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ABSTRACT

Madsen, P.A. and Larsen, J., 1987. An efficient finite-difference approach to the mild-slope equa-
tion. Coastal Eng., 11: 329-351.

A system of differential equations, the stationary part of which can be reduced to the elliptic
mild-slope equation, is derived. The transient terms make the system of equations hyperbolic and
similar to the system of equations governing nearly horizontal flow. The highly efficient ADI
algorithm for the latter is used iteratively to find the stationary solution. By extracting the time-
harmonic part and using a varying time step in the iterations the computational time is reduced
greatly as compared with previous techniques.

INTRODUCTION

- For a number of years mathematical short-wave models have been applied
in engineering practice to assess the wave conditions in existing or proposed
new harbours.

One of the most general approaches so far is based on the time-dependent,
vertically integrated Boussinesq equations of conservation of mass.and
momentum (Abbott et al., 1981). This type of model system has been shown
to be applicable to the analysis and solution of a number of practical engineer-
ing problems. The transformation of directional irregular nonlinear wave trains
can be simulated in this type of model due to the 1nclus10n of frequency and
amplitude dispersion.

An alternative approach is based on the mild-slope equation as formulated
by Berkhoff (1972). Models based on this equation can determine the motion
of linear monochromatic waves in areas of moderate bottom slope. However,
Booij (1983) has shown that acceptable results can be achieved even though
the bottom slope is not moderate.

The approach based on the mild-slope equation supplements the more com-
prehensive approach based on the Boussinesqy equations. For some applica-
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tions the latter is preferable: for instance for determining the short-wave
disturbance in harbours where it is essential to simulate nonlinear irregular
wave trains. However, for other applications such as harbour resonance studies
or wave-induced currents in the surf zone, the mild-slope equation turns out
to be preferable because of the reduction in the computational effort involved.
One should bear in mind that the mild-slope equation deals with monochro-
matic waves only, so it becomes essential to have a very fast and efficient way
of solving this equation.

The elliptic mild-slope equation is most commonly solved by finite-element
techniques (Berkhoff, 1972; Chen and Mei, 1974; Behrendt and Jonsson, 1984 ).
However, this method rapidly becomes expensive and eventually impossible
for increasing model sizes.

The object of this paper is to present an approach by which large model areas
can be handled with a relatively small amount of computational effort. By
recasting the mild-slope equation as a system of first-order differential equa-
tions, which are similar to the system of equations governing nearly horizontal
flow in shallow water, the highly efficient algorithms developed for the solution
of the latter can be applied. The first stages of the model development were
presented by Warren et al. (1985). A similar approach was presented by Cope-
land (1985) who solved the resulting system of hyperbolic equations using an
explicit finite-difference scheme. In the present approach we have speeded up
the algorithm by extracting the harmonic time variation from the differential
equations and by solving the resulting complex equations by an implicit scheme
using a time-varying time step.

FORMULATION OF THE EQUATIONS

The mild-slope equation, valid for steady-state solutions only, can be
expressed by:

C, 9°¢
C o2

where ( is the surface elevation, C is the phase velocity, C, is the group velocity,
V is the horizontal gradient operator.

The phase velocity and the group velocity are related to the local still water
depth h=h(x,y) through the equations:

C? = (g/k) tanh(kh)
and

C,=1/2[1+2kh/sinh(2kh)]C

V(CC, V{)— =0 (1)

where k is the local wave number.
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Asshown by Copeland (1985), eqn. (1) can be rewritten as a system of first-
order equations by introducing the pseudo fluxes P* and Q*:

*
6;; +CC, 6{ ‘ y

oQ* 9 _
3 +CC 5 3y (2)

C, 9l aP* 0Q*

C 9t 9t ox dx + dy =0

This system of equations is clearly similar to the mass and momentum equa-
tions governing nearly horizontal flow in shallow water.

A time-stepping integration of eqn. (2) is actually an iteration towards the
steady-state solution. Hence, although the numerical solution to eqn. (2) will
have a transient nature, only the final (steady-state) solution is a solution to
the original elliptic mild-slope equation.

Copeland (1985) solved eqn. (2) by using an exp11c1t finite-difference scheme
with a time step restricted by a Courant number of 1.

In the present approach we speed up the solution considerably by reformu-
lating the equations. First of all, the harmonic time variation is extracted from
the equations by inserting:

¢ =S(xyt)el ; |
P*=P(x,y,t)eit - (3)
@ =Q(x,y,t) e

where w is the cyclic wave frequency and S, P and Q are complex functions of
xandy.
As indicated S, P and Q are also slowly varying with t due to the iterative
procedure in determining the steady-state solution.

By inserting eqn. (3) into eqgn. (2) and by generalizing the equations to
include internal generation of waves (source terms), we obtain the following
set of equations:

a8 0P 3Q
A at+/12 S+a +5——SS
za%§+a4p+cz S (4)
P 3Q+,14 Q+cz—— ~0

at
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where
: C C
M= | ly=2 ‘ ;
g Y c : 1(5)
2.2-— C ’ ) A4='65‘iw

and where S8 is the source term which generates the incoming wave.
INTERNAL GENERATION OF WAVES

The time-harmonic waves are generated internally inside the model bound-
aries using a source term in the mass equation. This technique is described by
Larsen and Dancy (1983).

Along each generation line a certain amount of water is added. The added
volume is determined as:

2
Qwave 4 At (m? m s)

where guave is the “pseudo flux” in a progressive wave, 4s is the width of the
wave front inside a grid mesh, 4t is the time step.

The pseudo flux in a progressive wave can be found by assuming a constant
form solution to the mild-slope equation (2).On a horizontal bottom thlS leads
to: :

Qwave = Cg {( t)

where {(¢) is the surface elevation of the incoming wave and C, is the group
velocity.

The source term in eqn. (4) can now be determined as the added volume of
water divided by the area of the grid mesh and 4t. Hence, considering a time-
harmonic input wave with an amplitude of unity, we get:

ds
sS= c(M> | ()

The added amount of water will propagate in two opposite directions hence
only half of the specified wave energy will enter the area of interest (Fig. 1).
Therefore, two parallel generation lines will be specified in order to obtain an
incoming wave amplitude of unity.

As shown by Larsen and Dancy (1983), reflected waves are allowed to cross
the generation lines without any distortion or reflection.
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Fig. 1. Definition sketch internal generation of waves.

PARTIAL REFLECTION FROM BREAKWATERS

Having rewritten the mild-slope equation as a set of mass and momentum-
type equations it is quite easy to transfer some of the techniques developed for
the equations governing nearly horizontal flow in shallow water to the problem.

For instance Madsen and Warren (1983) have shown that the partial reflec-
tion from piers and breakwaters can be simulated by generalizing the mass and
momentum equations to describe the flow inside a vertical porous rubble mound.
The equations include the porosity of the rubble mound and a nonlinear fric-
tion term describing the laminar and turbulent energy loss inside the porous
structure. By varying the value of the porosity from the value of 1 in open water
to a value between 1 and 0 inside the porous structure, partial reflection and
transmission can be simulated. Furthermore, Madsen (1983) has shown how
a general nonlinear friction term can be linearized by applying the Lorentz
principle of equivalent work. The resulting linear friction factor f, describing
the laminar and turbulent energy loss depends on the following quantities: the
porosity n, the width of the absorber, the grain size, the water depth, the wave
period and the incoming wave amplitude.

By comparing the mild-slope equation in the form of eqn. (2) or eqn. (4)
with the equations solved by Madsen (1983), it is readily seen that the effect
of the rubble mound can be included by modifying the coefficients in eqn. (5)
to:

C 1C

—p K —— 8

’1‘“”0 ’ la‘nC

- C C.w

B =2
Az__ncw) , Mg = (i+f£.)

where £, is the linear friction factor due to the energy loss inside the porous
structure and n is the porosity.

ABSORPTION WITH SPONGE LAYER

Almost perfect absorption of waves can be obtained by using the sponge
layer technique described by Larsen and Dancy (1983). This technique is based
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on artificial damping which is introduced in the governing equations by apply-
ing a linear friction factor, f,, in a few grid lines in the vicinity of the closed
boundaries. It appears that the most efficient absorption can be obtained if the
damping intensity is gradually increased from the water area to the closed
boundary. The sponge layers have very broad-banded damping characteristics
and using only 5 grid lines of damping leads to reflection coefficients of less
than 7% even with only 5% of the wave length in the sponge layer. By com-
paring the mild-slope equation in the form of eqns. (2) or (4) with the equa-
tions considered by Larsen and Dancy (1983) it is readily seen that the effect
of the sponge layer can be included by modifying the coefficients in eqn. (5)
to: ‘

Cy.
2,2-—- C 1w+f5

/14=%i(1)+fE

where £, is the friction factor due to the sponge layer absorption (see Larsen
~and Dancy, 1983).

THE NUMERICAL SCHEME

The differential equations (4) are equivalent to the system of equations -
governing nearly horizontal flow in shallow water. Hence the efficient algo-
rithms developed for solving these equations can also be applied here.

An implicit finite-difference scheme is applied with the complex variables
S, P and @ defined on a space-staggered rectangular grid. The normal ADI
(alternating direction) algorithm is invoked and the equations are solved by
means of the Double Sweep algorithm (a special form of Gauss elimination).

The following finite-difference formulation is applied:

X-sweep:

2 A ‘
A o (STt —Sh) +32 [(2-8) St +6S%]

1
+ 51 (2=8) (PR = Pyh) +6(Pp— Pyy)]

+3 5 (2=0) Q5 —Qpith) +8(Qjt —Qpit)] =5537* (7a)
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L
ft(P;-:k P;‘k)+ [(2— 5)P":1+6P7k]+c (S;':l*k— Sy =0 (7b)

8 Ax

Y-sweep
Al—(S"“ *)+ [(2—0) S +8SHH

1

+o g [(2=0)(PIE = PP204) +0(Pjy—Py)]

+——[(2 O) (QFF>2 — QIS +o(Qt —Qpt) ] =SSy (8a)

(Q"+3/2 QM *)+ [(2—0) QP32 +6 Q]

+C3 5 (Sth—Si =0 (8b)

~ where the subscrlpt J is the increment in the x-direction and & is the 1ncrement
in the y-direction. The superscript n is the increment in time.
During the x-sweep P"*! and S™* /2 will be determined while the followmg y-
sweep will determine Q%2 and S"*!.

Notice that the parameter J has the following role:

2=>backward centering
S 1=>mid-centering
- 0=forward centering
— 1=-extrapolation

Accurate dynamic solutions are normally obtained by using d=1 while it
appears to be an advantage to use 0<J <1 for steady-state problems.

After a certain number of iterations (i.e. time steps), the steady-state solu-
tion S*(x,y) is obtained and the disturbance coefficients (relative wave
heights) can be determined as the moduli of $=.

In the following we will discuss how to minimize the number of time steps
or iterations needed to achieve the steady-state solution.

USING A FIXED TIME STEP

Usually the time step and the grid size will be restricted by the resolution of
the wave period, T, and the wave length, L. If we define this resolution by:
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T L
t="_ =
=" and N = (9a)

we can express the Courant number by:

N*
CR=75 . (9b)

Solving the hyperbolic equations (2) directly (as done by Copeland, 1985)
requires N* and N* of the order 10 and a Courant number of the order 1. Cope-
land found that accurate results could only be obtained with N*> 20 and CR<1.

Now the significant advantage in extracting the harmonic time variation
from the differential equations before a finite-difference scheme is applied is
that one does not need to resolve the wave period any longer. Only the transient
time variation is left in eqns. (4) and it should be expected that a much larger
Courant number can be used in the iteration process.

The first trial runs with the model partly confirmed this expectation and a
series of one-dimensional channel tests were made with different values of the
Courant number CR and of the centering factor J (see eqns. 7 and 8). The
solutions appeared to be quite sensitive to the value of 4: It was found that
using d =1 (i.e. mid-centering) made the computed solution oscillate around
the exact solution and for CR > 100 the x- and y-sweep solutions began to diverge
.even though this was a purely one-dimensional problem.

However, using J =0 (i.e. forward centering) made the numerical solution
converge without any oscillations at all and furthermore there seemed tobe no
limitation on the Courant number. We finally used a Courant number of infin-
ity corresponding to neglecting the time derivatives in eqn. (4) and deter-
mined the exact solution of a standing wave pattern in one single sweep.

This result was of course very promising but turning to two-dimensional
problems we quickly ran into trouble. As already found from the one-dimen-
sional tests a smooth convergence could only be achieved with d close to zero.
However, the two-dimensional tests showed that an increase in the Courant
number would require an increase in J as well in order to avoid instabilities.
This was confirmed by a Fourier stability analysis made for CR equal to infin-
ity. This analysis showed that in the one-dimensional case J can be chosen
freely while the two-dimensional case requires d >1 in order to avoid instabil-
ities. On the other hand, the analysis also showed that although the numerical
scheme is stable for CR=co and J =1 the solutions obtained after the x-sweep
and after the y-sweep are completely unconnected. Hence one can achieve an
extremely fast and stable solution which has nothing to do with the exact
solution.

- Naturally, trial runs were made with moderate values of both parameters
such as CR=10 and 0<J <1 but although the numerical scheme appeared to
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be stable for quite some time it eventually broke down as soon as the deviations
from the exact solution became small. It was finally concluded that if we use a
fixed time step, the present scheme requires forward centering (i.e. § =0) and
a Courant number of the order 1 to give a smooth and stable convergence.

This conclusion was rather disappointing because a much higher speed of
convergence was expected and therefore we started to consider using a time-
varying time step with the forward centered scheme (i.e. §=0).

USING A TIME-VARYING TIME STEP

The following computerized strategy for completely automatic change of the
time step has been adopted:
Every time step comprises two standard double sweeps with the present value
of 4t plus one extra book-keeping double sweep with the double value of At.
After each time step the test parameter TP is determined by:

1S™ — Sl
1S™~8"=1|

‘where S"”~! is the value of the surface elevations obtained from the previous
time step, S™ is the value obtained from the new first two double sweeps (using
4t) and S} is the value obtained from the book-keeping double sweep (using
24t).

The actual computation of the norm is.done in the following way:

TP=

js™—8m=4| =\/ZZ ABS(S}-871)?
i

Now the strategy adopted for the automatic change of 4t is the following.
When TP falls in the intervals: [0,0.05], [0.05,0.10], {0.10,0.15], [0.15,0.30],
[0.30,0.40], [0.40,0.60], one accepts the present computation and changes 4t
by a factor 4, 2, 1.5, 1, 1/2, 1/4 respectively, for the next time step. However,
when TP falls in the interval [0.6,00] one rejects the present computatlon and
starts the step again with 4t changed by a factor 1/16.

This strategy for automatic change of the time step is almost identical to the
one suggested by Doss and Miller (1979). Clearly, the determination of TP is
an expensive one but this parameter is actually a very good indicator of growing
instabilities.

This.can be illustrated by the following diffraction test (Fig. 2): The model
area comprises 100X 100 grid points corresponding to a N* of approximately
10. All four boundaries are closed and the waves are generated internally along
grid lines 6 and 7 at the southern boundary. Sponge layer absorption is applied
along the northern and eastern boundaries in order to minimize reflections.
Full reflection will occur along the western boundary and along the southern
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Fig. 2. Diffraction test. Grid size=9.35 m (N*=10), water depth=10.2 m, wave period=10s.

breakwater. The simulation has been continued for 100 iterations each com-
prising 2 double sweeps. A fixed time step corresponding to a Courant number
of 1 has been used. Figure 2 shows the resulting isolines of the relative wave
heights.

Notice that due to the diffraction from the edge of the breakwater, wave
disturbance propagates towards the western boundary from which it is fully
reflected. This is the reason for the undulations of the isolines on the leeward
side of the breakwater.

The next step has been to repeat this test with a fixed time step correspond-
ing to a Courant number of 2. As a measure of the quality of the solution during
the iteration, the parameter:

j8* -394
RDN="—F"_—~
iy

has been computed together with TP for every second double sweep (Fig. 3).
After 20 iterations the steady-state solution has almost been achieved and the
value of RDN has dropped to only 0.01.

However, continuing the simulation makes the RDN grow again between
iteration number 25 and 60 and the actual solution goes completely wrong.
This is the type of instability discussed in the previous section. However, it is
seen that the parameter TP quickly indicates the coming instability by a rapid
increase after approximately 20 iterations.

The way of avoiding the instability is to switch on the automatic determi-
nation of the time step. This has been done in Fig. 4 and first of all it is noticed
that the value of RDN remains very low during the full computation. There
are 2 spikes in the T'P variation (after 20 and 90 iterations). These indicate a
coming instability which is then avoided by the automatic switch to a lower
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Fig. 3. Diffraction test. Fixed time step, Courant number =2.

time step. After 21 iterations the RDN has decreased to 0.005 and after 100
iterations the value has dropped to only 0.0003.

Naturally, there is no need to continue the iterations until the RDN value
drops to almost zero, and choosing a reasonable stop criterion is very important
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-Fig. 4. Diffraction test. Automatic change of time step.

in order to achieve an efficient and economic algorithm. Actually, Doss and
Miller (1979) did not suggest any criteria for the general case where the exact
solution is not known.

At first glance it appears that a certain low value of RDN could be used as a
stop criterion. However, it turns out that this parameter is not adequate unless
we use a fixed time step because the value of RDN will depend on the local size
of the time step. Hence a stop criterion based on RDN would typically be acti-
vated in case of a growing instability because the automatic strategy would
respond with a considerable decrease of the time step which could lead to a
very low value of RDN:

Instead it appears that a stop criterion should be based on the following
convergence parameter:
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Fig. 5 Amplification factors, Model data: grid size =45 m; initial time step ={.3 & water depth =8
m) wave period = 15 5. Resull after 28 fterations.
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where & ia the ratio between the initial time step and the local time step.
The initial time step 15 chosen corresponding to a Courant number of 1. The
iteration for the steady-state solution is stopped when CP drops below 0.005,

APPLICATIONS OF THE MODEL

In oeder fo investigate a possible resonance oceurring in the inner basin of
the harbour shown in Fig. 5, simulations have been made with a range of wave
periods. As an example, Fig. 5 shows the computed amplification factors [ rel-
ative wave heights) for a wave period of 15 5. The steady-state solution has
been obtained after 28 iterations with a time varving time step. The waves are
gpenerated internally in the northern part of the model. Partial reflection 1=
taken into account by applying porosity lavers along a number of the break-
waters, It should be mentioned that the result shown in Fig. 5 agrees perfectly
with relative RMS-values of results computed by a model based on the time-
dependent Boussinesq equations (using small wave heights and regular wave
Lput ).

It 15 a well known problem to resolve correctly a breakwater at an angle to
the rectangular grid. [n thia case the smooth fully or partially reflecting front
face of the breakwater 1s replaced by a number of steps. The effect of these
steps depends strongly on the number of grid points per wave length. If this
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Fig. 6. Amplification factors (inner basin). Wave period=18 s. (a) Grid size=8 m. (b) Grid
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TABLE 1

Diffraction and reflection test; model data: grid size - 8 m; initial time step - 0.8 s; water depth - 8
m; number of grid points - 89 x 81

T N* Omin min (N?) * No. of CPU
(s) iterations (s)
92 9.3 — — > 200 —
10 10.5 0.38 4.7 83 139
11 11.6 0.38 5.2 89 148
12 12.8 0.28 4.2 97 161
13 13.9 0.28 4.6 83 138
14 15.1 0.28 4.9 34 59
15 16.2 0.28 5.3 34 59
18 19.6 0.21 4.7 28 49
24 26 0.21 6.3 26 46

*No convergence.

number is too low (say less than 10 points) the wave disturbance will be exag-
gerated close to the breakwater. In Fig. 6a and 6b we have shown what happens
if the harbour (from Fig. 5) is turned 45 degrees. The grid size is 8 m corre-
sponding to 20 points per wave length. The computed disturbance factors show
a remarkable agreement.

The effect of refining the grid size is also illustrated in Fig. 6¢. Clearly it
makes almost no difference whether the grid size is 8 or 4 m corresponding to
20 and 40 grid points per wave length respectively. However, as we shall see
later, it does make a difference going from 20 to 10 grid points.

Tables 1 and 2 summarize the efficiency of the automatic strategy for choos-
ing optimal time steps in the iteration for steady-state solutions to the problem
shown in Fig. 5.

In Table 1 the grid size is 8 m and the wave period has been varied from 9 to
24 s. First of all we notice that the steady-state solution is obtained much faster
for the long periods than for the short periods. For T'=24 s the solution is
obtained after only 26 iterations and a CPU time of 46 s on an IBM 3033. If
we had used a fixed time step corresponding to a Courant number of 1 it would
have required approximately 150 iterations and a CPU time of 120 s. For wave
periods shorter than 14 s the efficiency of the scheme drops considerably and
for wave periods shorter than 10 s a steady-state solution is not obtained at all.
Hence it appears that the efficiency of the scheme is very sensitive to the num-
ber of grid points per wave length.

This observation is confirmed by Table 2 where the grid size is only 4 m and
the wave periods have been varied from 24 to 6 s. For T =24 s the solution is
obtained after 27 iterations and a CPU time of 148 s. Hence a refinement of
the grid size has not increased the CPU time with the normal factor 8 but only



344
TABLE 2

Diffraction and reflection test; model data: grid size - 4 m; initial time step - 0.4 s; water depth - 8
m; number of grid points - 108 X 162.

T N* Omin min (N?) . No.of CPU
(s) iterations (s)
6° 113 — —_ >300 —
7 13.8 0.21 3.7 137 727
8 16.2 0.21 4.2 126 671
9 18.6 0.21 4.7 41 223
10 21.0 0.21 5.3 41 222
11 23.3 0.16 4.4 40 217
12 25.6 0.16 4.8 38 206
15 324 0.16 6.0 33 180
18 39.2 0.12 5.4 30 164
24 52 0.12 72 ° 27 148

“No convergence.

with a factor 3.2! If a fixed time step had been applied it would have required
a CPU time of approximately 960 s. According to Table 2 the efficiency of the
scheme drops considerably for wave periods shorter than 9 s corresponding to
19 grid points per wave length. For wave periods shorter than 6-7 s (corre-
sponding to approximately 12 points per wave length) steady-state solutions
cannot be obtained.

Comparing Tables 1 and 2 it appears that in order to achieve an efficient .
convergence towards the steady-state solution we should allow for at least 15-17
grid points per wave length. Copeland (1985) found that in the case of strong
reflections he had to use more than 21 grid points per wave length in order to
achieve reliable results. This is due to the complicated standing wave patterns
where the distance between nodal and anti-nodal points is only L/4. Hence,
iterating on the wave envelope obviously requires at least 4 grid points between
the maximum and the minimum level. In other types of problems where the
reflections are weak 8-10 grid points are sufficient (see Fig. 2).

By comparing Tables 1 and 2 we notice that, although the grid size has been
refined by a factor 2, the time step chosen by the automatic strategy leads to
almost the same minimum values of N*. This quantity is always found in the
interval 3-8 which means that the automatic strategy chooses a larger Courant
number for larger values of N*.

On Fig. 7 the results from Tables 1 and 2 have been combined to give the
variation of the maximum Courant number as a function of N*. The results
obtained with grid size 8 m and with 4 m are Very similar when they are pre-
sented in terms of N* instead of T.

On Fig. 8 the efficiency is shown as a function of N*. This effimency has
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Fig. 8. Efficiency of the iteration\scheme.

been deﬁned as the distance between the entrance and the inner harbour
(measured in number of grid points) divided by the number of iterations nec-
essary to obtain a steady state solution. Using a fixed time step corresponding
to a Courant number of 1 would lead to an efficiency of 1 in the case of weak
reflections and approximately 0.5 in the case of strong reflections. Using the
automatic strategy leads to an efficiency higher than 3 for N* larger than 18.



346

0.04 \

\ A

REFLECTION COEFFICIENT

0.01

4 2 1 0.4 0.2 0.1 tan (x)

Fig. 9. Reflection from a sloping beach. @ =computed in this paper; — = mild-slope equation, Booij
1983.

In Fig. 9 the reflection from a sloping beach has been determined. The agree-
ment with the results of Booij (1983) is seen to be excellent.
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Fig. 10a. Model setup. Water depth =25.73 m, width of basin=6.0 m, length of basin=31.0 m,
grid size=1.0 m.



© 347

AMPLIFICATION FACTOR (R)

A K
Fig. 10b. Amplification at the centre of the backwall of a fully open rectangular basin. e =Com-

puted by the present model. —=theoretical solution by Lee (1971). 0 =Experiment by Lee (1971).
A =Experiment by Ippen and Goda (1963).

In Fig. 10 harbour resonance in the classical fully open rectangular basin has
been determined. Analytically, this is a relatively simple case to handle but
numerically it is rather complicated to simulate for the following reasons: First
of all the resonance depends entirely on the correct simulation of the partial
reflection of waves at the entrance to the inner basin. This reflection will depend
entirely on the width of the inner basin compared to the width of the outer
basin which in principle should be infinity in this case. The model setup is
shown in Fig. 10a: Absorbing sponge layers have been placed along all open
boundaries and the incoming waves have been generated internally. The inner
basin has been represented by 6 x 31 grid points and it has been necessary to
make the outer basin 150 grid points wide (in order to represent the infinite
open sea). Decreasing this width of the outer basin will decrease the peak of
the amplification factor.

The computed amplification at the centre of the backwall of the inner basin
has been compared to the theoretical solution by Lee (1971) and to the exper-
imental results by Ippen and Goda (1963) and Lee (1971). The agreement is
seen to be very good (Fig. 10b).
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Fig. 10c. Time Qariafion of TP, CPand the Courant number.
The wave number has been varied from 0.83 to 4.0 leading to 195 and 40 grid

points per wave length, respectively. Steady-state solutions have been achieved
after approximately 30 time steps using a maximum Courant number of 13.



» 349

For comparison it should be mentioned that using a model based on the time-
dependent Boussinesq equations for this study would require more than 1500
time steps in order to obtain the steady-state solution.

InFig. 10c a typical variation of TP, CP and of the Courant number is shown.
Notice that the CP parameter is almost independent of the local value of the
time step. Hence, this parameter is a reliable measure of the convergence of
the solution.

Finally, Fig. 11 shows the development in time of the waves generated by a
point source in a square basin with fully reflecting walls. The iteration is not
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Fig. 11. Internal generation of waves in a single source point in a square fully reflecting basin.
Isolines of amplification factors during different stages of the simulation.
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convergent, since energy is constantly put into the basin and no energy is
removed. The symmetry of the solution is maintained even at a late stage of
the iteration thus demonstrating the robustness of the algorithm.

CONCLUSION

A finite-difference scheme based on the transient form of the mild-slope
equation has been derived. A highly efficient ADI algorithm is used iteratively
to find the stationary solution. The scheme depends on a centering parameter
and the resolution in space and time. For the resolution of a standing wave
pattern at least 16 grid points per wave length of the incident wave is needed.
One-dimensional simulations show that forward centering enhances the con-
vergence rate; but a fixed time step with a forward centered scheme leads to
instabilities in the two-dimensional case. A strategy with a forward centered
difference scheme and a time-varying time step leads to a stable convergent
algorithm, which is faster than previous solution techniques.
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