x y

hT hT hv S
x y





 

   

    
      

    

  
     

   

 
 

 

 
(2.67) 

 

The overbar indicates a depth average value. For example, u  and v  are the depth-

averaged velocities defined by 
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The lateral stresses 
ijT  include viscous friction, turbulent friction and differential 

advection. They are estimated using an eddy viscosity formulation based on of the depth 

average velocity gradients 
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2.3.2 Transport equations for salt and temperature 

Integrating the transport equations for salt and temperature over depth the following two-

dimensional transport equations are obtained 
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where T  and s  is the depth average temperature and salinity. 

 

2.3.3 Transport equations for a scalar quantity 

Integrating the transport equations for a scalar quantity over depth the following two-

dimensional transport equations are obtained 
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where C  is the depth average scalar quantity. 

 

2.4 2D Governing Equations in Spherical Coordinates 

In spherical coordinates the independent variables are the longitude, ,and the latitude,

 . The horizontal velocity field (u,v) is defined by 
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where R is the radius of the earth. 

 

In spherical coordinates the governing equation can be written 
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(2.76) 
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2.5 Bottom Stress 

The bottom stress, ),( bybxb  


, is determined by a quadratic friction law 

 

bbf
b uuc





0


 (2.80) 

 

where 
fc  is the drag coefficient and ),( bbb vuu 


 is the flow velocity above the bottom. 

The friction velocity associated with the bottom stress is given by 

 

2

bfb ucU   (2.81) 

 

For two-dimensional calculations bu


is the depth-average velocity and the drag coefficient 

can be determined from the Chezy number, C , or the Manning number, M  

 

2C

g
c f   (2.82) 
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g
c f   (2.83) 

 

For three-dimensional calculations bu


 is the velocity at a distance bz  above the sea 

bed and the drag coefficient is determined by assuming a logarithmic profile between the 

seabed and a point bz  above the seabed 
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(2.84) 

 

where  =0.4 is the von Kármán constant and 0z  is the bed roughness length scale. 

When the boundary surface is rough, 0z , depends on the roughness height, sk  

 

smkz 0  (2.85) 
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where m is approximately 1/30. 

 

Note, that the Manning number can be estimated from the bed roughness length using 

the following  

 

6/1

4.25

sk
M   (2.86) 

 

The wave induced bed resistance can be determined from 
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where Ufc is the friction velocity calculated by considering the conditions in the wave 

boundary layer. For a detailed description of the wave induced bed resistance, see 

Fredsøe (1984) and Jones et.al. (2014). 

2.6 Wind Stress 

In areas not covered by ice the surface stress, ),( sysxs  


, is determined by the winds 

above the surface. The stress is given by the following empirical relation 

 

wwdas uuc   (2.88) 

 

where a  is the density of air, dc  is the drag coefficient of air, and ),( www vuu 


 is the 

wind speed 10 m above the sea surface. The friction velocity associated with the surface 

stress is given by 
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U   (2.89) 

 

The drag coefficient can either be a constant value or depend on the wind speed. The 

empirical formula proposed by Wu (1980, 1994) is used for the parameterisation of the 

drag coefficient. 
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 (2.90) 

 

where ca, cb, wa and wb are empirical factors and w10 is the wind velocity 10 m above the 

sea surface. The default values for the empirical factors are ca = 1.255·10-3, cb = 

2.425·10-3, wa = 7 m/s and wb = 25 m/s. These give generally good results for open sea 

applications. Field measurements of the drag coefficient collected over lakes indicate that 

the drag coefficient is larger than open ocean data. For a detailed description of the drag 

coefficient see Geernaert and Plant (1990). 
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2.7 Ice Coverage 

It is possible to take into account the effects of ice coverage on the flow field.  

 

In areas where the sea is covered by ice the wind stress is excluded. Instead, the surface 

stress is caused by the ice roughness. The surface stress, ),( sysxs  


, is determined 

by a quadratic friction law 

 

ssf
s uuc





0


 (2.91) 

 

where 
fc  is the drag coefficient and ),( sss vuu 


 is the flow velocity below the surface. 

The friction velocity associated with the surface stress is given by 

 

2

sfs ucU   (2.92) 

 

For two-dimensional calculations su


is the depth-average velocity and the drag coefficient 

can be determined from the Manning number, M  

 

 26/1Mh

g
c f   (2.93) 

 

The Manning number is estimated from the bed roughness length using the following  

 

6/1

4.25

sk
M   (2.94) 

 

For three-dimensional calculations su


 is the velocity at a distance sz  below the surface 

and the drag coefficient is determined by assuming a logarithmic profile between the 

surface and a point bz  below the surface 
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(2.95) 

 

where  =0.4 is the von Kármán constant and 0z  is the bed roughness length scale. 

When the boundary surface is rough, 0z , depends on the roughness height, sk  

 

smkz 0  (2.96) 

 

where m is approximately 1/30. 

 

If ice thickness is specified, the water level is supressed by ice / water of the ice 

thickness, where ice = 971 kg/m3 and water is the actual density of the water.  



Governing Equations  

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Hydrodynamic and Transport Module 17 

2.8 Tidal Potential 

The tidal potential is a force, generated by the variations in gravity due to the relative 

motion of the earth, the moon and the sun that act throughout the computational domain. 

The forcing is expanded in frequency space and the potential considered as the sum of a 

number of terms each representing different tidal constituents. The forcing is 

implemented as a so-called equilibrium tide, which can be seen as the elevation that 

theoretically would occur, provided the earth was covered with water. The forcing enters 

the momentum equations (e.g. (2.66) or (2.75)) as an additional term representing the 

gradient of the equilibrium tidal elevations, such that the elevation  can be seen as the 

sum of the actual elevation and the equilibrium tidal potential. 

 

ACTUAL T     (2.97) 

 

The equilibrium tidal potential T is given as 

 

0cos(2 )T i i i i i

i i

t
e H f L b i x

T
     (2.98) 

 

where T is the equilibrium tidal potential, i refers to constituent number (note that the 

constituents here are numbered sequentially), ei is a correction for earth tides based on 

Love numbers, Hi is the amplitude, fi is a nodal factor, Li is given below, t is time, Ti is the 

period of the constituent, bi is the phase and x is the longitude of the actual position. 

 

The phase b is based on the motion of the moon and the sun relative to the earth and can 

be given by 

 

1 0 2 0 3 4 5( ) ( ) sin( )i s ib i i s i i h i p i N i p u N         (2.99) 

 

where i0 is the species, i1 to i5 are Doodson numbers, u is a nodal modulation factor (see 

Table 2.3) and the astronomical arguments s, h, p, N and  ps are given in Table 2.2. 

 

 
Table 2.2 Astronomical arguments (Pugh, 1987) 

 

Mean longitude of the moon s 277.02+481267.89T+0.0011T2 

Mean longitude of the sun h 280.19+36000.77T+0.0003T2 

Longitude of lunar perigee p 334.39+4069.04T-0.0103T2 

Longitude of lunar ascending node N 259.16-1934.14T+0.0021T2 

Longitude of perihelion ps 281.22+1.72T+0.0005T2 

 

In Table 2.2 the time, T,  is in Julian century from January 1 1900 UTC, thus T = (365(y – 

1900) + (d – 1) + i)/36525 and i = int (y-1901)/4), y is year and d is day number 

  

L depends on species number i0 and latitude y as 

 

i0 = 0 23sin ( ) 1L y   

i0 = 1 sin(2 )L y  

i0 = 2 2cos ( )L y  
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The nodal factor fi represents modulations to the harmonic analysis and can for some 

constituents be given as shown in Table 2.3. 

 

 
Table 2.3  Nodal modulation terms (Pugh, 1987) 

 

 fi ui 

Mm 1.000 - 0.130 cos(N) 0 

Mf 1.043 + 0.414 cos(N) -23.7 sin(N) 

Q1, O1 1.009 + 0.187 cos(N) 10.8 sin(N) 

K1 1.006 + 0.115 cos(N) -8.9 sin(N) 

2N2, 2, 2, N2, M2 1.000 - 0.037 cos(N) -2.1 sin(N) 

K2 1.024 + 0.286 cos(N) -17.7 sin(N) 

 

2.9 Wave Radiation 

The second order stresses due to breaking of short period waves can be included in the 

simulation. The radiation stresses act as driving forces for the mean flow and can be 

used to calculate wave induced flow. For 3D simulations a simple approach is used. Here 

a uniform variation is used for the vertical variation in radiation stress. 

 

2.10 Heat Exchange 

The heat exchange with the atmosphere is calculated on basis of the four physical 

processes 

 

• Latent heat flux (or the heat loss due to vaporisation) 

• Sensible heat flux (or the heat flux due to convection) 

• Net short wave radiation 

• Net long wave radiation 

 

Latent and sensible heat fluxes and long-wave radiation are assumed to occur at the 

surface. The absorption profile for the short-wave flux is approximated using Beer’s law. 

The attenuation of the light intensity is described through the modified Beer's law as 

 

  deIdI   01)(  (2.100) 

 

where )(dI  is the intensity at depth d below the surface; 0I  is the intensity just below 

the water surface;   is a quantity that takes into account that a fraction of light energy 

(the infrared) is absorbed near the surface;  is the light extinction coefficient. Typical 

values for   and  are 0.2-0.6 and 0.5-1.4 m-1, respectively.   and  are user-

specified constants. The default values are 3.0  and 
10.1  m . The fraction of the 

light energy that is absorbed near the surface is 0I . The net short-wave radiation, 

netsrq , , is attenuated as described by the modified Beer's law. Hence the surface net 

heat flux is given by 
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netlrnetsrcvn qqqqQ ,,    (2.101) 

 

For three-dimensional calculations the source term H


 is given by 
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For two-dimensional calculations the source term H


is given by  
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 (2.103) 

 

The calculation of the latent heat flux, sensible heat flux, net short wave radiation, and net 

long wave radiation as described in the following sections. 

 

In areas covered by ice the heat exchange is excluded. 

 

2.10.1 Vaporisation 

Dalton’s law yields the following relationship for the vaporative heat loss (or latent flux), 

see Sahlberg, 1984 

 

 airwatermev QQWbaLCq  )( 211  (2.104) 

 

where kgJL /105.2 6  is the latent heat vaporisation (in the literature 

62.5 10 2300 waterL T    is commonly used); 31032.1 eC  is the moisture transfer 

coefficient (or Dalton number); mW2  is the wind speed 2 m above the sea surface; waterQ  

is the water vapour density close to the surface; airQ  is the water vapour density in the 

atmosphere; 1a  and 1b  are user specified constants. The default values are 5.01 a  

and 9.01 b . 

 

Measurements of waterQ  and airQ  are not directly available but the vapour density can 

be related to the vapour pressure as 

 

i
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i e
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 (2.105) 

 

in which subscript i refers to both water and air. The vapour pressure close to the sea,

watere , can be expressed in terms of the water temperature assuming that the air close to 

the surface is saturated and has the same temperature as the water 
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where KK  5418  and KTK  15.273 is the temperature at 0 C. Similarly the 

vapour pressure of the air, aire , can be expressed in terms of the air temperature and the 

relative humidity, R 

 















kairk

K
air

TTT
eRe

11
11.6  (2.107) 

 

Replacing waterQ  and airQ  with these expressions the latent heat can be written as 
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 (2.108) 

 

where all constants have been included in a new latent constant 
3/4370 mKJPv  . 

During cooling of the surface the latent heat loss has a major effect with typical values up 

to 100 W/m2. 

 

The wind speed, W2, 2 m above the sea surface is calculated from the from the wind 

speed, W10, 10 m above the sea surface using the following formula: 

 

Assuming a logarithmic profile the wind speed, u(z), at a distance z above the sea 

surface is given by 
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 (2.109) 

 

where *u  is the wind friction velocity, z0  is the sea roughness and  =0.4 is von 

Karman's constant. *u  and z0 are given by 

 

guzz Charnock /2

*0   (2.110) 
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(2.111) 

 

where Charnockz  is the Charnock parameter. The default value is 01.0Charnockz 4. The 

wind speed, W2, 2 m above the sea surface is then calculated from the from the wind 

speed, W10, 10m above the sea surface by first solving Eq. (2.114) and Eq. (2.115) 

iteratively for z0 with z=10m and u(z)=W10. Then W2 is given by 
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The heat loss due to vaporization occurs both by wind driven forced convection by and 

free convection. The effect of free convection is taken into account by the parameter a1 in 

Eq. (2.104). The free convection is also taken into account by introducing a critical wind 

speed Wcritical so that the wind speed used in Eq. (2.112) is obtained as 

W10=max(W10,Wcritical) . The default value for the critical wind speed is 2 m/s. 

 

2.10.2 Convection 

The sensible heat flux, )/( 2mWqc , (or the heat flux due to convection) depends on the 

type of boundary layer between the sea surface and the atmosphere. Generally this 

boundary layer is turbulent implying the following relationship 
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 (2.113) 

 

where air  is the air density 1.225 kg/m3; )/(1007 KkgJcair   is the specific heat 

of air; 0.0011heatingc   and 0.0011coolingc  , respectively, is the sensible transfer 

coefficient (or Stanton number) for heating and cooling (see Kantha and Clayson, 2000); 

10W  is the wind speed 10 m above the sea surface; waterT is the temperature at the sea 

surface; airT  is the temperature of the air. 

 

The convective heat flux typically varies between 0 and 100 W/m2. 

 

The heat loss due to convection occurs both by wind driven forced convection by and free 

convection. The free convection is taken into account by introducing a critical wind speed 

Wcritical so that the wind speed used in Eq. (2.113) is obtained as W10=max(W10,Wcritical) . 

The default value for the critical wind speed is 2 m/s. 

 

2.10.3 Short wave radiation 

Radiation from the sun consists of electromagnetic waves with wave lengths varying from 

1,000 to 30,000 Å. Most of this is absorbed in the ozone layer, leaving only a fraction of 

the energy to reach the surface of the Earth. Furthermore, the spectrum changes when 

sunrays pass through the atmosphere. Most of the infrared and ultraviolet compound is 

absorbed such that the solar radiation on the Earth mainly consists of light with wave 

lengths between 4,000 and 9,000 Å. This radiation is normally termed short wave 

radiation. The intensity depends on the distance to the sun, declination angle and 

latitude, extraterrestrial radiation and the cloudiness and amount of water vapour in the 

atmosphere (see Iqbal, 1983) 
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The eccentricity in the solar orbit, 0E , is given by  
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 (2.114) 

 

where 0r  is the mean distance to the sun, r is the actual distance and the day angle 

)(rad  is defined by 

 

365

)1(2 
 nd

 (2.115) 

 

and nd  is the Julian day of the year. 

 

The daily rotation of the Earth around the polar axes contributes to changes in the solar 

radiation. The seasonal radiation is governed by the declination angle, )(rad , which 

can be expressed by 

 

0.006918 0.399912cos( ) 0.07257sin( )
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 (2.116) 

 

The day length, dn , varies with  . For a given latitude,  , (positive on the northern 

hemisphere) the day length is given by 

 

 )tan()tan(arccos
24




dn  (2.117) 

 

and the sunrise angle, )(radsr , and the sunset angle )(radss  are 

 

  srsssr and   )tan()tan(arccos  (2.118) 

 

The intensity of short wave radiation on the surface parallel to the surface of the Earth 

changes with the angle of incidence. The highest intensity is in zenith and the lowest 

during sunrise and sunset. Integrated over one day the extraterrestrial intensity, 

)//( 2
0 daymMJH , in short wave radiation on the surface can be derived as 

 

        srsrsrscEqH 


cossincoscos
24

00   (2.119) 

 

where )//(9212.4 2 hmMJqsc   is the solar constant. 

 

For determination of daily radiation under cloudy skies, )//( 2 daymMJH , the following 

relation is used 
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in which n  is the number of sunshine hours and dn  is the maximum number of sunshine 

hours. 2a  and 2b  are user specified constants. The default values are 295.02 a  and 

371.02 b . The user-specified clearness coefficient corresponds to / dn n . Thus the 

solar radiation, 2( / )sq W m , can be expressed as 
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where  

 











3
sin5016.04090.03


sra  (2.122) 

 











3
sin4767.06609.03


 srb  (2.123) 

 

The extraterrestrial intensity, )//( 2

0 hmMJq  and the hour angle i  is given by 

 

         







 iscEqq 


 coscoscos
24

sinsin00
 (2.124) 

 

  







 local

t
ESntdisplacemei t

E
LLt

6060

4
12

12


  (2.125) 

 

ntdisplacemet  is the displacement hours due to summer time and the time meridian 
SL  is 

the standard longitude for the time zone. ntdisplacemet  and 
SL  are user specified 

constants. The default values are )(0 ht ntdisplaceme   and (deg)0SL . EL  is the 

local longitude in degrees. )(sEt  is the discrepancy in time due to solar orbit and is 

varying during the year. It is given by 

 

18.229
)2sin(04089.0)2cos(014615.0

)sin(032077.0)cos(001868.0000075.0












tE  (2.126) 

 

Finally, localt  is the local time in hours. 

 

Solar radiation that impinges on the sea surface does not all penetrate the water surface. 

Parts are reflected back and are lost unless they are backscattered from the surrounding 

atmosphere. This reflection of solar energy is termed the albedo. The amount of energy, 

which is lost due to albedo, depends on the angle of incidence and angle of refraction. 

For a smooth sea the reflection can be expressed as 
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







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


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)(tan

)(tan

)(sin

)(sin

2

1
2

2

2

2

ri

ri

ri

ri
  (2.127) 

 
where i is the angle of incidence, r the refraction angle and   the reflection coefficient, 

which typically varies from 5 to 40 %.  can be approximated using 

 

 
























3005.0

30505.048.0
25

30

548.0
5

altitude

altitude
altitude

altitude
altitude

  (2.128) 

 

where the altitude in degrees is given by 

 









 ))cos()cos()cos()sin()(arccos(sin

180
90 ialtitude 


 (2.129) 

 

Thus the net short wave radiation, )/( 2

, mWq nets , can possibly be expressed as 

 

 , 1sr net sq q   (2.130) 

 

The net short wave radiation, qsr,net, can be calculated using empirical formulae as 

described above. Alternatively, the net short wave radiation can be calculated using Eq. 

(2.130) where the solar radiation, qs, is specified by the user or the net short wave 

radiation, qsr,net, can be given by the user. 

 

2.10.4 Long wave radiation 

A body or a surface emits electromagnetic energy at all wavelengths of the spectrum. 

The long wave radiation consists of waves with wavelengths between 9,000 and 25,000 

Å. The radiation in this interval is termed infrared radiation and is emitted from the 

atmosphere and the sea surface. The long wave emittance from the surface to the 

atmosphere minus the long wave radiation from the atmosphere to the sea surface is 

called the net long wave radiation and is dependent on the cloudiness, the air 

temperature, the vapour pressure in the air and the relative humidity. The net outgoing 

long wave radiation, )/( 2
, mWq netlr , is given by Brunt’s equation (See Lind and 

Falkenmark, 1972) 

 

    











d

dKairsbnetlr
n

n
dcebaTTq

4
,   (2.131) 

 

where de  is the vapour pressure at dew point temperature measured in mb; n  is the 

number of sunshine hours, dn  is the maximum number of sunshine hours; 

)/(106697.5 428 KmWsb    is Stefan Boltzman's constant; )( CTair   is the air 

temperature. The coefficients a, b, c and d are given as 
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90.;10.0;077.0;56.0 ½   dcmbba  (2.132) 

 

The vapour pressure is determined as 

 

saturatedd eRe 10  (2.133) 

 

where R is the relative humidity and the saturated vapour pressure, )(kPaesaturated , with 

100 % relative humidity in the interval from –51 to 52 C can be estimated by 

 

  
8

3 5 3

3.38639

7.38 10 0.8072 1.9 10 1.8 48 1.316 10

saturated

air air

e

T T  

 

        
 

(2.134) 

 

The net long wave radiation, qlr,net, can be calculated using empirical formulae as 

described above. Alternatively, the net long wave radiation can be calculated as 

 

, ,lr net ar net brq q q   (2.135) 

 

where the net incident atmospheric radiation, qar,net, is specified by the user and the back 

radiation, qbr,  is given by  

 
4)1( Ksbbr Trq   (2.136) 

 

where r=0.03 is the reflection coefficient and ε=0.985 is the emissivity factor of the 

atmosphere. The net long wave radiation can also be specified by the user. 
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3 Numerical Solution 

3.1 Spatial Discretization 

The discretization in solution domain is performed using a finite volume method. The 

spatial domain is discretized by subdivision of the continuum into non-overlapping 

cells/elements. 

 

In the two-dimensional case the elements can be arbitrarily shaped polygons, however, 

here only triangles and quadrilateral elements are considered.  

 

In the three-dimensional case a layered mesh is used: in the horizontal domain an 

unstructured mesh is used while in the vertical domain a structured mesh is used (see 

Figure 3.1). The vertical mesh is based on either sigma coordinates or combined sigma/z-

level coordinates. For the hybrid sigma/z-level mesh sigma coordinates are used from the 

free surface to a specified depth and z-level coordinates are used below. The different 

types of vertical mesh are illustrated in Figure 3.2. The elements in the sigma domain and 

the z-level domain can be prisms with either a 3-sided or 4-sided polygonal base. Hence, 

the horizontal faces are either triangles or quadrilateral element. The elements are 

perfectly vertical and all layers have identical topology. 

 

 

 
 
Figure 3.1 Principle of meshing for the three-dimensional case 
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Figure 3.2 Illustrations of the different vertical grids. Upper: sigma mesh, Lower: combined 

sigma/z-level mesh with simple bathymetry adjustment. The red line shows the 
interface between the z-level domain and the sigma-level domain 

 

 

The most important advantage using sigma coordinates is their ability to accurately 

represent the bathymetry and provide consistent resolution near the bed. However, sigma 

coordinates can suffer from significant errors in the horizontal pressure gradients, 

advection and mixing terms in areas with sharp topographic changes (steep slopes). 

These errors can give rise to unrealistic flows.  

 

The use of z-level coordinates allows a simple calculation of the horizontal pressure 

gradients, advection and mixing terms, but the disadvantages are their inaccuracy in 

representing the bathymetry and that the stair-step representation of the bathymetry can 

result in unrealistic flow velocities near the bottom. 
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3.1.1 Vertical Mesh 

For the vertical discretization both a standard sigma mesh and a combined sigma/z-level 

mesh can be used. For the hybrid sigma/z-level mesh sigma coordinates are used from 

the free surface to a specified depth, zσ, and z-level coordinates are used below. At least 

one sigma layer is needed to allow changes in the surface elevation. 

Sigma 

In the sigma domain a constant number of layers, Nσ, are used and each sigma layer is a 

fixed fraction of the total depth of the sigma layer, hσ, where ℎ𝜎 = 𝜂 −max⁡(𝑧𝑏 , 𝑧𝜎). The 

discretization in the sigma domain is given by a number of discrete σ-levels {𝜎𝑖,⁡⁡⁡𝑖 =
1, (𝑁𝜎 + 1)}.⁡Here σ varies from 𝜎1 = 0 at the bottom interface of the lowest sigma layer 

to  𝜎𝑁𝜎+1 = 1 at the free surface. 

 

Variable sigma coordinates can be obtained using a discrete formulation of the general 

vertical coordinate (s-coordinate) system proposed by Song and Haidvogel (1994). First 

an equidistant discretization in a s-coordinate system (-1≤ s ≤0) is defined 

 

𝑠𝑖 = −
𝑁𝜎 + 1 − 𝑖

𝑁𝜎
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 1, (𝑁𝜎 + 1) (3.1) 

 

The discrete sigma coordinates can then be determined by 

 

 

     1,111   Niscs icici
 (3.2) 

 

where 

 

𝑐(𝑠) = (1 − 𝑏)
sinh(𝜃𝑠)

sinh(𝜃)
+ 𝑏

tanh (𝜃 (𝑠 +
1
2
)) − tanh⁡(

𝜃
2
)

2tanh⁡(
𝜃
2)

 
(3.3) 

 

Here σc   is a weighting factor between the equidistant distribution and the stretch 

distribution, θ is the surface control parameter and b is the bottom control parameter. The 

range for the weighting factor is 0<σc≤1 where the value 1 corresponds to equidistant 

distribution and 0 corresponds to stretched distribution. A small value of σc can result in 

linear instability. The range of the surface control parameter is 0<θ≤20 and the range of 

the bottom control parameter is 0≤b≤1. If θ<<1 and b=0 an equidistant vertical resolution 

is obtained. By increasing the value of the θ, the highest resolution is achieved near the 

surface. If θ>0 and b=1 a high resolution is obtained both near the surface and near the 

bottom. 

 

Examples of a mesh using variable vertical discretization are shown in Figure 3.3 and 

Figure 3.4. 
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Figure 3.3 Example of vertical distribution using layer thickness distribution. Number of layers: 

10, thickness of layers 1 to 10: .025, 0.075, 0.1, 0.01, 0.02, 0.02, 0.1, 0.1, 0.075, 
0.025  

 

 
 
Figure 3.4 Example of vertical distribution using variable distribution. Number of layers: 10, σc = 

0.1, θ = 5, b = 1  

 

Combined sigma/z-level 

In the z-level domain the discretization is given by a number of discrete z-levels {𝑧𝑖,⁡⁡⁡𝑖 =
1, (𝑁𝑧 + 1)},⁡where Nz is the number of layers in the z-level domain. z1 is the minimum z-

level and 𝑧𝑁𝑧+1 is the maximum z-level, which is equal to the sigma depth, zσ. The 

corresponding layer thickness is given by 

 

Δ𝑧𝑖 = 𝑧𝑖+1 − 𝑧𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 1,𝑁𝑧 (3.4) 

 
The discretization is illustrated in Figure 3.5 and Figure 3.6. 

 
Using standard z-level discretization the bottom depth is rounded to the nearest z-level. 

Hence, for a cell in the horizontal mesh with the cell-averaged depth, zb, the cells in the 

corresponding column in the z-domain are included if the following criteria is satisfied  

 

(zi+1 − zi)/2 ≥ 𝑧𝑏⁡⁡⁡⁡𝑖 = 1,𝑁𝑧 (3.5) 
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The cell-averaged depth, zb, is calculated as the mean value of the depth at the vortices 

of each cell. For the standard z-level discretization the minimum depth is given by z1. Too 

take into account the correct depth for the case where the bottom depth is below the 

minimum z-level (𝑧1 > 𝑧𝑏) a bottom fitted approach is used. Here, a correction factor, f1, 

for the layer thickness in the bottom cell is introduced. The correction factor is used in the 

calculation of the volume and face integrals. The correction factor for the bottom cell is 

calculated by 

 

𝑓1 =
(𝑧2 − 𝑧𝑏)

∆𝑧1
 (3.6) 

 

The corrected layer thickness is given by ∆𝑧1
∗ = 𝑓1∆𝑧1. The simple bathymetry 

adjustment approach is illustrated in Figure 3.5. 

 
For a more accurate representation of the bottom depth an advanced bathymetry 

adjustment approach can be used. For a cell in the horizontal mesh with the cell-

averaged depth, zb, the cells in the corresponding column in the z-domain are included if 

the following criteria is satisfied 

 

zi+1 > 𝑧𝑏⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 1,𝑁𝑧 (3.7) 

 
A correction factor, fi, is introduced for the layer thickness 

 

𝑓𝑖 = 𝑚𝑎𝑥 (
(𝑧𝑖+1 − 𝑧𝑏)

∆𝑧𝑖
,
𝑧𝑚𝑖𝑛

∆𝑧𝑖
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧𝑖 < 𝑧𝑏 < 𝑧𝑖+1⁡⁡𝑜𝑟⁡⁡𝑧1 > 𝑧𝑏

 

 

𝑓𝑖 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧1 ≥ 𝑧𝑏 

(3.8) 

 

A minimum layer thickness, ∆𝑧𝑚𝑖𝑛, is introduced to avoid very small values of the 

correction factor. The correction factor is used in the calculation of the volume and face 

integrals. The corrected layer thicknesses are given by {∆𝑧𝑖
∗ = 𝑓𝑖∆𝑧𝑖, 𝑖 = 1,𝑁𝑧}.⁡The 

advanced bathymetry adjustment approach is illustrated in Figure 3.6.  

 

 
 
Figure 3.5 Simple bathymetry adjustment approach 
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Figure 3.6 Advanced bathymetry adjustment approach 

 

3.1.2 Shallow water equations 

The integral form of the system of shallow water equations can in general form be written 

 

( ) ( )
t


  



U
F U S U  (3.9) 

 

where U is the vector of conserved variables, F is the flux vector function and S is the 

vector of source terms. 

 

In Cartesian coordinates the system of 2D shallow water equations can be written 

 

   I V I V

x x y y

t x y

   
  

  

F F F FU
S  (3.10) 

 

where the superscripts I and V denote the inviscid (convective) and viscous fluxes, 

respectively and where 
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(3.11) 

 

In Cartesian coordinates the system of 3D shallow water equations can be written 

 
I VI I V V

y yx x

t x y x y

 

 

     
      

       

F FU F F F F
S  (3.12) 

 

where the superscripts I and V denote the inviscid (convective) and viscous fluxes, 

respectively and where 
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(3.13) 

 

Integrating Eq. (3.9) over the ith cell and using Gauss’s theorem to rewrite the flux 

integral gives 

 

( ) ( )
i i iA A

d ds d
t 


    

  
U

F n S U  (3.14) 

 

where iA  is the area/volume of the cell   is the integration variable defined on iA , i  

is the boundary of the ith cell and ds is the integration variable along the boundary. n is 

the unit outward normal vector along the boundary. Evaluating the area/volume integrals 

by a one-point quadrature rule, the quadrature point being the centroid of the cell, and 

evaluating the boundary intergral using a mid-point quadrature rule, Eq. (3.14) can be 

written 
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1 NS
i

j i

ji

U
S

t A


   


F n  (3.15) 

 

Here iU  and iS , respectively, are average values of U and S  over the ith cell and stored 

at the cell centre, NS is the number of sides of the cell, jn  is the unit outward normal 

vector at the jth side and j  the length/area of the jth interface. 

 

Both a first order and a second order scheme can be applied for the spatial discretization. 

 

For the 2D case an approximate Riemann solver (Roe’s scheme, see Roe, 1981) is used 

to calculate the convective fluxes at the interface of the cells. Using the Roe’s scheme the 

dependent variables to the left and to the right of an interface have to be estimated. 

Second-order spatial accuracy is achieved by employing a linear gradient-reconstruction 

technique. The average gradients are estimated using the approach by Jawahar and 

Kamath, 2000. To avoid numerical oscillations a second order TVD slope limiter (Van 

Leer limiter, see Hirch, 1990 and Darwish, 2003) is used.  

 

For the 3D case an approximate Riemann solver (Roe’s scheme, see Roe, 1981) is used 

to calculate the convective fluxes at the vertical interface of the cells (x’y’-plane). Using 

the Roe’s scheme the dependent variables to the left and to the right of an interface have 

to be estimated. Second-order spatial accuracy is achieved by employing a linear 

gradient-reconstruction technique. The average gradients are estimated using the 

approach by Jawahar and Kamath, 2000. To avoid numerical oscillations a second order 

TVD slope limiter (Van Leer limiter, see Hirch, 1990 and Darwish, 2003) is used. The 

convective fluxes at the horizontal interfaces (vertical line) are derived using first order 

upwinding for the low order scheme.  For the higher order scheme the fluxes are 

approximated by the mean value of the fluxes calculated based on the cell values above 

and below the interface for the higher order scheme. 

 

3.1.3 Transport equations 

The transport equations arise in the salt and temperature model, the turbulence model 

and the generic transport model. They all share the form of Equation Eq. (2.20) in 

Cartesian coordinates. For the 2D case the integral form of the transport equation can be 

given by Eq. (3.9) where 
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 (3.16) 

 

For the 3D case the integral form of the transport equation can be given by Eq. (3.9) 

where 
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 (3.17) 

 

The discrete finite volume form of the transport equation is given by Eq. (3.15). As for the 

shallow water equations both a first order and a second order scheme can be applied for 

the spatial discretization. 

 

In 2D  the low order approximation uses simple first order upwinding, i.e., element 

average values in the upwinding direction are used as values at the boundaries. The 

higher order version approximates gradients to obtain second order accurate values at 

the boundaries. Values in the upwinding direction are used. To provide stability and 

minimize oscillatory effects, a TVD-MUSCL limiter is applied (see Hirch, 1990, and 

Darwish, 2003). 

 

In 3D the low order version uses simple first order upwinding. The higher order version 

approximates horizontal gradients to obtain second order accurate values at the 

horizontal boundaries. Values in the upwinding direction are used. To provide stability 

and minimize oscillatory effects, an ENO (Essentially Non-Oscillatory) type procedure is 

applied to limit the horizontal gradients. In the vertical direction a 3rd order ENO 

procedure is used to obtain the vertical face values (Shu, 1997). 

 

3.2 Time Integration 

Consider the general form of the equations 

 

 
t






U
G U  (3.18) 

 

For 2D simulations, there are two methods of time integration for both the shallow water 

equations and the transport equations: A low order method and a higher order method. 

The low order method is a first order explicit Euler method 

 

1  ( )n n nt  U U G U  (3.19) 

 

where t  is the time step interval. The higher order method uses a second order Runge 

Kutta method on the form: 
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 (3.20) 

 

For 3D simulations the time integration is semi-implicit. The horizontal terms are treated 

implicitly and the vertical terms are treated implicitly or partly explicitly and partly 

implicitly. Consider the equations in the general semi-implicit form. 
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t


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where the h  and v  subscripts refer to horizontal and vertical terms, respectively, and the 

superscripts refer to invicid and viscous terms, respectively. As for 2D simulations, there 

is a lower order and a higher order time integration method. 

 

The low order method used for the 3D shallow water equations can written as 

 

 1
1 12

( ) ( )  ( )n v n v n n h nt t      U G U G U U G U  (3.22) 

 

The horizontal terms are integrated using a first order explicit Euler method and the 

vertical terms using a second order implicit trapezoidal rule. The higher order method can 

be written 
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 (3.23) 

 

The horizontal terms are integrated using a second order Runge Kutta method and the 

vertical terms using a second order implicit trapezoidal rule. 

 

The low order method used for the 3D transport equation can written as 

 

 1
1 12

 ( ) ( )  ( )  ( )V V I

n v n v n n h n v nt t t      U G U G U U G U G U  (3.24) 

 

The horizontal terms and the vertical convective terms are integrated using a first order 

explicit Euler method and the vertical viscous terms are integrated using a second order 

implicit trapezoidal rule. The higher order method can be written 
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 (3.25) 

 

The horizontal terms and the vertical convective terms are integrated using a second 

order Runge Kutta method and the vertical terms are integrated using a second order 

implicit trapezoidal rule for the vertical terms. 

 

3.3 Boundary Conditions 

3.3.1 Closed boundaries 

Along closed boundaries (land boundaries), normal fluxes are forced to zero for all 

variables. For the momentum equations, this leads to full-slip along land boundaries. For 

the shallow water equations, the no slip condition can also be applied where both the 

normal and tangential velocity components are zero. 
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3.3.2 Open boundaries 

For the shallow water equations a number of different boundary conditions can be applied   

 

The flux, velocity and Flather boundary conditions are all imposed using a weak 

approach. A ghost cell technique is applied where the primitive variables in the ghost cell 

are specified. The water level is evaluated based on the value of the adjacent interior cell, 

and the velocities are evaluated based on the boundary information. For a discharge 

boundary, the transverse velocity is set to zero for inflow and passively advected for 

outflow. The boundary flux is then calculated using an approximate Riemann solver.  

 

The Flather (1976) condition is one of the most efficient open boundary conditions. It is 

very efficient in connection with downscaling coarse model simulations to local areas (see 

Oddo and Pinardi (2007)). The instabilities, which are often observed when imposing 

stratified density at a water level boundary, can be avoided using Flather conditions 

 

The level boundary is imposed using a strong approach based on the characteristic 

theory (see e.g. Sleigh et al., 1998). 

 

The discharge boundary condition is imposed using both a weak formulation using ghost 

cell technique described above and a strong approach based on the characteristic theory 

(see e.g. Sleigh et al., 1998). 

 

Note that using the weak formulation for a discharge boundary the effective discharge 

over the boundary may deviate from the specified discharge.  

 

For transport equations, either a specified value or a zero gradient can be given. For 

specified values, the boundary conditions are imposed by applying the specified 

concentrations for calculation of the boundary flux. For a zero gradient condition, the 

concentration at the boundary is assumed to be identical to the concentration at the 

adjacent interior cell. 

 

3.3.3 Flooding and drying 

The approach for treatment of the moving boundaries problem (flooding and drying 

fronts) is based on the work by Zhao et al. (1994) and Sleigh et al. (1998). When the 

depths are small the problem is reformulated and only when the depths are very small the 

elements/cells are removed from the calculation. The reformulation is made by setting the 

momentum fluxes to zero and only taking the mass fluxes into consideration. 

 

The depth in each element/cell is monitored and the elements are classified as dry, 

partially dry or wet. Also the element faces are monitored to identify flooded boundaries. 

 

• An element face is defined as flooded if the following two criteria are satisfied: 

Firstly, the water depth at one side of face must be less than a tolerance depth, 
dryh

, and the water depth at the other side of the face larger than a tolerance depth, 

floodh . Secondly, the sum of the still water depth at the side for which the water 

depth is less than 
dryh  and the surface elevation at the other side must be larger 

than zero. 
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• An element is dry if the water depth is less than a tolerance depth, 
dryh , and no of 

the element faces are flooded boundaries. The element is removed from the 

calculation. 

 

• An element is partially dry if the water depth is larger than 
dryh  and less than a 

tolerance depth, weth , or when the depth is less than the 
dryh  and one of the 

element faces is a flooded boundary. The momentum fluxes are set to zero and only 

the mass fluxes are calculated. 

 

• An element is wet if the water depth is greater than weth . Both the mass fluxes and 

the momentum fluxes are calculated. 

 

The wetting depth, weth , must be larger than the drying depth, 
dryh , and flooding depth, 

floodh , must satisfy 

 

dry flood weth h h   (3.26) 

 

The default values are mhdry 005.0 , mh flood 05.0  and mhwet 1.0 . 

 

Note, that for very small values of the tolerance depth, weth , unrealistically high flow 

velocities can occur in the simulation and give cause to stability problems. 
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4 Infiltration and Leakage 

The effect of infiltration and leakage at the surface zone may be important in cases of 

flooding scenarios on otherwise dry land. It is possible to account for this in one of two 

ways: by Net infiltration rates or by constant infiltration with capacity. 

 

 
 
Figure 4.1 Illustration of infiltration process 

 

4.1 Net Infiltration Rates 

The net infiltration rate is defined directly. This will act as a simple sink in each element in 

the overall domain area. 

 

The one-dimensional vertical continuity equation is solved at each hydrodynamic time 

step after the two-dimensional horizontal flow equations have been solved. The 

calculation of the new water depth in the free surface zone for each horizontal element is 

found by  

 
𝐻(𝑗) = ⁡𝐻(𝑗) −⁡𝑉𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑗) /𝐴(𝑗) (4.1) 

 
Where 𝑉𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑗) is the infiltrated volume in element (𝑗) and A(j) the area of the 

element. 

 

If 𝐻(𝑗) becomes marked as dry then element (𝑗) will be taken out of the two-dimensional 

horizontal flow calculations and no infiltration can occur until the element is flooded again.  

 

In summary: when using Net infiltration rate an unsaturated zone is never specified and 

thus has no capacity limits, so the specified infiltration rates will always be fully 

effectuated as long as there is enough water available in the element. 

j j+1
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Infiltration
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4.2 Constant Infiltration with Capacity 

Constant infiltration with capacity describes the infiltration from the free surface zone to 

the unsaturated zone and from the unsaturated zone to the saturated zone by a simplified 

model. The model assumes the following: 

 

• The unsaturated zone is modelled as an infiltration zone with constant porosity over 

the full depth of the zone. 

• The flow between the free surface zone and the infiltration zone is based on a 
constant flow rate, i.e. 𝑉𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑄𝑖 ∙ ∆𝑡 where 𝑄𝑖   is the prescribed flow rate.  

• The flow between the saturated and unsaturated zone is modelled as a leakage 𝑄𝑙 

having a constant flow rate, i.e. 𝑉𝑙𝑒𝑎𝑘𝑎𝑔𝑒 = 𝑄𝑙 ∙ ∆𝑡. 

The simplified model described above is solved through a one-dimensional continuity 

equation. Feedback from the infiltration and leakage to the two-dimensional horizontal 

hydrodynamic calculations is based solely on changes to the depth of the free surface 

zone – the water depth.  

 

Note that the infiltration flow cannot exceed the amount of water available in the free 

surface water zone nor the difference between the water capacity of the infiltration zone 

and the actual amount of water stored there. It is possible that the infiltration flow 

completely drains the free surface zone from water and thus creates a dried-out point in 

the two-dimensional horizontal flow calculations. 

 

The one-dimensional vertical continuity equation is solved at each hydrodynamic time 

step after the two-dimensional horizontal flow equations have been solved. The solution 

proceeds in the following way: 

 
1. Calculation of the volume from leakage flow in each horizontal element – 𝑉𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑗) 

 
𝑉𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑗) = ⁡𝑄𝑙(𝑗) ∙ ∆⁡𝑡 ∙ 𝐴(𝑗) (4.2) 

 
𝑉𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑗) = min⁡(𝑉𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑗), 𝑉i(𝑗)) (4.3) 

 
𝑉i(𝑗) ∶= ⁡𝑉i(𝑗) − 𝑉𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑗) (4.4) 

 

 Where 𝑉i(𝑗)⁡is the total amount of water in the infiltration zone and 𝑄𝑙(𝑗) is the 

leakage flow rate. 

 

2. Calculation of the volume from infiltration flow in each horizontal element – 
𝑉𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑗) 

 
𝑉𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑗) = 𝑄𝑖(𝑗) ∙ ∆⁡𝑡 ∙ 𝐴(𝑗) (4.5) 

 
𝑉𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑗) = min (𝑉𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑗)⁡, 𝑆𝐶𝑖(𝑗) − 𝑉i(𝑗), 𝐻(𝑗) ∙ 𝐴(𝑗) (4.6) 

 
𝑉i(𝑗) ∶= ⁡𝑉i(𝑗) + ⁡𝑉𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ⁡(𝑗)  (4.7) 

 

 Where 𝑄𝑖(𝑗) is the infiltration rate, 𝑆𝐶𝑖(𝑗) is the water storage capacity and 𝐻(𝑗) the 

depth of the free surface.  
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3. Calculation of the new water depth in the free surface zone for each horizontal 

element 
 

𝐻(𝑗) = ⁡𝐻(𝑗) −⁡𝑉𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑗)/𝐴(𝑗) (4.8) 

 

If 𝐻(𝑗) becomes marked as dry then element (j) will be taken out of the two-dimensional 

horizontal flow calculations. The element can still leak but no infiltration can occur until 

the element is flooded again. 

 

The water storage capacity of the infiltration zone is calculated as  

 
𝑆𝐶𝑖(𝑗) = 𝑍𝑖(𝑗) ∙ 𝐴(𝑗) ⁡ ∙ 𝛾(𝑗) (4.9) 

 

Where 𝑍𝑖(𝑗) is the depth of the infiltration zone and 𝛾(𝑗) is the porosity of the same zone. 

 

In summary, when using Constant infiltration with capacity there can be situations where 

the picture is altered and the rates are either only partially effectuated or not at all: 

 
• If = ⁡𝐻(𝑗) < 𝐻𝑑𝑟𝑦 on the surface (dry surface) => infiltration rate is not effectuated 

• If: the water volume in the infiltration zone reaches the full capacity => infiltration rate 

is not effectuated 

• If: the water volume is zero in the infiltration zone (the case in many initial conditions) 

=> leakage rate is not effectuated 

• Leakage volume must never eclipse the available water volume in the infiltration 

zone, if so we utilise the available water volume in infiltration zone as leakage 

volume 

• Infiltration volume must never eclipse the available water volume on the surface, if 

so we utilise the available water on the surface as infiltration volume 
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5 Jet Sources 

The simulation of jets/plumes is based on dynamic coupling of nearfield integrated jet 

solution and the farfield hydrodynamic flow model (MIKE 3 Flow Model FM). 

 

5.1 Nearfield Calculations 

The near field solution is based on the integral jet model equations described by Jirka 

(2004). It determines the steady state solution of the jet/plume by solving conservation 

equations for flux and momentum, salinity and temperature (if included) under the given 

ambient conditions.  

 

The velocity profile and distribution of state parameters and scalar mass is assumed to 

follow the Gaussian formulation. The jet model employs an entrainment closure approach 

that distinguishes between the separate contributions of transverse shear and of 

azimuthal shear mechanisms. It further contains a quadratic law turbulent drag force 

mechanism (𝐹𝐷) as suggested by a number of recent detailed experimental investigations 

on the dynamics of transverse jets into crossflow. The conservation principles for volume 

(continuity), momentum components in the global directions, state parameters and scalar 

mass, follow Jirka (2004), lead to the equations below: 

 
𝑑𝑄

𝑑𝑠
= 𝐸 (5.1) 

 
𝑑𝑀𝑥

𝑑𝑠
= 𝐸𝑢𝑎 + 𝐹𝐷√1 − 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜎 (5.2) 

 
𝑑𝑀𝑦

𝑑𝑠
= −𝐹𝐷

𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝜎𝑐𝑜𝑠𝜎

√1 − 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜎
 (5.3) 

 
𝑑𝑀𝑧

𝑑𝑠
= 𝜋𝜆2𝑏2𝑔𝑐

′ − 𝐹𝐷
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜎

√1 − 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜎
 (5.4) 

 

 

 
 
Figure 5.1 Nearfield jet integral model definition sketch 
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Where s is the axial distance along the jet trajectory and E is the rate of entrainment, and 

b is the characteristic width of the jet, which is defined as the jet radius, where the jet 

excess velocity is 𝑒−1 = 37%. The centerline density is contained in the definition of 

centerline buoyancy 𝑔𝑐
′  and is calculated by the UNESCO equation of state, as function of 

salinity (S) and temperature (T): 

 
𝜌𝐽𝑒𝑡 = 𝜌𝑈𝑁𝐸𝑆𝐶𝑂(𝑆, 𝑇) (5.5) 

 

If sediments are present inside the jet, and their dynamics are included in the 

calculations, then the jet density will be corrected for the presence of sediments. This can 

be activated by defining the source in MT module and activating the MT-HD feedback.  

 
𝜌𝐽𝑒𝑡 = (1 − 𝐶𝑠𝑒𝑑)𝜌𝐽𝑒𝑡 + 𝐶𝑠𝑒𝑑𝜌𝑠𝑒𝑑 (5.6) 

 

𝐶𝑠𝑒𝑑 is the volumetric sediment concentration derived from the sediment concentration 

provided by the user for the Jet source in MT module, and 𝜌𝑠𝑒𝑑 is the sediment density 

provided by the user for the MT-HD feedback in MT module. 

The buoyant acceleration is then defined as below, where 𝜌𝑎is the ambient density, and 

𝜌𝑟𝑒𝑓 is the reference density calculated by the reference salinity and temperatures 

provided by the user in HD module. 

 

𝑔𝑐
′ =

𝜌𝐽𝑒𝑡 − 𝜌𝑎
𝜌𝑟𝑒𝑓

𝑔 (5.7) 

 

The two important physical processes influencing the jet trajectory and dilution rates are 

the entrainment rate (𝐸) and the ambient drag force (𝐹𝐷). The entrainment rate is 

calculated as being proportional to the streamwise contribution of the jet centerline 

velocity (𝑢𝑐) plus the azimuthal contribution from the transverse component of the 

ambient velocity (𝑢𝑎√1 − 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜎). 
 

𝐸 = 2𝜋𝑏𝑢𝑐 (𝛼1 + 𝛼2
𝑠𝑖𝑛𝜃

𝐹𝑙
2 + 𝛼3

𝑢𝑎𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜎

𝑢𝑐 + 𝑢𝑎
)

+ 2𝜋𝑏𝑢𝑎√1 − 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜎𝛼4|𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜎| 
 

(5.8) 

 

𝐹𝑙 is the local densimetric Froude number, and is defined as:  

 

𝐹𝑙 =
𝑢𝑐

√𝑔𝑐
′𝑏

 (5.9) 

 

The first term in the streamwise part of the entrainment function represents the “pure jet” 

effects, the second term adds the effect of “pure plume” and the third term is for “pure 

wake”. The four coefficients defining the entrainment rate are given the empirical values 

suggested by Jirka (2004): 

 

𝛼1 = 0.055⁡⁡⁡,⁡⁡⁡𝛼2 = 0.6⁡⁡⁡,⁡⁡⁡𝛼3 = 0.055⁡⁡⁡,⁡⁡⁡𝛼4 = 0.5 

 
(5.10) 

 

Deflection of the jet is a consequence of the pressure drag exerted on it by the cross flow 

(𝐹𝐷) and of the entrainment by the jet of laterally moving fluid from the crossflow (𝐸𝑢𝑎).  
The drag force is parametrized as a quadratic law force mechanism (Jirka, 2004): 

 

𝐹𝐷 =
1

2
𝐶𝐷2√2𝑏𝑢𝑎

2(1 − 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝜎) (5.11) 
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The jet diameter is calculated as 2√2𝑏 and 𝐶𝐷 is the drag coefficient as function of 

velocity ratio between jet and the ambient, following Chan et al. (1976). 

Calculations of the jet trajectory are discretized based on the incremental distance along 

the jet trajectory (𝑑𝑠). Following a recommendation from Lee and Cheung (1990), the 

spatial discretization of jet trajectory is calculated as below: 

 

𝑑𝑠 = 𝑑𝑡(𝑢𝑐 + 𝑢𝑎𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜎) 
 

(5.12) 

 

Where 

 

𝑑𝑡 = ⁡
0.1𝐷

𝑢𝑐
 

 

However, the value of 𝑑𝑡 is set to have cut-off values of 0.001 seconds and 1.0 seconds. 

𝐷 is the initial jet diameter. 

 

This jet (nearfield) model calculates the jet trajectory and dilution until it reaches the end 

of nearfield region. This is done at each HD time-step in the background flow model. 

Although the HD time-steps can be much smaller than the time it takes for the trajectory 

to reach the end of nearfield region, it is assumed that the temporal variations in the 

background flow (ambient) are slower than the time it takes for the jet to go from 

discharge point to the point of farfield release.  

 

5.2 End of Nearfield region 

In general, where the jet loses its driving characteristics over the ambient flow 

(momentum and buoyancy), it has reached the end of its nearfield region and its volume 

and scalar mass can be transferred and dispersed by the ambient flow into the Farfield 

region. This can happen under different circumstances: 

 

• Jet in cross-flow: The jet momentum M is combination of its initial momentum at the 

diffuser, buoyancy and the ambient flow induced (co- or opposing) momentum Ma.  It 

loses its driving characteristics over the ambient flow when the excess momentum 

becomes small, and close to the ambient flow momentum. This can be considered 

as the end of the nearfield region and the release into the Farfield model by following 

the condition: M−Ma < ε.Ma, where epsilon ε is left as a user-defined/calibration 

parameter, with default value of 1%. 
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Figure 5.2 Illustration of the jet velocity field and the contribution from the ambient flow 
(Modified image from Jirka, 2004) 

 

• Jet in stagnant environment: Under stagnant conditions, the contribution from the 

ambient currents to the jet momentum is zero, and the Nearfield region can extend 

until the point where the jet loses its own momentum due to dilution and buoyancy. 

Considering the modeling/numerical limitations, a minimum value for the jet excess 

velocity can be defined (gamma γ) to mark the end of Nearfield region and the 

release into Farfield model. The default value for gamma is set to 1 cm/s. 

• Jet in stratified stagnant environment: Non-horizontal jets (positively buoyant jets 

pointed downward or negatively buoyant jets pointed upward) in stagnant 

stratification create a complex situation. Depending on the stratification gradient and 

the jet initial momentum, the jet can either be trapped in a layer where its density 

equals the ambient density, or it overshoots and experiences a reversed buoyancy. 

In latter case, the jet experiences a lateral collapse in form of an internal density 

current formation in opposite direction and it ends up trapped in a terminal density 

level. These complex processes are not included in the integral jet model formulation 

and – in the absence of an adequate transition cut-off- it predicts (unrealistically) an 

infinite number of oscillations about the terminal level. Therefore, the second 

buoyancy reversal in the jet calculations is considered as the end of Nearfield 

calculations and the release into the Farfield model. 

• Jet in strong opposing flow: Jet integral models cannot be expected to hold for 

flow situations in which boundary layer behavior is no longer maintained. The 

boundary layer approximation implies a pressure within the jet equal to that in the 

outside ambient. This is violated whenever the jet exhibits strong curvature such as 

going into strong opposing ambient current. Therefore, the jet nearfield solution 

stops and releases into Farfield model as soon as it experiences a strong opposing 

flow. 

The other criterion that ends the nearfield calculations is when the jet reaches the bottom, 

surface or a lateral boundary. The dynamics of the jet approaching a solid boundary or 

water surface are not yet included in the nearfield calculations of the MIKE jet module. 

Among the impacts are variations in entrainment rates at the vicinity of the boundary. The 

nearfield calculations continue un-influenced until the jet reaches the boundary, and there 

it releases into the Farfield model. 
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5.3 Nearfield-Farfield model coupling 

The coupling between the Nearfield and Farfield model concerns both the reading of 

ambient conditions as an input for the Nearfield jet model, and the release of jet 

discharge into the Farfield flow model at the end of the Nearfield region.  

 

The ambient flow conditions can be determined either as the local flow conditions at the 

jet location or as the upstream ambient flow conditions. The upstream option can be used 

to avoid unrealistic feedback between the jet solution and the ambient flow in cases with 

dominant advection effects on the released material from the ambient flow. For the 

upstream ambient flow condition, the conditions are obtained at a point defined by 

distance from the jet location in the upstream flow direction. The distance is the maximum 

of the characteristic length determined from the mesh and a user-specified minimum 

upstream distance. The characteristic length is here determined as 2.3 times the square 

root of the local element area at the initial release point.  

 

At the end of Nearfield region (determined by any of conditions described in previous 

section), the final jet discharge (which is diluted) is released into the Farfield flow model 

at the corresponding point in space. This will assure that the right volume with right 

dilution is released into the Farfield model at the right location. The discharge is 

distributed into several sources over a plane area corresponding to the final jet diameter 

and with a Gaussian distribution for volume and other scalars. The number of sources 

depend on the mesh resolution in the Farfield model.  

 

The increased jet discharge at the end of the Nearfield region (due to entrainment) is 

inserted into the Farfield flow model at each Hydrodynamic time-step, which then impacts 

the hydrodynamic solution at the next time step. The shallow-water equations being 

solved in the Farfield flow model may not be able to correctly handle the insertion and 

acceleration of such relatively large volume inserted into the domain (this depends as 

well on local mesh resolution and water depth). The resulting flow field therefore might 

not appear realistic. As a partial remedy, and to help the solution, at each of the release 

point sources there will be added a forcing (momentum flux) to the momentum equation, 

in the direction of jet release into the ambient domain, calculated as: 

 
𝐹𝑥 = 𝑀 cos 𝜃 cos 𝜎, 𝐹𝑦 = 𝑀 cos 𝜃 sin 𝜎 (5.13) 

 

The increased jet discharge and (consequently) its dilution at the release point is a result 

of entrainment along its trajectory. Conservation of mass and volume in the Farfield flow 

model then requires removing this excess mass and volume that have been inserted at 

the release point. This has been done by introducing entrainment sinks along the 

centerline of the jet trajectory (see Figure 5.3). The number of sinks depend on the mesh 

resolution in the Farfield model. This method follows the Distributed Entrainment Sink 

Approach (DESA) proposed by Choi and Lee (2007).  
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Figure 5.3 Illustration of positioning of entrainment sinks along the trajectory in a 3D domain, 

and the distributed source points at the release location 

 

Similar to the problem at the release point, at the sink locations, subtraction of volume 

inside the domain may result in dubious flow fields near the sinks (depending on local 

mesh resolution). Therefore, following the same reasoning used for the release point, at 

each sink point, a forcing (momentum flux), calculated as the product of sink rate and the 

ambient flow velocity, is added to the momentum balance with an opposing direction. 

This cannot be effective for the vertical velocities induced by the sinks, where their impact 

becomes more visible in vertical jets. 

 

 (5.14) 

 

 
𝑓𝑥 = −𝑞𝑠𝑖𝑛𝑘𝑢𝑎_𝑥 , 𝑓𝑦 = −𝑞𝑠𝑖𝑛𝑘𝑢𝑎_𝑦 
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6 Validation 

The new finite-volume model has been successfully tested in a number of basic, idealised 

situations for which computed results can be compared with analytical solutions or 

information from the literature. The model has also been applied and tested in more 

natural geophysical conditions; ocean scale, inner shelves, estuaries, lakes and overland, 

which are more realistic and complicated than academic and laboratory tests. A detailed 

validation report is under preparation. 

 

This chapter presents a comparison between numerical model results and laboratory 

measurements for a dam-break flow in an L-shaped channel. 

 

Additional information on model validation and applications can be found here: 

 

http://www.mikepoweredbydhi.com/download/product-documentation  

 

6.1 Dam-break Flow through Sharp Bend 

The physical model to be studied combines a square-shaped upstream reservoir and an 

L-shaped channel. The flow will be essentially two-dimensional in the reservoir and at the 

angle between the two reaches of the L-shaped channel. However, there are numerical 

and experimental evidences that the flow will be mostly unidimensional in both rectilinear 

reaches. Two characteristics or the dam-break flow are of special interest, namely  

 

• The "damping effect" of the corner 

• The upstream-moving hydraulic jump which forms at the corner 

 

The multiple reflections of the expansion wave in the reservoir will also offer an 

opportunity to test the 2D capabilities of the numerical models. As the flow in the reservoir 

will remain subcritical with relatively small-amplitude waves, computations could be 

checked for excessive numerical dissipation. 

 

6.1.1 Physical experiments 

A comprehensive experimental study of a dam-break flow in a channel with a 90 bend 

has been reported by Frazão and Zech (2002, 1999a, 1999b). The channel is made of a 

3.92 and a 2.92 metre long and 0.495 metre wide rectilinear reaches connected at right 

angle by a 0.495 x 0.495 m square element. The channel slope is equal to zero. A 

guillotine-type gate connects this L-shaped channel to a 2.44 x 2.39 m (nearly) square 

reservoir. The reservoir bottom level is 33 cm lower that the channel bed level. At the 

downstream boundary a chute is placed. See the enclosed figure for details. 

 

Frazão and Zech performed measurements for both dry bed and wet bed condition. Here 

comparisons are made for the case where the water in the reservoir is initially at rest, with 

the free surface 20 cm above the channel bed level, i.e. the water depth in the reservoir is 

53 cm. The channel bed is initially dry. The Manning coefficients evaluated through 

steady-state flow experimentation are 0.0095 and 0.0195 s/m1/3, respectively, for the bed 

and the walls of the channel. 

 

http://www.mikepoweredbydhi.com/download/product-documentation
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The water level was measured at six gauging points. The locations of the gauges are 

shown in Figure 6.1 and the coordinates are listed in Table 6.1. 

 

 
 
Figure 6.1 Set-up of the experiment by Frazão and Zech (2002) 

 

 
Table 6.1 Location of the gauging points 

 

Location x (m) y (m) 

T1 1.19 1.20 

T2 2.74 0.69 

T3 4.24 0.69 

T4 5.74 0.69 

T5 6.56 1.51 

T6 6.56 3.01 

6.1.2 Numerical experiments 

Simulations are performed using both the two-dimensional and the three-dimensional 

shallow water equations. 

 

An unstructured mesh is used containing 18311 triangular elements and 9537 nodes. The 

minimum edge length is 0.01906 m and the maximum edge length is 0.06125 m. In the 

3D simulation 10 layers is used for the vertical discretization. The time step is 0.002 s. At 

the downstream boundary, a free outfall (absorbing) boundary condition is applied. The 

wetting depth, flooding depth and drying depth are 0.002 m, 0.001 m and 0.0001 m, 

respectively. 

 

A constant Manning coefficient of 105.26 m1/3/s is applied in the 2D simulations, while a 

constant roughness height of 510-5 m is applied in the 3D simulation. 
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6.1.3 Results 

In Figure 6.2 time series of calculated surface elevations at the six gauges locations are 

compared to the measurements. In Figure 6.3 contour plots of the surface elevations are 

shown at T = 1.6, 3.2 and 4.8 s (two-dimensional simulation). 

 

In Figure 6.4 a vector plot and contour plots of the current speed at a vertical profile along 

the centre line (from (x,y)=(5.7, 0.69) to (x,y)=(6.4, 0.69)) at T = 6.4 s is shown. 

 

 
 

 
Figure 6.2 Time evolution of the water level at the six gauge locations. (blue) 3D calculation, 

(black) 2D calculation and (red) Measurements by Frazão and Zech (1999a,b) 
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Figure 6.3 Contour plots of the surface elevation at T = 1.6 s (top), T = 3.2 s (middle) and T = 

4.8 s (bottom). 
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Figure 6.4 Vector plot and contour plots of the current speed at a vertical profile along the centre 

line at T = 6.4 s 

 

6.2 Jet Source 

Fan (1967) did comprehensive series of laboratory tests, where a negatively buoyant jet 

is discharged vertically down into a crossflow and into a stagnant stratified water tank. 

Figure 6.5 shows a photograph of the negatively buoyant jet in crossflow test 40-8-D, 

which is used to validate the MIKE jet model. 

 

 
 
Figure 6.5 Photograph of test 40-8-D (Fan, 1967) 

 

In Figure 6.6, the jet centreline trajectory (solid blue line) and the corresponding 

characteristic width (dash blue line) calculated by the MIKE integral jet model are plotted 

upon the lab observations reported by Fan (the background image) of test number 40-8D. 

The trajectory and the general width of the jet follows the observations very well. The 

Farfield results of the same simulation are shown in Figure 6.7, where the Nearfield 

calculations also are indicated. 
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Figure 6.6 Comparison of observed (Fan, 1967) and model results of nearfield jet trajectory 

 

 

 
 
Figure 6.7 Presentation of the Nearfield calculations over the Farfield flow model MIKE 3 FM 

results  

 

Besides the jet-in-crossflow tests, Fan did also tests where the negatively buoyant jet is 

discharged into a stagnant stratified environment. These tests demonstrated the 

complicated process of jet overshooting its neutral density level and experiencing a 

reversed buoyancy and finally being trapped in a new density level. The jet integral 

equations do not resolve all the physical details of this phenomenon, but can estimate the 

trajectory path and dilution rates well.  

 

In Figure 6.8, the jet centreline trajectory (solid blue line) and the corresponding 

characteristic width b (dash blue line) calculated by the integral jet model are plotted upon 

the lab observations of Fan (stratified tank test 1) and the CorJet model results (single-jet 

module in CORMIX) as the background image (from Jirka 2004). The trajectory and the 

general width of the jet follows both the CoreJet results and the observations very well. 

Due to ambient stratification and the jet momentum, the jet overshoots its neutral density 

layer and experiences a buoyancy reversal (BR). The nearfield calculations has ceased 

after the second BR. 
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Figure 6.8 Comparison of MIKE Nearfield model results with observed visual plume (Fan 1967) 

and CorJet (Jirka 2004) 

 

Jirka (2004) compared the CoreJet model results to few other test cases from Fan’s 

laboratory experiment. The same cases have been simulated by MIKE jet module and the 

results are plotted in Figure 6.9 upon the graphs presented by Jirka (2004). The general 

agreement with both the measured values and the CoreJet model results are satisfactory. 

 

 
 
Figure 6.9 Comparison of MIKE Jet module results with integral model predictions of Jirka 

(2004) with experimental data of Fan (1967) 
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In jets that contain sediments with high levels of concentration, the weight of sediment 

should be included in the Nearfield calculations. By activating the HD/MT coupling 

feature, the sediment sources defined in the MT module will be taken into account when 

calculating the jet density in the Nearfield calculations. 

 

Decrop et al. (2013) did a series of laboratory measurements of sediment mixture jets in 

cross flow. In Figure 6.10 a photograph of the laboratory experiment (with strong cross-

flow) is shown. In Figure 6.11 and Figure 6.12 the results of MIKE jet module is compared 

with Decrop’s measurements as well as Fisher (1979) and the Lagrangian model of Lee 

and Chu (2003). 

 

 
 
Figure 6.10 Image of the negatively buoyant sediment plume in crosss flow (Decrop, 2013) 

 

 

 
 
Figure 6.11 Comparison of the MIKE Jet module results with the experimental data of Decrop 

(2013) and other models  
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Figure 6.12 Comparison of the MIKE Jet module results with the experimental data of Decrop 

(2013) and other models 
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