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Traditionally, sediment transport is defined in three modes of transport: Bed load,
suspended load and wash load. Among others, a comprehensive description is given by
Engelund & Hansen (1967) and Jansen et al. (1979), see Figure 1.1.

Sediment transport

(Origin)

Bed Material

Wash Load

Bed Load

Suspended Load

Sediment transport

(Mechanism)

Figure 1.1 Classification of sediment transport. From Jansen et al. (1979)

The latter defines bed load transport as the transport of bed material that is rolling and
sliding along the bed. Suspended load transport is defined as the transport of sediment,

which is suspended in the fluid for some time. According to the mechanism of

suspension, suspended sediment may belong to the bed material load and the wash
load. Wash load is defined as the transport of material finer than the bed material. It has
no relation to the transport capacity of the stream. Usually, a grain diameter of around
0.06 mm divides the region of wash load and bed material load. The Sand Transport
Module only considers the bed material load.

1.1  Model Type

MIKE 21 & MIKE 3 Flow Model FM, Sand Transport Module, calculates the sediment
transport rates using two different model types:

*  Pure current

e Combined current and waves

The sediment transport calculations are based on the hydrodynamic conditions, sediment
properties and, for ‘Combined current and waves’, wave conditions in the individual

elements.

The sand transport calculations are carried out using a mean horizontal velocity
component. The sand transport calculations in MIKE 3 Flow Model FM are thus not truly
three-dimensional, but carried out in two dimensions in the horizontal direction. However,
the findings that a more detailed 3D model can give of the hydrodynamic conditions are

included.

The sediment transport rates are calculated for sand fractions without taking inertia
effects into account. This means that transport rates for shingle sized material often will

be overestimated.

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module
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For the ‘Pure current’ option the sediment transport rates are calculated directly during
the simulation based on the actual conditions. The scientific background behind the
calculation of the sediment transport rates for this option is given in Section 2.

For the ‘Combined current and waves’ option the sediment transport rates are found by
linear interpolation in a sediment transport table. This table is generated beforehand by
the MIKE 21 Toolbox utility program ‘Generation of Q3D Sediment Tables’. The scientific
background behind the calculation of the values in the sediment transport table is given in
Section 3.

1.2  Input Velocity

The sand transport in a flow will mainly take place near the bed, even the part of the sand
transport that takes place as suspended load.

The sand transport calculations in MIKE 21 and MIKE 3 Flow Model FM, Sand Transport
Module, are carried out using a mean horizontal velocity component, assuming the
vertical velocity profile to be logarithmic. In cases where the vertical velocity profile differs
significantly from a logarithmic velocity profile the findings from a 3D model setup may
give considerably different results compared to a 2D model setup.

The sand transport calculations in MIKE 3 Flow Model FM are thus not truly three-
dimensional, but carried out in two dimensions in the horizontal direction. However, the
findings that a more detailed 3D model can give of the hydrodynamic conditions are
included.

In MIKE 21 Flow Model FM the mean horizontal velocity component is set to the depth-
averaged velocity from the hydrodynamic module.

In MIKE 3 Flow Model FM the mean horizontal velocity component may be calculated in
one of two ways:

. Depth-averaged velocity calculated from the 3D flow field from the hydrodynamic
module
. Mean velocity derived from the bottom stress value from the hydrodynamic module

In the first case the mean velocity component is found from the 3D flow field by
integration over depth:

— _ h — d
\Y —IOV(Z) z (1.1)

Where V(z) is the velocity component at distance z above the bed and h is the local water
depth.

In the latter case the mean velocity component is determined by the bottom stress value:

V = [, /p<, (1.2)

Where 11 is the bottom stress value, p is the density of water and c: is the drag
coefficient.

The calculation of the drag coefficient depends on the choice of Model Type and, in the
case of ‘Pure current’, also the local bed resistance for the sand transport.

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 2
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For the ‘Pure current’ option, the drag coefficient is taken directly from the hydrodynamic
simulation or found by one of the equations below.

c, =% a3
g

o :W (1.4)

Cs Zm (1.5)

Where g is gravity, C the Chezy number, M the Manning number, a the resistance
coefficient and b the resistance power.

For the ‘Combined current and waves’ option, the drag coefficient is calculated as:

1
2

)
K K,

Where ks is derived from the hydrodynamic simulation.

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module
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2 Pure Current

2.1 Introduction

For the pure current case (river flow) sediment transport rates are calculated continuously
through the simulation based on sediment transport formulae derived from either
empirical or deterministic principles. The sediment transport modelling is divided into bed
load and suspended load due to their different nature. The bed load, which mainly is
controlled by the bed shear stress or stream power per unit area, reacts instantaneously
with the flow. In modelling terms this is referred to as an equilibrium transport description.
The suspended load on the other hand is characterised by a phase-lag in the transport
compared to the flow, because it takes some time or distance to adapt the concentration
profile over the vertical to the flow. Model concepts that include the phase-lag effect on
the transport of suspended sediment are termed non-equilibrium models and are
characterised by a sediment concentration that can differ from the equilibrium
concentration. If the actual concentration is greater than the equilibrium concentration,
the system will be over-loaded and tend to deposit sediment on the bed; while if under-
loaded, it will try to erode the bed.

Both the flow velocity and the concentration profile vary over the water depth. The flow
can typically be divided into a logarithmic profile in the main stream direction and a
secondary flow profile in the transverse direction. The strength of the secondary flow will
mainly be related to the flow curvature and the bed resistance. The concentration profile
can typically be approximated with a Vanoni profile. The suspended sediment transport
components can be obtained by integrating the product of the velocity components and
the concentration over the water depth. However, in order to do so detailed information
about the vertical velocity profile is required. The sediment model is therefore extended
with a model for the helical flow (secondary flow of the first kind) that includes these
effects in the sediment transport through a pseudo 3D description. Furthermore, the bed
load is corrected for gravitational bed slope effects.

In the 2D model the helical flow is handled separately in the sediment transport module
and does not have any impact on the HD-model. In reality, the secondary flow will have
an impact on the flow distribution, because in a river bend the secondary flow will be
responsible for moving high-momentum water towards the outside of the bend and low-
momentum water towards the inside of the bend. When using 3D HD-models this
phenomenon is automatically included and the AD-model for the helical flow becomes
irrelevant.

2.2 Hydrodynamics

2.2.1 Helical flow

Mathematical modelling of flow in a river bend requires insight into the physics of the
water motion. For this purpose a physical explanation of the flow distribution in a bend is
given below.

When water flows into a river bend, an imbalance of centripetal force starts to generate
an outward motion near the free surface and an inward motion near the bed. The reason
is that the main stream velocities in the upper part of the flow are greater than velocities
in the lower part of the flow. Therefore, water particles in the upper part of the water
column must follow a path with a larger radius of curvature than water particles in the

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 4
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lower part to maintain nearly constant centripetal force over the depth. With velocity V
and radius of curvature R, centripetal acceleration is V ?/R.

Simultaneously with the generation of helical motion, a lateral free surface slope is
created to maintain equilibrium between the lateral pressure force, centripetal force and
lateral shear force generated from friction along the bed. The classical analytical solution
to this flow problem predicts a single helical vortex, which transports fluid downstream in
spiral trajectories. This spiral (or helical) flow pattern can be considered as the sum of a
longitudinal flow component (main flow) and a circulation in a plane perpendicular to the
main flow direction (secondary flow). The secondary flow is directed towards the centre of
curvature near the bottom and outwards in the upper part of the cross-section as
illustrated in Figure 2.1.

For changing bend curvature and bed topography, the flow distribution will lag slightly
behind the change in topography due to the inertia of the main flow. Analytical
expressions for helical flow intensity and the length scale for adaptation of secondary flow
to changes in topography are discussed below.

The intensity of the helical flow is the magnitude of the transverse velocity component.
This is defined by de Vriend (1981) as:

. h
|5=V . ES (21)
Where
\% Main flow velocity
Rs Radius of curvature of streamlines
is Helical flow intensity

Main flow

acondary flow

Figure 2.1 Helical flow in river bends

In Section 2.2.2 the vertical distribution of the helical flow is described. Secondary flow
due to curving streamlines causes a small deviation &s in flow direction near the bed,
away from the main stream direction. This also causes deviation in the bed shear stress
direction.

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 5



N
Pure Current MI KE

Figure 2.2 Deviation of bed shear stress due to helical flow

The direction of bed shear stress in a curved flow field plays an important role in a bed
topography model for river bends. The logarithmic model obtained by Rozovskii (1957),
among others, yields a bed shear stress direction given by:

tan55=ﬁ-L (2.2)
Rs
Where
h Water depth
Rs Radius of curvature of flow stream lines
Os Angle between bed shear stress and depth averaged shear stress (or
flow)

The parameter 3 is defined as:

_ 2,49
p=a = @ " ) (2.3)
Where
K Von Karman's constant, 0.4
g Acceleration of gravity (9.81 m/s?)
C Chezy number
a Calibration constant

The approximate value of gis 10. Other models for the vertical velocity profile, such as
the power model, give slightly different values of . Increasing flow resistance,
represented by a decreasing Chezy number, gives a smaller p-value (i.e. less helical flow
intensity and a smaller deviation in the direction of bed shear stress), as discussed by
Olesen (1987). In the morphological model, « is specified as an expert user calibration
parameter (constant or varying in space). The default value is 1.

In regions with changing curvature of the streamlines, the secondary flow will adapt
gradually. The inertia of the secondary flow has been investigated analytically by (among
others) Rozovskii (1957) and Nouh & Townsend (1979). De Vriend (1981), Booij &
Kalkwijk (1982) and Kalkwijk & Booij (1986) have carried out numerical investigations on
this topic. Further investigations are discussed in Olesen (1987).

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 6
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Modelling of the adaptation of secondary flow is complicated by the fact that (according to
numerical experiments) adaptation of the secondary flow profile is considerably faster
near the bed (where bed shear stresses act) than higher up in the water column. Strictly
speaking, the process of adaptation cannot be characterised by one length scale only.
Adaptation length is a function of water depth and friction number. In the present
morphological model, the following differential length scale is applied:

D= 1.2hC 24

st~ — 2.4
Jo

Where

Ast Length scale for secondary flow adaptation

h Water depth

C Chezy number

g Acceleration of gravity

Consequently, the direction of bed shear stress for continuously varying curvature in
steady flow conditions can be calculated by:

At M+tané‘s:ﬂ.£ (2.5)
0 Ss Rs
Where
Ss Stream-wise coordinate along the streamline
Rs Radius of curvature of the streamlines
h Water depth
Ast Length scale for secondary flow adaptation

The equation is transformed into a general Cartesian (x, y) coordinate system through the
following equations:

tan 55—,31
ﬁatan55+ﬂ atan55+ Rs -0 (2.6)
0sy  OX osy oy At
Using x _ P and & g

ass /p2+q2 ass = p2+q2 (27)

Where p and q are the two Cartesian flux components working in the horizontal plane as
shown in Figure 2.3, we get:

tan§s_ﬁL
p_ odtns,, q otang Rs g (2.8)

Jpirgt X preg? O As

By rearranging the equation and including an unsteady term this finally leads to:

2+ 2
otng;  otngsg  otanss VP +d (tan5s—ﬂl)=0 (2.9)
ot OX oy h-As Rs

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 7
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The equation is solved time-true numerically with the MIKE-FM AD (advection-dispersion)
model. It is seen that that the equation contains no dispersion and the helical flow is

generated from the source term.

Streamline

Transformation from stream-wise coordinates (Ss, ns) to general Cartesian coordinates

Figure 2.3
x.y)

Figure 2.4  Streamline curvature based on velocity vector

The curvature of streamlines is calculated as a cross product between velocity and
acceleration vector, as illustrated in Figure 2.4:

1 _ |uxyl
— = = 2.10
R 1o (2.10)
In the Cartesian (x, y) coordinate system, the acceleration vector is (see Figure 2.4):
C o du v (2.11)
Ut dt '
Assuming quasi-steady conditions the Cartesian acceleration components can be
reduced to:
du_odudox ouoy ou ou  au
— =+ ——+—=U—+V— (2.12)
dt oxot oyot ot ox oy
dv_ovox ovoy ov N oV
—=— 4+ ——4+—=U—+V— (2.13)
dt oxot oyot ot ox oy
8
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The cross product between the velocity vector and the acceleration vector can hereafter
be obtained as:

v 0 u 0 _Jju v
Uxty =i|dv [-jjdu  +k|du ﬂ:u2@+uv(@—a—uJ—vza—u (2.14)
dt dt dt ot x X 2
Finally, the radius of curvature can be calculated from:
, OV (Eiv auJ , Ou
U —+4uv| ——— [-v® —
i: OX oy oOx oy (2.15)
R, (u2 +V2)1-5

Note that the radius of curvature is calculated with a sign, stating that the curvature and
helical flow is positive when flow is bending to the left and negative when bending to the
right. Note further that the computed deviation in bed shear stress due to helical flow,
tan &, is based on the assumption of quasi-steady hydrodynamic conditions. In rapidly
varying flow conditions, the expression does not apply.

Once the deviation in bed shear stress is determined, the corresponding helical flow
intensity can be estimated from:

. V-h_ VvV
is= : =——1tan g, (2.16)

The helical flow intensity is of importance for the analysis and parameterisation of the
secondary flow velocity profiles.

2.2.2 \Vertical velocity profiles

The hydrodynamic model used for sediment transport applications is based on depth-
averaged flow equations. However, information about the vertical velocity profiles is
required for determining the bed shear stress and for the suspended sediment transport
calculations in the morphological model. Even though the sediment model is formulated
in general Cartesian coordinates, a local coordinate system (s, n) aligned with the main
streamline is applied for the analysis of the vertical velocity profiles.

Introducing the Reynolds stress concept and the Prandtl mixing length hypothesis, and
assuming that viscous (laminar) friction is much smaller than turbulent friction, the shear
stresses in the fluid can be expressed by:

Ts= pE@ (2.17)
oz
Where
P Density of water
u Velocity in main flow direction
z Vertical coordinate
E Turbulent (eddy) viscosity coefficient
s Shear stress in main flow direction

A similar relation for m applies for the transverse direction. Introducing this into the
Navier-Stokes equations (see Olesen, 1987) and assuming steady conditions, the

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 9
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following flow equations for the flow in the longitudinal direction, s, and the transverse
direction, n, emerge:

ou ou ou u 10P 0, odu
Uu—+vV—+W—-==+—+——=—(E—

os  on oz R pos oz az)

(2.18)

o, ov N u, 1oP_0,_ov
Uu—+v—+w—-—+-—=—(E—)
os on oz R pon oz oz

Where

Velocity in longitudinal flow direction
Velocity in transverse flow direction
Velocity in vertical direction

Hydrostatic pressure

Coordinate in stream wise direction
Coordinate in transverse direction

Radius of curvature of the main streamline

TSwTus < c

By assuming a hydrostatic pressure distribution P over the vertical, water pressure is
simply a function of the water depth.

The vertical distribution of flow velocity can be obtained by asymptotic expansion. First,
the zero order approximation of the longitudinal velocity is obtained from the momentum
equation in the mainstream direction, assuming v and w and the gradient of the main
velocity (du/ds) to be zero (i.e. fully developed flow). Next, the transverse velocity is
computed from the momentum equation in the transverse direction with the zero-order
longitudinal velocity inserted and disregarding v + dv/dn and w + dv/dz.

A first order approximation of the longitudinal velocity can be obtained by introducing the
first order secondary flow velocity v into the simplified momentum equation in the
mainstream direction. De Vriend (1981) and De Vriend & Struiksma (1983) have a
thorough description of this. The two listed references show that the form of the first order
solution differs slightly from the zero order solution.

The boundary conditions for the momentum equations are zero shear stress at the free
water surface and no slip at the bottom (zo, the roughness height).

The reference level z», shown in Figure 2.5, defines the limit between suspended load
and bed load transport. In the model the reference level is chosen as the height above
the defined bed at which the no-slip condition occurs. Thus, h defines the height at which
suspended sediment transport occurs, and H is the total water depth. In the following the
non-dimensional vertical coordinate 7 is introduced. The 7-system is positioned with its
origin at the bed and is defined by 7 = z/H.

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 10
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Figure 2.5  Vertical velocity profile in the stream wise direction

The height of the reference is chosen as the height above the defined bed at which the
no-slip condition occurs, i.e. N0 = zp /H in order to fit with the theory of Galapatti (1983),
who couples suspended sediment transport to the vertical velocity and concentration
profiles.

The velocity profile can be related to the depth-averaged velocity by applying a unit
profile function pi(n), as shown below.

u@)=Vv p,(n) ,n= % (2.19)

Solution of the momentum equation in the mainstream direction requires information
about the vertical eddy viscosity or the mixing length (using Prandtl's definitions).
Applying a logarithmic velocity profile (fully developed rough flow), the unit profile
becomes:

p(7)= —= In[lj =ﬁln(3j (2.20)
K

\ up xC s

The value of 7o is obtained from the closure criterion:

1 xC
[ pmdn=1 = n,=Exp 5, -1-"= (2.21)

Jo

The equation for determination of the no-slip level is solved by iteration.

As seen from the unit profile expression, the mainstream velocity profile only depends on
the vertical coordinate 7 and the resistance number, which is convenient for numerical
purposes. This means that the mainstream velocity profile for fully developed turbulent
flow can be parameterised by the universal function:

o, un) ol VO
Dl—f(ﬂ,vj— f[n, c ] (2.22)

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 11
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Where the symbols ur and C represents the friction velocity and the Chezy number,
respectively.

The unit mainstream velocity profile function is evaluated at a number of discrete points
located along a vertical logarithmic axis, so that the most intense resolution is obtained

near the bottom, where the largest velocity gradients occur. Initially, the discrete vertical
points are distributed along the vertical r-coordinate axis by the simple relation:

D= +A(j+1) (2.23)

Where

n Non-dimensional coordinate 7= z/H

A =1.246-10° Initial vertical spacing

n =400 Number of numerical points

] Index for vertical level with 7:=0 and =1

But after the no-slip level, where 70 has been obtained, the discrete points are
redistributed, so that all discrete points are used to resolve the vertical velocity profiles
from the no-slip level and up to the free water surface. This is done by the relation:

old old new

m = (s —n) (L-m), with 2™ =n, (2.24)

A schematisation of the secondary flow and the vertical velocity profiles are shown in
Figure 2.6 and Figure 2.7:

Figure 2.6 Sketch of the river channel

P,
(primary|

2 (secondary)

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 12
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Figure 2.7 Main and secondary velocity profiles

The truncated first order version of the momentum equation in the transverse direction
expresses the equilibrium between pressure forces, friction forces and centripetal forces:

2
i@_i%_v_:o (2.25)

Where the transverse shear stress is given by:

= pE. 20 (2.26)
oz
And the symbols represent:
z=H-7p Vertical coordinate
P=p040S Hydrostatic water pressure
S Surface elevation
\% Depth-averaged mainstream velocity
% Transverse (secondary) velocity
Rs Radius of curvature of stream line
n Transverse (horizontal) coordinate
The vertical eddy viscosity coefficient is assumed to be parabolic:
E=sHun(l-n)=rHue 2.27)
Where
€ Non-dimensional eddy viscosity
K Von Karman's constant, 0.4
H Water depth

An equilibrium flow condition is achieved when the sum of the pressure, friction and
centripetal force term equals zero.

Likewise the primary flow profile p1, a normalised profile p2 for the secondary velocity
profile v, is applied:

VH
V=

P,(17)=is-Pp,(77) (2.28)

S
Where is, is the helical flow intensity.

Insertion of the three equations above into the equation for the transverse force balance
results in the following expression after some re-arranging:

0
Reo |3 0 ( 0P 1V 020
xkuiV )Jon 0On on K Us

Averaged over the depth, the secondary flow is by definition zero. Near the bottom at 7 =
no the velocity vanishes. Thus, the following two conditions must be fulfilled:
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1
_f pdn =0 (2.30)
170
and
p,(1,) =0 (2.31)

The first term in the transverse force balance is constant over the depth. This means that
the term can be substituted by a constant denoted A:

R
A{ 9 J§ (2.32)
kU V Jon

Integration of the transverse force balance from an arbitrary level in the water column 7 to
the water surface » = 1 and substituting the constant denoted A into the equation results
in the following expression:

0 1V
P 2 LV g an) .39
on K Uf

Where the shear stress term used on the left side is equal to zero at the free surface,
which is due to the fact that no shear forces (like wind) is assumed to act on the free
water surface.

The force balance can be rewritten as:

(2.34)

op,M)_1t V. L, A(-p)
== dn-——2
on g;[icuf Py €77 &

The secondary velocity profile described by p2z(7) can now be obtained by integration from
the no-slip level at which pz(7 =7o) to a point in the water column 7. Hereby, we obtain:

p, () = :‘l(

0

1tV t1-7
| —pid -A|—d 2.
gfkuf Py 77}177 | _dn (2.35)

n 70
The function pz(7) is conveniently split up into two functions:
P, (17)= Pu()- A pyy(n) (2.36)

Where the function p21(7) is given by

1 Vv
pm(n):j{—ji— prdn}dn (237)
no [ €5\ KU
and the function pzz2(7) is given by
n 1_77 n 1_77 n 1 ’7
p(n)= [ —Ldn=| df7=j—df7=|n(—J (2.38)
o € o 1-1) o o
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The integration constant A, representing the transverse surface slope, can now be
obtained from the two functions p21(7) and p22(#) utilizing that the depth-integrated
secondary flow velocity is zero:

j' p21(77)d77

— 10
A=T—" (2.39)

I pzz(ﬂ)d n

o

The function pz1(#) is singular for 7= 1, which therefore requires special numerical
treatment. Furthermore, p21(7) consists of integrals with no analytical solution and
therefore only can be solved by numerical integration. However, the inner integral in the
expression for p21(7) can be solved analytically. This results in:

ip ()7 = ZCJI 2[7710]d77=

(2.40)

9

2Cz[(l 77)(2+2In770+ln 770)+77(2In77+2ln770In77 Inzn)]

Inserting the right hand side into the expression for p21(7) yields:

t2+2Ingy, +In?
pﬂ(n)=@j = o +

(2.41)

e, 2(1+Iny j —j'””d}

x°C » w 1=

The first integral in the new expression for p21(7) has the analytical solution:

12+2Inny, +In?
J‘ 77707 o dq=(2+2ln770 +1n? ﬂO)In(ﬂlJ (2.42)
0

n

The two remaining integrals in the equation for p21(#) do not have any analytical solutions
and are evaluated by numerical integration. For =1 some problems can occur due to
the singularity. However, by use of the rule of L"Hospital, it can be found that:

2
In 77—>0f0r77—>1and Inn
1-n 1-n

——— -1forn—>1 (2.43)

The shape function for the primary and secondary velocity profiles, which are used for the
evaluation of the suspended sediment transport rates, are plotted in Figure 2.8 and
Figure 2.9, respectively, for four different Chezy numbers.

© DHI - MIKE 21 & MIKE 3 Flow Model FM - Sand Transport Module 15



Pure Current MIKE ié

Powered by DHI

0.9
0.8
0.7
0.6
7 0.5
0.4 -

0.3 A

—C=20
0.2 4 —C=40
—C=60
—C=80

0.1 4

P

Figure 2.8 Shapes of the primary velocity profile for varying Chezy numbers (m*/s)

Figure 2.9 Shapes of the secondary velocity profile for varying Chezy numbers (m*/s)

As shown, the absolute value of the profile functions near the bottom increases for
increasing Chezy number, i.e. reduced flow resistance.

The shape of the velocity profiles is also sketched in Figure 2.10 for two Chezy humbers
(from Olesen, 1987) and compared with the profiles obtained using a power assumption
on the velocity profile instead. Only slight differences between the flow profiles of the
different mixing length models (power profile versus logarithmic velocity profile) can be
observed in the figure, although the logarithmic model seems to result in a somewhat
larger secondary flow.
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z
Logaritmic

Figure 2.10 Vertical distribution of eddy viscosity and flow velocity profiles for a logarithmic and a
power profile assumption, respectively (from Olesen, 1987)

The depth integration of the mathematical model is based on an assumption that the
horizontal streamlines are approximately parallel through the water column. This means
that the secondary velocity component v is much smaller than the main flow component
u. Due to the non-uniform velocity distribution over the depth, some velocity distribution
coefficients on the flow convection terms emerge, as discussed by Olesen (1987).
Applying depth integration the momentum equations can be transformed into:

1P |-0u -0u WU| 75 Ke|OUih . uijsh
——tklU—FV—+ — [+ =+ ———+2—— =0 (2.44)
p 05 6 on R| h hi| on R
and
—av 2 Ui
i@+ w u@_u_ +@+ﬁ._aulsh:0 (2.45)
p on os R h  h os
The two velocity distribution coefficients kuu and ksn are defined as:
1
ku= [ [ps(n)fdn (2.46)
0
and
1
ken= | (1) B, () (2.47)

0

The coefficient kuu is very close to unity and can in most cases be disregarded (default 1).
The ksn coefficient is related to the convection of the main flow momentum by the
secondary flow. Kalkwijk et al. (1980) and Olesen (1987) investigated the influence of the
secondary flow convection. The latter also compared velocities from flume tests with
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numerical experiments using different models of the ksn coefficient. For narrow and
smooth channels, the ksn coefficient has some importance, whereas for natural rivers the
effect is negligible. Consequently, the convection of momentum by secondary flow is not
included in the present model.

2.3  Sediment Transport

For morphological development of alluvial rivers with interaction between bed bathymetry
and hydrodynamics, only bed material transport is of interest. Thus, only bed load and the
part of the suspended load originating from the bed material is considered. The behaviour
of suspended load is fundamentally different from that of bed load, which has to be taken
into consideration in the sediment transport modelling.

A description of bed load transport modelling is provided in Section 2.3.1. A description of
the suspended load transport modelling is provided in Section 2.3.2. A number of explicit
sediment transport formulas for bed load, suspended load and total load have been
developed over the years. The formulas implemented in the present modelling system, at
the core of the sediment transport modelling, are described in Section 2.3.3.

2.3.1 Bed load transport

The interaction between the bed load and the alluvial bed is one of the most fundamental
aspects of the morphological behaviour of a river bend (see Engelund, 1974 and
Struiksma et al., 1985).

In contrast to the suspended load, it is assumed that the bed load responds immediately
to changes in local hydraulic conditions. Thus, there is no need for advection-dispersion
modelling in connection with bed load. However, two important effects must be taken into
account:

1. The deviation of the direction of the bed shear stress from the mean flow direction
due to helical flow; and
2. The effect of a sloping river bed.

The first issue requires separate modelling of helical flow prior to bed load computations
(see Section 2.2.1).

When discussing the local bed load sediment transport capacity of a flow, it is convenient
only to consider sediment transport in uniform shear flow. For this schematised case
numerous transport relations have been presented during past decades. For a review of
this topic, suggested references are Vanoni (1975 and 1984). The transport relations
implemented in the present modelling system are presented in Section 2.3.3.

The bed load sediment transport is assumed to be the same as the sediment transport
capacity mentioned above (unless supply-limited modelling is applied), except for bed
slope effect and helical flow effect. This is illustrated in Figure 2.11.

The bed slope influences the sediment transport rate and direction (the latter being the

most important for morphological modelling). Only a few models of the influence of bed

slopes on sediment transport rate have been proposed, see Lane (1953), Luque (1976),
Koch (1980), Ikeda (1980), and Olesen (1987). In principle, two approaches have been

adopted. The first modifies the critical shear stress for initiation of motion:
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8zb
=0 | 1+—— 2.48
6:= 0w ( . J (2.48)
Where
& Modified critical Shields parameter
Geo Critical Shields parameter in uniform shear flow
Zy Bed level
S Stream-wise (horizontal) coordinate
bed load As
|
o
v
(bed slope effect) (effect of helical flow)
N «

Figure 2.11 Direction of bed load transport influenced by helical flow and transverse bed slope

The slope effect on the sediment transport rate given by the relation above cannot be
directly incorporated into a model that does not assume zero bed load transport at a
critical shear stress (e.g. the Engelund and Hansen formula). For this kind of formula, the
following correction can be applied:

oz
= 1-a- b 2.49
S [ s j Shi ( )
Where
a Model calibration parameter
Shi Bed load as calculated from sediment transport formula
Ss Bed load along streamline, s

This equation is implemented in the present modelling system. In the model the
coefficient a is defined as an expert user coefficient, which cannot be changed in the GUI
(Graphical user Interface). An estimate of the coefficient can be obtained by estimating
the velocity exponent b in the generalised sediment transport formula @ = a-u® (u, is flow
velocity, a, a constant factor, and @, the non-dimensional sediment transport) by
comparison with the Meyer-Peter & Miiller (1948) formula @ = 8-(& - 6:0)*®. This gives:

p==2 (2.50)
0'- 0. '
Where
q Effective skin friction
& Critical Shields parameter
b Velocity exponent in the transport formula @= a-u®
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a Constant factor
u Flow velocity
@ Non-dimensional sediment transport rate

Using the total load formula of Engelund and Hansen (1967) the velocity exponent b is 5
(constant). Using the relation for b, it can be seen that b varies from infinity at the
threshold of motion to 3 for very high shear stresses.

Secondly, the modified critical Shields parameter & is substituted into the Meyer-Peter &

Muller (1947) formula. If the relation for & is linearised with respect to the bed slope
dz/ds, the following expression for the « coefficient is obtained:

o=

N | o

HCO
— 2.51
0 (2.51)

The coefficient varies from around o= 1.5 for § = 260 down to a= 0.2 for € = 96. In the
present modelling system however, the « coefficient is specified as a constant throughout
the modelling period.

The prediction of transverse depth distribution in alluvial channel bends has had
considerable attention from river engineers, as it is essential in investigations of
navigability improvement in river bends and in design of optimal channel bank protection.
Since the pioneering work of van Bendegom (1947), many models of transverse bed
slope have been proposed. Most of these can be reformulated, so that they also predict
the direction of sediment transport. Olesen (1987) gives an exhaustive description of the
proposed models. Talmon et al. (1995) has carried out extensive bed levelling
experiments for verification of mathematical models of the transverse bed slope effect,
which in line with Kikkawa et al. (1976), Parker (1983), Odgaard (1981), and Ikeda (1980)
suggested the following suitable formula:

L oz
Sn:(tané‘s'G‘ea'%jSm (252)
Where
G Transverse bed slope factor (calibration coefficient)
a Transverse bed slope exponent (calibration parameter)
tan & Bed shear direction change due to helical flow strength, see Section 2.2.1

The values of the transverse bed slope factor G and the exponent a, differ somewhat
between the various authors. Especially, when results from laboratory flumes are
compared with the results from prototypes. For the laboratory flume case the best fit
seems to be obtained by:

G=06anda=05 (2.53)

Talmon et al. (1995) conclude from their experiments that a distinction should be made
between laboratory conditions and natural rivers. The magnitude of the transverse slope
effect (G) and the direction coefficient (f) of the secondary flow seem to differ by a factor
of two. Also, the distribution between suspended and bed load transport is important. The
G factor is at least a factor 2 stronger for conditions with prevailing suspended load,
indicating that either the transverse slope effect is also acting on the suspended load part
or the transverse slope effect is simply stronger. This means that the following values
should be used for natural rivers:

G=125anda=05 (2.54)
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If the angle between flow direction and the x-axis is ¢ in a fixed Cartesian coordinate
system, the bed slope in the streamline direction can be computed as:

g:gcos¢+gsin¢ 2.55
0s  Ox oy (2.55)

S The horizontal coordinate along the streamline

n The horizontal coordinate in the transverse direction

X The first horizontal coordinate

y The other horizontal coordinate

z The bed level

o Angle of stream line compared to (x, y) coordinate system

Likewise, the bed slope in the transverse direction is obtained by:

g—QCOSgb-gsingb 2.56
on oy OX (2.56)

Transformation from streamline coordinates to general Cartesian coordinates results in
the following expressions for the transport rates in the two axis-directions:

Spx=SsC0SP—S,Sin ¢
(2.57)
Sby: Sn COS¢+ SsSin ¢

Finally, the magnitude of the bed load transport is obtained as:

Su=+/S% + S5 (2.58)

The magnitude of the bed load transport rate is mainly relevant for contour plotting of the
transport rates.

2.3.2 Suspended load transport

The model for suspended sediment transport is based on the theory of Galapatti (1983).
Modelling of non-cohesive suspended sediment in a fluid can be described by a transport
equation for the volumetric sediment concentration c. If the sediment is treated as a
passive scalar in the flow, a transport equation can be established from a mass balance
on a rectangular flow element. In the general case the sediment balance contains
contributions from the three transport mechanisms: advection, settling, and diffusion.
Written as a transport equation for a small water element this can be expressed:

oc , dluc) , alve) , alwe) _ a( 60] a( acJ a[ acJ oc
- =_—le— |+ |t e= [t wo (2.59)
ot oX oy oz ox\ ox) oy\ oy) oz\ oz oz

Where c is the volumetric concentration, t is time, x and y are spatial horizontally
coordinates, z is a vertical coordinate, u, v, and w are flow velocities in the x, y, and z
direction, respectively. &, &, and & are turbulent diffusion coefficients, and ws is the
settling velocity of the suspended sediment.
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If we ignore the horizontal diffusion terms, which are assumed small compared to the
vertical diffusion terms, and shift the formulation to a coordinate system following the
streamline, we obtain the simplified equation:

oc, olu.c)  alv,e)  owe) _ [ @} olwsc) (2.60

ot s on oz a2 &2 oz oz

Here, s, is a streamwise coordinate, n, is a transverse coordinate, us, is the flow velocity
in the main stream direction, and un, is a secondary flow velocity normal to the
mainstream direction.

The two horizontal flow velocities us and un can be expressed by the profile functions p1
and p2 derived in Section 2.2.2 assuming the flow to be turbulent and fully developed, i.e.:

Vg
us<n>:V-p1(n):7‘/—ln[iJ (2.61)
o
for the primary flow component, and
Vh
Vn(n)=E p,(77) (2.62)

for the secondary flow component.

In order to solve the advection-dispersion equation for the concentration of the
suspended load, boundary conditions are needed at the water surface and at the bed. At
the free water surface a no flux condition can be applied:

a
we-cly =)+ | =0 (2.63)

n=1

The boundary condition at the bed is simply given as a bottom concentration slightly
above the bed at 7= 7o:

C =Cpeq (2.64)

The method for calculation of ched depends of the theory applied (transport formula) to
describe the transport of the suspended sediment. The level at which cyed is calculated
corresponds to the level, where the transport mechanism shifts from bed load to
suspended load.

A special asymptotic approximation technique developed by Galappatti (1983) can be
used to provide information about the concentration profile. This technique is applicable
for conditions, where the vertical diffusion coefficient and the fall velocity term are the
dominating terms in the transport equation for the concentration of the suspended
sediment), or that non-dimensional parameter e is very small. The parameter e is defined

by:

(2.65)
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Where h is the height of the water column at which suspended transport occurs, L is a
length scale for variations in the mean flow direction, ws is the settling velocity of the
suspended sediment, and V is the depth-averaged flow velocity.

The theory applied to describe the suspended load in the model is based on an extension
of the model developed by Galappatti, who did not account for the effects from helical
flow. The general solution for slowly varying flow is based on the assumption that the
concentration profile can be obtained as a sum of concentration profiles of increasing
orders:

c:Zci (2.66)

Where co is the zero-order contribution to ¢, c1 is the first order contribution, c2 the second
order contribution, etc.

The concentration of different orders is found by solving the advection-dispersion
equation for the suspended sediment by an asymptotic technique. First, the co
concentration profile is obtained ignoring the temporal and spatial varying terms and only
considering the remaining two terms representing equilibrium between settling of
suspended sediment and vertical diffusion, i.e.

Ocg . O Oco
s— +t—|e— |=0 2.67

W oz 62( oz (267
Secondly, the zero-order concentration co profile, which can be obtained by solving the
equation, is substituted into the left side of the advection-dispersion equation, while the
right side now is represented by the first order concentration profile terms. Hereby, we
obtain rearranging the terms:

0ci, O Oci1)_0co, . OcCo,. . 0C, OCo
IOy O 0600, O, CC, OC 2.68
W T a [8 azj a = os on oz (2.68)

This procedure is repeated for the first order concentration ci, so that the equation for the
second order concentration cz now becomes:

Ws@+£( %j:%”%”%*‘”% (2:69)
oz oz oz ot os on oz

Equations for the higher order concentration profile can be found in the same manner, but
usually one stops with the first or second order contribution assuming the higher order
contributions to be extremely small.

The following non-dimensional parameters are introduced:

Suspension time scalez.

Ws
===t 2.70
= (2.70)

Two horizontal length scales & and y for suspended sediment in the stream-wise and
transverse direction, respectively:
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Ws
d Vh
(2.71)
Ws
=—.Nn
Y~ Vh
Finally, the vertical length scale is defined by:
z
=— 2.72
n h (2.72)
Furthermore, the differential operator D is introduced:
o, 0 0
D=—+—| &' — 2.73
on 677[ 677J &7

Where ¢ is a non-dimensional turbulent diffusion coefficient &/(wsh)
Applying the differential operator and the non-dimensional parameters the equation for
the zero order concentration profile co can be expressed as:

Dlc,]1=0 (2.74)

For the higher order concentration profiles the following general expression can be
obtained:

ai- ai- Vha, Wai_
C1+p1(77) C1+p2(77)_ C1+_ Ci-1

Led=5, o¢ R Oy w, 0

(2.75)

Where i, represents orders greater than or equal to 1. In the further analysis the last term
on the right side is ignored assuming that the vertical velocities are much smaller than the
settling velocity of the suspended sediment ws. The boundary condition at the free water
surface must be valid for all orders of the concentration, i.e.

c+e Q8o (2.76)
on

Furthermore, it is assumed that higher order concentration profiles do not contribute to
the depth-integrated concentration, i.e.

1
ICidU=0 Jfori>1 (2.77)
0

As for the velocity profiles, it is convenient to operate with unit concentration profiles.
Thus, the zero order concentration profile is the product between the depth-averaged
concentration and a unit profile function ®o(7):

co=c(77,7)- ®o(17) 2.78)

The following discussion considers concentration terms of higher order:

Galappatti (1983) shows that a differential equation of the type D[F(7)] = G(7), with a free
surface (7 = 1) boundary condition F + ¢£-dF/d7n and a restriction that F is zero when
integrated from 7= 7o to 7 =1, has the solution:
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F(m=[6(n)]1 =[S+ o,(n)-[ 1 dn+ 8- ay() 279)

Where the constant B is obtained from the requirement:

1
I F(n)dn=0 (2.80)

70

Higher order concentrations ¢ (i > 0) can be obtained using this solution technique once
the zero order concentration co is known. For the first order profile we obtain:

m(n):D-ltcpo(n)]%m*[|oi<n)-c1>(,(n)]~@+D-1[|oz(n)~Vh -q>0(n)]-j—; (2.81)

os R
Thus, if we determine the vertical concentration profile of the suspended sediment as the
sum of zero order profile at the first order profile, we obtain the following expression:

- h oc Vh ¢ V h? ac
c(7)=do(n) CHo(n) ——+Di(n)— — +Do(77)- —
Ws at Ws as RSWS 6”

(2.82)

Where the higher order concentration profiles @, @1, and ®2 are obtained by solving:
®(7)=D"[®o(n]

®:1(7)=D"[p,(17) Po(7)] (2.83)

®2(7)=D*[p,(17) - Do(7)]

If we assume quasi-steady conditions so that the spatial changes are dominant compared
to the temporal changes, the expression for the vertical concentration profile of the
suspended sediment can be further simplified to:

- Vh oc V h? ac
c(7)=do(n)-C+di(n7) —— +D2(77)- —
Ws OS Rsws ON

(2.84)

The zero order solution for the concentration profile is in the model based on an
exponential profile with modified Rouse parameter Z (Galappatti 1983, who refers to Delft
Hydraulics Laboratory, 1980):

Do(n)=exp[ Z-(n7) ] (2.85)

Where the function f(7) is defined by the following two expressions for the lower and
upper part of the fluid, respectively:

f(n)= |n{1"7} for p< i (2.86)
n 2

and
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f(n)=-4n+2 for 772% (2.87)

The modified Rouse number is defined by:

- Ws 1
4u

212 288
0.13+o.20(W5J (2.88)

ut

Where ut is the friction velocity and ws is the settling velocity of the suspended sediment.
The settling velocity is obtained from the following relations:

The fall velocity w for any grain fraction with a diameter d is found by Eq. (2.89), Rubey's
formula (1933):

Y2 Y2
2 36v° 36v°
= —1 d . —_— p—
w=,/g(s-1) (3+g(s—l)d3] (g(s—l)d3] (2.89)

Where s is the relative sediment density, g is gravity and v is kinematic viscosity.

Near the bed at 7 =70 the concentration will adapt instantaneous to the equilibrium
conditions, so that:

«(7=19)=ce(n=19)=c,Do(70) (2.90)

Inserting this into the equation obtained for the vertical concentration profile Eq. (2.84),
we get the following relation:

- ac uh oc W, — -
u—+o —— =, —lc.—¢ 291
®1(77,) > 2(1,) e ® (170) : ( ) (2.91)

By analysing the terms it can be seen that the right hand side expresses the suspended
sediment flux contribution from/to the bed, while the two terms on the left side expresses

spatial changes due to erosion or deposition of suspended sediment. When c_e > ¢ the

system is under-loaded and will try to pick up loose sediment from the bed, while if c_e <c
the system is overloaded and will deposit sediment on the bed.
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Figure 2.12 Mass balance of suspended sediment on a vertical water column

The knowledge of the vertical flux of sediment from the bed and into the water column
can be used in combination with the knowledge of the vertical concentration profile and
the primary and secondary velocity profile to establish a mass balance for the transport of
suspended sediment. If we look at the vertical water column shown in Figure 2.12 with
faces parallel to the (s,n)-coordinate system, we find that:

o(hc)

ot

o (1 o
dsdnﬁtg(jn0 hus(n)c(n)dn)dsdn+a—n( ]]Ohun(ﬂ)C(ﬂ)dn)dsdnz .

WSQO(UO)(EE—E)dsdn

Where the physical interpretation of the terms from the left to the right is as follows:
temporal change of sediment volume in suspension, spatial variation of depth-integrated
sediment fluxes across the water column, and sediment flux deposited or eroded from the
bed covered by the water column.

If we insert the previously obtained expressions for the concentration profile and the
mainstream and secondary velocity profile into the mass balance equation, we get the
following expression:

+7
ot 0s

ofhe) o - Vh oc Vh? ac
[IIIOVhpl(n){d)o(q)c-kd)l(n)WS6S+(D2(77)W5R6n}d77 +

(2.93)

a{ r1vh? - Vh ac Vh® ac — -
an( » R pz(n){q)o(n)c+q)1(n)ws65+CD2(77)WSR&l}dnJ:Wﬂ)o(%)(ce_c)

By introduction of the coefficients «j this mass balance can be further simplified to:
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o(he) o - V??ac  V?hiac
——+—| q Vhe+a, ——+a,, —— |+
ot 0s W, 0s W,R on

S

(2.94)

o a V—h26+a V_2h38_6+a _V2h46_(_: =w,®, ( )(C_—E:)
anl 2 R 12 WR s 2 WSRZ on Lo\ T )\ G

The coefficients ¢ are obtained by numerical integration of the integrals:

I @, (7)p, (1)
I @, (17)p, ()7
@, (n)p,(r)dn

o = ,70<Do(77)pz( n)dn

=I:O<D1(f7)pz( Jd7
e =] @, n)p; ()i

So far the analysis has mainly been carried out based on a coordinate system coinciding
with the streamlines. A transformation to the general Cartesian coordinate system (see
Figure 2.13) can be obtained by:

N

Figure 2.13 Transformation from stream wise (s,n) coordinates to fixed (x,y) coordinate system

dc_dcox dcdy_udc, vac

————— —— (2.95)
o Ox os 8yas V ox Vay

and
60 acax @ﬂ_ l@ uac (2.96)

on oxon dyan  Vax V oy

Where u and v represents the depth-averaged flow velocity in the x and y direction,
respectively.
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Based on these two expressions, the transport equation for the suspended sediment can
now be transformed to Cartesian coordinates, which yields:

6(6htc) + a—ax(amuhé) + %(zxmth) + ;X[an uh” ac}_ a(% Vthac] +

w, ox) oy W, oy

af, uvh2 ac Lo, uvh? ac o, uvh® 8¢ uvh® ac .
X ay = w, ox ) ox| *wR ox 21w5Ré‘y
i u h3 i v?h?® ac ﬁ vh2 ﬁ& B
ox oyl *wRox | ox %o g
(2.97)
af, uvh® ac Lo, uvh® 8¢ vh*oc) o “ u’h® ac .
x| 2 wR ox 6y 2wWR oy WRay ¥ w,R ox
0 vih* ac) @ u*h* ac) o uvh* ac) o uvh* ac
| Q5 A +——| Ap 2~ | T A P T~ | T A e T o A | T
OX W,R" ox ) oy W,R" oy | oOx W,R" oy | oy W,R* ox

(Do (%)(a_a)

This equation can be further simplified by collecting the terms and changing the
formulation from velocities to fluxes. The Cartesian flux components p and g are defined

by:
p =uh
g=vh

Substitution of the fluxes into the transport equation leads to:

A I (G AT (R A N
81.‘ ax Olp OZqR ay Olq OZpR

K —(ay+ay,) h +a h— @ +

ax WS 1lp 21 12 pq 22q R aX

oL ,0° +(ay +a )pq£+a pzh—2 6_6 +

ay Ws 11 21 12 R 22 R2 ay (298)
o1 . N h? \ac

& W anpq+(a2lp —aq )E_a22PQF 5 +

oL a —(a ‘—a 2)E h 8(_:

8y WS 11 pq Zlq 12 p R 22 pq ax
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Even though the transport equation looks complicated, it is in reality a standard
advection-dispersion equation for the transport of sediment containing terms for temporal
change, advection, dispersion, and source or sink. The complexity of the terms is only a
result of taking the variation of the vertical concentration profile and the primary and
secondary flow velocity distribution into account.

If we define the modified fluxes:

Prod = CoP— aozqﬁ

h (2.99)
Omod = Aol + 2, pE
and the dispersion coefficients:
1 h h?
Ko = _h_Ws(an p’ - (0512 + az1)pQE + 0!22012 ?J
o ) h , h?
11q + a12 +a, )Pad— +a22 p 2
(2.100)
1 ) h h?
xy —_W a;, pq+ 0‘12q +ayp —0Oyp pQE
S O A S LU L
hw, 1P —(e, p? — R %2 pq RZ
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The transport equation can be rewritten as:

) o) ) i) 2

oy
b oc) o ac — -
_ax(kxyhayj_ay(kyxh@(J_Ws(DO(%)(ce_C)

From the expressions for the dispersion coefficients it is seen that dispersion is
anisotropic. Furthermore, it is seen that the advective transport is controlled by a modified
flux field, which is different due to the inclusion of pseudo three-dimensional effects.

at ox ay x| ax oy

(2.101)

2.3.3 Sediment transport formulae

Sediment transport capacity in uniform shear flow has been extensively investigated over
the years. For instance, reviews are given in Vanoni (1984). This section discusses the
sediment transport formulas used for calculation of bed load and suspended load
transport capacity (equilibrium concentration at the riverbed), which are implemented in
the present modelling system.

The following symbols are applied.

Symbols
Shi Bed load <m?/s>
) Bed load calibration factor <->
Sl Suspended load <m?/s>
ks Suspended load calibration factor <->
S Relative density of the sediment <->
St Total load <m?/s>
Ce Equilibrium mass concentration <g/m®>
C Chezy number <m*/s>
\Y, Velocity <m/s>

All sediment transport formulas described herein exclude the effect of riverbed porosity,
which is included in the continuity equation for update of bed level instead.

Some of the formulas only predict total load (bed load + suspended load), whereas
information about both bed load and suspended load is required. The total load formulas
can still be applied by using the calibration factors ks and ks for bed load and suspended
load, respectively, in order to differentiate between the two modes of transport. Assume
for instance a total load formula. By specifying ko= 0.1 and ks= 0.9, it is understood that
10% of the transport takes place as bed load.

Due to the non-uniform vertical distribution of the suspended sediment concentration, the
effective fall height of grains will be different from the mean fall height h/2 (where h is
water depth). For a uniform vertical concentration profile, the time scale for settling is
defined as h/ws (ws is the settling velocity). With information about the Rouse humber Z,
the actual concentration profile can be predicted and therefore a better estimate for the
settling time scale ts can be obtained if using the height of the centroid. However, the time
scale effect on the settling has already been included in the modelling using the
described profile functions, and the ®(no) factor on the sink/source term in the advection-
dispersion equation for the concentration of the suspended sediment.

The Shields parameter 9 is defined as:
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T

g=——
A9(s—1ds, (2-102)

Where

The flow shear stress

Density of water, approx. 1000 kg/m?

Acceleration of gravity, 9.81 m/s?

polps relative density of the sediment

Density of sediment, for quartz sand 2650 kg/m?

pmcﬂ‘oﬂ

Flow shear stress is divided into form drag 7" and skin friction 7. The total shear stress r=
7 + 7" is estimated from the local flow velocity u and the local Chezy number C:

2

_ .V
T—pgg (2.103)

For skin friction the following approximate friction formula (Engelund & Hansen, 1967) is
applied unless otherwise calculated (i.e. in the model of van Rijn or the model of
Engelund and Fredsge, where more sophisticated models are used to describe the
physical processes):

0'=0.06+0.4-9° (2.104)

The non-dimensional sediment transport rate is defined as:

S
=" 2.105
VE-1gd® (2.105)
Where
S Sediment transport (bed load, total or suspended load)
d Characteristic grain size
0] Non-dimensional sediment transport

Engelund and Hansen model

The model by Engelund and Hansen (1967) is a total load model that needs user-
specified information in order to divide the sediment transport into bed load and
suspended load. The transport rates are obtained from the relations:
Soi=Kp* Su
(2.106)
Sa= ks -Su

Where the total sediment transport is obtained by:

2 5
84 = 0.05% 02 J(s-1) g d& (2.107)
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The equilibrium concentration is simply specified as the suspended load divided by the
water flux and converted from volumetric concentration to mass concentration:

— Ssl
V-h

Ce -5-10° (2.108)

Van-Rijn model

Van-Rijn (1984) proposed the following models for sediment transport of bed load and
suspended load:

2.1
S, = 0.053T—,/(s ~1)g-dg’ (2.109)

03
D.

Where T is the non-dimensional transport stage parameter and given by:

T:(uf) o (2.110)

Ufc

The critical friction velocity usc is determined as:

Ue=+0:(5-1) g dso (2.111)

The effective friction velocity is estimated from:

V9 (2.112)

u’f: —_—

CI

Where the resistance (Chezy number) originating from skin friction is based on a
logarithmic velocity profile assuming a certain bed roughness:

C’ :18Iog[:—hJ (2.113)

90

The non-dimensional particle parameter D+ in the van Rijn bed load transport formula is
defined as:

1
D*=d50((s_12)gT (2.114)
Vv

Where v, is the kinematic viscosity and approximately equal to 10°® m?/s for water.

Instead of using a constant critical Shields parameter & (approximately equal to 0.06),
van Rijn assumes the following variation as a function of D+, see Table 2.1.
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Table 2.1 Relations for determination of critical Shields stress
Range of D+ &
D:-<4 0.24/D+
4<D+~<10 0.14D+0-64
10<D+< 20 0.04D~01
20<D+< 150 0.013D+02°
D- > 150 0.055

Suspended sediment transport occurs only if one of the following criteria is satisfied:

u, > 4[‘;"5 for D. <10 (2.115)
u; >0.4w, for D.>10 (2.116)
The reference level, at which the bed concentration is determined, is expressed as:
0.01h
a=max (2.117)
2ds
The volumetric bed concentration is obtained from the relation:
c.=0.015 dso T (2.118)
a a D0A3 .

In Figure 2.14 the reference level and