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COPYRIGHT This document refers to proprietary computer software, which is 

protected by copyright. All rights are reserved. Copying or other 

reproduction of this manual or the related programmes is 
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LIMITED LIABILITY The liability of DHI is limited as specified in Section III of your 

‘DHI Software Licence Agreement’: 
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ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS 

LIMITATION SHALL APPLY TO CLAIMS OF PERSONAL 

INJURY TO THE EXTENT PERMITTED BY LAW. SOME 

COUNTRIES OR STATES DO NOT ALLOW THE EXCLUSION 

OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL, 

SPECIAL, INDIRECT, INCIDENTAL DAMAGES AND, 

ACCORDINGLY, SOME PORTIONS OF THESE LIMITATIONS 

MAY NOT APPLY TO YOU. BY YOUR OPENING OF THIS 

SEALED PACKAGE OR INSTALLING OR USING THE 

SOFTWARE, YOU HAVE ACCEPTED THAT THE ABOVE 

LIMITATIONS OR THE MAXIMUM LEGALLY APPLICABLE 

SUBSET OF THESE LIMITATIONS APPLY TO YOUR 

PURCHASE OF THIS SOFTWARE.’ 

 

 

 

 



  

 i 

 

 

CONTENTS 
 

MIKE 21 
Elliptic Mild-Slope Wave Module 
Scientific Documentation 
 

 

1 Introduction ...................................................................................................................... 1 
1.1 About this Guide ................................................................................................................................... 1 
1.2 What Does this Guide Contain? ........................................................................................................... 1 
1.3 General Description.............................................................................................................................. 1 

2 Scientific Background ..................................................................................................... 4 
2.1 Basic Equations .................................................................................................................................... 4 
2.1.1 Internal Wave Generation .................................................................................................................... 6 
2.1.2 Partial Reflection and Transmission ..................................................................................................... 6 
2.1.3 Radiation Stresses ............................................................................................................................... 8 
2.2 Numerical Implementation ................................................................................................................. 10 

3 References ...................................................................................................................... 12 
 

 

APPENDICES 

APPENDIX  A 
In-depth Description of the Numerical Formulation 
 

 



Introduction  

© DHI - MIKE 21 Elliptic Mild-Slope Wave Module 1 

1 Introduction 

1.1 About this Guide 

The purpose of this document is to provide the user the scientific background of the 

Elliptic Mild-Slope Wave Module, MIKE 21 EMS. 

 

1.2 What Does this Guide Contain? 

The entries listed below are included in the present document as separate sections. 

 

• General Description 

• Scientific Background 

• References 

The paper enclosed in Appendix A aims at giving an in-depth description of the physical, 

mathematical and numerical background related to wave modelling using elliptic mild-

slope wave equations and particularly of MIKE 21 EMS. 

 

1.3 General Description 

The Elliptic Mild-Slope Wave Module, MIKE 21 EMS, is based on the numerical solution 

of the so-called ‘mild-slope’ wave equation originally derived by Berkhoff in 1972. This 

equation governs the motion of time harmonic water waves of infinitesimal height (linear 

waves) on a gently sloping bathymetry with arbitrary water depth. In case of constant 

water depth, the basic equation reduces to the classical Helmholtz equation.  

 

The linear model includes shoaling, refraction, diffraction, wave breaking, bed friction and 

back-scattering. Partial reflection and transmission through piers and breakwaters is also 

included. Sponge layers are applied where full absorption of wave energy is required, e.g. 

at offshore boundaries. Thus, the model is particularly useful to determine wave 

disturbance in ports and harbours in cases where the forcing wave conditions can be 

represented by a monochromatic and unidirectional wave. The model has been used to 

determine harbour resonance and seiching as well as for wave transformation in coastal 

areas.  

The model also includes a general formulation of radiation stresses, which apply in 

crossing wave trains and in areas of strong diffraction and wave breaking.  

 

MIKE 21 EMS is based on a quite unique solution method. The time-harmonic variation is 

subtracted and the elliptic equations are reformulated as mass and momentum type 

equations, which are discretised using a FD scheme. The normal ADI (alternating 

direction implicit) algorithm is invoked and the equations are solved by means of the 

double sweep algorithm.  
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Figure 1.1 Example of MIKE 21 EMS application. The figure shows the instantaneous surface 

elevation behind a fully reflective breakwater. The incoming waves have a period of 8 
s and the water depth is 40 m 

 

 

 
 

Figure 1.2 Example of MIKE 21 EMS application. The figure shows the wave disturbance 
coefficient behind a fully reflective breakwater  

 

 
 
Figure 1.3 Example of MIKE 21 EMS application. The figure shows the wave disturbance 

coefficient in a harbour basin for a near-resonance condition. Also the instantaneous 
particle velocities are shown. 
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Figure 1.4 Example of MIKE 21 EMS application. The upper left panel shows the bathymetry, 

the upper middle panel the instantaneous surface elevation and upper right panel the 
Hrms wave height. The lower left panel shows the radiation stress component Sxy 
and the lower right panel the wave induced current modelled with MIKE 21 Flow 
Model. Incident wave conditions: Hrms= 3 m and T= 8 s 
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2 Scientific Background 

The Elliptic Mild-Slope Wave Module of MIKE 21 solves the mild-slope wave equation 

expressed in two horizontal dimensions. The equation reads: 

 

2.1 Basic Equations 
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where c is the phase celerity, cg the group velocity
1
 and   the surface elevation and   

the horizontal gradient operator. 

 

By introducing the pseudo fluxes 
*P and 

*Q , this equation can be rewritten as a system 

of first order equations, which are similar to the mass and momentum equations 

governing nearly horizontal flow in shallow water: 
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The harmonic time variation can now be extracted from the equations by using  

 
tietyxS  ),,(  

 
tietyxPP  ),,(*
 

 
tietyxQQ  ),,(*
 

(2.3) 

 

Now the remaining time variation in S, P and Q is a slow variation, which is due to the 

solution procedure (i.e. iteration towards a steady state). 

 

This leads to the following set of equations, which have been generalised to include 

internal wave generation, absorbing sponge layers, partial reflection and transmission 

from breakwaters and other structure, bed friction and wave breaking. 
  

                                                      
1
 The phase and group velocity is calculated on basis of linear wave theory. 
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Symbol List 


 surface elevation above datum, m 
*P  pseudo flux density in the x-direction, m

3
/s/m 

*Q
 pseudo flux density in the y-direction, m

3
/s/m 

S,P,Q complex function of x, y and t 

h total water depth (=d+), m 
c  phase celerity (linear), m/s 

gc
 group velocity (linear), m/s 

d still water depth, m 

g gravitational acceleration (= 9.81 m/s
2
) 

  wave frequency, 1/s 

i imaginary unit 

GenerationS
 source magnitude per unit horizontal area , m

3
/s/m

2
 

pf
 linear friction factor due to energy loss in porous media 

sf  linear friction factor due to energy loss in sponge layers 

fe
 energy dissipation due to bed friction 

be
 energy dissipation due wave breaking 

x, y Cartesian co-ordinates, m 

t time, s 
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2.1.1 Internal Wave Generation 

The time-harmonic waves are generated internally inside the model boundaries using a 

source term in the mass equation. This technique is described by Larsen and Dancy 

(1983). 

 

Along each generation line, a certain amount of water is added. The added volume of 

water is determined as tsqwave  , where waveq  is the pseudo flux in a progressive wave, 

s the width of the wave front inside a grid mesh and t is the time step. The pseudo 

flux in a progressive wave can be found by assuming a constant form solution to the mild-

slope equation. On a horizontal bottom this leads to  gwave cq , where  is the surface 

elevation of the incoming wave and gc is the group velocity. 

 

 

 
 
Figure 2.1 Wave front in grid mesh 

 

 

The source term in Eq. (2.4) can now be determined as the added volume of water 

divided by the area of the grid mesh and t . Hence, considering a time-harmonic input 

wave with amplitude of unity, we get 
ΔxΔy
Δs

gGeneration cS  . The added amount of water will 

propagate in two opposite directions. Hence, only half of the specified wave energy will 

enter the area of interest. Therefore, two parallel generation lines will be specified in 

order to obtain an incoming wave height of unity. 

 

As shown by Larsen and Dancy (1983), reflected waves are allowed to cross the 

generation lines without any distortion or reflection. 

 

2.1.2 Partial Reflection and Transmission 

Partial reflection in combination with the mild-slope equations is treated in Madsen and 

Larsen (1987) on the basis of a porous flow description, which involves the local porosity 

and a linear dissipation term in the governing equations, Eq. (2.4) and Eq. (2.5). In the 

following, we shall simplify the original formulation by neglecting the porosity, but 

including a linear friction term in the momentum equations. In 1D, this leads to the 

following modification of Eq. (2.2): 
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where fp is the linear friction factor. 

 

An analysis of Eq. (2.6) and Eq. (2.7) can now easily be made by assuming a constant 

depth and constant values of fp, c and cg: 

 

First of all, P
*
 can be eliminated from Eq. (2.6) and Eq. (2.7) by the use of cross-

differentiation and inserting Eq. (2.3) leads to: 
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Inside a porous media as e.g. a rubble mound, we shall generally look for solutions on 

the form 

 

S(x,t) = a1e
-iκx

 + a2e
iκx

 (2.10) 

 

which in combination with Eq. (2.8) leads to: 

 

pif1
c

ω
κ   (2.11) 

 

Substituting Eq. (2.10) into Eq. (2.9) leads to: 

 

P*  ε cg (a1e
-iκx

 + a2e
iκx

) (2.12) 

 

where 

 

pif1

1
ε


  (2.13) 

 

At the front face of the porous structure (at x = 0), we shall now match continuity and 

pressure, i.e. ζ and P
*
. This leads to the conditions 

 

a1 + a2 = ai + ar 

 

 (a1 + a2) = ai – ar 

(2.14) 

 

where ai is the incoming wave amplitude, and ar is the reflected wave amplitude. 

 

Further conditions depend on whether the porous rubble mound has got a permeable or 

impermeable core. In the first case, Eq. (2.10) and Eq. (2.12) have to be matched with 

the transmitted wave field and in the latter case, a condition of zero flow has to be 

applied. 

 

Details can be found in Madsen (1983). 

 

The final analytical expressions become: 
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where B is the width of the porous structure and at is the amplitude of the transmitted 

wave. 

 

The reflection/transmission coefficients can now be determined from the above as a 

function of fp and B, but also of the water depth and the wave period. The solutions can 

be obtained by using the program Calculation of Reflection Coefficients in the MIKE 21 

Toolbox (waves). 

 

2.1.3 Radiation Stresses 

The concept of radiation stress was introduced in a series of publications by Longuet-

Higgins and Stewart (1960, 1961, 1962 and 1964). They showed the existence of a net 

momentum flux associated with a progressive wave motion. In regions where waves 

shoal and break, spatial gradients in the components of the radiation stress cause a net 

circulation and gradient in the mean-sea-level. The original expressions for the radiation 

stress given by Longuet-Higgins and Stewart apply to simple harmonic, purely 

progressive waves and are not correct if any reflected wave is present. A general 

expression applicable in crossing wave trains was formulated by Bettess and Bettess 

(1982), and Copeland (1985b) modified this formulation in terms of the variables used in 

this hyperbolic formulation of the mild-slope equation. The expressions given by 

Copeland read: 
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where the bar indicates time averaging over one wave period and A, B, and D are given 

by: 
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Furthermore,  is the surface elevation, while Rx and Ry are defined by: 
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Once again, we utilise the harmonic time variation by expressing: 

 

 = Re {S e
iωt

} 

 

P
*
 = Re {P e

iωt
} 

 

Q
*
 = Re {Q eiωt} 

(2.19) 

 

or alternatively 

 

 = SR cosωt – SI sinωt 

 

P* = PR cosωt – PI sinωt 

 

Q* = QR cosωt – QI sinωt 

(2.20) 

 

where the subscripts ‘R’ and ‘I’ denote real and imaginary parts respectively. 

 

This leads to the following formulation of the radiation stress valid in crossing wave trains: 
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2.2 Numerical Implementation 

The numerical method used is based on the same numerical scheme as in MIKE 21 Flow 

Model, which was originally introduced by Abbott et al (1973). 

 

The differential equations are spatially discretised on a rectangular, staggered grid as 

illustrated in Figure 2.2. Scalar quantities such as water surface elevation are defined in 

the grid nodes, whereas flux components are defined halfway between adjacent grid 

nodes in the respective directions.  

 

 

 
Figure 2.2 Staggered grid in x-y-space 

 

 

Time centring of the three governing PDE’s Eq. (2.4) is achieved by defining  at half time 

levels (i.e. n, n+1/2, n+1, etc.), P at integer time levels (n, n+1, n+2, etc), and Q at half-

integer time levels (n+1/2, n+3/2, n+5/2, etc).  

 

Using these discretisations, the three PDE's are formulated as a system of implicit 

expressions for the unknown values at the grid points, each expression involving known 
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but also unknown values at other grid points and time levels. The finite-difference 

approximation of the spatial derivatives is a straightforward mid-centring, see details in 

Appendix A.  

 

The applied algorithm is a non-iterative Alternating Direction Implicit (ADI) algorithm. The 

resulting tri-diagonal system of equations is solved by the well known Double Sweep 

Algorithm. 

 

After a certain number of iterations (i.e. time steps), the steady-state solution is obtained 

and the wave disturbance coefficients or relative wave heights can be determined as the 

modulus of S.  

 

The reader is referred to Appendix A, where an in-depth description of the numerical 

formulation is given. 
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APPENDIX  A 

In-depth Description of the Numerical Formulation 
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A In-depth Description of the Numerical Formulation 

The present appendix aims at giving an in-depth description of physical, mathematical 

and numerical background related to elliptic mild-slope wave modelling by inclusion of the 

following paper: 

 

Madsen, P A & Larsen, J (1987): An efficient finite-difference approach to the mild-slope 

equation. Coastal Engineering, 11, 329-351. 
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