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Abstract

A model for solving the two-dimensional enhanced Boussinesq equations is presented. The model equations are discretised

in space using an unstructured finite element technique. The standard Galerkin method with mixed interpolation is applied. The

time discretisation is performed using an explicit three-step Taylor–Galerkin method. The model is extended to the surf and

swash zone by inclusion of wave breaking and a moving boundary at the shoreline. Breaking is treated by an existing surface

roller model, but a new procedure for the detection of the roller thickness is devised. The model is verified using four test cases

and the results are compared with experimental data and results from an existing finite difference Boussinesq model.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction Today, Boussinesq-type models can be applied to
Within the area of Boussinesq-type modelling,

significant progress has been made in the last 10

years. Firstly, a number of new Boussinesq-type

equations with improved dispersion characteristics

and non-linear properties have been presented. Sec-

ondly, the Boussinesq-type models have been extend-

ed to the surf zone by inclusion of wave breaking and

moving shoreline boundary conditions. Madsen and

Schäffer (1999) and Kirby (1997, 2003) give recent

reviews of the subject.
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study waves and currents in a region extending from

quite deep water and all the way to the shoreline. To

resolve the strongly non-linear phenomena in the

surf zone, a very fine horizontal mesh is required,

while a much coarser mesh can be used in the

offshore region. Traditionally, Boussinesq equations

are solved using structured Cartesian meshes and

finite difference methods (FDMs). Even with the

computers of today, these models are very time-

consuming for solving practical problems that in-

clude modelling of surf zone dynamics. With the

goal of reducing the computational cost, it is desir-

able to introduce more flexible meshes. Control of

node distribution allows for optimal usage of nodes

and adaptation of mesh resolution to the relevant

physical scales. Flexible meshes can be accom-

plished in a number of ways, e.g., multi-block
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curvilinear meshes, overlapping meshes, local mesh

refinement and unstructured meshes. Examples of the

use of curvilinear mesh for solving the Boussinesq

equations are given by Shi et al. (2001) and Li and

Zhan (2001). The present work is based on unstruc-

tured meshes, which gives the maximum degree of

flexibility. The use of unstructured meshes also

makes it possible to handle problems characterised

by computational domains with complex boundaries.

When explicit time integration schemes are used the

time step is usually determined by the stability limit.

The use of coarse mesh in offshore regions and only

fine mesh in shallow water makes it possible to use

larger time steps and reduces the computational

costs.

Since the early 1980s, the unstructured finite

element method (FEM) has been successfully ap-

plied for solving the shallow water equations (e.g.,

Löhner et al., 1984; Peraire et al., 1986; Kashiyama

et al., 1995). The application of the finite element

method to Boussinesq-type equations has so far

mainly been limited to the classical Boussinesq

equations of Peregrine (1967), e.g., Antunes Do

Carmo and Seabra-Santos (1996). However, recently,

other types of Boussinesq equations have been

considered. Langtangen and Pedersen (1998) solved

a set of weakly dispersive Boussinesq equations

formulated in the depth-averaged velocity potential

and the surface elevation. Li et al. (1999, 2000)

solved the equations quoted by Beji and Nadaoka

(1996) in two dimensions using quadrilateral ele-

ments with linear interpolating functions for the

velocity components and the surface elevation. Fi-

nally, Walkley and Berzins (1999) solved the one-

dimensional extended Boussinesq equations of

Nwogu (1993), and, recently, they have extended

the work to two horizontal dimensions (Walkley and

Berzins, 2002). They used linear triangular finite

elements for the space discretisation.

In the present paper, we describe a model that

solves the Boussinesq-type equations of Madsen and

Sørensen (1992) using a finite element technique for

the spatial discretisation. These equations contain

terms with third-order spatial derivatives of the sur-

face elevation. Hence, to make it possible to use a

lower-order finite element approximation, the govern-

ing equations are rewritten in a lower-order form by

introducing an auxiliary variable and an auxiliary
algebraic equation. The standard Galerkin finite ele-

ment method with mixed interpolation is applied.

Equal-order interpolation as used by, e.g., Li et al.

(1999, 2000) and Walkley and Berzins (2002) can

exhibit severe spurious modes. Both triangular ele-

ments (quadratic interpolation of fluxes and linear

interpolation of surface elevation and auxiliary vari-

able) and quadrilateral elements (biquadratic interpo-

lation of fluxes and bilinear interpolation of surface

elevation and auxiliary variable) are used. The time

integration is performed with an explicit three-step

Taylor–Galerkin method.

One of the main differences of the new model

compared to previous work using flexible mesh tech-

nique to solve the Boussinesq equations is that the

model is extended to the surf and swash zone by

including wave breaking and a moving boundary at

the shoreline. The simplified effects of breaking are

included using the surface roller concept (Schäffer et

al., 1993; Madsen et al., 1997a,b; Sørensen et al.,

1998). In the previous work, the surface rollers were

determined using a heuristic, geometrical approach. In

the present work, a more practical procedure is

devised for the determination of these surface rollers.

This new procedure provides a substantial simplifica-

tion over the previously used technique, while giving

almost the same results. The moving boundary is

treated numerically by replacing the solid beach by

a permeable beach characterised by an extremely

small porosity following the work by Madsen et al.

(1997a).

This paper is structured as follows: In Chapter 2,

the governing equations are rewritten in a form

suitable for the finite element approach, and the new

procedure for determining the surface roller is de-

scribed. The numerical solution techniques for the

spatial discretisation and the time integration are

presented in Chapter 3. In Chapter 4, the model is

verified using four cases. Finally, Chapter 5 draws up

the conclusion.
2. Governing equations

2.1. Enhanced Boussinesq equations

The present work is based on the enhanced

Boussinesq equations presented by Madsen and
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Sørensen (1992). The simplified effects of wave

breaking are included using the surface roller con-

cept (Schäffer et al., 1993; Madsen et al., 1997a,b;

Sørensen et al., 1998). This results in additional

convective terms. The governing equations have the

following form
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Here, g is the surface elevation, (P,Q) is the depth-

integrated velocity (the flux) in Cartesian coordinate

system (x,y), t is the time, d = h + g is the total water

depth and h is the still water depth.

The terms Rxx, Rxy and Ryy are additional convec-

tive momentum terms due to the inclusion of wave

breaking and they are defined by
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Here, d = d(x, y, t) is the thickness of the surface roller
and c=(cx, cy) is the roller celerity. The determination

of the roller thickness and the roller celerity is
described in Section 2.2. The bottom shear stress is

modelled using

ðsx; syÞ ¼
1

2
fm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p
d2

ðP;QÞ ð3Þ

where fm is the friction factor. The turbulent mixing

processes are modelled by means of an eddy viscosity

formulation
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where t is the eddy viscosity. The eddy viscosity is

estimated using the Smagorinsky formulation

t ¼ l2s
BU
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� �2

þ2
BU

By
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By

� �2
" #1=2

ð5Þ

Here, s is the Smagorinsky coefficient, l is a charac-

teristic length and U and V are components of the

time-averaged wave-induced current field. The time-

averaged velocity field is calculated using a second-

order Butterworth low-pass filter. This is an efficient

recursive filter that requires only values of the fluxes

at the two previous time steps to be retained in

memory. The use of a moving average filter for this

purpose is not an attractive alternative as this would

require a much larger buffer.

The terms wx and wx are dispersive Boussinesq-

type terms. In the formulation by Madsen and Sør-

ensen (1992), the dispersive terms include third-order

derivatives of the surface elevation. The presence of

higher-order spatial derivatives is one of the main

problems when solving the Boussinesq equations

using the finite element method. Therefore, the Bous-

sinesq equations are rewritten in a lower-order form
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by introducing a new auxiliary variable, w, and an

auxiliary algebraic equation. Following the derivation

by Madsen and Sørensen (1992), the starting point is

the classical Boussinesq equations by Peregrine

(1967). Using the mild-slope assumption, the disper-

sive terms can be written
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These terms can be modified using the linear long

wave approximations
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By spatial differentiation and combination of these

equations, we arrive at
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The next step is to introduce a new auxiliary variable,

w, defined by
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Multiplying Eq. (8a) and Eq. (8b) with �Bh2 and

adding these to Eq. (6a) and Eq. (6b), respectively,

finally yields the new Boussinesq equations. The

dispersive terms become
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This matches a mild-slope version of the equations

derived in Section 2.1 of Schäffer and Madsen (1995)

with their B2= 0. The free parameter B can be chosen

as to optimize the dispersion characteristics. In the

present work, B = 1/15 is applied.

2.2. Wave breaking

In the work by Schäffer et al. (1993), Madsen et

al. (1997a,b) and Sørensen et al. (1998), the deter-

mination of the thickness of the surface roller relies

on a heuristic, geometrical approach. The toe of the

roller is defined as the location, where the local

slope of the surface elevation is equal to a critical

value, tan/. Due to the transition from initial

breaking to a bore-like stage in the inner surf zone,

the critical angle, /, is assumed to decrease from an

initial breaking angle, /B, to a terminal breaking

angle, /0. Hence, breaking is initiated when the

local slope exceeds tan/B, and breaking ceases

when the maximum of the slope becomes less than

tan/. The value of the critical angle depends on the
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age of the roller. The time variation of the critical

breaking angle is modelled with an exponential

decay

tan/ðtÞ ¼ tan/0 þ tan/B � tan/0ð Þexp �ln2
t � tB

t1=2

	 

ð11Þ

where tB is the time of incipient breaking and t1/2
defines the time scale for the development of the

roller. t1/2 is determined as a fraction of a charac-

teristic wave period, T. In one horizontal dimension,

the roller thickness is determined as the water above

the tangent of the slope, tan/, starting at the roller

toe point and pointing in the direction opposite to

the direction of wave propagation. This thickness is

multiplied by a factor, fd, prior to the inclusion in

the governing equations. Hence, for waves propa-

gating in the positive x direction, the roller thick-

ness is given by

d ¼ fdðg � ðgr þ ðxr � xÞtan/ÞÞ ð12Þ

where gr is the surface elevation at the roller toe

and xr is the coordinate at the roller toe. In two

horizontal dimensions, the toe of the roller becomes

a curve instead of a point and the tangent becomes

a tangential surface separating the roller from the

rest of the flow.

While this geometrical approach is relatively sim-

ple when described in a continuous system, it

becomes quite complicated in a discrete formulation

in two horizontal dimensions. A much more simple

technique can be obtained essentially by transforming

the method to the time domain, where the original

method was primarily operating in space. Assuming

that the waves are of locally constant form (regular,

progressive wave field), the following expression for

the time derivative of the roller thickness can be

obtained

Bd
Bt

¼ fd
Bg
Bt

� c tan/

� �
and dz0 ð13Þ

This formulation is suitable for one as well as two

horizontal dimensions. Now, the initiation and cessa-
tion of wave breaking is determined based on thresh-

old values for the time derivative of the surface

elevation. A wave starts to break when the time

derivative of the surface elevation exceeds (Bg/
Bt)B = c tan/B, and breaking will cease when it

becomes less than (Bg/Bt)0 = c tan/0. Obviously,

breaking waves never obey the constant-form assump-

tion exactly. However, since the starting point was no

more than a simple, heuristic approach, there is no

reason to believe that the new method is less appro-

priate than the original one. As demonstrated in

Section 4.2, the two methods provide almost identical

results. The formulation in Eq. (13) has the additional

merit that it can be used with space marching techni-

ques for wave evolution equations (see Bredmose et

al., 2003).

As shown by Madsen et al. (1997a), the roller

celerity can be determined interactively from the

instantaneous wave field. However, this procedure

may cause stability problems especially in two hori-

zontal dimensions. Therefore, we have used the fol-

lowing approximation of the roller celerity

ðcx; cyÞ ¼ ðccosh; csinhÞ c ¼ fv
ffiffiffiffiffi
gh

p
tanh ¼ Bg=By

Bg=Bx
ð14Þ

Using fv = 1.0, we obtain the celerity determined by

linear shallow water theory. This is often a rather good

approximation just outside the surf zone, while fv= 1.3

is more appropriate inside the surf zone (see the

discussion in Madsen et al., 1997a). The transition

from fv= 1.0 to fv = 1.3 is modelled with an exponen-

tial time variation. The time constant applied is the

same as the one used for the time variation of the

breaking angle.

In Madsen et al. (1997a), the default parameter set

(/B, /0, t1/2, fd)=(20j, 10j, T/5, 1.5) was suggested,

and the parameter set was shown to give good results

for both spilling and plunging breakers. This set of

parameters has also been used in the present work.

Kennedy et al. (2000) and Chen et al. (2000) also used

a breaking criterion based on threshold values for the

time derivatives of the surface elevation. They solved

the equations by Wei et al. (1995) and used (Bg/
Bt)B = 0.65M(gh) and (Bg/Bt)0 = 0.15M(gh). If the
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roller celerity is estimated by Eq. (14) with fv= 1.0 and

1.3, respectively, at the initiation and cessation of

breaking, this corresponds to using /B = 33j and

/0 = 6.6j. The difference in the choice of values for

/B and /0 is mainly due to the different linear and

non-linear properties of the Boussinesq-type equa-

tions applied. The enhanced Boussinesq equations

used in the present work underestimate the non-linear

shoaling and wave height in the vicinity of the break

point, while the use of the equation by Wei et al. can

result in an overprediction of the non-linear shoaling.

2.3. Moving shoreline

The moving shoreline is modelled using the ap-

proach presented by Tao (1983) and Madsen et al.

(1997a). Here, the solid beach is replaced by a per-

meable beach characterised by an extremely small

porosity. The following vertical variation of the po-

rosity is assumed

cðzÞ ¼
1 ZLVz

e þ ð1� eÞebðz�ZLÞ=ðZL�ZBÞ ZBVzVZL

8<
:

ð15Þ

where e is the minimum value of the porosity, b is a

constant shape factor defining the exponential transi-

tion between the two regimes, z is the vertical coor-

dinate, ZL defines the physical seabed and ZB defines

the lower limit of the porous region. The porosity is

introduced in the equations by replacing the total

water depth in the momentum equations by the

effective total water depth obtained by vertical inte-

gration of c(z) from ZB to the free surface and by

multiplying the time derivative of the surface eleva-

tion in Eq. (1a) by a representative porosity a = c(g).
The parameters used in the following are e= 0.005 and
b = 100. Inside the permeable beach (h < 0), the Bous-

sinesq terms are switched off.
3. Numerical methods

3.1. Space discretisation

For the spatial discretisation, the standard Galer-

kin finite element method is applied. A description
of the basic theory of the Galerkin approach may

be found, for example, in Zienkiewikz and Taylor

(1989). The spatial domain X with boundary C is

discretised by subdivision of the continuum into

non-overlapping elements and defining a number

of discrete nodes for each element. The finite

element approximations of the dependent variables

are

Pðx; yÞc
XN1

i¼1

pi/iðx; yÞ Qðx; yÞc
XN1

i¼1

qi/iðx; yÞ

gðx; yÞc
XN2

i¼1

giwiðx; yÞ wðx; yÞc
XN2

i¼1

wiwiðx; yÞ

ð16Þ

where pi, qi, gi and wi are the values of the

dependent variables at the nodal points, /i and wi,

are the standard basis functions and N1 and N2 are

the total number of unknowns. The standard basis

functions are locally defined polynomials. Finite

element solutions of the Boussinesq equations in

primitive form can exhibit severe spurious modes,

especially when equal-order basis functions are ap-

plied for the velocities and the surface elevation. To

get stable and oscillation free solutions, mixed

interpolation is used in the present work. Both

triangular elements (quadratic fluxes and linear sur-

face elevation and auxiliary variable) and quadrilat-

eral elements (biquadratic fluxes and bilinear surface

elevation and auxiliary variable) are applied in the

present work. The use of either triangular or quad-

rilateral elements or a combination of these increases

the possibility to generate the optimal mesh for an

actual case.

The governing equations are recasted into a weak

form by multiplying Eqs. (1b) and (1c) with the

weighting functions, /i, and Eqs. (1a) and (9)

with the weigthing functions, wi, and integrating

over the domain, X. Applying the divergence

theorem, the equations can be written in a form

which only requires the interpolation functions to

be continuous. The integration by parts introduces

integrals on the boundary, C. Introducing the

finite element approximation for the dependent

variables, the following system of differential/alge-
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braic equations (DAEs) for the nodal unknowns is

obtained

M1 þ B1 B2

B3 M1 þ B4

M2

2
6666664

3
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1
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¼
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1
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ð17aÞ
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g1

g2

g3

0
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1
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�
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q
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1
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2
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3
77775ðwÞ

and

M2w ¼ g4 ð17bÞ

where

g4 ¼ fw � Ds

Here (p, q, g) and (ṗ, q̇, ṅ) are global vectors con-

taining the nodal values and their time derivatives,

respectively. w is a global vector containing the

nodal values of the previous defined continuous

variable, w (Eq. (9)). A description of the matri-

ces and vectors in Eqs. (17a) Eqs. (17b) is

presented in Appendix A. Global mass conserva-

tion is retained in the discrete finite element

system when natural boundary conditions are

enforced.

3.2. Time integration

The integration in time is performed using a three-

step explicit Taylor–Galerkin method. Details of the

method are given in Kashiyama et al. (1995). To
obtain the auxiliary variable and the derivatives with

respect to time of the fluxes and surface elevation,

three sets of linear equations have to be solved.

M1 þ B1 B2

B3 M1 þ B4

2
4

3
5 ṗ

q̇

0
@

1
A ¼

g1

g2

0
@

1
A ð18aÞ

M2ġ ¼ g3 ð18bÞ

M2ẇ ¼ g4 ð18cÞ

For small problems, these systems can be solved using

Gaussian elimination with sparse technique. However,

for large systems, more cost-efficient methods must be

applied such as a Krylov subspace iterative method

(e.g., GMRES) combined with an efficient precondi-

tioner (e.g., an incomplete LU factorisation). Both

methods have been implemented in the present work.

To further reduce the computational costs for large

problems, the system of linear equations Eq. (18a) is

solved using iteration

M1 þ B1½ � ṗkþ1 ¼ g1 � B2q̇
k ð19aÞ

k= 1, 2,. . .

M1 þ B4½ �q̇kþ1 ¼ g2 � B3ṗ
kþ1 ð19bÞ

Only a few iterations are needed to obtain conver-

gence. In the present work, the systems of linear

equations Eqs. (18b)– (18c) and (19a)– (19b) are

solved using GMRES with incomplete LU factorisa-

tion as preconditioner.

3.3. Boundary conditions

Three types of boundaries can be specified: A

closed boundary (a fully reflecting wall), an open flux

boundary and a fully absorbing boundary. At a flux

boundary, we have

pn ¼ pnx þ qny ¼ pn*

and

Bg
Bn

¼ Bg
Bx

nx þ
Bg
By

ny ¼
Bg
Bn

� �
*

ð20Þ

where pn* and (Bg/Bn)* are known values from the

incident wave condition at the open boundary and
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n=(nx, ny) is the unit outward normal vector. For

waves of constant form on horizontal bottom, pn*

and (Bg/Bn)* can be expressed in terms of the surface

elevation, the wave frequency and the wave number.

Hence, by using Fourier series decomposition tech-

nique, pn* and (Bg/Bn)* can be determined for any

linear irregular surface elevation variation. A closed

boundary is the special case, where

p* ¼ 0 and
Bg
Bn

� �
*
¼ 0 ð21Þ

At both a closed boundary and an open flux boundary,

the boundary conditions are implemented by solving

the tangential momentum equation together with the

equation pn= p* following the approach by Engelman

et al. (1982). Note that for the tangential momentum

equations

tx fp þ ty fqu0 ð22Þ

Hence, the boundary integrals cancel out exactly. At a

closed boundary, the boundary integral, fg and fw, are

identical to zero, while these two integrals must be

calculated at an open boundary. A fully absorbing
Fig. 1. Instantaneous surface elevation calculated using
boundary is simulated using the sponge-layer ap-

proach. In the sponge layers, an explicit damping of

both the surface elevation and the fluxes is performed

after each time step. The damping coefficients are

close to unit along the front of the sponge layer and

are increasing smoothly towards the boundary.
4. Numerical experiments

In order to verify the accuracy of the numerical

approach and to validate the model, the model is

applied to four test cases.

4.1. Non-linear refraction–diffraction of regular

waves over a semicircular shoal

The first test case is the non-linear refraction–

diffraction of regular waves over a semicircular shoal.

The problem was studied experimentally by Whalin

(1971). For a presentation of numerical results, see,

e.g., Madsen and Sørensen (1992) and the references

herein. Whalin performed a series of experiments with

different wave conditions. Here, we concentrate on the

case with a wave period of 2 s and a wave amplitude
the new FEM model shown over the bathymetry.



Fig. 2. Surface elevation along the centreline (T= 2 s and H= 0.015 m). (—) New model (FEM); (- - -) existing model (FDM).

Fig. 3. Wave amplitude for the first, second and third harmonic

along the centreline (T= 2 s and H = 0.015 m). ). (—) New model

(FEM); (- - -) existing model (FDM); (o) experimental data by

Whalin (1971).
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of 0.0075 m. The model area covers 6.096� 36.576 m

with a depth variation given by

hðx; yÞ ¼

0:4572 0VxV10:67� G

0:4572þ 1
25
ð10:67� G� xÞ 10:67� GVxV18:29� G

0:1524 18:29� GVxV36:576

8>>>><
>>>>:

where

GðyÞ ¼ ½yð6:096� yÞ�1=2 0VyV6:096

The results using the new model are compared to both

experimental data and to the results obtained using an

existing Boussinesq model based on the FDM. A

detailed description of the latter can be found in

Madsen et al. (1991) and Madsen and Sørensen

(1992). Note that both the new and the existing model

are based on the enhanced Boussinesq equations with

Padé [2,2] dispersion.

For the new model, quadrilateral elements with an

edge length of 0.1016 m are used, resulting in 21600

elements. The number of nodes is 22021 and 87241,

respectively, for the linear and quadratic interpolation.

For the existing model, a grid spacing of 0.1016 m is

used resulting in 21600 discrete unknowns for the

surface elevation. A time step of 0.02 and 0.01 s is

applied for the new and the existing model, respec-

tively. The small time step is needed for the existing

model to get a stable solution due to the treatment of

the Boussinesq terms. For the existing model, a time

step of 0.02 s is applied while for the new model a

time step of 0.01 s must be applied due to the
biquadratic interpolation of the fluxes. The outgoing

waves at the downstream boundary are absorbed

using a 6-m-wide sponge layer.

The incoming waves are linear, but after the

focusing on the shoal, higher harmonics become

significant due to non-linear effects. The focusing of

the waves can be seen in Fig. 1 showing an instanta-

neous surface elevation field calculated using the new

FEM model. Fig. 2 shows the surface elevation along

the centreline. The energy transfer to higher harmon-

ics is illustrated in Fig. 3. Based on a Fourier analysis

of the time series of surface elevation at each grid

point along the centreline, the spatial evolution of the

first, second and third harmonics from the numerical

simulations is compared with the experimental data.



Fig. 4. Spatial variation of wave crest elevation, wave trough elevation and mean water level for regular waves breaking on at gently sloping

beach. (—) Old breaking procedure; (- - -) new breaking procedure (o); experimental data by Ting and Kirby (1994).
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The results from the two numerical models are almost

identical and the agreement with the measurements is

quite good.

4.2. Shoaling and breaking of regular waves on a

gently sloping beach

The two different procedures for determination of

the roller thickness (see Section 2.2) are compared for

the shoaling and breaking of regular waves on a

gently sloping beach. Ting and Kirby (1994) pre-

sented measurements for spilling breakers on a plane

sloping beach with a slope of 1/35 starting at a depth
Fig. 5. Spatial variation of mean roller thickness. (—) Old
of 0.40 m. As input, they generated regular waves

with a period of 2.0 s and a wave height of 0.121 m.

This test case is a one-dimensional flow problem.

Hence, a one-element wide channel is used in the

simulation. Quadrilateral elements with an edge

length of 0.02 m are used. For comparison a one-

dimensional version of the finite element model using

the old procedure for determination of the roller

thickness is also applied. In both cases, the time step

is 0.005 s.

The cross-shore variation of the wave crest eleva-

tion, wave trough elevation and mean water level are

shown in Fig. 4 and the cross-shore variation of the
breaking procedure; (- -) new breaking procedure.
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mean roller thickness is shown in Fig. 5. It can be seen

that the new and the old procedures for calculation of

the roller thickness give almost identical results. The

pronounced shoaling just up to the break point is

significantly underestimated. The reason for this dis-

crepancy is that the enhanced Boussinesq equations

underestimate the transfer of energy to the super-

harmonics.

4.3. Shoaling and breaking of irregular waves on a

gently sloping beach

The simulation of shoaling, breaking and runup of

irregular waves are verified by comparing with the

experimental results reported by Cox et al. (1991).

The physical flume consists of a 10-m horizontal

section with a water depth of 0.47 m and a 12-m

section with a constant 1/20 impermeable slope. An

incident wave spectrum of Pierson–Moskowitz type
Fig. 6. Time series of surface elevation (S) and swash oscillation (r, vertical

al. (1991), shifted relative to the computed results by 0.08 m.
with a peak period of 1.0 s and a significant wave

height of 6.45 cm is considered.

The mesh consists of quadrilateral elements. The

mesh is one element wide, and along the flume, it is

adapted to the wavelength. The element size in the

cross-shore direction is chosen, so that a wave with a

characteristic wave period of 1 s is resolved with 40

elements per wavelength. The maximum edge length

is 0.0375 m and the minimum edge length is set to

0.01 m. The edge length in the longshore direction is

0.0375 m. The time step is 0.04 s.

The incoming waves are specified using an inter-

nal boundary at a water depth of 0.25 m. The

measured surface elevation at this depth is analysed

by a Fourier analysis, the low frequency motion

( f < 0.1 Hz) is removed and the remaining signal

is converted into a flux condition. At the offshore

boundary, a 1-m-wide sponge layer is placed to

absorb the outgoing waves.
displacement). ( ) Present model; (—) experimental data by Cox et
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Fig. 6 shows a comparison between the FEM

results and the measurements. The top panel shows

the surface elevation at a still water depth of 5 cm

(wave gauge 11), which is well inside the breaking

zone. The bottom panel shows the motion of the

shoreline converted into vertical displacement. The

agreement is seen to be quite good. The shoreline

motion is dominated by low frequency oscillations,

which is to be expected because the wave breaking

for this case is dominated by spilling breakers. The

resemblance between measurements and model

results is similar to what was previously reported

using a finite difference model, see Madsen et al.

(1997b).

4.4. Rip channel

Laboratory experiments for a case with waves

propagation on a plane beach with a rip channel have

been reported by Hamm (1992a,b). The wave basin is

30� 30 m and the bathymetry is a plane sloping
Fig. 7. Close up o
beach of 1:30 with a rip channel excavated along

the centreline. The depth variation is given by

hðx; yÞ ¼

0:5 xV7

�0:1þ 25�x
30

1þ 3exp � 25�x
30

� �
cos10

pð15�yÞ
30

� �h i
7 < x < 25

�0:1þ 25�x
30

xV25

8>>>><
>>>>:

Hamm considered a number of different incident

wave conditions. Here, the case with unidirectional,

regular, incident waves with a period of 1.25 s and a

wave height of 0.07 m is considered.

Only half of the physical wave tank is covered in

the computations, and reflective boundary conditions

are applied at the line of symmetry. The mesh is

generated using a triangular mesh generator based on

constrained Delaunay triangulation. The first step in

the mesh generation is to generate a basic mesh based

on the nodes specifying the boundary of the compu-

tational domain. The next step is to refine the mesh by

imposing constraints on minimum angle and maxi-

mum triangle area. A depth-adaptive mesh can be
f the mesh.



Fig. 8. Contour plot of the mean surface elevation.
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constructed by making the constraint on maximum

area depend on the local water depth. A depth-

adaptive unstructured mesh is used with 62635 trian-

gular elements (125852 nodes for the velocity and

31609 nodes for the surface elevation). At the off-
Fig. 9. Vector plot of the time
shore boundary, the element size is approximately

0.02 m2 while the element size near the shoreline is

around 0.00125 m2. Inside the permeable beach, the

element size is 0.02 m2. The minimum angle is 26j. A
close up of the mesh is shown in Fig. 7. The time step
-averaged velocity field.



Fig. 10. Rip current along the centreline.
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is 0.015 s and the simulation period is 450 s cor-

responding to 360 wave periods. Note that if a

Cartesian mesh is used with an element size of

0.00125 m2, then 360000 elements are needed.

Hence, the number of elements is reduced with a

factor 6 for this case using an unstructured depth-

adaptive mesh instead of a Cartesian mesh. A constant

friction factor of fw = 0.03 is used in the bed friction

term and a Smagorinsky coefficient of s= 0.1 is used.

Due to the difference in the wave set-up along the

rip channel, and at the plane beach away from the rip

channel, there is an alongshore gradient in the mean

water surface elevation. This gradient will force a

current towards the centreline. The flow from both

sides will join to form a rip current and two symmet-

rical circulation cells will be created. A steady-state

current field will be reached when the forcing due to
Fig. 11. Instantaneous surface elevati
the gradient in the mean surface elevation is balanced

out by the bed friction.

In the numerical simulation, the steady-state wave-

induced current field is reached after approximately

120 wave periods (150 s). A contour plot of the mean

surface elevation is shown in Fig. 8 and a vector plot

of the time-averaged velocity field is shown in Fig. 9.

A subdomain is shown in order to focus on the

circulation cell. The velocity is computed as the

time-average of the depth-average velocity below

the roller, u0. The velocity vectors are shown in a

structured grid (with a resolution of 0.5 m). A pro-

nounced rip current is seen along the centreline of the

bathymetry, i.e., at the top of the figure. A formation

of small eddies along the plane beach can also be

identified. However, more detailed data are needed in

order to show if similar eddies are actually present in
on shown over the bathymetry.
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the physical experiment. The cross-shore variation of

the velocity along the centreline is shown in Fig. 10.

The maximum velocity is 0.21 m/s, which corre-

sponds well with the maximum measured value of

0.25 m/s.

A snapshot of the instantaneous surface elevation

is shown in Fig. 11. It can be seen that the rip current

significantly affects the wave motion. The large op-

posing rip current causes an increase in the wave

height and a small local bend in the wave crest.
5. Conclusion

A numerical model for solving a set of extended

time domain Boussinesq-type equations including the

breaking zone and the swash zone has been pre-

sented. The model is based on the unstructured finite

element technique. A new procedure for determina-

tion of the roller thickness has been devised. This

provides a substantial simplification over the previ-

ously used procedure. The two procedures give

almost the same results for spilling as well as plung-

ing type of breaking.

The model has been applied to a number of test

cases, and comparisons with an existing finite differ-

ence Boussinesq model and laboratory measurements

show good agreement. The present work has shown

the new model as an accurate tool for prediction of

wave conditions in large coastal areas that include the

surf zone.

The use of unstructured meshes offers the possi-

bility of adapting the mesh resolution to the local

physical scale. Compared to the use of structured

meshes, the use of unstructured meshes may signifi-

cantly reduce the number of nodes in the spatial

discretisation, especially for the cases where the

breaking and surf zone are included. The reduction

which can be obtained will depend on the actual case

and the optimatization of the mesh. However, for large

coastal areas where the breaking and surf zone are

only a small part of the computational domain a

reduction factor of 10–20 is realistic. Hence, the

model has the potential to be a very cost-efficient

tool. At this stage, however, the computational cost

for a real-case study is still very large. The main

computational task is to solve the linear system of

equations at each time step. Therefore, the use of more
efficient solvers has to be investigated. Essential for

application of the model for real-case studies is also

further development of methods for generation of

unstructured meshes.
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Appendix A

The matrices in Eqs. (17a) and (17b) are defined

by:

The mass matrices

M1;iju
Z

X
/i/jdX i; j ¼ 1; 2; . . . ;N1

M2;iju
Z

X
wiwjdX i; j ¼ 1; 2; . . . ;N2

The advection matrix

Niju
Z

X

p

d

B/j

Bx
þ B

Bx

p

d

� �
/j þ

q

d

B/j

By

	

þ B

By

q

d

� �
/j



/idX i; j ¼ 1; 2; . . . ;N1

The elevation gradient matrices

Gx;iju
Z

X
gd

Bwj

Bx
/idX

i ¼ 1; 2; . . . ;N1; j ¼ 1; 2; . . . ;N2

Gy;iju
Z

X
gd

Bwj

By
/idX

i ¼ 1; 2; . . . ;N1; j ¼ 1; 2; . . . ;N2
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The flux gradient matrices

Cx;iju�
Z

X
/j

Bwi

Bx
dX

i ¼ 1; 2; . . . ;N2; j ¼ 1; 2; . . . ;N1

Cy;iju�
Z

X
/j

Bwi

By
dX

i ¼ 1; 2; . . . ;N2; j ¼ 1; 2; . . . ;N1

The Boussinesq matrices

B1;iju
Z

X
Bþ 1

3

� �
h2

B/j

Bx

B/i

Bx
dX

þ
Z

X
2Bþ 1

3

� �
h
Bh

Bx

B/j

Bx
/idX

i; j ¼ 1; 2; . . . ;N1

B2;iju
Z

X
Bþ 1

3

� �
h2

B/j

By

B/i

Bx
dX

þ
Z

X
2Bþ 1

2

� �
h
Bh

Bx

B/j

By

�

� 1

6
h
Bh

By

B/j

Bx

�
/idX i; j ¼ 1; 2; . . . ;N1

B3;iju
Z

X
Bþ 1

3

� �
h2

B/j

Bx

B/i

By
dX

þ
Z

X
� 1

6
h
Bh

Bx

B/j

By
þ 2Bþ 1

2

� ��

� h
Bh

By

B/j

Bx

�
/idX i; j ¼ 1; 2; . . . ;N1

B4;iju
Z

X
Bþ 1

3

� �
h2

B/j

By

B/i

By
dX

þ
Z

X
2Bþ 1

3

� �
h
Bh

By

B/j

By
/idX

i; j ¼ 1; 2; . . . ;N1
Ax;iju
Z

X
Bgwj h2

B/i

Bx
þ 2h

Bh

Bx
/i

� �
dX

i ¼ 1; 2; . . . ;N1; j ¼ 1; 2; . . . ;N2

Ay;iju
Z

X
Bgwj h2

B/i

By
þ 2h

Bh

By
/i

� �
dX

i ¼ 1; 2; . . . ;N1; j ¼ 1; 2; . . . ;N2

Diju
Z

X
h

Bwj

Bx

Bwi

By
þ

Bwj

By

Bwi

Bx

� �
dX

i; j ¼ 1; 2; . . . ;N2

The vectors in Eqs. (17a) and (17b) contain the

boundary integrals

fpu
Z

C
Bþ 1

3

� �
h2

Bp

Bx
nx/ids

þ
Z

C
Bþ 1

3

� �
h2

Bq

By
nx/idsþ

Z
C
Bgh2wnx/ids

fqu
Z

C
Bþ 1

3

� �
h2

Bp

Bx
ny/ids

þ
Z

C
Bþ 1

3

� �
h2

Bq

By
ny/idsþ

Z
C
Bgh2wny/ids

fgu�
Z

C
pnx þ qny
� �

uids

fwu
Z

C
h

Bg
Bx

nx þ
Bg
By

ny

� �
uids

where n= (nx, ny) is the unit outward normal vector.

For simplicity, the terms due to breaking, bottom
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friction and turbulent mixing have been omitted.

The domain integrals are calculated using isopara-

metric coordinate transformation and Gaussian

quadrature.
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Schäffer, H.A., Madsen, P.A., Deigaard, R., 1993. A Boussinesq

model for waves breaking in shallow water. Coast. Eng. 20

(3/4), 185–202.

Shi, F., Dalrymple, R.A., Kirby, J.T., Chen, Q., Kennedy, A., 2001.

A fully nonlinear Boussinesq model in generalized curvilinear

coordinates. Coast. Eng. 42, 337–358.
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