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PLEASE NOTE

COPYRIGHT This document refers to proprietary computer software which is pro-
tected by copyright. All rights are reserved. Copying or other repro-
duction of this manual or the related programs is prohibited without 
prior written consent of DHI. For details please refer to your 'DHI 
Software Licence Agreement'.

LIMITED LIABILITY The liability of DHI is limited as specified in your DHI Software 
Licence Agreement:

In no event shall DHI or its representatives (agents and suppliers) 
be liable for any damages whatsoever including, without limitation, 
special, indirect, incidental or consequential damages or damages 
for loss of business profits or savings, business interruption, loss of 
business information or other pecuniary loss arising in connection 
with the Agreement, e.g. out of Licensee's use of or the inability to 
use the Software, even if DHI has been advised of the possibility of 
such damages. 

This limitation shall apply to claims of personal injury to the extent 
permitted by law. Some jurisdictions do not allow the exclusion or 
limitation of liability for consequential, special, indirect, incidental 
damages and, accordingly, some portions of these limitations may 
not apply. 

Notwithstanding the above, DHI's total liability (whether in contract, 
tort, including negligence, or otherwise) under or in connection with 
the Agreement shall in aggregate during the term not exceed the 
lesser of EUR 10.000 or the fees paid by Licensee under the Agree-
ment during the 12 months' period previous to the event giving rise 
to a claim.

Licensee acknowledge that the liability limitations and exclusions 
set out in the Agreement reflect the allocation of risk negotiated and 
agreed by the parties and that DHI would not enter into the Agree-
ment without these limitations and exclusions on its liability. These 
limitations and exclusions will apply notwithstanding any failure of 
essential purpose of any limited remedy.
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1 Introduction

The EVA toolbox in MIKE Zero comprises a comprehensive suite of routines 
for performing extreme value analysis. These include

 A pre-processing facility for extraction of the extreme value series from 
the record of observations.

 Support of two different extreme value models, the annual maximum 
series model and the partial duration series model.

 Support of a large number of probability distributions, including exponen-
tial, generalised Pareto, Gumbel, generalised extreme value, Weibull, 
Frechét, gamma, Pearson Type 3, Log-Pearson Type 3, log-normal, and 
square-root exponential distributions.

 Three different estimation methods: method of moments, maximum likeli-
hood method, and method of L-moments.

 Three validation tests for independence and homogeneity of the extreme 
value series.

 Calculation of five different goodness-of-fit statistics.

 Support of two different methods for uncertainty analysis, Monte Carlo 
simulation and Jackknife resampling.

 Comprehensive graphical tools, including histogram and probability 
plots.

This document provides a technical reference and documentation for the dif-
ferent tools available in EVA.
9
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Basic probabilistic concepts
2 Extreme value models

For evaluating the risk of extreme events a parametric frequency analysis 
approach is adopted in EVA. This implies that an extreme value model is for-
mulated based on fitting a theoretical probability distribution to the observed 
extreme value series. Two different extreme value models are provided in 
EVA, the annual maximum series (AMS) method and the partial duration 
series (PDS) method, also known as the peak over threshold (POT) method.

2.1 Basic probabilistic concepts

The defined extreme value population is described by a stochastic variable X. 
The cumulative distribution function F(x) is the probability that X is less than 
or equal to x

(2.1)

The probability density function f(x) for a continuous random variable is 
defined as the derivative of the cumulative distribution function

(2.2)

The quantile of a distribution is defined as

(2.3)

where p = P{X  x}. The quantile xp is exceeded with probability (1-p), and 
hence is often referred to as the (1-p)-exceedance event. Often the return 
period of the event is specified rather than the exceedance probability. If (1-p) 
denotes the exceedance probability in a year, the return period T is defined 
as

(2.4)

Correspondingly, the T-year event xT calculated from (2.3) is the level, which 
on the average is exceeded once in T years.

2.2 Annual maximum series

In the annual maximum series (AMS) method the maximum value in each 
year of the record are extracted for the extreme value analysis (see 
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Extreme value models
Figure 2.1). The analysis year should preferably be defined from a period of 
the year where extreme events never or very seldomly occur in order to 
ensure that a season with extreme events is not split in two. Alternatively, a 
specific season may be defined as the analysis year.

For estimation of T-year events, a probability distribution F(x) is fitted to the 
extracted AMS data {xi, i = 1,2,…,n} where n is the number of years of record. 
The T-year event estimate is given by

(2.5)

where  are the estimated distribution parameters.

Figure 2.1 Extraction of AMS and PDS from the recorded time series.

2.3 Partial duration series

In the partial duration series (PDS) method all events above a threshold are 
extracted from the time series (see Figure 2.1). The PDS can be defined in 
two different ways. In Type I sampling, all events above a predefined thresh-
old x0 are taken into account {xi > x0, i = 1,2,…,n}, implying that the number of 
exceedances n becomes a random variable. In Type II sampling, the n largest 
events are extracted {x(1)   x(2)  …  x(n)}, implying that the threshold level 
becomes a random variable. If n equals the number of observation years, the 
PDS is referred to as the annual exceedance series.
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Partial duration series
In EVA, both the Type I and Type II sampling methods are provided as pre-
processing tools for extracting the PDS. If Type I sampling (fixed threshold 
level) is chosen, the corresponding number of exceedances is calculated. 
Similarly, if Type II sampling is chosen (fixed number of events or, equiva-
lently, fixed average annual number of events), the corresponding threshold 
level is determined. For definition of the PDS both the threshold level and the 
average annual number of events have to be specified.

To ensure independent events in the PDS, usually some restrictions have to 
be imposed on the time and level between two successive events. In EVA, an 
interevent time and interevent level criterion can be defined:

1. Interevent time criterion Dtc: two successive events are independent if 
the time between the two events is larger than Dtc.

2. Interevent level criterion pc (0 < pc < 1): two successive events are inde-
pendent if the level between the events becomes smaller than pc times 
the lower of the two events.

If both criteria are chosen, two successive events are independent only if 
both (1) and (2) are fulfilled.

If a fixed threshold level is used to define the extreme value series (Type I 
sampling), the PDS model includes two stochastic modelling components, 
respectively, the occurrence of extreme events and the exceedance magni-
tudes. It is assumed that the occurrence of exceedances can be described by 
a Poisson process with constant or one-year periodic intensity, implying that 
the number of exceedances n is Poisson distributed with probability function

(2.6)

where t is the recording period. The Poisson parameter l equals the expected 
number of exceedances per year and is estimated from the record as

(2.7)

For modelling the exceedance magnitudes a probability distribution F(xx0) is 
fitted to the exceedance series {xix0, i = 1,2,…,n}. The T-year event estimate 
is given by

(2.8)

where  are the estimated distribution parameters.
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Extreme value models
In the case of Type II sampling, the average annual number of events l is 
fixed. For modelling the extremes a probability distribution F(x) is fitted to the 
extreme value series {xi, i = 1,2,…,n}. The T-year event estimate is given by

(2.9)

where  are the estimated distribution parameters.

The T-year event in the PDS can also be related to the return period of the 
corresponding annual maximum series (denoted annual return period TA). 
The relationship between the return period T defined above and TA is given 
by

(2.10)

Note that for return periods larger than about 10 years T and TA are virtually 
identical.
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Run test
3 Independence and homogeneity tests

The basic requirements for the extreme value models outlined above is that 
the stochastic variables Xi are independent and identically distributed. For 
testing independence and homogeneity of the observed extreme value 
series, three different tests are available in EVA

 Run test

 Mann-Kendall test

 Mann-Whitney test

3.1 Run test

The run test is used for general testing of independence and homogeneity of 
a time series. From the time series {xi, i = 1,2,…,n} the sample median xmed is 
calculated and a shifted series {si = xixmed, i = 1,2,…,n} is constructed. From 
the shifted series a run is defined as a set of successive elements having the 
same sign. The test statistic is given as the number of runs of the shifted 
series, i.e.

(3.1)

The test statistic is asymptotically normally distributed with mean mz and var-
iance sz

2 given by

(3.2)

Thus, the standardised test statistic

(3.3)

is evaluated against the quantiles of a standard normal distribution. That is, 
the H0 hypothesis of independent and homogeneous data is rejected at sig-
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Independence and homogeneity tests
nificance level a if z* > -1(1a/2) where -1(1a/2) is the (1a/2)-quantile 
in the standard normal distribution.

3.2 Mann-Kendall test

The Mann-Kendall test is used for testing monotonic trend of a time series {xi, 
i = 1,2,..,n}. The test statistic reads

(3.4)

where

(3.5)

A positive value of z indicates an upward trend, whereas a negative value 
indicates a downward trend. The test statistic is asymptotically normally dis-
tributed with zero mean (mz = 0) and variance given by

(3.6)

For evaluating the H0 hypothesis: no trend in the series, the standardised test 
statistic calculated from (3.3) is compared to the quantiles of a standard nor-
mal distribution.

3.3 Mann-Whitney test

The Mann-Whitney test is used for testing shift in the mean between two sub-
samples defined from a time series {xi, i = 1,2,..,n}. For the time series ranks 
Ri are assigned from Ri = 1 for the smallest to Ri = n for the largest observa-
tion. Time series of ranks for the two-subsamples are then defined by {Ri, i = 
1,2,..,n1} and {Ri, i = 1,2,..,n2} where n = n1 + n2. The test statistic is given as 
the sum of ranks of the smaller sub-series, i.e.

(3.7)
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Mann-Whitney test
The test statistic is asymptotically normally distributed with mean and vari-
ance

(3.8)

For evaluating the H0 hypothesis: same mean value in the two sub-series, the 
standardised test statistic calculated from (3.3) is compared to the quantiles 
of a standard normal distribution.
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Probability distribution for AMS
4 Probability distributions

4.1 Probability distribution for AMS

The probability distributions that can be applied for AMS are shown in 
Table 4.1. The probability density function, the cumulative distribution func-
tion, and the quantile function for these distributions are given in Appendiks 
A.

For the log-normal distribution both a 2- and a 3-parameter version is availa-
ble. In the 2-parameter version the location parameter is set equal to zero.

4.2 Probability distributions for PDS

The probability distributions that can be applied for PDS are shown in 
Table 4.2. The probability density function, the cumulative distribution func-
tion, and the quantile function for these distributions are given in Appendix A.

If the PDS is defined using a fixed threshold, the location parameter is set 
equal to the threshold level x0, and the remaining distribution parameters are 
estimated from the exceedance series {xix0, i = 1,2,…,n}. On the other hand, 
when the PDS is defined using a fixed average annual number of events, the 
location parameter is estimated from the data {xi, i = 1,2,…,n} along with the 

Table 4.1 Combinations of probability distributions and estimation methods 
(method of moments (MOM), L-moments (LMOM), and maximum likeli-
hood (ML)) available for AMS.

Distribution No. of 
parameters

MOM LMOM ML

Gumbel 2 x x x

Generalised extreme value 3 x x x

Weibull 3 x x

Frechét 3 x

Generalised Pareto 3 x x

Gamma/Pearson Type 3 3 x x

Log-Pearson Type 3 3 x x

Log-normal 2 x x x

3 x x

Square root exponential 2 x
19



Probability distributions

L

other distribution parameters. The three parameters of the log-Pearson Type 
3 distribution and the two parameters of the truncated Gumbel distribution are 
estimated from the data {xi, i = 1,2,…,n}.

Table 4.2 Combinations of probability distributions and estimation methods 
(method of moments (MOM), L-moments (LMOM), and maximum likeli-
hood (ML)) available for PDS.

Distribution Location 
parameter

No. of 
parameters

MOM LMOM M

Exponential Fixed 1 x x x

Estimated 2 x x

Generalised Pareto Fixed 2 x x x

Estimated 3 x x

Weibull Fixed 2 x x x

Estimated 3 x x

Gamma/Pearson Type 3 Fixed 2 x x x

Estimated 3 x x

Log-normal Fixed 2 x x x

Estimated 3 x x

Log-Pearson Type 3 - 3 x x

Truncated Gumbel - 2 x
20 EVA - © DHI



Method of moments
5 Estimation methods

For estimation of the parameters of the probability distributions three different 
estimation methods are available

 Method of moments

 Method of L-moments

 Maximum likelihood method

The estimation methods that are available for the different distributions are 
shown in Table 4.1 and Table 4.2.

5.1 Method of moments

The product moments: mean value m, variance s2, coefficient of skewness 
g3, and kurtosis g4 are defined as

(5.1)

where E{.} is the expectation operator. The standard deviation s is the square 
root of the variance. Population moments for the distributions available in 
EVA are shown in Appendix A.
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Estimation methods
Based on the set of observations {xi, i = 1,2,…,n}, estimators of the product 
moments can be calculated

(5.2)

(5.3)

(5.4)

(5.5)

The moment estimators of the distribution parameters are then obtained by 
replacing the theoretical product moments for the specified distribution by the 
sample moments. Expressions of the moment estimators for the different dis-
tributions are given in Appendix A.

5.2 Method of L-moments

L-moments are defined as linear combinations of expected values of order 
statistics [Hosking, 1990]. The first L-moment (l1) is the mean value identical 
to the first ordinary moment. The second L-moment (l2) is a measure of scale 
or dispersion analogous to standard deviation, and the third (l3) and fourth (l4) 
L-moments are measures of skewness and kurtosis, respectively. L-moments 
can be written as linear combinations of probability weighted moments 
(PWM). The PWM of order r is defined as

(5.6)
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Method of L-moments
The first four L-moments in terms of PWMs read

(5.7)

Analogous to the skewness and kurtosis defined by product moments, the L-
skewness (t3) and L-kurtosis (t4) are defined as

(5.8)

Since the first r L-moments can be expressed in terms of the first r PWMs, 
procedures based on L-moments and PWM are similar. L-moments, however, 
are more convenient with respect to summarising a probability distribution. 
Population L-moments for the distributions available in EVA are shown in 
Appendix A.

For estimation of L-moments, unbiased PWM estimators are employed 
[Landwehr et al., 1979]

(5.9)

where x(n)  x(n-1)  ...  x(1) is the ordered sample of observations. Unbiased 
L-moment estimators are obtained by replacing the PWMs in (5.7) by their 
sample estimates in (5.9). L-moment estimates of the distribution parameters 
are then obtained by replacing the theoretical L-moments for the specified 
distribution by the L-moment estimators. Expressions of the L-moment esti-
mators for the different distributions are given in Appendix A.
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Estimation methods
5.3 Maximum likelihood method

Maximum likelihood estimators are obtained by maximising the likelihood 
function. In order to simplify the calculations a logarithmic transformation of 
the likelihood function is normally performed; i.e. the estimators are obtained 
by maximising

(5.10)

where f(x) is the probability density function.

Maximum likelihood parameter estimators are asymptotically more efficient. 
However, small sample estimators may be less efficient and in some cases 
the maximum likelihood procedure becomes unstable. Often maximum likeli-
hood estimators cannot be reduced to simple explicit formula, and hence 
numerical methods such as the Newton Raphson scheme must be applied. 
Expressions for calculation of the maximum likelihood estimators for the dif-
ferent distributions are given in Appendix A.
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Chi-squared test
6 Goodness-of-fit statistics

For evaluating the fit of different distributions applied to the extreme value 
series, EVA calculates five goodness-of-fit statistics

 Chi-squared test statistic

 Kolmogorov-Smirnov test statistic

 Standardised least squares criterion

 Probability plot correlation coefficient

 Log-likelihood measure

It must be emphasised that the choice of probability distribution should not 
rely solely on the goodness-of-fit. The fact that many distributions have simi-
lar form in their central parts but differ significantly in the tails emphasises that 
the goodness-of-fit is not sufficient. The choice of probability distribution is 
generally a compromise between contradictory requirements. Selection of a 
distribution with few parameters provides robust parameter estimates but the 
goodness-of-fit may not be satisfactory. On the other hand, when selecting a 
distribution with more parameters, the goodness-of-fit will generally improve 
but at the expense of a large sampling uncertainty of the parameter esti-
mates.

Besides an evaluation of the goodness-of-fit statistics, a graphical compari-
son of the different distributions with the observed extreme value series 
should be carried out. In this respect the histogram/frequency plot and the 
probability plot are useful. These plots are described in Section 8.

6.1 Chi-squared test

The 2-test statistic is based on a comparison of the number of observed 
events and the number of expected events (according to the specified proba-
bility distribution) in class intervals covering the range of the variable. The test 
statistic reads

(6.1)

where k is the number of classes, ni is the number of observed events in 
class i, n is the sample size, and pi is the probability corresponding to class i, 
implying that the number of expected events in class i is equal to npi. The test 
is more powerful if the range of the variable is divided into classes of equal 
probability, i.e. p = 1/k. The corresponding class limits for the considered dis-
tributions are obtained from the quantile function cf. (2.3). The number of 
classes is determined such that the expected number of events in a class is 
not smaller than 5.
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Goodness-of-fit statistics
The test statistic is approximately 2-distributed with k1q degrees of free-
dom where q is the number of estimated parameters. Thus, the H0 hypothesis 
that data are distributed according to the specified probability distribution is 
rejected at significance level a if z > 2(k1q)1-a where 2(k1q)1-a is the 
(1a)-quantile in the 2-distribution with k1q degrees of freedom.

6.2 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is based on the deviation between the empiri-
cal and the theoretical distribution function. The test statistic is given by

(6.2)

where F(x) is the theoretical cumulative distribution function, and Fn(x) is the 
empirical distribution function defined as

(6.3)

For known distribution parameters, the distribution of the Kolmogorov-
Smirnov statistic is independent of the considered distribution, and general 
tables of critical values of the test statistic can be used for evaluation of the 
significance level. In Table 6.1 critical values are given for the modified form 
of the test statistic [Stephens, 1986]

(6.4)

When the distribution parameters are unknown and have to be estimated 
from the data, the distribution of the test statistic depends on the considered 
distribution, the estimated parameters, the estimation method, and the sam-
ple size. In this case no general table of critical values of the test statistic 
exists. In EVA, critical values based on Table 6.1 are calculated. However, 
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Standardised least squares criterion
since the parameters of the considered distributions are estimated from the 
data, the outcome of the test should not be used as a strict significance test.

6.3 Standardised least squares criterion

The standardised least squares criterion (SLSC) and the probability plot cor-
relation coefficient described in Section 6.4 are both based on the difference 
between the ordered observations and the corresponding order statistics for 
the considered probability distribution. The SLSC is defined using a reduced 
variate ui (Takasao et al., 1986)

(6.5)

where g(.) is the transformation function, and q are the distribution parame-
ters. Expressions of the reduced variate for the different distributions included 
in EVA are given in Appendix A.

For the ordered observations x(1)  x(2)  ...  x(n), the reduced variates ui are 
calculated from (6.5) using the estimated parameters. The corresponding 
order statistics are given by

(6.6)

where pi is the probability of the i’th largest observation in a sample of n vari-
ables. The probability is determined by using a plotting position formula (see 
Section 8).

The SLSC is calculated as

(6.7)

where u*
1-p and u*

p are the reduced variates calculated from (6.6) using non-
exceedance probabilities 1p and p, respectively. The denominator in (6.7) is 
introduced in order to standardise the measure, so that the SLSC can be 
used to compare goodness-of-fit between different distributions. Smaller val-

Table 6.1 Critical values of the modified Kolmogorov-Smirnov test statistic in (6.4) 
[Stephens, 1986].

Significance level 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001

Critical value 1.019 1.138 1.224 1.358 1.480 1.628 1.731 1.950
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Goodness-of-fit statistics
ues of SLSC correspond to better fits. In EVA, p = 0.01 is used for calculation 
of SLSC.

Formulae of the reduced variates and corresponding order statistics for the 
distributions available in EVA are given in Appendix A. For some distributions 
several formulations of the reduced variate have been proposed. In EVA, the 
SLSC1 formula is used as main output, whereas the other SLSC measures 
are given as supplementary output. It should be noted that for a consistent 
and more direct comparison between different distributions, the same 
reduced variate should be used, if possible. For instance, for comparing the 
goodness-of-fit between the Gumbel, Frechét, generalised extreme value, 
and square-root exponential distributions the SLSC measure based on the 
Gumbel reduced variate ui = ln[ln(pi)] should be applied. For comparison of 
the exponential, generalised Pareto, and Weibull distributions the exponential 
reduced variate ui = ln(1pi) should be used.

The distribution of the SLSC statistic depends, in general, on the considered 
distribution, the estimated parameters, the estimation method, and the sam-
ple size. Thus, no general table for critical values of the test statistic exists.

In certain situations, some data points may fall outside the estimated range of 
the considered distributions (e.g. some observations are smaller (or larger) 
than the estimated location parameter), implying that the reduced variate is 
not defined. In EVA, these points are not included in the calculation of the 
SLSC measure. In such cases one should be careful in using the SLSC 
measure for comparing the goodness-of-fit of various distributions.

6.4 Probability plot correlation coefficient

The probability plot correlation coefficient (PPCC) [Vogel, 1986] is a measure 
of the correlation between the ordered observations x(1)  x(2)  ...  x(n), and 
the corresponding order statistics

(6.8)

where pi is the probability of the i’th largest observation in a sample of n vari-
ables. The probability is determined by using a plotting position formula (see 
Section 8). The PPCC is given by

(6.9)
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Log-likelihood measure
where  and  are the sample mean values of the xi and the Mi, respec-
tively. Values of PPCC closer to unity correspond to better fits.

The distribution of the PPCC statistic depends, in general, on the considered 
distribution, the estimated parameters, the estimation method, and the sam-
ple size, and hence no general table for critical values of the test statistic 
exists. For the log-normal, Gumbel and Pearson Type 3 distributions, the dis-
tribution of the test statistic has been evaluated [Vogel, 1986; Vogel and 
McMartin, 1991].

Another formulation of the PPCC measure is based on the reduced variate 
defined above [Takara and Stedinger, 1994]. In this case the PPCC is given 
by

(6.10)

where u(i) and ui* are the ordered reduced variate and the corresponding 
order statistic defined in (6.5)-(6.6). If the reduced variate is a linear transfor-
mation of the variable X, the two PPCC measures in (6.9) and (6.10) are 
identical.

As for the SLSC measure, in certain situations some data points may fall out-
side the estimated range of the considered distributions, implying that the 
reduced variate used in (6.10) is not defined. In EVA, these points are not 
included in the calculation of the PPCC measure.

6.5 Log-likelihood measure

The log-likelihood measure is given by

(6.11)

where f(.) is the probability density function of the considered distribution, and 
 are the estimated parameters. Larger values of the log-likelihood measure 

correspond to better fits.

As noted above, in some cases data points may fall outside the estimated 
range of the probability distribution. For such points the probability density 
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Goodness-of-fit statistics
function equals zero, implying that (6.11) cannot be evaluated properly. In 
EVA, a corrected log-likelihood measure is calculated

(6.12)

where k is the number of data points for which f(x) = 0, and the summation is 
performed for the nk data points where f(x) > 0.
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Monte Carlo simulation
7 Uncertainty calculations

Two different methods are available in EVA for evaluating the uncertainty of 
quantile estimates

 Monte Carlo simulation

 Jackknife resampling

7.1 Monte Carlo simulation

In Monte Carlo simulation the bias and the standard deviation of the quantile 
estimate is obtained by randomly generating a large number of samples that 
has the same statistical characteristics as the observed sample. The algo-
rithm can be summarised as follows:

1. Randomly generate a set of m data points from the considered distribu-
tion using the estimated parameters, i.e.

(7.1)

where ri is a randomly generated number between 0 and 1.

In the case of AMS or PDS with a fixed number of events, m is set equal 
to the sample size m = n. In the case of PDS with a fixed threshold level, 
the number of events is a random variable that is assumed to be Poisson 
distributed. In this case m is randomly generated from a Poisson distribu-
tion with parameter  where  is the estimated average annual num-
ber of events for the observed sample, and t is the observation period. 
The average annual number of events for the generated sample 
(denoted sample no. j) is estimated as

(7.2)

2. From the generated sample, the parameters of the distribution are esti-
mated. In the case of AMS, the T-year event estimate is then obtained 
from (2.5)

(7.3)
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Uncertainty calculations
where  are the estimated parameters. In the case of PDS with a fixed 
threshold level, the T-year event estimate is obtained from (2.8)

(7.4)

For PDS with a fixed number of events, the T-year event estimate is 
obtained from (2.9)

(7.5)

3. Steps (1)-(2) are repeated k times. The mean and the standard deviation 
sT of the T-year event estimate are then given by

(7.6)

Investigations suggest that the Monte Carlo based estimates of the mean and 
the standard deviation of the T-year event estimator saturate at a sample size 
in the order of 10,000. Thus, in EVA the number of generated samples is set 
equal to k = 10,000.

In some cases, samples may be generated from which distribution parame-
ters cannot be estimated, e.g. due to the generation of sample moments for 
which the distribution is not defined or due to the non-existence of an opti-
mum of the likelihood function. Non-convergence of the optimisation algo-
rithm is a common problem for the maximum likelihood procedure and is 
especially pronounced for small sample sizes [Madsen et al., 1997]. Another 
problem related to the Monte Carlo method is the generation of unreasonable 
T-year events, resulting in unreliable estimates of the mean and the standard 
deviation of the T-year event estimator. To circumvent this problem, samples 
that result in T-year event estimates larger than the event corresponding to a 
return period of 10,000 times T are excluded.

7.2 Jackknife resampling

In the jackknife resampling method the bias and the standard deviation of the 
quantile estimate is calculated by sampling n data sets of (n1) elements 
from the original data set. The algorithm can be summarised as follows:
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Jackknife resampling
1. From the original sample data element no. j is excluded. 

2. The distribution parameters  are estimated from the sample {x1, x2, 
.., xj-1, xj+1, .., xn}. In the case of AMS, the T-year event estimate is then 
obtained from (2.5)

(7.7)

In the case of PDS with a fixed threshold level, the T-year event estimate 
is obtained from (2.8)

(7.8)

Note that with this method it is not possible to include the uncertainty in 
the estimated number of extreme events. For PDS with a fixed number of 
events, the T-year event estimate is obtained from(2.9)

(7.9)

3. Steps (1)-(2) are repeated n times (j = 1,2,…,n). The jackknife estimate 
of the T-year event corrected for bias reads

(7.10)

where  is the T-year event estimate obtained from the original sam-
ple. The standard deviation sT of the jackknife T-year event estimate is 
given by

(7.11)
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Plot of histogram and probability density function
8 Frequency and probability plots

8.1 Plot of histogram and probability density function

A histogram is a plot of the empirical probability density function. The histo-
gram is constructed by dividing the range of the variable in class intervals and 
counting the number of observations in each class. Denoting by ni the num-
ber of observations in class i, and x the size of the interval, the histogram 
value of class i is given by

(8.1)

where n is the total number of observations. The appropriate number of 
classes k is determined from the following rule of thumb

(8.2)

where int(.) denotes nearest integer value.

For evaluating the goodness-of-fit of an estimated probability distribution, the 
probability density function is compared to the histogram.

8.2 Probability plots

A probability plot is a plot of the ordered observations {x(1)  x(2)  ...  x(n)} 
versus an approximation of their expected values F-1(pi), where pi is the prob-
ability of the i’th largest observation in a sample of n variables. The probability 
is determined by using a plotting position formula.

The plotting position formulae available in EVA are shown in Table 8.1. These 
formulae can be written in a general form

(8.3)
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Frequency and probability plots
For plotting, three different probability papers are available: Gumbel, log-nor-
mal, and semi-log papers. In the Gumbel probability paper, the observations 
are plotted versus the Gumbel reduced variate

(8.4)

In the log-normal probability paper, the logarithmic transformed observations 
are plotted versus the standard normal variate

(8.5)

In the semi-log probability paper, the observations are plotted versus the 
exponential reduced variate

(8.6)

Probability plots are used for evaluating the goodness-of-fit of the estimated 
probability distributions. In a Gumbel probability paper, the Gumbel distribu-
tion is a straight line, whereas the 2-parameter log-normal and the exponen-
tial distributions are straight lines in the log-normal and semi-log probability 
papers, respectively. For the other distributions available in EVA, no general 
probability papers exist, since the shape of these distributions is variable. 
When plotted in one of the available probability papers, distributions with a 
variable shape are curved lines.

Table 8.1 Plotting position formulae.

Name Formula a

Weibull 0

Hazen 0.5

Gringorten 0.44

Blom 0.375

Cunnane 0.40
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Probability plots
When evaluating the goodness-of-fit in a probability plot, also confidence lev-
els of the considered distribution can be shown. The T-year event estimate is 
asymptotically normally distributed with mean  and standard deviation sT 
which are quantified using Monte Carlo simulation, cf. (7.6) or jackknife resa-
mpling, cf. (7.10)-(7.11). Approximate (1a)-confidence levels are then given 
by

(8.7)

For instance, approximate 68% and 95% confidence levels correspond to q = 
1 and q = 2, respectively.
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Probability plots
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APPENDIX A

Probability distributions
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For each of the distributions available in EVA the following is provided in this 
appendix

 Probability density function f(x)

 Cumulative distribution function F(x)

 Quantile function xp corresponding to the non-exceedance probability p

 Expressions of ordinary moments and L-moments

 Description of parameter estimation by the method of moments, the 
method of L-moments and the maximum likelihood method

 Reduced variate up for calculation of standardised least squares (SLSC) 
goodness-of-fit criterion

In addition, the appendix includes descriptions of the different auxiliary func-
tions used in EVA

 Gamma function

 Euler’s psi function

 Incomplete gamma integral

 Cumulative distribution function of the standard normal distribution

 Quantile function of the standard normal distribution
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A.1 Exponential distribution

Definition

Parameters:  (location), a (scale)

Range: > 0,   x < 

(A.1.1)

(A.1.2)

(A.1.3)

Moments

(A.1.4)

(A.1.5)

L-moments

(A.1.6)

(A.1.7)

Moment estimates

If x is known, a is estimated from the sample mean value

(A.1.8)

If x is unknown, moment estimates are given by

(A.1.9)
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Exponential distribution
L-moment estimates

If x is known, the L-moment estimate of a is identical to the moment estimate. 
If x is unknown, L-moment estimates are given by

(A.1.10)

Maximum likelihood estimates

If x is known, the maximum likelihood estimate of a is identical to the moment 
and the L-moment estimate.

Reduced variate

(A.1.11)
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A.2 Generalised Pareto distribution

Definition

Parameters:  (location), a (scale), k (shape)

Range:  > 0,   x <  for  < 0,   x  +/ for  > 0

Special case: Exponential distribution for k = 0

(A.2.1)

(A.2.2)

(A.2.3)

Moments

(A.2.4)

(A.2.5)

(A.2.6)
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Generalised Pareto distribution
L-moments

(A.2.7)

(A.2.8)

(A.2.9)

Moment estimates

If x is known, moment estimates of a and k are given by

(A.2.10)

If x is unknown, k is estimated from the skewness estimator cf. (A.2.6) using a 
Newton-Raphson iteration scheme. Moment estimates of x and a are subse-
quently obtained from

(A.2.11)

L-moment estimates

If x is known, L-moment estimates of a and k are given by

(A.2.12)

If x is unknown, L-moment estimates are given by

(A.2.13)
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Maximum likelihood estimates

The log-likelihood function reads

(A.2.14)

If x is known, the maximum likelihood estimates are obtained by solving

(A.2.15)

using a modified Newton-Raphson iteration scheme [Hosking and Wallis, 
1987].

Reduced variate

(A.2.16)

(A.2.17)

(A.2.18)
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Generalised Pareto distribution
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A.3 Gumbel distribution

Definition

Parameters: x (location), a (scale)

Range:  > 0,  < x < 

(A.3.1)

(A.3.2)

(A.3.3)

Moments

(A.3.4)

(A.3.5)

where gE = 0.5772… is Euler’s constant.

L-moments

(A.3.6)

(A.3.7)

Moment estimates

Moment estimates of x and a are obtained from (A.3.4)-(A.3.5)

(A.3.8)

Gumbel (1954) proposed a least squares estimation method based on the lin-
ear relationship between the ordered observations and the corresponding 
order statistics based on the Gumbel reduced variate. This method can also 
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Gumbel distribution
be interpreted as a finite sample size correction to the moment estimates. 
The estimates of x and a are given by

(A.3.9)

where mn and sn are, respectively, the mean and the standard deviation of the 
order statistics based on the Gumbel reduced variate using the Weibull plot-
ting position

(A.3.10)

For n   the estimates in (A.3.9) converges to the moment estimates in 
(A.3.8).

L-moment estimates

L-moment estimates of x and a are obtained from (A.3.6)-(A.3.7)

(A.3.11)

Maximum likelihood estimates

The maximum likelihood estimate of a is obtained by solving

(A.3.12)

using Newton-Raphson iteration. The estimate of x is subsequently obtained 
from

(A.3.13)
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Reduced variate

(A.3.14)

Truncated Gumbel Distribution

A truncated Gumbel distribution for modelling exceedances above the thresh-
old level in the PDS can be defined by truncating the Gumbel distribution at 
the threshold level. The probability density function g(x), cumulative distribu-
tion function G(x) and the quantile function xp are 

(A.3.15)

(A.3.16)

(A.3.17)

where x0 is the threshold level, and f(x) and F(x) are the probability density 
function and cumulative distribution function, respectively, of the Gumbel dis-
tribution.

The maximum likelihood estimates of  and  are obtained by solving the fol-
lowing equations using Newton-Raphson iteration:

(A.3.18)
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Gumbel distribution
(A.3.19) 
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A.4 Generalised extreme value distribution

Definition

Parameters: x (location), a (scale), k (shape)

Range:  > 0, +  x <  for  < 0,   x  +/for  > 0

Special case: Gumbel distribution for k = 0

(A.4.1)

(A.4.2)

(A.4.3)

Moments

(A.4.4)

(A.4.5)

(A.4.6)

where sgn(k) is plus or minus 1 depending on the sign of k, and (.) is the 
gamma function.
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Generalised extreme value distribution
L-moments

(A.4.7)

(A.4.8)

(A.4.9)

Moment estimates

The shape parameter k is estimated from the skewness estimator cf. (A.4.6) 
using a Newton-Raphson iteration scheme. In this scheme, an analytic 
expression of the derivative of the gamma function based on Euler’s psi func-
tion is used. Moment estimates of x and a are subsequently obtained from

(A.4.10)

L-moment estimates

For estimation of the shape parameter k the approximation given by Hosking 
[1991] is used which is an extension of the approximation presented by Hosk-
ing et al. [1985]

(A.4.11)

where

(A.4.12)

If t3 < 0.1 or t3 > 0.5, the approximation is less accurate and Newton-Raph-
son iteration is applied for further refinement. L-moment estimates of x and a 
are subsequently obtained from

(A.4.13)
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Maximum likelihood estimates

Maximum likelihood estimates of the GEV parameters are obtained using the 
modified Newton-Raphson algorithm presented by Hosking [1985].

Reduced variate

(A.4.14)

(A.4.15)

(A.4.16)
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Generalised extreme value distribution
58 EVA - © DHI



A.5 Weibull distribution

Definition

Parameters: x (location), a (scale), k (shape)

Range:  > 0,  > 0,  < x < 

Special case: Exponential distribution for k = 1

(A.5.1)

(A.5.2)

(A.5.3)

The Weibull distribution is a reverse generalised extreme value distribution 
with parameters

(A.5.4)

where subscripts GEV and WEI refer to generalised extreme value and Wei-
bull distributions, respectively.
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Weibull distribution
Moments

(A.5.5)

(A.5.6)

(A.5.7)

where (.) is the gamma function.

L-moments

(A.5.8)

(A.5.9)

(A.5.10)

Moment estimates

If x is known, the moment estimate of k is obtained by combining (A.5.5) and 
(A.5.6)

(A.5.11)







 


 1

1


























 






 

2

22 1
1

2
1




2/32

3

3

1
1

2
1

1
12

2
1

1
13

3
1


























 






 















 






 






 






 














 


 1

11

  





  


  1

121 /1
2

 





/1

/1

3 21

312
3 








1

ˆ
1

1

ˆ
2

1

)ˆ(

ˆ
22

2

















 







 











60 EVA - © DHI



which is solved using Newton-Raphson iteration. In this scheme, an analytic 
expression of the derivative of the gamma function based on Euler’s psi func-
tion is used. The moment estimate of a is then given by

(A.5.12)

If x is unknown, the moment estimate of k is obtained from the skewness esti-
mator cf. (A.5.7) using Newton-Raphson iteration. The iterative scheme is 
similar to the one applied for estimation of the shape parameter of the GEV 
distribution using –g3 and kGEV = 1/k. The skewness estimator is corrected 
according to the bias correction formula given by Bobée and Robitaille [1975]

(A.5.13)

which is valid for 0.25  g3  5.0 and 20  n  90. The bias correction factor b 
is shown in Fig A.5.1. If g3 or n fall outside the ranges of the Bobée-Robitaille 
formula, the skewness is corrected using the following general bias correction

(A.5.14)

Moment estimates of x and a are given by

(A.5.15)
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Weibull distribution
Fig A.5.1 Bias correction factor  of the sample skewness  for the Weibull 
distribution.

L-moment estimates

If x is known, L-moment estimates of a and k are given by

(A.5.16)

If x is unknown, the shape parameter is estimated from the approximate for-
mula (A.4.11) for estimation of the shape parameter of the GEV distribution 
using –t3 and kGEV = 1/k. L-moment estimates of x and a are then given by

(A.5.17)
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Maximum likelihood estimates

If x is known, the maximum likelihood estimate of k is obtained by solving

(A.5.18)

using Newton-Raphson iteration. The maximum likelihood estimate of a is 
subsequently obtained from

(A.5.19)

Reduced variate

(A.5.20)

(A.5.21)

(A.5.22)









 





n

i
in

i
i

n

i
ii

x
n

x

xx

1

1

1 )ln(
1

)(

)ln()(
1 





 






ˆ/1

1

ˆ)(
1

ˆ 







 



n

i
ixn

)1ln(:1SLSC p
x

u p
p 







 







 )1ln(lnln:SLSC2 p
x

u p
p 







 







  


 /1)1ln(:SLSC3 p

x
u p
p 




63



Weibull distribution
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A.6 Frechét distribution

Definition

Parameters: x (location), a (scale), k (shape)

Range:  > 0,  > 0,  < x < 

(A.6.1)

(A.6.2)

(A.6.3)

Moments

(A.6.4)

(A.6.5)

(A.6.6)

where (.) is the gamma function. The Frechét distribution is defined only for 
skewness larger than the skewness of the Gumbel distribution, i.e. g3 > 
1.1396.
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Frechét distribution
Moment estimates

For estimation of k the method proposed by Kadoya [1962] is employed. A 
reduced variate y is defined as follows

(A.6.7)

Since y is a linear transformation of x, the coefficient of skewness of y and x 
are identical. The expected value of the ordered sample y(1)  y(2)  ...  y(n) is 
given by

(A.6.8)

An estimate of  can now be found by solving

(A.6.9)

using iteration.

Since the computation of the expected value of y is numerically complicated, 
an approximation of the non-exceedance probability is introduced

(A.6.10)

where

(A.6.11)
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For sample sizes larger than about 40, numerical rounding errors become 
dominant for calculation of E{y(1)}. Hence, for n > 40 an asymptotic approxi-
mation is used, assuming a symmetric non-exceedance probability

(A.6.12)

The approximated E{y(i)} to be used in (A.6.9) is finally obtained from (A.6.7)

(A.6.13)

The estimation procedure can be interpreted as a bias correction to the skew-
ness estimator. The bias correction factor b is given by

(A.6.14)

where  is obtained from (A.6.6) using the estimated value of k. The bias 
correction factor is shown in Fig A.6.2.

}){(1}){( )()1( nyEFyEF 

  













 
















}){(}){(
1

1
}){(lnln

exp}{

)1()()1()(

)(
)(

yEFyEF
n

i
yEFu

u
yE

ni

i
i 

1
ˆ

ˆ
,ˆ)1(ˆ

3

*
3

3
*
3 




̂3
67



Frechét distribution
Fig A.6.2 Bias correction factor  of the sample skewness  for the Frechét 
distribution.

Having estimated k, moment estimates of x and a are subsequently obtained 
from

(A.6.15)

Reduced variate

(A.6.16)
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A.7 Gamma/Pearson Type 3 distribution

Definition

Parameters: x (location), a (scale), k (shape)

Range:  > 0,   x <  for  > 0,   x  for  < 0

Special cases: Exponential distribution for k = 1 and a > 0. Normal distribution 
for g = 0

(A.7.1)

(A.7.2)

(A.7.3)

where (.) is the gamma function, and G(.,.) is the incomplete gamma inte-
gral. No explicit expression of the quantile function is available. The standard-
ised quantile up is determined as the solution of F(u) = p where u =(xx)/a 
using Newton-Raphson iteration.

Moments

(A.7.4)

(A.7.5)

(A.7.6)
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Gamma/Pearson Type 3 distribution
L-moments

(A.7.7)

(A.7.8)

(A.7.9)

where Ix(.,.) is the incomplete beta function ratio. Rational-function approxi-
mations of t3 as a function of k are given by Hosking and Wallis [1997].

Moment estimates

If x is known, moment estimates of a and k are obtained from (A.7.4)-(A.7.5)

(A.7.10)

If x is unknown, the shape parameter k is estimated from the skewness esti-
mator cf. (A.7.6). The skewness estimator is corrected according to the bias 
correction formula given by Bobée and Robitaille [1975]

(A.7.11)

which is valid for 0.25  g3  5.0 and 20  n  90. The bias correction factor b 
is shown in Fig A.7.3. If g3 or n fall outside the ranges of the Bobée-Robitaille 
formula, the skewness is corrected using the following general bias correction

(A.7.12)

Moment estimates of x and a are obtained from (A.7.4)-(A.7.5)

(A.7.13)

where sgn(.) is plus or minus 1, depending on the sign of .
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Fig A.7.3 Bias correction factor  of the sample skewness  for the Pearson 
Type 3 distribution.

L-moment estimates

If x is known, L-moment estimates of a and k are obtained from (A.7.7)-
(A.7.8). For estimation of k, rational-function approximations of k as a func-
tion of the L-coefficient of variation t2 are applied [Hosking, 1991]

For t2 < ½:

(A.7.14)

For t2  ½:

(A.7.15)
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Gamma/Pearson Type 3 distribution
The coefficients of the rational functions are shown in Table A.7.1. The esti-
mate of a is subsequently obtained from

(A.7.16)

For estimation of k when x is unknown, rational-function approximations of k 
as a function of the L-skewness are applied [Hosking and Wallis, 1997]

For 3 < 1/3:

(A.7.17)

For t3  1/3:

(A.7.18)

The coefficients of the rational functions are shown in Table A.7.1. The esti-
mates of x and a are subsequently obtained from

(A.7.19)

where sgn(.) is plus or minus 1, depending on the sign of .

Table A.7.1 Coefficients of the rational-function approximations (A.7.14)-(A.7.15) 
and (A.7.17)-(A.7.18).

Ai Bi Ci Di

A1=-0.3080 B1=0.7213 C1=0.2906 D1=0.36067

A2=-0.05812 B2=-0.5947 C2=0.1882 D2=-0.59567

A3=0.01765 B3=-2.1817 C3=0.0442 D3=0.25361

B4=1.2113 D4=-2.78861
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Maximum likelihood estimates

If x is known, maximum likelihood estimates are obtained from the following 
set of equations

(A.7.20)

where y(.) is Euler’s psi function. An estimate of k is found from the first equa-
tion using bisection.

Reduced variate

(A.7.21)

D5=2.56096

D6=-0.77045

Table A.7.1 Coefficients of the rational-function approximations (A.7.14)-(A.7.15) 
and (A.7.17)-(A.7.18).

Ai Bi Ci Di
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Gamma/Pearson Type 3 distribution
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A.8 Log-Pearson Type 3 distribution

Definition

Parameters:  (location), a (scale), k (shape)

Range:  > 0, exp()  x <  for  > 0, 0  x  exp(for  < 0

Special case: 2-parameter log-normal distribution for gy = 0

If X is distributed according to a log-Pearson Type 3 distribution, then Y = 
ln(X) is Pearson Type 3 distributed. The parameters x, a and k are, respec-
tively, the location, scale and shape parameter of the corresponding Pearson 
Type 3 distribution.

(A.8.1)

(A.8.2)

(A.8.3)

where (.) is the gamma function, and G(.,.) is the incomplete gamma inte-
gral. No explicit expression of the quantile function is available. The standard-
ised quantile up is determined as the solution of F(u) = p where u = (ln(x)x)/a 
using Newton-Raphson iteration

Moment estimates

Moments in log-space
Parameter estimates are obtained from the sample moments of the logarith-
mic transformed data {yi = ln(xi), i = 1,2,...,n} using (A.7.11)-(A.7.13).

Moments in real space
Bobée [1975] proposed an estimation method based on the moments in real 
space. The moments about the origin are given by

(A.8.4)
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Log-Pearson Type 3 distribution
The estimate of a is obtained from

(A.8.5)

where the sample moments are calculated as

(A.8.6)

Eq. (A.8.5) is solved using a Newton-Raphson iteration scheme. Estimates of 
x and k are subsequently obtained from

(A.8.7)

These estimates are corrected using a bias correction of the equivalent Pear-
son Type 3 skewness cf. (A.7.6) according to the Bobée and Robitaille [1975] 
formula.

L-moment estimates

Parameter estimates are obtained from the sample L-moments of the loga-
rithmic transformed data {yi = ln(xi), i = 1,2,...,n} using (A.7.17)-(A.7.19).

Reduced variate

(A.8.8)
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A.9 Log-normal distribution

Definition

Parameters: x (location), my (mean), sy (standard deviation)

Range: y > 0, x > 

If X is distributed according to a log-normal distribution, then Y = ln(X-x) is 
normally distributed. The parameters my and sy

2 are the population mean and 
variance of Y.

(A.9.1)

(A.9.2)

(A.9.3)

where (.) and -1(.) are, respectively, the cumulative distribution function 
and the quantile function of the standard normal distribution.

Moments

(A.9.4)

(A.9.5)

(A.9.6)

L-moments

(A.9.7)

(A.9.8)
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Log-normal distribution
Moment estimates

If x is known, moment estimates of my and sy are given by the sample mean 
and standard deviation of the logarithmic transformed data {yi = ln(xi-x), i 
=1,2,…,n}.

If x is unknown, four different estimation methods are available. Two methods 
based on a lower bound quantile estimator of x, and two methods based on 
the sample moments in real space {xi, i=1,2,…,n} where a bias correction of 
the sample skewness is adopted.

Lower bound quantile estimators
The lower bound quantile estimator of x proposed by Iwai [1947] is given by

(A.9.9)

where x(n)  x(n-1)  …  x(1) is the ordered sample, M is the truncated integer 
value of n/10, and xg = (x1x2…xn)1/n is the geometric mean. The restriction x(i) 
+ x(n+i-1) – 2xg > 0 must be satisfied to obtain an estimate of x.

Stedinger [1980] proposed a slightly different estimator, which uses the sam-
ple median instead of the geometric mean and includes only the largest and 
the smallest observed values, i.e.

(A.9.10)

where xmed is the sample median equal to x((n+1)/2) for odd sample sizes, and 
½(x(n/2)+x(n/2+1)) for even sample sizes.

Having estimated the location parameter, estimates of y and y are given by 
the sample mean and standard deviation of the logarithmic transformed data 
{yi = ln(xi- ), i =1,2,…,n}.

Sample moments in real space
For estimation of the three parameters from the sample moments of {xi, 
i=1,2,…,n} a bias correction of the sample skewness is adopted

(A.9.11)

Two different bias correction formulae are employed (1) the Ishihara-Takase 
formula, and (2) the Bobée-Robitaille formula.
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In the bias correction procedure proposed by Ishihara and Takase [1957] an 
estimation method based on order statistics is employed. In this case the fol-
lowing parameterisation of the log-normal distribution is applied

(A.9.12)

A reduced variate y is defined as follows

(A.9.13)

Since y is a linear transformation of x, the coefficient of skewness of y and x 
are identical. The expected value of the ordered sample u(1)  u(2)  ...  u(n) is 
determined by using the Hazen plotting position

(A.9.14)

An estimate of  can now be found by solving

(A.9.15)

using an iterative scheme. The bias correction factor b is then given by

(A.9.16)

where  is obtained from

(A.9.17)
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Log-normal distribution
The bias correction factor is shown in Fig A.9.4.

The parameter sy is estimated from the bias-corrected skewness estimator cf. 
(A.9.6) using a Newton-Raphson iteration scheme. Estimates of x and my are 
subsequently obtained from (A.9.4)-(A.9.5)

The bias correction proposed by Bobée and Robitaille [1975] reads

(A.9.18)

which is valid for 0.25  g3  5.0 and 20  n  90. The bias correction factor b 
is shown in Fig A.9.5. If g3 or n fall outside the ranges of the Bobée-Robitaille 
formula, the skewness is corrected using the following general bias correction

(A.9.19)

(A.9.20)
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Fig A.9.4 Bias correction factor  of the sample skewness  for the log-normal 
distribution [Ishihara and Takase, 1957].
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Log-normal distribution
Fig A.9.5 Bias correction factor  of the sample skewness  for the log-normal 
distribution [Bobée and Robitaille, 1975].

L-moment estimates

If x is known, my and sy are estimated from the sample L-moments of the log-
arithmic transformed data {yi = ln(xi-x), i = 1,2,...,n}.

(A.9.21)

Maximum likelihood estimates

If x is known, maximum likelihood estimates of my and sy are given by

(A.9.22)

If x is unknown, the maximum likelihood estimate of x is obtained by solving

(A.9.23)
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using a bisection iteration scheme. The parameter estimates of my and sy are 
subsequently obtained from (A.9.22).

Reduced variate

(A.9.24))(
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Log-normal distribution
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A.10 Square root exponential distribution

Definition

Parameters: a (scale), k (shape)

Range:  > 0,  > 0, x  0

The distribution was defined by Etoh et al. [1987].

(A.10.1)

(A.10.2)

(A.10.3)

The square root exponential distribution is a mixed distribution with a finite 
probability mass placed at x = 0. The remaining probability is continuously 
distributed for x > 0. No explicit expression of the quantile function exists. The 
quantile is calculated from (A.10.3) using Newton-Raphson iteration.

Maximum likelihood estimates

The maximum likelihood estimate of a is obtained from

(A.10.4)

using Newton-Raphson iteration. The estimate of k is subsequently found 
from

(A.10.5)
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Square root exponential distribution
Reduced variate

(A.10.6)

(A.10.7)
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A.11 Auxiliary functions

Gamma function

For calculation of the gamma function, a numerical function that calculates 
the logarithm of the gamma function is employed. The applied numerical 
method is that of Pike and Hill [1966].

Euler’s psi function

Euler’s psi function is the derivative of the logarithm of the gamma function

(A.11.1)

The applied numerical method for calculation of Euler’s psi function is that of 
Bernardo [1976].

Incomplete gamma integral

The incomplete gamma integral is defined as

(A.11.2)

The applied numerical method is that of Shea [1988].

Cumulative distribution function of standard normal distribution

The cumulative distribution function of the standard normal distribution (.) 
can be expressed in terms of the error function erf(.)

(A.11.3)

For calculation of the error function the numerical method in Hart et al. [1968] 
based on a rational function approximation is applied.

Quantile function of standard normal distribution

The numerical method applied for calculation of the quantile of the standard 
normal distribution is that of Wichura [1988] which is based on a rational func-
tion approximation.
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Auxiliary functions
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