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1 Introduction 

MIKE 21 Mooring Analysis (MA) is a dynamic mooring analysis software, which uses the 

vessel hull shape and associated gyrostatic data to derive the frequency response 

characteristics in the frequency domain and uses them to calculate the motions of the 

floating vessel under specific (static and/or dynamic) environmental conditions and in 

dependence of the mooring arrangement. 

 

Flow, wave, and wind conditions can be provided as two-dimensional data, taking into 

account shear currents or complex wave fields, which are found in ports. Thereby, it 

takes advantage of the 2D results of the MIKE 21 Hydrodynamic (HD) module and the 

MIKE 21 Boussinesq Wave (BW) module. 

 

It solves the equation of motion for the floating body in all six degrees of freedom and 

accounts for 

 

• the exact three-dimensional vessel hull geometry and gyrostatic data 

• bound and free long-period waves in shallow water 

• frictional damping on the fenders in surge, heave, and roll modes 

• viscous damping in surge and sway modes 

• wind forces 

• current forces 

• 1st order wave forces 

• 2nd order wave drift forces (assuming Newman’s approximation) 

 

This document presents the scientific background for the Mooring Analysis modelling 

system, which consists of the two maritime tools; Frequency Response Calculator (FRC) 

and MIKE 21 MA. Application areas are outlined in Section 2. The main equations are 

given in Section 3, followed by numerical aspects in Section 4. Finally, output data is 

specified in Section 5, followed by references and additional literature. 
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2 Application Areas 

The MIKE 21 Maritime models Frequency Response Calculator (FRC) and MIKE 21 

Mooring Analysis (MA) are used for the assessment of vessel motions and mooring 

forces under specific environmental conditions. 

 

The model can be applied in 

 

• Ports and terminals 

• Harbours and marinas 

• Offshore environments 

- Offshore moorings 

- Offshore tandem moorings 

- Floating wind turbines 

- Ships at anchor 

 

The model can be used directly to evaluate mooring systems with respect to forces and 

vessel motions, e.g. to optimise port and offshore terminals, floating storage and 

production units, floating wind turbines, etc. 

 

A major application area is the calculation of downtime/operability of a planned terminal. 

The situation is depicted in Figure 2.1. 

 

 
 
Figure 2.1 Illustration of a typical application area of MIKE 21 MA: vessel serviced at a terminal. 

 

The moored vessel is subject to winds, currents, waves, and drawdown originating from 

passing vessels. They can be incorporated in the analyses as time series (e.g. derived 

from spectral information, dfs0 files) or as two-dimensional fields (e.g. derived using MIKE 

21 HD or MIKE 21 BW, dfs2 files). The vessel motions and the forces in mooring lines, 

anchor chains, and fenders are calculated in MIKE 21 MA. The calculated motions are 

then to be compared with guidelines on critical motions to assess the terminal operability. 

The resulting mooring line forces can be related to maximum breaking loads to assess 

the safety for the investigated conditions. 
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3 Basic Equations 

The solution of the hydrodynamic problem of a floating body subjected to environmental 

conditions such as ocean waves or passing vessels can be obtained by applying linear 

potential flow theory to the fluid domain. Thereby, surface waves are assumed to be 

regular (harmonic) waves of small amplitude. Applying linear boundary conditions on the 

fluid free-surface and body-surface is known as the Boundary Value Problem (BVP). 

Eventually, the computation of the velocity potential as the solution to the BVP allows 

derivation of the hydrodynamic coefficients and excitation forces caused by waves on the 

geometry surface (see /4/). The vessel motions are subsequently derived applying linear 

equations for floating body’s response in regular waves. This process is illustrated in 

Figure 3.1. 

 

 
 

Figure 3.1 Flow chart of variables. 

 

In this section, the geometrical conventions are defined in Section 3.1, followed by the 

equations of motion in time and frequency domain in Section 3.2, which are populated by 

coefficient matrices. Added mass and damping coefficients are derived from the radiation 

potentials, which are outlined in Section 3.3, followed by the 2nd order wave drift forces. 

The radiation potentials lead also to the formulation of the wave exciting forces, which is 

described in Section 3.5. They take further into consideration the linearized incident 

Boussinesq wave model data. Sections 3.6 and 3.7 state the hydrostatic and gravitational 

resorting coefficients and the inertial coefficients, respectively. In Section 3.8, the external 

forces originating from viscous damping, mooring, wind, and current are given. 

3.1 Geometry and motion of the floating body 

For the floating body motions, the naval architect’s convention is used, which is depicted 

in Figure 3.2. 
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Figure 3.2 Definition of the six degrees of freedom of a floating body. 

 

The six degrees of freedom are addressed using the unit normal vector 𝑛𝑗 with 

 

• 𝑗 = 1: translation along the 𝑥 axis – surge 

• 𝑗 = 2: translation along the 𝑦 axis – sway 

• 𝑗 = 3: translation along the 𝑧 axis – heave 

• 𝑗 = 4: rotation around the 𝑥 axis – roll 

• 𝑗 = 5: rotation around the 𝑦 axis – pitch 

• 𝑗 = 6: rotation around the 𝑧 axis – yaw 

In the following equations, the origin of the reference frame (0, 0, 0) is located in the 

longitudinal centre of gravity, the centreline and at the still water surface. The vertical axis 

is pointing positive upwards. The angle of attack of the environmental forcings 𝛽 such as 

waves, is defined counter-clockwise with 𝛽 = 0 in positive direction of 𝑥. 

 

The following sections define the volume of the floating body by the vessel hull surface 

and its coordinate of the centre of buoyancy. 

3.1.1 Volume 

The surfaces of the floating body  𝑆𝑏  obtained from the vessel hull grid file are integrated 

in each of the three directions independently 

 

∀= −∬ 𝑛1 𝑥
𝑆𝑏

𝑑𝑆 = −∬ 𝑛2 𝑦
𝑆𝑏

𝑑𝑆 = −∬ 𝑛3 𝑧
𝑆𝑏

𝑑𝑆 (3.1) 

 

where 𝑛1, 𝑛2 and 𝑛3 are the 𝑥, 𝑦 and 𝑧 unit vectors normal to the body boundary and the 

median of the three volumes. 

3.1.2 Centre of buoyancy 

The position of the centre of buoyancy is required in the calculations of some of the 

components of the hydrostatic restoring matrix. Similarly, the surfaces obtained from the 

mesh are integrated accordingly with 
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𝑥𝑏 =
−1

2∀
∬ 𝑛1 𝑥

2

𝑆𝑏

𝑑𝑆 (3.2) 

 

𝑦𝑏 =
−1

2∀
∬ 𝑛2 𝑦

2

𝑆𝑏

𝑑𝑆 (3.3) 

 

𝑧𝑏 =
−1

2∀
∬ 𝑛3 𝑧

2

𝑆𝑏

𝑑𝑆 

 

(3.4) 

The centre of buoyancy (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏) within the coordinate system shown in Figure 3.2 

defines the space for the equation of motion outlined in the following section. 

3.2 Equation of motion 

The hydrodynamic interaction between the fluid and the floating body is assumed to be 

well described by linear potential flow theory. This approach is theoretically valid when 

 
𝑘𝐴

𝑡𝑎𝑛ℎ(𝑘ℎ)
≪ 1 (3.5) 

 

in which 𝐴 is the wave amplitude, 𝑘 is the wave number and ℎ is the water depth. It is 

further assumed that the body motion remains small (ensured by the mooring system), 

and estimates for the neglected hydrodynamic effects can be included in the form of 

empirical coefficients /2/. 

 

Under these assumptions, the equation of motion can be solved in the time domain and 

reads 

 

∑(𝑀𝑗𝑘 + 𝑎𝑗𝑘)�̈�𝑘(𝑡)

6

𝑘=1

+∫  𝐾𝑗𝑘(𝑡 − 𝜏)�̇�𝑘(𝜏)𝑑𝜏
𝑡

0

+ 𝐶𝑗𝑘𝑥𝑘(𝑡)

= 𝐹𝑗𝐷(𝑡) + 𝐹𝑗𝑛𝑙(𝑡) 

(3.6) 

 

The first term at the left-hand side describes the inertia forces, the second term the 

hydrostatic forces and the third term the hydrodynamic forces to first order in the body 

motion and the wave steepness /2/. They are referred to as impulse-response functions 

(IRF’s). 

 

The matrices 𝑀𝑗𝑘, 𝐶𝑗𝑘 and 𝐾𝑗𝑘 are 6 x 6 matrices of the floating body system. 𝑀𝑗𝑘 and 

𝐶𝑗𝑘 are the inertia restoring matrix and the hydrostatic restoring matrices, respectively. 

𝑎𝑗𝑘 are impulsive (added mass) contributions, originating from the 𝑡 = 0 limit of the 

radiation problem. The forces due to radiated waves generated by the body’s motions are 

expressed as a convolution of the radiation impulse response functions, 𝐾𝑗𝑘 /2/. 

 

The right-hand side summarizes all non-linear external forces such as those from the 

mooring system and viscous and frictional damping (Froude-Krylov force), 𝐹𝑗𝑛𝑙(𝑡), and 

the wave exciting forces due to scattering of the incident waves, 𝐹𝑗𝐷(𝑡). 
 

The position and angular rotation of the body in six rigid-body degrees of freedom 𝑥𝑗(𝑡) 
are expressed in Cartesian coordinates, where 𝑥1 = 𝑥 is aligned with the longitudinal 
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ship axis pointing forward. The translations are indicated as 𝑥1 = surge, 𝑥2 = sway and 

𝑥3 = heave. The rotational motions are 𝑥4= roll angle, 𝑥5= pitch angle and 𝑥6= yaw angle 

(refer to Figure 3.2). The over-dot indicates differentiation with respect to time 𝑡 /2/. 

 

The second term in equation (3.6) makes deriving of the matrices 𝐾𝑗𝑘(𝑡), 𝑎𝑗𝑘(𝑡) 

inefficient in the time domain due to the convolution with time 𝑡. Therefore, the 

hydrodynamic calculations are performed in the frequency domain. 

 

For deriving the hydrodynamic coefficients in the frequency domain, the equivalent of the 

time-domain impulse response functions (IRF’s) is used. In the context of linear potential 

flow theory, this equivalent is obtained by taking the incident wave to be time-harmonic 

with the wave frequency, 𝜔, and complex amplitude, 𝜁. This leads to the frequency 

response functions 

 

∑{−𝜔2[𝑀𝑗𝑘 + 𝐴𝑗𝑘(𝜔)] +  𝑖𝜔𝐵𝑗𝑘(𝜔) + 𝐶𝑗𝑘}�̃�𝑘(𝜔)

6

𝑘=1

= �̃�𝑗𝐷(𝜔), 𝑗 = 1,2, … ,6 (3.7) 

 

for the hydrodynamic coefficient matrices added mass 𝐴𝑗𝑘(𝜔), damping  𝐵𝑗𝑘(𝜔), 

hydrostatic and gravitational restoring coefficients 𝐶𝑗𝑘 , and exciting forces �̃�𝑗𝐷(𝜔). 

3.3 Added mass and damping coefficients 𝑎𝑗𝑘(𝑡) and 𝐾𝑗𝑘(𝑡) from radiation 

potential (1st order) 

3.3.1 Radiation potential 

Even though part of the surface elevation and flow field is solved by Boussinesq waves in 

MIKE 21 MA, integral equations for the flow potential need to be solved to obtain the 

potential for radiated waves. This is done in the frequency domain. 

 

The total wave potential can be decomposed into incident (𝑗 = 0), scattered (𝑗 = 7) and 

radiated wave modes (𝑗 = 1,2, … ,6) respectively 

 

𝜑 = 𝜑0 + 𝜑7 + 𝑖𝜔∑𝜉𝑗𝜑𝑗

6

𝑗=1

 (3.8) 

 

𝜉𝑗 refers to the six degree of freedom response of the floating body, thus 𝜑𝑗 has a 

different unit compared to the other two components. It can be understood as the wave 

potential per unit velocity of the floating body. 

 

The velocity potential for the incident waves is defined as 

 

𝜑0 =
𝑖𝑔𝐴

𝜔

cosh [𝑘(𝑧 + ℎ)]

cosh (𝑘ℎ)
𝑒−𝑖(𝑘𝑥𝑐𝑜𝑠𝛽−𝑘𝑦𝑠𝑖𝑛𝛽) (3.9) 

 

with the coordinates (x, y, z). Note that 𝑧 is related to the water surface. 

 

On the surface of the floating body, the condition in the expression 

 
𝜕𝜑7
𝜕𝑛

= −
𝜕𝜑0
𝜕𝑛

 (3.10) 
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has to be satisfied. For all eight modes 𝑗 = {0,1, … ,7}, the linearized form of the surface 

boundary condition is implemented at the surface, where 𝑧 = 0 as shown in the equation 

 

−
𝜔2

𝑔
𝜑𝑗 +

𝜕𝜑𝑗

𝜕𝑧
= 0 (3.11) 

 

Using the boundary conditions, the Laplacian of the wave potential has to be solved for 

all 8 modes (where 𝑗 = {0,1,2, … ,7}); one each for incident and scattered, and six for 

each degree of freedom of the radiated waves 

 

∇2𝜑𝑗 = 0 (3.12) 

 

3.3.2 Boundary element method 

The frequency boundary value problems governed by the Laplace equation (3.12) are 

solved to obtain the radiation potential  φj  on the surface of the floating body 

 

𝜕𝜑𝑗(𝑥𝑖)

𝜕𝑛
=  𝑛(𝑥𝑖) (3.13) 

 

with the normal velocity for each mode 𝑛. When written on the control point of each panel 

of the body, the integral equations of the boundary element method are transformed into 

a linear system of equations 

 

𝜎𝑅(𝑥𝑖)

2
+ ∑𝜎𝑅(𝑥𝑘)𝐾𝑖𝑘 = 

𝑁

𝑘=1

𝜕𝜑𝑗(𝑥𝑖)

𝜕𝑛
 (3.14) 

 

The integral equations use a source distribution in order to solve the source strengths σR 

by calculating the radiation impulse response functions in the 𝑁 × 𝑁 matrix 

 

𝐾𝑖𝑘 = −
1

4𝜋

𝜕

𝜕𝑁𝑥𝑖
∬ 𝐺(𝑥𝑖; 𝑥𝑘)𝑑𝑆(𝑥𝑘)
𝑆

 (3.15) 

 

In this equation, G(𝑥𝑖; 𝑥𝑘) is the free-surface Green’s function with 𝑥𝑖 and 𝑥𝑘, which are 

the field and source points, respectively /1/. 

 

The radiation potential can then be derived using 

 

𝜑𝑗(𝑥𝑖) = −∑𝜎𝑅(𝑥𝑘)𝑆𝑖𝑘

𝑁

𝑘=1

 (3.16) 

 

where  

 

𝑆𝑖𝑘 = 
1

4𝜋
∬ 𝐺(𝑥𝑖; 𝑥𝑘)
𝑆

 𝑑𝑆(𝑥𝑘) (3.17) 
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3.3.3 Added mass and damping coefficients 𝐴𝑖𝑗(𝜔) and 𝐵𝑖𝑗(𝜔) in the frequency 

domain 

The added mass and damping coefficient matrices are obtained from the radiation 

potentials 𝜑𝑗
𝑅 as defined by 

 

𝐴𝑖𝑗 −
𝑖

𝜔
𝐵𝑖𝑗 = 𝜌𝑔∬ 𝑛𝑖𝜑𝑗

𝑅

𝑆𝑏

𝑑𝑆 (3.18) 

 

The real and imaginary part of this equation can be expressed by 

 

𝐴𝑖𝑗(𝜔) = 𝑅𝑒 {𝜌∬ 𝜑𝑗
𝑅𝑛𝑖

𝑆𝑏

𝑑𝑆} (3.19) 

 

and 

 

𝐵𝑖𝑗(𝜔) = 𝐼𝑚 {𝜌∬ 𝜑𝑗
𝑅𝑛𝑖

𝑆𝑏

𝑑𝑆} (3.20) 

 

3.3.4 Inverse transforms 

Once 𝐴𝑗𝑘 is obtained, the added mass coefficients 𝑎𝑗𝑘 can be calculated from 

 

𝐴𝑗𝑘(𝜔) =  𝑎𝑗𝑘 −
1

𝜔
∫ 𝐾𝑗𝑘(𝑡) 𝑠𝑖𝑛𝜔𝑡
∞

0

𝑑𝑡 (3.21) 

 

As 𝜔 → ∞, the second term vanishes. To obtain the damping coefficients, an inverse 

transform of 𝐾𝑗𝑘(𝑡) is required as shown in 

 

 𝐵𝑗𝑘(𝜔) = ∫ 𝐾𝑗𝑘(𝑡) 𝑐𝑜𝑠𝜔𝑡
∞

0

𝑑𝑡 (3.22) 

(see /5/). 

3.3.5 Response amplitude operators 

The response amplitude operators (RAO) are not directly provided. They are obtained by 

equation 

 

∑𝜉𝑗[−𝜔
2(𝑀𝑖𝑗 + 𝑎𝑖𝑗) + 𝑖𝜔𝑏𝑖𝑗 + 𝑐𝑖𝑗] = 𝐴𝑋𝑖

6

𝑗=1

 (3.23) 

 

where 𝜔 is the angular wave frequency, 𝜉𝑗 is the body motion, 𝑎𝑖𝑗, 𝑏𝑖𝑗 and 𝑐𝑖𝑗 are added 

mass, damping and restoring matrices, respectively. 𝑋𝑖 is the wave excitation force per 

unit wave amplitude, and 𝐴 is the wave amplitude. 

 

The equation is solved for the body motion 𝜉𝑗, and the complex RAO for the 𝑗th mode is 

obtained by 
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𝑍𝑗(𝜔, 𝜃) =
𝜉𝑗

𝐴
=∑[𝐶𝑖𝑗]

−1
𝑋𝑖

6

𝑗=1

 (3.24) 

 

where [𝐶𝑖𝑗]
−1

 indicates the inverse matrix of the member between the brackets in the 

equation of motion. The RAO are given for each angular wave frequency 𝜔 and incident 

wave direction 𝜃 /10/. 

 

𝐴 = 𝐴(1)𝑐𝑜𝑠(𝜔𝑡) + 𝐴(2)𝑠𝑖𝑛(𝜔𝑡) = ℜ(�̃�𝑒−𝑖𝜔𝑡) (3.25) 

 

where �̃� = 𝐴(1) + 𝑖𝐴(2). The imaginary part of the harmonic motion is defined as phase 

lag relative to the real component /10/. 

3.4 Wave drift forces (2nd order) 

Second order wave drift forces apply the Newman’s approximation /8/ and are derived by 

solving the source distribution for the diffraction problem, 𝜎𝐷, in each incident wave 

direction 𝛽 

 

𝜎𝐷(𝑥𝑖)

2
+ ∑𝜎𝐷(𝑥𝑘)𝐾𝑖𝑘 = 

𝑁

𝑘=1

−
𝜕𝜑0(𝑥𝑖)

𝜕𝑛
 (3.26) 

 

In the frequency domain, the second order drift forces are computed by the far field 

formula /13/. The mean surge and sway forces 

 

𝐹 (
𝑥

𝑦
) (𝛽) = −2𝜋𝜌

𝑘 ∗ (𝑘𝑖𝑛𝑓 ∗ ℎ)
2

ℎ ((𝑘 ∗ ℎ)2 − (𝑘𝑖𝑛𝑓 ∗ ℎ)
2
+ 𝑘𝑖𝑛𝑓 ∗ ℎ)

∗ ∫ |𝐻(𝜃)|2 ∗ (
𝑐𝑜𝑠(𝜃)

𝑠𝑖𝑛(𝜃)
) 𝑑𝜃

2𝜋

0

−  2𝜋𝜌𝜔 ∗ (
cos(𝛽)

sin(𝛽)
)

∗ 𝐼𝑚(𝐻(𝛽)) 

(3.27) 

 

with the wave propagation direction 𝛽, the water density 𝜌, the wave number 𝑘, the water 

depth ℎ, the incident wave direction 𝜃, the infinite depth wave number 𝑘𝑖𝑛𝑓, and the 

Kochin function 𝐻 from 0 to 2𝜋 /5/. 

 

The mean yaw moment 

 

𝑀𝑧(𝛽) = 2𝜋 ∗
𝜌𝜔

𝑘
∗ 𝑅𝑒(𝐻′(𝛽)) −

2𝜋𝜌(𝑘𝑖𝑛𝑓 ∗ ℎ)
2

ℎ ((𝑘 ∗ ℎ)2 − (𝑘𝑖𝑛𝑓 ∗ ℎ)
2
+ 𝑘𝑖𝑛𝑓 ∗ ℎ)

∗ 𝐼𝑚 (∫ 𝐻(𝜃)̅̅ ̅̅ ̅̅ ̅ ∗ 𝐻′(𝜃)𝑑𝜃
2𝜋

0

) 

(3.28) 

 

where 𝐻 is the Kochin function. It is defined as 

 

𝐻(𝜃) =  𝐻𝐷(𝜃) ∗ 𝑒
𝑖∗
𝜋
2 + 𝑖𝜔 ∗∑𝑍𝑗 ∗ 𝐻𝑅𝑗(𝜃)𝑒

−𝑖
𝜋
2

6

𝑖=1

 (3.29) 
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where 𝐻𝐷 and 𝐻𝑅 are the diffraction and radiation contributions to the Kochin function, 

and 𝑍𝑗 is the response amplitude operator (see section  3.3.5 ). For the radiated wave 

modes (𝑗 = 1,2, … ,6), 

 

𝜑𝑗(𝑟, 𝜃, 𝑧) =
cosh (𝑘(𝑧 + ℎ))

cosh (𝑘ℎ)
∗ √

𝑘

2𝜋𝑟
𝑒
𝑖(𝑘𝑟−

𝜋
4
)
𝐻𝑅(𝜃) (3.30) 

 

For the scattered (diffraction) mode, 

 

𝜑7(𝑟, 𝜃, 𝑧) =
cosh (𝑘(𝑧 + ℎ))

cosh (𝑘ℎ)
∗ √

𝑘

2𝜋𝑟
𝑒
𝑖(𝑘𝑟−

𝜋
4
)
𝐻𝐷(𝜃) (3.31) 

 

In the time domain, the drift force time series are computed by the method described in 

/14/. 

 

It is noted that the assumption of the Newman’s approximation due to the far-field 

solution effectively means that only the diagonal terms in the quadratic transfer function 

(QTF) is considered corresponding to the monochromatic frequency pairs. This only gives 

the mean drift force, and second order effects that are not described by the mean drift 

force are not included. This approximation is theoretically valid in deep water conditions, 

while in shallow water the full QTF matrix with the off-diagonal terms (bi-chromatic 

frequency pairs) should be considered. This is currently not implemented in MIKE 21 MA. 

3.5 Wave exciting force 𝐹𝑗𝐷(𝑡) 

The wave exciting force is expressed in terms of incident wave quantities and solutions to 

the radiation problem by means of the Haskind relations /11/ 

 

𝐹𝑗𝐷(𝑡) =∬  𝑝
𝐼
(�⃗� , 𝑡)

𝑆𝑏

𝑛𝑗(�⃗� )𝑑�⃗� + 𝜌∫ ∬ �̇�
𝐼𝑛
(�⃗� , 𝜏) 𝜙

𝑗
(�⃗� , 𝑡 − 𝜏)𝑑�⃗� 𝑑𝜏

𝑆𝑏

∞

−∞

 (3.32) 

 

(see also Appendix A). In this equation, 𝜙𝐼 is a known incident wave potential, which 

satisfies the linear free-surface body condition and induces a first order dynamic pressure 

 

𝑝
𝐼
=
𝜕𝜙𝐼
𝜕𝑡

 (3.33) 

 

in the fluid. The incident wave refers to the wave undisturbed by the presence of the 

body. A subscript 𝑛 is used to indicate the operation �⃗� ∙ ∇⃗⃗ , with �⃗�  being the normal vector 

to the equilibrium wetted body surface 𝑆𝑏, while 𝑛𝑗 is the generalized unit normal in six 

degrees of freedom. 𝜙𝑗 is the solution to the 𝑗th mode impulse velocity radiation problem, 

which is defined by the boundary condition 

 

�⃗� ∙ ∇⃗ 𝜙
𝑗
= 𝑛𝑗𝛿(𝑡), 𝑥 ∈ 𝑆𝑏  (3.34) 

 

with the Dirac function 𝛿(𝑡). The first term in equation (3.32) refers to the Froude-Krylov 

force, while the second term describes the scattering of the incident wave by the body 

when fixed to its equilibrium position /2/. 
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The scattering of the incident waves depends on the radiation potential of the floating 

body. This potential is derived in the frequency domain for linear incident waves (see 

Section 3.3). It is further related to the Boussinesq wave field, which is linearized and 

transferred to the frequency domain. This is explained in the following sections. 

3.5.1 Linearization of the Boussinesq wave results 

The results of a Boussinesq wave simulation have to be linearized to provide incident 

wave quantities required by the Haskind relations (see Section 3.5), to obtain the terms 

 �̃�𝐼(𝑥 , 𝜔) and �̃�𝐼𝑛(𝑥 , 𝜔) to be used in equation (3.50). 

 

Using the results from the free surface elevation 𝜂(𝑥 , 𝜔) and depth-averaged velocities 

𝑢′(𝑥 , 𝑡)and 𝑣′(𝑥 , 𝑡) from the Boussinesq model on a set of points on the intersection of 

the still water plane with the floating body 𝑥 , the depth-averaged velocity with depth 

variation 𝑧 can be expressed as 

 

𝑢′ =
1

𝐷 + 𝜂
∫ 𝑢(𝑥 , 𝑧, 𝑡)
𝜂

−𝐷

𝑑𝑧 (3.35) 

 

and 

 

𝑣′ =
1

𝐷 + 𝜂
∫ 𝑣(𝑥 , 𝑧, 𝑡)
𝜂

−𝐷

𝑑𝑧 (3.36) 

 

In these equations, 𝐷 is the draft of the vessel, 𝑧 is the vertical coordinate pointing 

upwards, with 𝑧 = 0 at the water surface, and 𝜂 is the water surface elevation /2/. 

 

Based on the free surface elevation 𝜂(𝑥 , 𝑡) from the Boussinesq model, the dynamic 

pressure 

 

𝑝0(𝑥 , 𝑡) = 𝜌𝑔𝜂(𝑥 , 𝑡) (3.37) 

 

and the vertical velocity component 

 

𝑤0(𝑥 , 𝑡) = �̇�(𝑥 , 𝑡) (3.38) 

 

are obtained using the linear free-surface boundary conditions. The subscript 0 indicates 

the variables at the free surface /2/. 

 

These quantities in time domain 𝑝0, 𝑢
′, 𝑣′ and 𝑤0 have to undergo Fourier transformation 

to obtain the corresponding quantities as a function of the wave frequency 

 

 �̃�𝑗𝐷(𝜔) = ∫ 𝐹𝑗𝐷(𝑡)𝑒
−𝑖𝜔𝑡

∞

0

𝑑𝑡 (3.39) 

 

This transformation results in a series of sine and cosine functions 

 

𝑓𝑛 = 𝑎𝑛𝑐𝑜𝑠(𝑛𝑥) + 𝑏𝑛𝑠𝑖𝑛(𝑛𝑥) (3.40) 

 

From linear wave theory, the velocity can be derived using 

 

𝑢 =
𝐻

2

𝑔𝑇

𝐿
𝑐𝑜𝑠𝜃

𝑐𝑜𝑠ℎ[𝑘(𝑧 + ℎ)]

𝑐𝑜𝑠ℎ(𝑘ℎ)
 (3.41) 
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The hyperbolic cosine terms are used in the equations 

 

𝑝(𝑥 , 𝑧, 𝑡) = 𝐹−1 {�̃�0(𝑥 , 𝜔)
cosh[𝑘(𝑧 + ℎ)]

cosh(𝑘ℎ)
} (3.42) 

 

𝑢′(𝑥 , 𝑡) = 𝐹−1 {�̃�′(𝑥 , 𝜔)
cosh[𝑘(𝑧 + ℎ)]

cosh(𝑘ℎ)
} (3.43) 

 

𝑣′(𝑥 , 𝑡) = 𝐹−1 {�̃�′(𝑥 , 𝜔)
cosh[𝑘(𝑧 + ℎ)]

cosh(𝑘ℎ)
} (3.44) 

 

and 

 

𝑤(𝑥 , 𝑧, 𝑡) = 𝐹−1 {�̃�0(𝑥 , 𝜔)
sinh[𝑘(𝑧 + ℎ)]

sinh(𝑘ℎ)
} (3.45) 

 

to include the hyperbolic depth variations. The linear dispersion relation 

 

𝜔2 = 𝑔𝑘 tanh(𝑘ℎ) (3.46) 

 

is utilized to determine the wave number 𝑘. It should further be noted that equations 

(3.43) and (3.44) apply the depth-averaged velocities directly, translating them directly to 

the frequency domain, denoted as  �̃�′ and �̃�′. They are used to derive the velocity at the 

intersection point between the structure and the still water surface. The relation is given in 

the equations (3.35) and (3.36). They can be rewritten as 

 

�̃�0(𝑥 , 𝜔) = {�̃�
′(𝑥 , 𝜔) 

𝑘ℎ

tanh(𝑘ℎ)
}   (3.47) 

 

�̃�0(𝑥 , 𝜔) = {�̃�
′(𝑥 , 𝜔)

𝑘ℎ

tanh(𝑘ℎ)
} (3.48) 

 

The term 
𝑘ℎ

tanh (𝑘ℎ)
 approaches unity in shallow water due to no variations in depth, and 𝑘ℎ 

in deep waters /2/. 

 

The quantity �̃�0 is the incident pressure acting on the wetted body surface  �̃�𝐼. The 

normal derivative of the incident velocity potential �̃�𝐼(𝑥 , 𝜔) can be calculated from the 

velocities obtained in the three directions with equations (3.45), (3.47) and (3.48) /2/. 

 

The sequence of quantities in this section is shown in the following expression. 

 

𝜂, 𝑢′, 𝑣′
𝐹𝑟𝑒𝑒

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝐵.𝐶.

→     𝑝0, 𝑢
′, 𝑣′, 𝑤0 𝐹𝑜𝑢𝑟𝑖𝑒𝑟

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚

→        �̃�0,  �̃�
′,  �̃�′, �̃�0 𝐷𝑒𝑝𝑡ℎ

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

→       �̃�0, �̃�0, �̃�0, �̃�0 
(3.49) 

 

3.5.2 Inverse transforms 

Similar to the derivation of 𝐾𝑗𝑘(𝑡), the exciting force 𝐹𝑗𝐷(𝑡) is obtained from the inverse 

transformation of �̃�𝑗𝐷(𝜔). It can then be expressed in terms of radiation potentials via the 

Haskind relation 
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 �̃�𝑗𝐷(𝜔) = ∫  𝐹𝑗𝐷(𝑡)𝑒
−𝑖𝜔𝑡𝑑𝑡

∞

0

=∬  �̃�𝐼(𝑥 , 𝜔)
𝑆𝑏

𝑛𝑗(𝑥 )𝑑𝑥 + 𝑖𝜔𝜌∬  �̃�𝑗(𝑥 , 𝜔)
𝑆𝑏

�̃�𝐼𝑛(𝑥 , 𝜔)𝑑𝑥  

(3.50) 

 

(see also Appendix A). The input terms  �̃�𝐼(𝑥 , 𝜔) and �̃�𝐼𝑛(𝑥 , 𝜔) for the Haskind relation 

are derived from the Boussinesq wave field, e.g. calculated using MIKE 21 Boussinesq 

wave model results (MIKE 21 BW) as described in Section 3.5.1. 

3.6 Hydrostatic and gravitational restoring coefficients 𝐶𝑗𝑘 

The hydrostatic and gravitational restoring matrix is independent of the wave frequency 𝜔 

and only depends on the geometry of the floating body. The matrix in the time domain 

𝐶𝑗𝑘(𝑡) is expressed for the six degrees of freedom (see Figure 3.2) using the relations 

 

𝐶3,3(𝑡) = 𝜌𝑔∬ 𝑛3
𝑆𝑏

𝑑𝑆 

𝐶3,4(𝑡) = 𝐶4,3(𝑡) = 𝜌𝑔∬ 𝑦 𝑛3
𝑆𝑏

𝑑𝑆 

𝐶3,5(𝑡) = 𝐶5,3(𝑡) = −𝜌𝑔∬ 𝑥 𝑛3
𝑆𝑏

𝑑𝑆 

𝐶4,4(𝑡) = 𝜌𝑔∬  𝑦2 𝑛3
𝑆𝑏

𝑑𝑆 + 𝜌𝑔∀𝑧𝑏 −𝑚𝑔𝑧𝑔 

𝐶4,5(𝑡) = 𝐶5,4(𝑡) = −𝜌𝑔∬ 𝑥 𝑦 𝑛3
𝑆𝑏

𝑑𝑆 

𝐶4,6(𝑡) = −𝜌𝑔∀𝑥𝑏 +𝑚𝑔𝑥𝑔 

𝐶5,5(𝑡) = 𝜌𝑔∬  𝑥2 𝑛3
𝑆𝑏

𝑑𝑆 + 𝜌𝑔∀𝑧𝑏 −𝑚𝑔𝑧𝑔 

𝐶5,6(𝑡) = −𝜌𝑔∀𝑦𝑏 +𝑚𝑔𝑦𝑔 

(3.51) 

 

The remaining coefficients of the unstated matrix are set to 0. Indices 𝑏 and 𝑔 denote the 

centre of buoyancy and the centre of gravity, respectively. 𝜌 is the density of water, 𝑔 is 

the gravitational acceleration, 𝑚 is the mass and ∀ is the volume, 𝑆 indicates the surface 

of the floating body. 𝑛𝑗 is the normal vector of mode 𝑗 /5/. 

3.7 Inertial coefficients 𝑀𝑗𝑘 

The inertial coefficient matrix 𝑀𝑗𝑘 is set up under the assumption of free stable floatation 

with no external constraints. The mass is expressed as 
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𝑚 = 𝜌∀ 

(3.52) 

𝑥𝑏 = 𝑥𝑔, 𝑦𝑏 = 𝑦𝑔 

𝑀 =

[
 
 
 
 
 
 
𝑚 0 0 0 𝑚𝑧𝑔 −𝑚𝑦𝑔
0 𝑚 0 −𝑚𝑧𝑔 0 𝑚𝑥𝑔
0 0 𝑚 𝑚𝑦𝑔 −𝑚𝑥𝑔 0

0 −𝑚𝑧𝑔 𝑚𝑦𝑔 𝐼11 𝐼12 𝐼13
𝑚𝑧𝑔 0 −𝑚𝑥𝑔 𝐼21 𝐼22 𝐼23
−𝑚𝑦𝑔 𝑚𝑥𝑔 0 𝐼31 𝐼32 𝐼33 ]

 
 
 
 
 
 

 

 

and the horizontal centre of gravity coordinates, denoted with index 𝑔, are set as the 

centre of buoyancy, denoted with index 𝑏 (see Section 3.1.2). The vertical location of the 

centre of gravity depends on the weight distribution of the floating body (usually a ship), 

and largely depends on whether it is loaded or unloaded. 

 

The moments of inertia 

 

𝐼𝑖𝑗 = 𝜌∀𝑟𝑖𝑗|𝑟𝑖𝑗| (3.53) 

 

are obtained from the radii of gyration. The radii of gyration input consist of a (3×3) array 

of values of 𝑟 /5/. 

3.8 External force 𝐹𝑗,𝑛𝑙(𝑡) 

The total external force 

 

𝐹𝑗,𝑛𝑙(𝑡) = 𝐹𝑗,𝑚𝑜𝑜𝑟(𝑡) + 𝐹𝑗,𝑣𝑖𝑠𝑐(𝑡) + 𝐹𝑗,𝑤(𝑡) + 𝐹𝑗,𝑐(𝑡) + 𝐹𝑗,𝑑𝑟𝑖𝑓𝑡(𝑡) 
 

(3.54) 

 

is the sum of the mooring forces 𝐹𝑗,𝑚𝑜𝑜𝑟(𝑡), viscous damping forces 𝐹𝑗,𝑣𝑖𝑠𝑐(𝑡), wind 

forces 𝐹𝑗,𝑤𝑖𝑛𝑑(𝑡), current forces 𝐹𝑗,𝑐𝑢𝑟(𝑡), slow wave drift forces 𝐹𝑗,𝑑𝑟𝑖𝑓𝑡(𝑡) and frictional 

damping forces 𝐹𝑗,𝑓𝑟𝑖𝑐(𝑡) in the mooring system in each degree of freedom 𝑗. They are 

described in this section. 

3.8.1 Viscous damping forces 𝐹𝑗,𝑣𝑖𝑠𝑐(𝑡) 

The viscous damping force is defined as 

 

𝐹𝑗,𝑣𝑖𝑠𝑐(𝑡) = 𝐵𝑗
0 +∑[𝐵𝑗𝑘

1 �̇�𝑘(𝑡) + 𝐵𝑗𝑘
2 �̇�𝑘(𝑡)|�̇�𝑘(𝑡)| + 𝐵𝑗𝑘

3 �̇�𝑘
3(𝑡)]

6

𝑘=1

 

 

(3.55) 

 

in which 𝐵0, 𝐵1, 𝐵2 and 𝐵3 are the constant, linear, quadratic and cubic damping 

coefficient matrices. �̇�𝑘(𝑡) is the speed of motion into direction 𝑘. 
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3.8.2 Mooring forces 𝐹𝑗,𝑚𝑜𝑜𝑟(𝑡) 

Mooring lines 

Given that the displacement of a floating body is expressed as 

 

𝑑𝑙 = 𝑙 − 𝑙0 
 

(3.56) 

 

with the line length 𝑙 and the unstretched line length 𝑙0, then the elongation is proportional 

to the force in the mooring line 𝑑𝑙~𝐹𝑗,𝑚𝑜𝑜𝑟,𝑙𝑖𝑛𝑒(𝑡). This relation is provided by means of a 

Load-excursion curve denoted as 𝑅(𝑑𝑙), 
 

𝐹𝑗,𝑚𝑜𝑜𝑟,𝑙𝑖𝑛𝑒(𝑡) = 𝑅(𝑑𝑙) + 𝐹𝑗,𝑙𝑖𝑛𝑒,𝑑𝑎𝑚𝑝(𝑡) 
 

(3.57) 

 

which is line-material specific and which is provided as input data. From this relation, the 

mooring line force is calculated. 𝐹𝑙𝑖𝑛𝑒,𝑑𝑎𝑚𝑝(𝑡) is a damping force, which can be applied 

for the purpose of calibration. It is governed by linear and quadratic damping coefficients 

𝐵1 and 𝐵2 as part of the input data. It is derived with the relation 

 

𝐹𝑗,𝑙𝑖𝑛𝑒,𝑑𝑎𝑚𝑝(𝑡) = ∑[𝐵𝑗𝑘
1 �̇�𝑘(𝑡) + 𝐵𝑗𝑘

2 �̇�𝑘(𝑡)|�̇�𝑘(𝑡)|] ∙ 𝑙𝑖𝑛𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑗(𝑡)

6

𝑘=1

 

 

(3.58) 

 

where �̇�𝑘(𝑡) is the speed of motion into direction 𝑘. 𝑙𝑖𝑛𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑗(𝑡) is a vector 

pointing into the direction of the line. 

Fenders 

If the fender attachment point moves along the fender force direction with a displacement 

𝑑𝑙, then the fender is compressed by the same length. The fender compression is related 

to the fender force 𝑑𝑙~𝐹𝑛(𝑡) by means of the fender deflection-reaction curve 

 

𝐹𝑗,𝑛(𝑡) = 𝑅(𝑑𝑙) + 𝐹𝑗,𝑓𝑒𝑛𝑑𝑒𝑟,𝑑𝑎𝑚𝑝(𝑡) 
 

(3.59) 

 

which is fender-specific and which is provided as input data. The fender damping force 

 

𝐹𝑗,𝑓𝑒𝑛𝑑𝑒𝑟,𝑑𝑎𝑚𝑝(𝑡) = ∑𝐵𝑗𝑘
1 �̇�𝑘(𝑡) ∙ 𝑓𝑒𝑛𝑑𝑒𝑟 𝑓𝑜𝑟𝑐𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑗

6

𝑘=1

(𝑡) 

 

(3.60) 

 

in which �̇�𝑘(𝑡) is the speed of motion into direction 𝑘 and 𝐵1 is the linear damping 

coefficient. 𝑓𝑒𝑛𝑑𝑒𝑟 𝑓𝑜𝑟𝑐𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑗(𝑡) is a vector pointing into the direction of the 

fender force. 

 

Furthermore, the fender friction is calculated by 

 

𝐹𝑗,𝑓𝑟𝑖𝑐(𝑡) = 𝜇𝐹𝑗,𝑛(𝑡) ∙
𝑣𝑒𝑙𝑗(𝑡)

|𝑣𝑒𝑙(𝑡)|
 

 

(3.61) 
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with the fender friction coefficient 𝜇 and the relative velocity between ship attachment 

point and fender attachment point 𝑣𝑒𝑙(𝑡). The fender force then reads 

 

𝐹𝑗,𝑚𝑜𝑜𝑟,𝑓𝑒𝑛𝑑𝑒𝑟(𝑡) = 𝐹𝑗,𝑛(𝑡) + 𝐹𝑗,𝑓𝑟𝑖𝑐(𝑡) 
 

(3.62) 

 

Chains 

The chain tension is derived using the catenary equation 

 

𝐻(𝑡)
𝑑2𝑧

𝑑𝑥2
= −𝑚𝑔√1 + (

𝑑𝑧

𝑑𝑥
)
2

 

 

(3.63) 

 

In which 𝑚𝑔 is the (submerged) chain weight, 𝐻(𝑡) is the horizontal force of the chain at 

rest, and 
𝑑𝑥

𝑑𝑧
 is the local orientation of the chain element 𝑑𝑠 /6/. 

 

The equation is solved for 𝐻 using the Newton-Raphson method, in which 𝐻 is used as 

initial estimate, which finally leads to 𝐹𝑗,𝑚𝑜𝑜𝑟,𝑐ℎ𝑎𝑖𝑛. In this method, it is considered that the 

maximum peak tension is 

 

𝑇𝑚𝑎𝑥 = 𝐻 +𝑚𝑔𝑑 
 

(3.64) 

 

with the sag of the catenary 𝑑. It is further defined that the cable length 

 

𝐿0 = √
2𝐻

𝑚𝑔𝑑0
+ 1 

 

(3.65) 

 

and the horizontal distance from the touch-down point to the surface point at rest is 

 

𝑥0 =
𝐻

𝑚𝑔
cosh−1 (

𝑑0𝑚𝑔

𝐻
+ 1) 

 

(3.66) 

 

3.8.3 Wind forces 

Wind forces are derived based on the OCIMF method /9/, in which 

 

𝐹𝑥,𝑤(𝑡) =
1

2
𝐶𝑥,𝑤𝜌𝑎𝑖𝑟𝑉𝑤(𝑡)

2𝐴𝑇,𝑤 

 

(3.67) 
𝐹𝑦,𝑤(𝑡) =

1

2
𝐶𝑦,𝑤𝜌𝑎𝑖𝑟𝑉𝑤(𝑡)

2𝐴𝐿,𝑤 

 

𝑀𝑥𝑦,𝑤(𝑡) =
1

2
𝐶𝑥𝑦,𝑤𝜌𝑎𝑖𝑟𝑉𝑤(𝑡)

2𝐴𝐿,𝑤𝐿𝐵𝑃 
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with the density of air 𝜌𝑎𝑖𝑟, the transversal windage area 𝐴𝑇,𝑤, the longitudinal windage 

area 𝐴𝐿,𝑤, the length between perpendiculars 𝐿𝐵𝑃, the wind speed 𝑉𝑤(𝑡). The wind drag 

coefficients 𝐶𝑥,𝑤 , 𝐶𝑦,𝑤 and 𝐶𝑥𝑦,𝑤 depend on the vessel type, the loading condition of the 

vessel and the angle of wind attack, e.g. see /3/ and /9/. 

3.8.4 Current forces 

Current forces are derived based on the OCIMF method /9/, in which 

 

𝐹𝑥,𝑐(𝑡) =
1

2
𝐶𝑥,𝑐𝜌𝑤𝑎𝑡𝑒𝑟𝑉𝑐(𝑡)

2𝐿𝐵𝑃𝑇 

 

(3.68) 
𝐹𝑦,𝑐(𝑡) =

1

2
𝐶𝑦,𝑐𝜌𝑤𝑎𝑡𝑒𝑟𝑉𝑐(𝑡)

2𝐿𝐵𝑃𝑇 

 

𝑀𝑥𝑦,𝑐(𝑡) =
1

2
𝐶𝑥𝑦,𝑐𝜌𝑤𝑎𝑡𝑒𝑟𝑉𝑐(𝑡)

2𝐿𝐵𝑃𝑇 

 
 

with the density of water 𝜌𝑤𝑎𝑡𝑒𝑟, the transversal area affected by the current 𝐴𝑇,𝑐, the 

longitudinal area affected by the current 𝐴𝐿,𝑐, the length between perpendiculars 𝐿𝐵𝑃, the 

current speed 𝑉𝑐. The areas affected by the current are determined from the vessel hull. 

The current drag coefficients 𝐶𝑥,𝑐 , 𝐶𝑦,𝑐 and 𝐶𝑥𝑦,𝑐 depend on the water depth to draft ratio 

of the vessel and the angle of current attack, e.g. see /9/. The OCIMF method uses a 

time series of current speed and direction. 

 

However, this method cannot produce the drag-induced yaw moment under shear current 

flow conditions. Therefore, the panel method has been devised in order to calculate the 

current drag-induced yaw moment on the vessel for shear current. The input for this 

method is a two-dimensional (2D) current field consisting of the parameters water depth, 

and fluxes in 𝑥 and 𝑦 direction. The method involves 

 

• Calculation of the current velocities in each element of the 2D flow field, 

• Interpolation of these velocities onto each panel 

• Calculation of the average current speeds in 𝑥 and 𝑦 direction 

• Calculation of the longitudinal and lateral drag force using the OCIMF method /9/. 

• Projection of the current vectors onto the vessel grid panels 

• Calculation of the force in each panel from the yaw moment using the drag equation 

(see equation (3.68)). 
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4 Numerical Implementation 

In this section, the fundamental solution algorithms are given, and additional numerical 

aspects are commented. Figure 4.1 replicates the flow chart variables from Section 3, but 

additionally shows the distribution of the flow between the modules Frequency Response 

Calculator (FRC) and MIKE 21 Mooring Analysis (MA). 

 

 
 

Figure 4.1 Flow chart of variables. The frames indicate the modules, dealing with the variables. 

 

In Section 4.1, the implementation of the theory is provided. Section 4.2 outlines the 

treatment of the irregular frequencies, which can occur during the application of the 

boundary element method (BEM). Finally, the difference between Final computation 

mode and Convergence mode in MIKE 21 MA is explained. 

4.1 Implementation of the theory 

MIKE 21 MA solves the time-domain equations of motion (3.6) to obtain a time history of 

body motion in six degrees of freedom, due to a specified incident wave field, and 

mooring arrangement. This integration is performed using the explicit Runge-Kutta 4th 

order scheme, and a direct inversion of the inertia matrix. 

 

The required hydrodynamic, hydrostatic and inertia coefficients of the body are computed 

using the low-order panel method program, FRC. FRC is used for performing a complete 

radiation analysis of the structure, that is 𝐴𝑗𝑘(𝜔), 𝐵𝑗𝑘(𝜔), and 𝜑𝑗(𝜔) are computed at 

evenly spaced frequencies over the entire significant domain of frequencies (including 

𝜔 = 0,∞). 

 

We then use the fact that 𝑎𝑗𝑘 = 𝐴𝑗𝑘(∞), and compute 𝐾𝑗𝑘 from the damping coefficients 

via equation (3.22). The inertia matrix, 𝑀𝑗𝑘, and the hydrostatic matrix, 𝐶𝑗𝑘, are direct 

output from FRC. 

 

FRC MIKE 21 MA 
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The incident wave exciting force, 𝐹𝑗𝐷(𝑡), can be defined by providing the incident wave 

pressure and velocity at each panel centroid on the body (or these data can be computed 

by linearising the results of a MIKE 21 BW calculation over a rectangle of the free surface 

enclosing the body). In this case, the Haskind relations and the Fourier transform (3.50) 

are used for combining the incident wave data with the FRC radiation potentials to get the 

exciting forces. It can be shown that by using the complex conjugate of the radiation 

potentials in the Haskind relations, the correct forces are found. All Fourier transforms are 

done using the Fast Fourier Transformation (FFT). 

 

Finally, instantaneous (non-linear) point forces on the structure due to each mooring line 

(or fender, or post) are computed based on the specified properties of the line/fender/post 

and the relative positions of the attachment points. These forces as well as the viscous 

damping forces proportional to a power of the body velocity, are all included at each sub-

time step of the time integration. 

4.2 Irregular frequencies 

When a surface piercing body is analysed by boundary element techniques, numerical 

errors can occur at a number of irregular frequencies. In general, these irregular 

frequencies are higher than the frequency range of practical interest. DHI has 

implemented a technique, which first predicts the location of the irregular frequencies and 

smooth’s the velocity potential around these frequencies using iterative smoothing 

techniques (see /12/). This method effectively minimises the irregular frequency effect 

while still allowing for a fast run time. 

 

The location of irregular frequencies can be calculated analytically for simple geometries. 

The analytical calculations for a rectangular prism can be extended through an equivalent 

box formulation to allow for the prediction of irregular frequencies 𝜔𝑝𝑚 in an arbitrarily 

shaped 3D structure. This procedure is demonstrated in equation (4.1). 

 

𝐶𝑤 =
𝐴𝑤

𝐿𝑂𝐴∗𝐵𝑒𝑎𝑚
, 𝐶𝑚 =

𝐴𝑚

𝐵𝑒𝑎𝑚∗𝐷𝑟𝑎𝑓𝑡
, 𝐶𝑐 =

𝐴𝑐

𝐿𝑂𝐴∗𝐷𝑟𝑎𝑓𝑡
 

 

𝐶0 =
3

4
, 𝐶1 =

1+6∗
𝐿𝑂𝐴−𝐵𝑒𝑎𝑚

𝐿𝑂𝐴+𝐵𝑒𝑎𝑚
∗ln𝑝

8
, 𝐶2 =

1+6∗
𝐿𝑂𝐴−𝐵𝑒𝑎𝑚

𝐿𝑂𝐴+𝐵𝑒𝑎𝑚
∗ln𝑚

8
 

 

𝐵0 = 𝐶𝑤
𝐶0, 𝐵1 = 𝐶𝑐

𝐶1, 𝐵2 = 𝐶𝑚
𝐶2 

 

𝛼1 =
𝐿𝑂𝐴2

𝐿𝑂𝐴2+𝐵𝑒𝑎𝑚2
, 𝛼2 =

𝐵𝑒𝑎𝑚2

𝐿𝑂𝐴2+𝐵𝑒𝑎𝑚2
 

 

𝐿𝑒 = 𝐵1 ∗ 𝐵0
𝛼1, 𝐵𝑒 = 𝐵2 ∗ 𝐵0

𝛼2, ℎ𝑒 =
∀

𝐿𝑒∗𝐵𝑒
 

 

𝑘𝑝𝑚 =  𝜋 ∗ √(
𝑝

𝐿𝑒

2

+
𝑚

𝐵𝑒

2

) 

 

𝜔𝑝𝑚 = √𝑔𝑘𝑝𝑚 ∗
1

tanh(𝑘𝑝𝑚ℎ𝑒)
 

(4.1) 

 

where 𝐴𝑤, 𝐴𝑚 and 𝐴𝑐 are the water plane, midsection and central longitudinal plane 

areas, and 𝐿𝑂𝐴 is the length over all the vessel. 𝑝 and 𝑚 are indices from 1 to infinity, 

and 𝑘 is the wave number. 
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4.3 Convergence mode 

A simulation in convergence mode is a full simulation, in which usually no external forces 

are applied (although the user can apply long-term conditions such as river currents). 

Starting with an initial displacement of 0 in all six degrees of freedom, the simulation is 

repeated, until 

1. the displacement at the end of the simulation does not exceed a threshold, given by 

the user OR 

2. the maximum number of simulations (iterations) is reached. 

The purpose of the convergence model is to achieve an equilibrium location of the vessel 

under the given mooring system prior to initiating the actual mooring simulation with e.g. 

wave forcing. When setting up the mooring system and pre-tensions, the system may not 

be perfectly balanced. This is ensured in the convergence model simulation. 
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5 Output Data 

The output data of both Frequency Response Calculator (FRC) and MIKE 21 Mooring 

Analysis (MA) modules are summarised in this section. 

5.1 Frequency Response Calculator 

FRC provides the following results: 

 

• Global output files 

- Vessel response file 

- Added mass coefficients 

- Damping coefficients 

- Drift forces 

• Vessel specific output files 

- Response amplitude operator 

- Exciting forces 

 

5.1.1 Global output files 

The vessel response file summarises all hydrostatic, gyrostatic and geometry data of the 

investigated floating body system such as 

 

• Water depth 

• Water density 

• Vessel shape 

• Vertical centre of gravity 

• Draft radii of gyration 

• Length over all 

• Beam 

• Maximum vessel height 

• Submerged volume 

• Added mass coefficients 

• Damping coefficients 

• Wave diffraction coefficients 

 

The file is used as input for the subsequent calculations in MIKE 21 MA. 

 

The added mass coefficients result file contains the added mass response for each 

degree of freedom as a function of wave frequency. The added mass is contained in a 

6x6 matrix for each wave frequency and can be described as an inertia added to the 

system due to an acceleration of the vessel.   

 

The damping coefficients result file contains the radiation damping of the vessel and is in 

the same format as the added mass. Radiation damping describes the energy lost in the 

vessel as it creates waves through motion. 

 

The drift forces result file contains the second order drift surge and sway forces and yaw 

moments for each frequency and direction specified. This output file can only be 

generated if wave drift forces are included in the calculation. 
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5.1.2 Vessel-specific output files 

The response amplitude operators result file contains the amplitude and phase data of 

the response amplitude operator (RAO) for each frequency and direction specified. The 

RAO is a transfer function that can be used to determine the effect that a sea state will 

have upon the motion of a vessel. 

 

The exciting forces result file contains the amplitude and phase data of the exciting forces 

and moments for each frequency and direction specified. The exciting force is the first 

order wave force on the vessel and is calculated using the Haskind relation (see 

Appendix A). The exciting force describes the combination of the incident wave forces 

from a harmonic wave and the diffraction force due to the vessel on the undisturbed wave 

field. 

5.2 MIKE 21 MA 

MIKE 21 MA provides the following results in both simulation modes: 

 

• Global output files 

- Line forces 

- Fender forces 

- Line pre-tension deviation (in convergence mode only) 

• Vessel specific output files 

- Vessel motion 

- Mooring force on vessel 

- External force 

- Surface elevation (in final computation mode only) 

- Chain forces 

 

5.2.1 Global output files 

The line forces result file contains an item for every specified mooring line, showing the 

dynamically computed line force at each time step. 

 

This fender forces result file contains an item for every specified spatial fender, showing 

the dynamically computed fender force as a function of time. 

 

In the convergence mode (see Section 4.3), the line pre-tension deviation is provided. It 

reflects the success of the convergence iteration process. This file contains an item for 

every specified spatial mooring line, and all these items will, at each iteration, contain 

data values representing the percentage deviation between the dynamically computed 

line tension (at the iteration) and the line pre-tension. If a convergence is successful, then 

this file will at the last iteration step contain values, which are all smaller or equal the Line 

convergence threshold on the Convergence parameters dialog. 

5.2.2 Vessel-specific output files 

The vessel motion result file contains six items for the six degrees of freedom for each 

vessel, as a function of time. The definition of the items is provided in Figure 3.2. 

 

The mooring force on vessel result file contains six items (three force items, three 

direction items) representing the force from mooring system on the vessel for each time 

step. 
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The external forces result file contains six items (three force items, three direction items) 

for each external forcing applied (wind, current, 2nd order drift forces), thus representing 

the force from each external forcing on the vessel for each time step. 

 

The surface elevation result file contains the surface elevation at the vessels midpoint for 

each time step. 

 

The diffraction force result file contains six items (three force items, three direction items) 

representing the diffraction force on the vessel for each time step. 

 

The chain forces result file contains as many items as there are chains declared. The file 

displays the chain force evolution for each time step. 



References  

© DHI - Frequency Response Calculator and Mooring Analysis 24 

6 References 

/1/ Babarit, A., Delhommeau, G. (2015): “Theoretical and numerical aspects of the 

open source BEM solver NEMOH”, LHEEA CNRS UMR 6598, Ecole Centrale 

de Nantes, France. 

/2/ Bingham, H.B. (2000): “A hybrid Boussinesq-panel method for predicting the 

motion of a moored ship”, Coastal Engineering, 40, 21-38. 

/3/ Brix, J. (1993): “Manoeuvring Technical Manual”, Seehafen Verlag, Hamburg, 

Germany. 

/4/ Delhommeau, G. (1987): “Les Problèmes de Diffraction-Radiation et de 

Résistance de Vagues: Etude Théorique et Résolution Numérique par la 

Méthode des Singularites”, PhD thesis, Ecole Nationale Supérieure de 

Mécanique, Laboratoire d’Hydrodynamique Navale, Nantes, France. 

/5/ Delhommeau, G. (1993): “Seakeeping Codes AQUADYN and AQUAPLUS”, In 

Proc. of the 19tzhWegemt School on Numerical Simulation of Hydrodynamics: 

Ships and Offshore Structures, Nantes, France. 

/6/ Irvine, H.M. (2000): “Cable Structures”, MIT Press, Cambridge, MA, USA. 

/7/ Lighthill, J. (1979): “Waves and hydrodynamic loading”, Proc. of the 2nd Int. 

Conf. on the Behaviour of Offshore Structures, BOSS ’79, Vol. 1, 1-40. 

/8/ Newman, J.N. (1977): “Marine Hydrodynamics”, MIT Press, Cambridge, 

Massachusetts, USA. 

/9/ Oil Companies International Marine Forum (2008): “Mooring Equipment 

Guidelines”, 3rd edition, Witherby Seamanship International, Livingston, UK. 

/10/ Parisella, G., Gourlay, T.P. (2016): “Comparison of open-source code Nemoh 

with Wamit for cargo ship motions in shallow water”, Research report 2016-23, 

Centre for Marine Science and Technology, Curtin University, October 2016, 

Perth, WA, Australia. 

/11/ Wehausen, J.V. and Laitone, E.V. (1960): “Surface Waves in Fluid Dynamics 

III”, in Handbuch der Physik 9, Eds.: S. Fluegge and C. Truesdell, pp 446-778, 

Springer Verlag. 

/12/ Zhu, X. and Lee, C.H. (1994): "Removing the Irregular Frequencies in Wave-

Body Interactions", 9th International Workshop on Water Waves and Floating 

Bodies, Kizu, Japan. 

/13/ Delhommeau, G. (1993). Numerical Simulation of Hydrodynamics: Ships and 

Offshore Structures. Nineteenth WEGMENT School. 

/14/ Newman, J.N. (1974). Second-order Slowly-varying Forces on Vessels in 

Irregular Waves. In Int. Symposium on Dynamics of Marine Vehicles and 

Structures in waves. 

6.1 Further reading on MIKE 21 MA and its predecessors 

• Bhautoo, P. et. al. (2015): “Moored vessel interaction induced by passing ships at 

the Port of Brisbane”, Australasian Coasts & Ports Conference, 15-18 September 

2015, Auckland, New Zealand. 



References  

© DHI - Frequency Response Calculator and Mooring Analysis 25 

• Brüning, A.et. al. (2011): “A hybrid modelling approach for floating breakwater 

dimensioning”, 5th International Short Conference on Applied Coastal Research 

2011. 

• Brüning, A. et. al. (2014): “Assessing mooring forces at an offshore wind terminal in 

Bremerhaven, Germany”, PIANC World Congress, San Francisco, USA. 

• Hansen, H.F. et al. (2009): “Multi vessel interaction in shallow water”, Proceedings of 

the 28th International Conference on Ocean, Offshore and Arctic Engineering 

OMAE2009, Honolulu, Hawaii, USA, May 31 - June 5, 2009. 

• Hansen, H.F., Kirkegaard, J and Kofoed-Hansen, H. (2010): “Hydraulic aspects of 

marine LNG receiving terminal design”, Rio Oil & Gas Expo and Conference, Rio de 

Janeiro, September 13-16, 2010. 

• Harkin, A., Mortensen, S. and Dixen, M. (2017): “Validation of Moored Vessel 

Response Simulator with Physical Model Comparisons”, Coasts & Ports 2017 

Conference – Cairns, 21-23 June 2017. 
• Jensen, B., Hansen, H.F. and Kirkegaard, J. (2015): “Estimating Quadratic Transfer 

Functions for Floating Structures using Model Test Data from Irregular Sea States”, 
Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering 
Conference, Kona, Big Island, Hawaii, USA, June 21-26, 2015 

• Kerper, D. et. al. (2017): “Nearshore FSO Response under Rapidly Varying 
Landslide Tsunami Hydrodynamic Loads”, Proceedings of the Twenty-seventh 
(2017) International Ocean and Polar Engineering Conference, San Francisco, CA, 
USA, June 25-30, 2017. 

• Mortensen, S, Allery, C, Kirkegaard, J and Hancock, R, (2008): “Numerical Modelling 
of Moored Vessel Motions Caused by Passing Vessels in the Port of Brisbane”, 
Proceedings of the ASME 27th International Conference on Offshore Mechanics and 
Arctic Engineering OMAE 2008, June 15-20, 2008, Estoril, Portugal. 

• Mortensen, S, Allery, C, Kirkegaard, J and Hancock, R. (2009): “Numerical Modelling 
of Moored Vessel Motions Caused by Passing Vessels”, Coast & Ports 2009 
Conference Proceedings, Wellington, New Zealand. 

 



  

© DHI - Frequency Response Calculator and Mooring Analysis  

 
 

 

APPENDIX  A 

The Haskind Relation 
 

 

 

 



The Haskind Relation  

© DHI - Frequency Response Calculator and Mooring Analysis A-1 

A The Haskind Relation 

The Haskind relation is a way of finding the diffraction force without estimating the 

scattered potential. Instead, the force is found in a combination of the incoming wave field 

and the potential for the radiated wave field, which is the wave potential found for a 

moving body in a calm sea. 

 

Expressed in a simplified way, the diffraction force is found by multiplying the radiated 

body movement on the incoming wave pressure field minus the radiation pressure field 

multiplied by the velocity of the incoming wave field. This seems quite abstract; therefore, 

the following heuristic explanation is given. 

 

We have to go to structural engineering, where this principle is used extensively. In this 

field, the above statement can be found from the application of Betti’s equation, also 

known as the reciprocity principle. In this case, a reduced form of the principle says 

 

𝐹𝐴𝑢𝐵 = 𝐹𝐵𝑢𝐴 
 

(A.1) 

 

In words, the equation says that for a system, a force from case A multiplied by the 

movement of case B is equal to the force from case B multiplied by the movement of 

case A. This equation is given without further proof; however, it is a well-established 

technique in structural engineering. 

 

The diffraction force on the body can be written as the sum of a contribution from the 

incoming wave field and the scattered wave field: 

 

𝐹𝐷 = 𝐹𝐼 + 𝐹𝑆 
 

(A.2) 

 

where 𝐹𝐷 is the total diffraction force, 𝐹𝐼 is the force due to the incoming wave field, and 

𝐹𝑆 is the force due to the scattered wave field. Note that 𝐹𝐼 is also known as Froude-

Krylov force. In the equation, there are two unknowns 𝐹𝐷 that we want to find and 𝐹𝑆 that 

has to be estimated. Let us say that the radiation potential is known and therefore also 

the force, 𝐹𝑅, using Betti’s equation (A.1) 

 

𝐹𝑅𝑢𝑆 = 𝐹𝑆𝑢𝑅 
 

(A.3) 

 

In the above equation, 𝑢𝑆 is apparently unknown, but at the body surface it can be related 

to the velocity found from the incoming wave, 𝑢𝑆 = −𝑢𝐼. Then, equation (A.2) is 

multiplied by 𝑢𝑅. Using equation (A.3) and substituting 𝑢𝑆 with −𝑢𝐼, gives the Haskind 

relation 

 

𝐹𝐷𝑢𝑅 = 𝐹𝐼𝑢𝑅 − 𝐹𝑅𝑢𝐼 
 

(A.4) 

 

This is basically the Haskind relation in a schematised form. The approach followed here 

is similar to the approach described in /7/ where it was used to find the second order 

force components. The derivation of the Haskind relations from conventional methods is 

given in /8/. 


	1 Introduction
	2 Application Areas
	3  Basic Equations
	3.1 Geometry and motion of the floating body
	3.1.1 Volume
	3.1.2 Centre of buoyancy

	3.2 Equation of motion
	3.3 Added mass and damping coefficients ,𝑎-𝑗𝑘.,𝑡. and ,𝐾-𝑗𝑘.,𝑡. from radiation potential (1st order)
	3.3.1 Radiation potential
	3.3.2 Boundary element method
	3.3.3 Added mass and damping coefficients ,𝐴-𝑖𝑗.,𝜔. and ,𝐵-𝑖𝑗.,𝜔. in the frequency domain
	3.3.4 Inverse transforms
	3.3.5 Response amplitude operators

	3.4 Wave drift forces (2nd order)
	3.5 Wave exciting force ,𝐹-𝑗𝐷.,𝑡.
	3.5.1 Linearization of the Boussinesq wave results
	3.5.2 Inverse transforms

	3.6 Hydrostatic and gravitational restoring coefficients ,𝐶-𝑗𝑘.
	3.7 Inertial coefficients ,𝑀-𝑗𝑘.
	3.8 External force ,𝐹-𝑗,𝑛𝑙.,𝑡.
	3.8.1 Viscous damping forces ,𝐹-𝑗,𝑣𝑖𝑠𝑐.,𝑡.
	3.8.2 Mooring forces ,𝐹-𝑗,𝑚𝑜𝑜𝑟.,𝑡.
	Mooring lines
	Fenders
	Chains

	3.8.3 Wind forces
	3.8.4 Current forces


	4  Numerical Implementation
	4.1 Implementation of the theory
	4.2 Irregular frequencies
	4.3 Convergence mode

	5  Output Data
	5.1 Frequency Response Calculator
	5.1.1 Global output files
	5.1.2 Vessel-specific output files

	5.2 MIKE 21 MA
	5.2.1 Global output files
	5.2.2 Vessel-specific output files


	6  References
	6.1 Further reading on MIKE 21 MA and its predecessors

	A The Haskind Relation

