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1 Introduction 

The present Scientific Documentation aims at giving an in-depth description of the 

equations and numerical formulation used in the Hydrodynamic Module of MIKE 3. 

 

The non-hydrostatic version is described in the present documentation. For details on the 

hydrostatic version of MIKE 3, see MIKE 3 Flow Model - Hydrostatic Version - Scientific 

Documentation. 

 

First the main equations and the numerical algorithms applied in the model are described. 

This is followed by a number of sections giving the physical, mathematical and numerical 

background for each of the terms in the main equations. 
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2 Main Equations 

The hydrodynamic model in MIKE 3 is a general numerical modelling system for 

simulation of flows in estuaries, bays and coastal areas as well as in oceans. It simulates 

unsteady three-dimensional flows taking into account density variations, bathymetry and 

external forcing such as meteorology, tidal elevations, currents and other hydrographic 

conditions. 

 

In a three-dimensional hydrodynamic model for flow of Newtonian fluids, the following 

elements are required 

 

• mass conservation 

• momentum conservation 

• conservation of salinity and temperature 

• equation of state relating local density to salinity, temperature and pressure 

 

Thus, the governing equations consist of seven equations with seven unknowns. 

 

The mathematical foundation in MIKE 3 is the mass conservation equation, the Reynolds-

averaged Navier-Stokes equations in three dimensions, including the effects of 

turbulence and variable density, together with the conservation equations for salinity and 

temperature. 
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where   is the local density of the fluid, cs the speed of sound in seawater, ui the velocity 

in the xi-direction, ij the Coriolis tensor, P the fluid pressure, gi the gravitational vector, T 

the turbulent eddy viscosity,  Kronecker's delta, k the turbulent kinetic energy, S and T 

the salinity and temperature, DS and DT the associated dispersion coefficients and t 
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denotes the time. SS refers to the respective source-sink terms and thus differs from 

equation to equation. 

 

The salinity, temperature and pressure are related to the density through the UNESCO 

definitions (UNESCO 1981). 

 

In most three-dimensional models the fluid is assumed incompressible. However using 

the divergence-free (incompressible) mass equation, the set of equations will inevitably 

form a mathematical ill-conditioned problem. In most models this is solved through the 

hydrostatic pressure assumption whereby the pressure is replaced by information about 

the surface elevation. In order to retain the full vertical momentum equation an alternative 

approach has been adopted in MIKE 3. This approach is known as the artificial 

compressibility method (Chorin 1967, Rasmussen 1993) in which an artificial 

compressibility term is introduced whereby the set of equations mathematically speaking 

becomes hyperbolic dominated. The compressibility is discussed further in Section 10. 

 

Equations (2.1) and (2.2) are referred to as the hydrodynamic equations whereas 

Equations (2.3) and (2.4) are referred to as advection-dispersion equations in the 

following sections. The two first equations are solved in the hydrodynamic module and 

similarly the advection-dispersion equations are solved using the advection-dispersion 

module. 
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3 Introduction to Numerical Formulation 

The hydrodynamics module of MIKE 3 makes use of the so-called Alternating Direction 

Implicit (ADI) technique to integrate the equations for mass and momentum conservation 

in the space-time domain. The equation matrices, which result for each direction and 

each individual grid line, are resolved by a Double Sweep (DS) algorithm. 

 

The hydrodynamic module has the following properties: 

 

• zero numerical mass and momentum falsification and negligible numerical energy 

falsification, over the range of practical applications, through centring of all difference 

terms and dominant coefficients, achieved without resort to iteration 

• discretised on the Arakawa C-grid aiming at a second-order accuracy on all terms, 

i.e. "second-order" in terms of the discretisation error in a Taylor series expansion 

• a well-conditioned solution algorithm providing accurate, reliable and fast operation 

 

 

 
 
Figure 3.1 Difference grid in x, y and z-space 

 

 

The difference terms are expressed on a staggered grid in x, y and z-space as shown in 

Figure 3.1. This grid is known as the Arakawa C-grid. 

 

Time centring of the four hydrodynamic equations is achieved as sketched in Figure 3.2. 

 

The equations are solved in one-dimensional sweeps, alternating between x, y and z 

directions. In the x-sweep the continuity  
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Figure 3.2 Time centring 

 

 

and x-momentum equations are solved, taking P from n-1/6 to n+½ and u from n to n+1. 

For the terms involving v and w, the two levels of old, known values are used, i.e. n-2/3 

and n+1/3 for the v-velocity and n-1/3 and n+2/3 for the w-velocity. 

 

In the y-sweep, the continuity and y-momentum equations are solved taking P from n+1/6 

to n+5/6 and v from n+1/3 to n+4/3, while terms involving u use the values of u just 

calculated in the x-sweep at n and n+1 and for terms in w the two time levels n-1/3 and 

n+2/3. 

 

Eventually in the z-sweep, the continuity and z-momentum equations are solved taking P 

from n+3/6 to n+7/6 and w from n+2/3 to n+5/3, while terms involving u and v use the 

values at their latest calculated time levels, i.e. n and n+1 for the u-velocity and n+1/3 and 

n+4/3 for the v-velocity. 

 

Adding the three sweeps together gives "perfect" time centring at n+½, i.e. the time 

centring is given by a balanced sequence of operations. The word perfect has been put in 

quotation marks because it is not possible to achieve perfect time centring of the cross 

derivatives in the momentum equation. The best approximation, without resorting to 

iteration (which has its own problems), is to use a "side feeding" technique. 

 

 

 
 
Figure 3.3 Side-feeding 
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At one time step the x-sweep solutions are performed in the order of decreasing y- and z-

directions, hereafter called a "down" sweep, and in the next time step in the order of 

increasing y- and z-direction, the "up" sweep. 

 

During a "down" sweep, the cross derivative u/y and u/z can be expressed in terms 

of j,k+1,l
n+1

u  on the "up" side and j,k-1,l
n

u on the "down" side for the u/y term and similarly 

the u/z term can be expressed in terms of j,k,l+1
n+1

u  on the "up" side and j,k,l-1
n

u  on the 

"down" side. During an "up" sweep, the indices are swapped. In this way an approximate 

time centring of u/y and u/z at n+½ can be achieved, albeit with the possibility of 

developing some oscillations (zigzagging). 

 

The use of side feeding for the individual cross differentials is described in more detail in 

the following sections.  

 

This structure implies that the pressure just calculated in a sweep can be used as the old 

pressure in two sweeps ahead, i.e. the pressure from the x-sweep can be used in the z-

sweep, which in turn can be used in the y-sweep,etc. To exchange information between 

the individual sweeps slightly faster MIKE 3 uses a time filtering of the pressure such that 

the pressure calculated in a sweep is used in the immediately following sweep. 

 

Finally, it should also be mentioned that it is not always possible to achieve a perfect time 

centring of the coefficients on the differentials. 

 

Centring in space is not generally a problem as will be seen in the next sections. 

 

The mass and momentum equations thus expressed in a one-dimensional sweep for a 

sequence of grid points lead to a three-diagonal matrix 

 
nn WMV 1  (3.1) 
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where the coefficients A, B, C, D and A
*
, B

*
, C

*
, D

*
 are all expressed in “known” 

quantities. Note that Equation (3.2) is here shown for the x-direction but equivalent 

structures exist for the y- and z-directions. 

 

The system (3.1) is then solved by the well-known Double Sweep algorithm. For 

reference one may see, for example, Richtmeyer & Morton 1967. In developing the 

algorithm one postulates that these exist relations 
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Substituting these relations back into Equation (3.2) gives recurrence relations for E, F, E
*
 

and F
*
. 
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It is clear that once a pair of Ej, Fj values is known (or E Fj j 1 1

* *, ) then all E, F and E
*
, F

*
 

coefficients can be computed for decreasing j. Introducing the right-hand boundary 

condition into one of the Equations (3.2) starts the recurrence computation for E, F and 

E
*
, F

* 
- the E, F-sweep. Introducing the left-hand boundary condition in Equation (3.3) 

starts the complimentary sweep in which P and u are compared. 
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As discussed earlier, sweeps may be carried out with a decreasing complimentary 

coordinates or increasing complimentary coordinates. This is organised in the cycle 

shown in Figure 3.4. 

 

 
 
Figure 3.4 Cycle of computational sweeps 

 

In Section 6 the numerical properties of the difference scheme in terms of amplification 

and propagation errors are discussed. Before this, we shall present various difference 

approximations. 
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4 Difference Approximations for Points away from Coast 

We shall mainly look at the mass and momentum equations in the x-direction. As the 

mass equation in the y- and z-directions influences the centring of the x-mass equation, 

we shall also consider the difference approximation of these equations. The momentum 

equation in the y- and z-directions are analogous to the momentum equation in the x-

direction and are, accordingly, omitted here. The boundary conditions for the momentum 

equation in the z-direction, however, are (in most applications) different from its 

counterparts in the two other directions. These are discussed further in Section 8. 

 

4.1 Mass Equation in the x-Direction 

The mass equation reads 
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The x-, y- and z-sweeps are organised in a special cycle as shown in the preceding 

section. In Section 6 it is shown how the computation proceeds in time and how the 

equations are time centred.  

 

In order to fully understand the balance between the difference approximations employed 

in the various sweeps it is necessary to read Section6 in conjunction with the following 

sections. For the moment it is sufficient to say that the x-mass and x-momentum 

equations bring P from time level n-1/6 to n+½ while bringing u from n to n+1. Together 

with the y- and z-mass equations the terms are centred at n+½. 

 

 

 
 
Figure 4.1 Grid notation mass equation, horizontal view 

 

 

The grid notation for the horizontal plane is shown in Figure 4.1. A similar definition is 

used in the vertical. Thus, u and v may be replaced by any combination of u, v and w as 

appropriate. Hence, by definition Equation (4.1) becomes 
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4.2 Mass Equation in the y-Direction 

The y sweep immediately following the x-sweep, for which the mass equation was just 

described, brings P from time level n+1/6 to level n+5/6 and helps to centre the x-mass 

and x-momentum equations. With the grid notation of Figure 4.1, Equation (4.1) becomes 
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4.3 Mass Equation in the z-Direction 

Eventually the z sweep immediately following the y-sweep brings P from time level n+3/6 

to level n+7/6. Equation (4.1) thus becomes: 
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(4.4) 

 

 

We will not discuss truncation errors at this point. As the approximations are based on a 

multilevel difference method, centring of terms and the evaluation of truncation errors 

should be considered in conjunction with a certain set of equations. We will revert to this 

point in Section 6. 

 

4.4 Momentum Equation in the x-Direction 

4.4.1 General 

The x-component of the momentum equation reads 
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in which  is the angular velocity of the Earth,  the latitude and  the longitude. We shall 

develop the difference forms by considering the various terms one by one. 

 

The following basic principle is used for the finite difference approximations of the x-

momentum: 

 

Terms in Equation (4.5) should be time centred at n+½ and space centred at the location 

corresponding to uj,k,l in the space-staggered grid. The grid notation is shown in Figure 

4.2. 

 

4.4.2 The Time Derivation Term 

The straightforward finite difference approximation to the time derivative term is 

 

lkj

nn

t

uu

t

u

,,

1

















 

 (4.6) 

 

Using a Taylor series expansion centred at n+½ leads to 
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(4.7) 

 

 

The central differencing (in either time or space) has inherent second order accuracy. In 

the hydrodynamic simulations only the first term in Equation (4.7) is included in the 

scheme. 

 

4.4.3 The Convective Terms 

The convective terms of the x-component of the momentum equation read 
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One way of approximating these terms would be to form spatially centred differences of 

time centred forms of the bracketed terms. For example the first term would read 
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However, such an approximation necessitates iteration due to its non-linearity. 

Alternatively this term could be approximated as  
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In this way the term has been linearised in the resulting algebraic formulation. Truncation 

errors embedded in Equation (4.10) can be determined by the use of Taylor series 

expansions centred at j,k,l and n+½. This leads to 
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(4.11) 

 

where FDS is given by Equation (4.10). Hence the approximation is of second-order 

accuracy. 

 

As MIKE 3 uses a non-iterative procedure to advance the solution in time the non-linear 

terms all have to be linearised according to the principle of Equation (4.10) . 

 

One will note that the difference form in Equation (4.10) in fact involves 5 diagonals in the 

matrix of difference equations, whereas we employ a "tri-diagonal" algorithm for its 

solution. One can extend the "tri-diagonal" algorithm to a "penta-diagonal" algorithm. 

Here we have chosen to reduce the form (4.10) to a tri-diagonal form by local 

substitution. 

 

The difference approximation of the two remaining terms in Equation (4.8) will differ 

between an "up" sweep and a "down" sweep. We shall use "side feeding" as a mean to 

centre the terms at level (n+½) t. 

 

 

 
 
Figure 4.2 Grid notation: x-momentum equation 
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We write, referring to the grid notation of Figure 4.2, 
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where: a = n+1, b = n for a "down" sweep 

 a = n    , b = n+1 for an "up" sweep 
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The diagrams in Figure 4.3 and Figure 4.4 may illustrate how the cross terms are built.  

 

Note that the main computation we are dealing with in this approximation of the x-

momentum equation is in the x-direction. By "down" sweep or "up" sweep we mean in 

fact computational sweeps in the x-direction, carried out by decreasing or increasing y 

and z, respectively. 

 

 

 
 

 
Figure 4.3 "Side-feeding" for the convective term uv)/y. u(n+1,j,k+1,l) known, calculated by a 

"down" sweep. u(n,j,k-1,l) known, calculated by an "up" sweep 
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Figure 4.4 "Side-feeding" for the 2

nd
-order cross-derivative term.  


 2

u/y
2
 for "down" sweep. 
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u/y

2
 for an "up" sweep 

 

 

Also note that the v
n+½

 terms cannot be centred perfectly in time. It is one sixth of a time 

step back-centred. In fact, this will always be the case for one of the terms. In an x-sweep 

it is the v-component, in the y-sweep the w-component and in the z-sweep the u-

component. The associated truncation error is again assessed by means of a Taylor 

series expansion, which leads to 
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where FDS is the right hand side of Equation (4.12). It is seen that the accuracy of this 

term is of the first order. The second term on the right hand side of Equation (4.14) is due 

to the back centring of v by t/6, whereas the third term is due to the side feeding. The 

sign of this term is positive for a "down" sweep and negative for an "up" sweep. Thus, "on 

average" the term cancels out. This is obviously not the case for the second term. Recall 

that during a y-sweep it will be the w-derivative term, which will be slightly back-centred 

and similarly the u-derivative term in a z-sweep. 

 

The last term of Equation (4.8) yields 
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in which 
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a and b is referring to "up" sweep and "down" sweep directions like for the y-derivative 

term. A truncation error analysis of this approximation in terms of a Taylor series 

expansion yields 
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with FDS given by Equation (4.15). Again the accuracy is of first order when considered 

at a certain time level but of second order "on average". 

 

4.4.4 Coriolis Term 

The Coriolis term 
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is different for each of the directions. The principles of the finite difference approximations 

are the same, and accordingly only the discretisation in the x-momentum needs to be 

considered here. The two velocity components are approximated by 
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The associated truncation errors are 
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As for the convective term the v-velocity is back-centred t/6 of a time step which 

decreases the accuracy by one order. Recall that the velocity component which is back-

centred differs from sweep to sweep. 

 

4.4.5 The Pressure Term 

The straightforward approximation to the pressure term reads 
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(4.21) 

 

By virtue of the central difference in space this approximation has a second-order 

accuracy. 
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4.4.6 The Shear Terms 

The discretisation of the shear terms in Equation (4.5) has many similarities with the 

convective terms. The approximation of the first term reads 
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where a and b again refer to the "down" sweep and an "up" sweep, respectively. The 

associated truncation error yields 

 

 

)(

3

2

23

1

2
2

3

3
2

2

32

3

3
2

2

2

2

22

TermsOrderHigherHOT

x

v

x

u
x

tx

u

x

vt

x

u

x

v
x

x

u

x

vx
FDS

x

u
v

x

T

Tt

T
T


























 

























 


















 (4.23) 

 

Thus the accuracy of this term is of second order. The finite difference approximation for 

the two remaining terms reads 
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(4.25) 

 

 

where 
*

T  and 
**

T  are defined in Equation (5.5), see Section Error! Reference source 

not found.. 

 

The truncation errors of these terms are more comprehensive than the others shown here 

and have therefore been omitted. However, it can be shown that the side feeding 

decreases the accuracy of these approximations by one order but reversing the sweep 

directions will "on average" increase the accuracy again. As v
n+1/3

 is slightly off-centred in 

time this will also lead to persistent truncation error terms of first-order accuracy. 
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5 Special Difference Approximations for Points near a Coast 

The cross-derivatives in the hydrodynamic equations pose a problem when the 

computational sweep passes near land. Clearly, concepts such as side feeding become 

difficult to use. Inaccuracies, asymmetric behaviour between the "up" sweep and the 

"down" sweep may, especially at corners, cause a persistent reduction in accuracy and 

possibly create instabilities. 

 

Land boundaries are defined at velocity points, with the velocity away from the land 

boundary set to zero. If for the purpose of this discussion, we consider an x-sweep, one 

can define the three principal situations given in Figure 5.1 to Figure 5.3 as Case 1, 2 and 

3. They are here shown at the "positive" or "north" side of the sweep but have, of course, 

their counterparts on the negative side. The principal situations can be combined to 

create situations as shown, for example, in Figure 5.4. The difference formulation along a 

land boundary when it is at an angle to the grid (Figure 5.5) is especially demanding. 

 

In the following we shall show possible approximations for the principal cases of Figure 

5.1 to Figure 5.3. The approximations for the other combinations are based on the same 

principles. 

 

The terms that involve cross-derivatives are - considering an x-sweep - the v/y and 

w/z terms in the mass equation, the convective terms (uv)/y and (uw)/z, and the 

shear terms (T{u/y+v/x})/y and (T{u/z+w/x})/z in the momentum equation. 

The v/y and w/z terms of the mass equation offer no problems as these terms are 

implicitly described in the definition of the land boundary. The other terms will be 

considered one by one. 

 

5.1 Convective Term 

Consider the general form (4.12) for a "down" sweep 
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CASE 1: Land to "North" 

In general we shall assume a simple reflection condition for u. That is uk+1 is assumed to 

be equal to uk. We assume a flow situation as shown in Figure 5.6. 

 

In fact, there is no obvious reason for this assumption to be more correct than, for 

example, the assumption of a distribution as given in Figure 5.6b. However, the 

distribution of Figure 5.6b would generally give a greater gradient. We have preferred the 

distribution of Figure 5.6a as it gives a smaller value. To allow for a more general 

formulation, however, slip factors can be applied such that 

 

kk ufactorslipu  )(1  
(5.3) 

 

where the slip factors can vary between -1 and 1. A slip factor of -1 is equivalent to a no-

slip condition along the boundary whereas 1 is equivalent to a full-slip condition. These 

assumptions should be kept in mind in applications where u/y becomes important at the 

land boundary. In most horizontal spatial descriptions that we are dealing with - x, y 

several tenths or hundreds of metres - the full-slip condition is a good approximation. 

 

For Case 1 the reflection assumption, however, does not matter. The general form of 

(5.1) reduces to a reasonable approximation because vj+½,k+½,l = 0. 

 

 

 
 
Figure 5.1 Special situations near Land. Land to “North” (CASE 1) 
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CASE 2: Corner - Exit 

For u the reflection condition is used. The approximation of vj+½,k+½,l is more difficult. 

There are no evident assumptions to this case. Experience from regular grids has shown 

that, in general, the assumption that vj+1,k+1,l0 gives good results. With this assumption 

vj+½,k+½,l can be approximated by the general expression (5.2). 

 

 

 
 
Figure 5.2 Special situations near land. Corner - Exit (CASE 2) 

 

 

 
 
Figure 5.3 Special situations near land. Corner - Entry (CASE 3) 
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CASE 3: Corner - Entry 

Similar assumptions to those in Case 2 give reasonable approximations. 

 

 

 
 
Figure 5.4 Possible corner combination (which should be avoided) 

 

5.2 Shear Terms 

The shear terms require an approximation for the cross-derivative terms such as the term 

(T u/y)/y. Consider the general form of this term in (4.24). We have 
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in which 
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Figure 5.5 Coastline 45

o
 to the grid 

 

 

 
 
Figure 5.6 Possible velocity distributions 

 

The uk+1 and uk-1 are approximated using the reflection condition. For Case 1, the T 

k+1's require an approximation. Experience has shown that the approximation T k+1  T 

k in general gives good results. For Case 2, T
*
 can be approximated as in Case 1. For 

Case 3 a similar approximation can be applied. 
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6 Structure of the Difference Scheme, Accuracy, Stability 

6.1 Time Centring, Accuracy 

The difference schemes developed in the previous section must be seen as one 

component in a computational cycle. Only together with the other component equations in 

this cycle is time centring obtained. A full computational cycle is for instance 

 

x-  x-sweep, carried out with decreasing y and z 

y-  y-sweep, carried out with decreasing x and z 

z-  z-sweep, carried out with decreasing x and y 

x+  x-sweep, carried out with increasing y and z 

y+  y-sweep, carried out with increasing x and z 

z+  z-sweep, carried out with increasing x and y 

 

 

Referring to a computational cycle we can now discuss the centring of the various terms 

in the component equations. Consider the (x-) sweep. Its centre is at n+½. This is clear 

for the u terms in the mass equation and the time derivative in the momentum equation. 

For the time derivative of P, the centring is not obvious. The (x-) sweep itself will not give 

a centre at n+½. The mass equations of the following (y-) and (z-) sweeps have to be 

involved to provide the centring at n+½. 

 

The pressure term in the x-momentum equation is correctly centred at n+½. 

 

The spatial derivative for v and w in the mass equations may at first hand appear 

peculiar. If the centre of the (x-) sweep is at n+½, then why not centre w at n+½ for 

instance? The explanation lies in the next (y-) and (z-) sweeps. The (y-) sweep has its 

centre at n+5/6 and the mass equation therefore has v at n+4/3 and n+1/3. Similarly the 

(z-) sweep has its centre at n+7/6 with w at n+5/3 and n+2/3. Then, when the mass 

equation of the (y-) and (z-) sweeps are considered together with the mass equation of 

the (x-) sweep, the v and w terms in the (x-) mass equation are needed to balance the v 

and w at n+4/3 and n+5/3, respectively, in the (y-) and (z-) mass equations. 

 

The considerations for the (x-) sweep above can be repeated in a similar manner for the 

(x+), (y-), (y+), (z-) and (z+) sweeps. Any computational cycle like the shown x-y-z, a y-z-

x or a z-x-y will in fact be perfectly time centred at n+3/6, n+5/6 or n+7/6, respectively. 

 

The computational cycle is much similar to the computational cycle employed in MIKE 21 

HD. This cycle is described in the MIKE 21 Scientific Documentation. Other implicit 

difference schemes, for example that of Leendertse 1967, are usually based on a closed 

cycle of similar form. 

 

The difference scheme, by nature of its central difference forms, is generally of second 

order. It is second order in terms of the discretisation of the Taylor series expansion, as 

well as in the more classical sense, that of the order of the algorithm. This last concept is 

defined as the highest degree of a polynomial for which the algorithm is exact. The two 

definitions are often confused, but they do not necessarily always give the same order of 

accuracy. For the Laplace equation, the usual central difference approximation is of 

second order in terms of the discretisation error but the algorithm is of third order. See 

Leonard 1979. 
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6.2 Amplification Errors and Phase Errors 

6.2.1 General 

The finite difference technique is essentially a Taylor series expansion of each of the 

terms in the partial differential equation under considerations. Such an expansion will 

lead to an infinite number of functions, which of course cannot be solved numerically as it 

is fully equivalent to the partial differential equation. The equation is made solvable by 

discarding the infinite number of functions at a certain level leading to a finite difference 

equation. 

 

A true solution of a problem represented by the partial differential equation has yet 

become an approximate solution and the difference between the true solution and the 

approximate solution is usually denoted the truncation error. It is envisaged that the 

solutions to the finite difference approximation (or finite difference scheme) will converge 

towards the true solution of decreasing t and x. Under such circumstances the finite 

difference scheme (FDS) is regarded as convergent. It can be shown that if the FDS is 

stable it will be convergent, too. Thus, the stability of the FDS is a necessary and 

sufficient condition for convergence. 

 

The relations between t and x, for which the FDS is stable or unstable, are usually 

examined through a stability analysis. 

 

A number of features can be considered in a stability analysis such as the phase error, 

amplification error, numerical vorticity generation, numerical tendency to zigzagging etc. 

of which the amplification error analysis is probably the most popular one. Here focus is 

put on the amplification and phase errors. 

 

6.2.2 Theoretical Background 

A FDS is called a two-level scheme if it can be expressed on the form 

 
nn G  1

 (6.1) 

 

Most of the existing FDS'es are of the class given by Equation (6.1) for which a general 

expression for the phase error has been given by Abbott 1979. As it will be shown in the 

following, the FDS for MIKE 3 is a three-level scheme for which no similar general 

expression for the phase error was available and thus, had to be developed; leading to an 

expression much similar to the expression for the two-level scheme. 

 

Hence, considering any three-level scheme of the form 

 
11 


nnn

BA   (6.2) 

 

in which A and B are arbitrary matrices and  a vector containing the prognostic variables. 

The superscript refers to the time level. 

 

In general, an amplification matrix, G multiplying  at time level n to give  at time level 

n+1 may be introduced, i.e. 
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1

0




nn
G   (6.3) 

 
nn

G 
1

1



 (6.4) 

 

Substituting Equations (6.3) and (6.4) into Equation (6.2) provides the following relation 

 
1

01


 GBAG  (6.5) 

 

Assuming that 

 

10
GGG   

(6.6) 

 

Equations (6.3) and (6.4) yield 

 
121 


nn

G   (6.7) 

 

Comparing Equation (6.7) with Equation (6.5) shows that the general amplification matrix, 

G is the solution to the equation given by 

 

0
2

 BGAG  (6.8) 

 

Clearly, Equation (6.6) must be fulfilled for any stable three-level scheme. Otherwise, any 

signal of constant form exposed by Equation (6.2) would be amplified under multiplication 

by Gi. Consequently, Equation (6.7) is equivalent to Equation (6.2)  in which G is given by 

Equation (6.8). However, Equation (6.6) does not imply any guarantee for stability; it is 

only a necessary condition for stability. Thus, the problem is now whether  is amplified or 

whether the amplification is diminishing under multiplication by G so that the scheme is 

stable. 

 

It is well known that the eigenvectors to G do not change under multiplication by G. Thus, 

the corresponding eigenvalues provide an excellent measure for the amplification of . If 

X is an eigenvector of G then the corresponding eigenvalue will be a solution to 

 

XIgXG   
(6.9) 

 

where I is the identity matrix. For any non-zero eigenvectors Equation (6.9) implies that 

 

0 IgGDet  (6.10) 

 

Now let the prognostic vector  given in Equation (6.2) be exposed by a Fourier 

transformation in the time domain, i.e. 

 
ltnki

k
k

n
e /2*    (6.11) 
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in which k is a dimensionless wave number,  the celerity given by the differential 

equation, n the time level, t the time increment, l the wavelength and i the imaginary 

unit. * is the corresponding Fourier transformation in the space domain. 

 

Thus, considering any one component of Equation ((6.11) and substituting into Equation 

(6.2)under the assumption given by Equation (6.6) and rearranging yields 

 

0
*/42

 

k

ltki IeG 
 (6.12) 

 

from which it follows that 

 

  ltkieg /42  
 (6.13) 

 

In the general case both g and  may be complex. Hence, Equation (6.13) may be re-

expressed as 

 

          ltikigig /ImRe4expImRe
2

   (6.14) 
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or separating the real and imaginary parts 
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Following the work of Leendertse 1967 and Vliegenthart 1968 a complex propagation 

factor defined in terms of the wave numbers may be introduced 

 

 
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  ltxki

ltxki
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kPP
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/2
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


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in which  is the celerity given by the FD equation. Following P over a time interval in 

which the component of wave number k propagates over its entire wavelength gives 

 
 1/2  ieP  (6.19) 

 

The argument of P, which provides a measure for the phase error, reads 
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 (6.20) 

 

For convenience, the phase error is expressed in terms of a celerity ratio, Q, defined by 

 

λ
Q = 

)Re(
 (6.21) 

 

Eliminating the imaginary part of  from Equation (6.15) and substituting into Equation 

(6.19) yields after some algebra 
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Introducing the Courant number defined as 

 

s

t
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where s is the grid spacing in the s-direction, Equation (6.20) may be rearranged to yield  
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in which Ns is the number of computational points per wavelength. 

 

Equation (6.22) is much similar to the equivalent expression for a two-level scheme (see 

Abbott 1979). 

 

Thus, the phase error of any three-level scheme is expressed through Equation (6.22) 

whereas the amplification error is expressed through the modulus of the set of 

eigenvalues. For any unstable schemes the modulus will be greater than unity whereas 

any dissipative scheme will have eigenvalues smaller than unity. It can be shown that the 

necessary condition │g│ 1 is also a sufficient condition for stability (see Abbott 1979). 

 

6.2.3 Characteristics of MIKE 3 

The characterisation of the MIKE 3 scheme through the phase and amplification 

properties is based on the most simple case, which is neglecting effects of advection, 

viscosity, stratification etc. Doing so, the basic equations are reduced to 
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Notice that the gravity term has been omitted in Equation (6.24). We will revert to this 

later in Section 9. The three mass equations are given by Equations (4.2) to (4.4). The 

finite difference approximations of the momentum equations read 
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For each of the prognostic variables a Fourier transformation in the space domain given 

by 
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is introduced, whereby Equations (6.25) to (6.27) may be expressed in terms of a set of 

Fourier transformations. Now, consider any one component of Equation (6.28) and recall 

that 
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For convenience three dimensionless variables are introduced, defined by 
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Substituting Equations (6.28) to (6.30) into Equations (6.25) to (6.27) and eliminating all 

pressure terms provide after some algebra the following three equations: 

 



Structure of the Difference Scheme, Accuracy, Stability  

© DHI - MIKE 3 Flow Model - Hydrodynamic Module 30 

   

3

1

*
3

2

*
3

2

*

3

1

*

2

*

21

*

2

1

1
11


























nnn

w

n
nn

wvw

vuu









 (6.33) 

 

 

 

  3

1

*
3

2

*
3

1

*

2

*

1

*
3

4

*

2

11
1

1



























nnn

nn
n

wwv

uuv









 (6.34) 

 

 

 

  3

2

*

23

1

**

1

*
3

4

*
6

5

*

2

1
1

1
1


























nn
n

n
nn

wvu

uvw









 (6.35) 

 

 

On matrix form Equations (6.31) to (6.33) read 
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Comparing Equation (6.34) with Equation (6.2) shows that the MIKE 3 FDS forms a 

three-level scheme of the type given by Equation (6.2)in which  
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The Fourier coefficient *
n
 is now extended to the time domain as 
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such that  itself is the amplification factor over the time t. Substituting Equation (6.36) 

into Equation (6.34) yields after some algebra 

 

 

0

1111

1111

1111

*

222

22

2






















































































































































































 
(6.39) 

 

 

Solving Equation (6.37) with respect to  yields the following equation of fourth order 
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Equation (6.38) can be decomposed into  
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of which the last bracket has the solutions 

 

A

D
i

A

B

22
  (6.43) 

 

where 

 



Structure of the Difference Scheme, Accuracy, Stability  

© DHI - MIKE 3 Flow Model - Hydrodynamic Module 32 

 RDBAD ,4 222
 (6.44) 

 

 

 
 
Figure 6.1 Phase portrait for flow propagating along a grid line 

 

 

From Equations (6.40) and (6.41) it is seen that the amplification factor moduli are always 

one for all . Hence, the FDS in the form of Equations (6.23) to (6.24) is unconditionally 

stable. Substituting the two real solutions into Equation (6.22) implies a celerity ratio zero 

or no phase error. 

 

For the two complex solutions phase portraits can be established for various Courant 

numbers, and flow directions. A typical example on a phase portrait for a flow propagating 

along a grid line has been shown in Figure 6.1. It is seen that for a Courant number of 

one, approximately 20 points per wavelength are needed (and increasing with the 

Courant number) in order to obtain the correct physical celerity of the flow. 
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7 Lateral Boundary Conditions 

7.1 General 

The main purpose of hydrodynamic module of MIKE 3 is to solve the partial differential 

equations that govern three-dimensional flow. Like all other differential equations they need 

boundary conditions. The importance of boundary conditions cannot be overstressed. 

 

In general the following boundary data are needed: 

 

• Pressure (or surface level) at the open boundaries and velocities parallel to the open 

boundaries 

 

or 

• Velocities both perpendicular and parallel to the open boundaries 

• Bathymetry (depths and land boundaries) 

• Bed resistance 

• Wind speed, direction and shear coefficient 

• Barometric pressure (gradients) 

The success of a particular application of MIKE 3 is dependent upon a proper choice of open 

boundaries more than on anything else. The factors influencing the choice of open 

boundaries can roughly be divided into two groups, namely 

 

• Grid-derived considerations 

• Physical considerations 

The physical considerations concern the area to be modelled and the most reasonable 

orientation of the grid to fit the data available and will not be discussed further here. 

 

The grid itself implies that the open boundaries must be positioned parallel to one of the 

coordinate axes. (This is not a fundamental property of a finite difference scheme but it is 

essential when using MIKE 3). 

 

Furthermore, the best results can be expected when the flow is approximately perpendicular 

to the boundary. This requirement may already be in contradiction with the above mentioned 

grid requirements, and may also be in contradiction with "nature" in the sense that flow 

directions at the boundary can be highly variable so that, for instance "360" flow directions 

occur, in which case the boundary is a most unfortunate choice. 
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7.2 Primary Open Boundary Conditions 

The primary boundary conditions can be defined as the boundary conditions sufficient and 

necessary to solve the linearised equations. The fully linearised x-momentum equation 

reads: 
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The corresponding terms in the x-momentum equation of MIKE 3 are: 
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A "dynamic case" we define as a case where 
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 (7.3) 

 

i.e. a case where these two terms dominate over all other terms of the x-momentum 

equation. 

 

It is then clear that the primary boundary conditions provide "almost all" the boundary 

information necessary for the hydrodynamic module of MIKE 3 when it is applied to a 

dynamic case. The same set of boundary conditions maintain the dominant influence (but 

are in themselves not sufficient) even in the opposite of the "dynamic case", namely the 

steady state (where the linearised equations are quite meaningless). This explains why 

these boundary conditions are called "primary". 

 

MIKE 3 accepts two basic types of primary boundary conditions: 

 

• Pressure (or surface elevation) 

• Velocities 

 

They must be given at all boundary points and at all time steps. 

 

It should be mentioned that - due to the space staggered scheme - the values of the 

velocities at the boundary are set half a grid point inside the topographical boundary, see 

Figure 7.1. 

 

7.3 Secondary Open Boundary Conditions 

7.3.1 General 

The necessity for secondary boundary conditions arises because one cannot close the 

solution algorithm at open boundaries when using the non-linearised equations. Additional 

information has to be given and there are several ways to give this. The hydrodynamic 

module of MIKE 3 is built on the premise that the information missing is the horizontal 

velocities parallel to the open boundary and the vertical velocities are negligible.  
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Figure 7.1 Application of boundary data at a northern boundary 

 

 

This is chosen because it coincides conveniently with the fact that the simplified MIKE 3 

hydrodynamic model - the model that is one-dimensional in the horizontal space - does 

not require a secondary boundary condition (i.e. the velocities parallel to the boundary 

are zero). 

 

As a consequence of the transport character of the convective terms, a "true" secondary 

condition is needed at inflows, whereas at outflow a "harmless" closing of the algorithm is 

required. This closing may either be obtained by defining the flow at the boundary or by 

extrapolation of the velocities along the boundary from the interior. Furthermore, the 

velocities outside the boundaries are needed (for the convective and shear terms in the 

momentum equations. 

 

7.4 Wind Friction 

The wind friction originates from the vertical shear term assuming a balance between the 

wind shear and the water shear at the surface 
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where air is the density of air, W the wind speed and CW the wind drag coefficient. The wind 

friction is thus a boundary condition to vertical shear term. The wind friction factor is 

calculated in accordance with Smith & Banke 1975, see Figure 7.2. 
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7.4.1 Bed Resistance 

Similar to the wind friction the bed resistance originates from the vertical shear term as a 

boundary condition. In MIKE 3 a logarithmic velocity profile is assumed between the actual 

seabed and first computational node encountered above (except for the Smagorinsky eddy 

viscosity formulation), 

 

 

 
 

 
Figure 7.2 Wind friction factor 
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in which  is von Kármán's constant, ks the bed roughness, U the current speed, u is the 

current velocity and zb the distance above the seabed. 

 

If the Smagorinsky eddy viscosity formulation is applied then a slightly different formulation is 

used such that the drag coefficient formulation is consistent with the turbulence closure 

model. In this case, the shear stress is given by the relation 
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where zm is the distance above the seabed where the Smagorinsky velocity profile matches 

the logarithmic profile, l is the Smagorinsky length scale and D the water depth. 
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8 Boundary Conditions for the Vertical Sweep 

In the design of MIKE 3 main focus has been put on free surface flows but MIKE 3 can also 

handle flow problems with rigid lids. Due to the artificial compressibility method, however, 

some precaution should be taken in applications involving rigid lids. In these situations the 

upper boundary condition for the z sweep is similar to the ones used in the horizontal 

direction at land boundaries i.e. the velocity perpendicular to the land boundary is identical to 

zero. This is also the boundary condition used at the seabed in the z sweeps. Accordingly, 

only the case of free surface flows needs to be considered here. 

 

The free surface constitutes a special case as it can be regarded as a moving boundary. In 

MIKE 3 the kinematic boundary condition is used which reads 

 

Dt

D
 = w


  (8.1) 

 

in which  is the surface elevation relative to the datum level. The relations given by 

Equation (3.3) require a relationship between the kinematic boundary condition and the fluid 

pressure at the first computational point encountered from the surface and downwards. The 

simplest relation is the hydrostatic pressure assumption whereby  is related to P according 

to 

 

 z + g = P(z)   (8.2) 

 

Thus between the actual surface and the first node MIKE 3 applies a hydrostatic pressure 

assumption. The convective term w/z as well as the shear term (2T w/z)/z requires 

information about the vertical velocity at the top level. To determine this we use a reflection 

boundary condition, 
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As it virtually is wj,k,l+½ and not w which is required in the finite difference approximations 

Equation (8.3) is coupled to wj,k,l+½ using a second order interpolation (or extrapolation), 
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The coefficients in Equation (3.2) can hereby be determined and the z sweep be solved in 

the usual manner. 
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9 Definition of Excess Pressure 

Implementation of Equation (2.2) directly would imply a large fluid pressure due to the 

hydrostatic pressure. In order to prevent flow caused by computer round-off errors, which 

may occur in simulations with large depths, an excess pressure, P
*
, is introduced defined by 

 

gzPP *
 (9.1) 

 

Moreover, Equation (9.1) provides any variation in the density,  to be expressed explicitly in 

accordance with the separation of the prognostic variables in the hydrodynamics and 

advection-dispersion modules. It is emphasised that  in Equation (9.1) is the local density 

and not a reference density whereby Equation (9.1) would equal the Boussinesq 

approximation. 

 

Substituting Equation (9.1) into the pressure derivative of Equation (2.2)yields 
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from which it is seen that the gravity term in Equation (2.2) vanishes by this definition. 

Instead an additional space derivative term with respect to  has been introduced. This will, 

however, vanish for homogeneous fluids.  

 

A similar operation can be applied to the mass equation given by Equation (2.1) using the 

equation of state to convert the time derivative of  back into a pressure time derivative. This 

implies a minor modification of the compressibility. However, as we always use an artificial 

compressibility there in no need to take this into account. It can conveniently be considered 

as embedded in the artificial compressibility. 

 

The adoption of the excess pressure definition requires a special, initial excess pressure 

distribution for inhomogeneous fluids. As initial condition, a balance between the excess 

pressure and the density variation is assumed, i.e. 
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z

dzggzzP *  
(9.3) 

 

For homogeneous fluids Equation (9.3) will equal zero.  

 

The introduction of an excess pressure is solely done because it is more convenient from a 

numerical point of view, and does not have any effect on the other terms apart from those 

mentioned here. However, in stratified simulations it can sometimes be a little difficult to 

interpret the pressure in a classical manner, because of the special density dependency. 
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10 Fundamental Aspects of Three-Dimensional Modelling 

10.1 General 

As mentioned in Section 2, the divergence-free mass equation together with the momentum 

equations mathematically form an ill-conditioned problem because the fluid pressure does 

not appear in the divergence-free mass equation, which causes a weak coupling between 

the pressure and the velocities. This is the key issue in three-dimensional modelling. 

The system is said to be stiff as both slow and fast processes are present which inherently 

cause difficulties in numerical algorithms. Mathematically this implies zeros in the main 

diagonal of M in Equation (3.1). The solution of Equation (3.1) inherently requires iteration 

and that even with a slow convergence. Fortunately different ways to overcome this 

drawback have been devised. These can all be grouped into three fundamental classes (see 

e.g. Rasmussen 1993), 

 

• pressure eliminating methods 

• pressure correcting methods 

• artificial compressibility methods 

 

The three classes are briefly discussed in the following sections. 

 

10.2 Pressure Eliminating Methods 

The first class comprises methods, which will eliminate the pressure from the momentum 

equations. The most commonly used method of this class is the hydrostatic assumption 

whereby the pressure can be replaced by information about the surface elevation. The 

technique is well known and accordingly need not to be discussed further. In two-

dimensional modelling the definition of a vorticity is often used to eliminate the pressure. This 

technique is also applicable in three-dimensional modelling. However, the set of equations 

becomes more complicated compared to its two-dimensional counterpart because three 

vorticities are required whereas only one is needed in two dimensions. Therefore it is rarely 

used in three dimensions. 

 

10.3 Pressure Correcting Methods 

The second class comprises methods, which correct the pressure to obtain a divergence-

free mass equation. It differs fundamentally from the first class by retaining the pressure as 

one of the prognostic variables. The divergence-free continuity equation is enforced through 

the solution of a Poisson equation for the pressure (see e.g. Ferziger 1987, Patankar 1980). 

The Poisson equation is derived by taking the divergence of the momentum equations and 

applying the divergence-free mass equation. However, in most models where this technique 

is applied the viscosity is assumed constant. The expression is no longer simple if this 

assumption is not made and it becomes even more complicated if a variable density is 

considered. Despite the fact that the solution of the Poisson equation is not a straightforward 

task from a numerical point of view it has been very popular and is probably the most 

commonly used method amongst those which retain the pressure as a prognostic variable. 
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10.4 Artificial Compressibility Methods 

In free surface flows only the slow processes are of interest and usually the fast processes 

(like shock waves) have no substantial influence on the slow processes (like the free surface 

waves) suggesting that they may be removed without loss of information. The fast processes 

are easily eliminated by replacing the time derivative of the density in the mass conservation 

equation with the pressure term in the equation of state, whereby a compressibility of the 

fluid is introduced. The fast processes are then subsequently eliminated through an artificial 

compressibility whereby the system mathematically has become hyperbolically dominated. 

This allows for efficient solution techniques to be adopted. This approach is known as the 

artificial compressibility approach and was first proposed by Chorin 1967. 

 

Theoretically the physical compressibility of seawater may be used which would make the 

mass equation valid from a physical point of view. However, this would imply an impractical 

restriction on the time step, which in turn would exclude any practical application. 

 

10.5 The Compressibility in MIKE 3 

It is the artificial compressibility method, which has been adopted in the non-hydrostatic 

version of MIKE 3. The reason for this is not that it is believed to be superior to any of the 

other methods. It is entirely because it allows the same solution technique as used in most of 

DHI's other modelling systems including the MIKE 21 and with which DHI has many years of 

experience.  

 

It is well known that artificial compressibility is an excellent tool to enforce a faster 

convergence in steady state simulations. On the other hand, it is certainly not obvious that 

the same technique can be applied in highly dynamic simulations too. However, many 

experiments and applications have in fact shown that this is the case provided that the 

artificial compressibility is chosen with some care. It is evident that for instance the 

compressibility must not become less than the celerity of the free surface waves. In the 

hydrostatic version of MIKE 3 the compressibility is a function of the grid spacing, time step 

and the maximum water depth, 
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where hmax is the maximum water depth in the model area. There is - so far - no scientific 

argument for (10.1) except that it appears to give good results. Fortunately experiments have 

shown that the range of cs-values which will give the correct physical wave propagation is 

rather broad. 

 

If the compressibility is too high the system will become stiff (the pressure information 

travels fast) whereby the model will have difficulties in spreading the information to its 

surroundings through the convective terms and shear terms. The solution consequently 

tends to reflect the characteristics of the adopted non-iterative ADI algorithm. On the 

other hand, if the compressibility is too low the system becomes like jelly and the flow will 

not propagate will the correct physical celerity. The basic philosophy is that the 

compressibility should be chosen such that neither of these cases occurs.  

 

Furthermore, in free surface flows the z sweep will release whatever of pressure that has 

been accumulated during the x and y sweeps such that the surface elevation is adjusted. 

Experience has shown that the non-hydrostatic version MIKE 3 also does well in applications 

with limited rigid lids such as floating breakwaters and ships as the pressure underneath 
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floating bodies essentially is governed by the surrounding pressure field. If no free surface is 

present the non-hydrostatic version of MIKE 3 should only be used for steady state 

applications unless the time step is accordingly decreased. 
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11 Description of the Bottom-Fitted Approach 

11.1 General 

Bottom-fitted coordinates are defined as being coordinates, which take into account the 

actual depths. The bottom-fitted coordinates are only applied at the lowermost level that is to 

say the "standard definitions" are applied above the lowermost computational nodes. This 

approach differs from the  coordinate system, which also is bottom-fitted in the way that the 

bathymetry in the  coordinate system affects the thickness of all layers. In the approach 

used in MIKE 3, the vertical grid spacing will be z above the lowermost computational 

nodes (except for the surface layer) whereas the "control volume" for the lowermost 

computational nodes will vary to fit the actual depth. 

 

11.2 Mathematical Background 

11.2.1 Conservation of mass 

Averaging the equation for conservation of mass, Equation (2.1) from the seabed to ½z 

over the first computational node yields, 
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where  is defined being the distance from the actual seabed to the first computational node 

encountered. On conservation form Equation (11.1)can be rearranged to yield, 
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It is important to keep Equation (11.2) on conservation form instead of Eulerian form on 

which the averaging will have no effect except for the vertical term.  

 
  



Description of the Bottom-Fitted Approach  

© DHI - MIKE 3 Flow Model - Hydrodynamic Module 43 

11.2.2 Conservation of momentum 

Applying the same averaging technique as for the mass equation the momentum equations 

in Equation (2.2) yield, 
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It is stressed that neither the excess pressure term nor the density term is affected by the 

averaging. Similar to the mass equation the discretised form of Equation (11.3) will depend 

on whether an Eulerian or a conservation formulation is applied. 

 

11.2.3 Conservation of a scalar quantity 

In simulations in stratified areas or in water quality and eutrophication simulations a general 

transport equation is solved in addition to the mass and momentum equations. The general 

transport equation for a scalar quantity reads, 
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in which C denotes the scalar quantity and Dj the dispersion coefficient. Averaging this 

equation yields, 
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11.3 Numerical Implementation 

11.3.1 Conservation of Mass 

The numerical implementation of the bottom-fitted coordinates is done with due respect to 

the original implementation in MIKE 3. Hence, using the standard notation from MIKE 3 the 

finite difference form the spatial discretisation of Equation (11.2) reads, 
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in which 
*
 denotes the distance from the actual seabed to ½z over the first computational 

node above. The overbar refers to correct spatial centred values. Equation (11.6) can be 

further rearranged to read, 
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Thus, near the bottom the velocities are adjusted according to the heights of the control 

volumes. 
*

  is different for the x- and y-direction due to the spatial centring of the velocities. 

In principle only one extra two-dimensional array is required but as the 
*

 's are constant 

throughout the simulation it may be advantageously to calculate these quantities once on the 

account of extra memory. 

 

11.3.2 Conservation of Momentum 

To be consistent with the present discretisation in MIKE 3 the conservation form is adopted. 

In general the averaging technique inevitably implies that the discretised convective and 

eddy terms will be off-centred when imposed on the C-grid. Numerically this implies that the 

accuracy of these terms go down from 2
nd

 order to 1
st
  order. Correction terms may, 

however, be implemented to bring the accuracy up again. As a first approach a 1
st
  order 

accuracy on these terms is accepted.  
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The affected terms are handled separately for each of the three momentum equations. The 

averaging procedure for the x-momentum yields, 
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The y-momentum equation yields, 
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The vertical sweep is in MIKE 3 started with the mass equation. Assuming that the vertical 

velocity below the lowermost computational point is negligible (which always is correct for  

less than ½z), the sweep still can be started by setting up the mass balance. Hence, the z-

momentum does not need to be considered in the same manner as the x- and y-momentum 

equations. 

 

Thus, basically the bottom-fitted coordinates imply that the relevant velocities in the 

equations are multiplied by certain factors. This is much similar to the way porosity is 

modelled in MIKE 3, and as such it does not constitute any numerical difficulties. Except for 

the horizontal cross-terms in Equations (11.8), (11.10), (11.12) and (11.13), respectively, 

the factors easily fit into the present coding structure of MIKE 3. The reason why some terms 

do not fit so well is that they require information about the seabed location along the two 

horizontal neighbour rows whereas this information is available already for the sweep-row. 

Also notice that some of the  ratios in the second and first finite difference expressions in 

Equations (11.8) and (11.10), respectively, by definition add up to two times unity. 

 

If we for sake of simplicity define a new set of variables given by 

 

 

 *

,1,

*

,,,,

'

*

,,1

*

,,,,

'

*

,,
,,

'

2

1

2

1

lkjlkjlkyj

lkjlkjlkxj

lkj
lkj

z

z

z

























 (11.16) 

 
  



Description of the Bottom-Fitted Approach  

© DHI - MIKE 3 Flow Model - Hydrodynamic Module 51 

 

the set of finite difference expressions may be rewritten in a slightly different form, 
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The x-momentum terms can accordingly be expressed as, 
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The y-momentum terms may similarly be rearranged to yield, 
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11.3.3 Conservation of A Scalar Quantity 

 

The finite difference formulation of the transport equation (11.5) reads, 
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where Tx, Ty and Tz are the transports in the three directions, respectively. 
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12 Nesting Facility, Scientific Background 

The hydrodynamic module of MIKE 3 is a general numerical modelling system for the 

simulation of water level variations and flows. It simulates unsteady three-dimensional 

flows in fluids when presented with the bathymetry and relevant conditions (e.g. bed 

resistance, wind field, baroclinic forcing, hydrographic boundary conditions). The nested 

version of MIKE 3 HD (MIKE 3 NHD) has a built-in refinement-of-scale facility, which 

gives a possibility of making an increase in resolution in areas of special interest.  

 

Please note: The present “Scientific Background” section only covers description of the 

nesting facility in the “classic” non-hydrostatic version of the MIKE 3 NHD. For a 

description of the nesting facility in the hydrostatic version of MIKE 3, please see the 

documentation of the hydrostatic version. 

 

As with the standard MIKE 3 HD, the mathematical foundation in MIKE 3 NHD is the 

mass conservation equation, the Reynolds-averaged Navier-Stokes equations, including 

the effects of turbulence and variable density, together with the conservation equations 

for salinity and temperature, see Chapter 2: Main Equations. 

 

The equations are spatially discretised on a rectangular, staggered grid, the so-called 

Arakawa C-grid, as depicted in Figure 3.1. Scalar quantities, such as pressure, salinity 

and temperature, are defined in the grid nodes whereas velocity components are defined 

halfway between adjacent grid nodes in the respective directions.  

 

Time centring of the hydrodynamic equations is achieved by defining pressure P at one-

third time step intervals (i.e. n+1/6, n+3/6, n+5/6, etc.), the velocity component in the x-

direction u at integer time levels (n, n+1, n+2, etc.), the velocity component in the y-

direction v at time levels n+1/3, n+4/3, n+7/3, etc., and the velocity component in the z-

direction w at time levels n+2/3, n+5/3, n+8/3, etc. 

 

Using these discretisations, the governing partial differential equations are formulated as 

a system of implicit expressions for the unknown values at the grid points, each 

expression involving known but also unknown values at other grid points and time levels.  

 

The applied algorithm is a non-iterative Alternating Direction Implicit (ADI) algorithm, 

using a "fractional step" technique (basically the time staggering described above) and 

"side-feeding" (semi-linearisation of non-linear terms). The resulting tri-diagonal system of 

equations is solved by the well-known double sweep algorithm. The reader is referred to 

earlier sections for an in-depth description of the numerical formulation used in the 

hydrodynamic modules. 

 

The method applied to ensure the dynamical nesting in MIKE 3 NHD, i.e. the two-way 

dynamically exchange of mass and momentum between the modelling grids of different 

resolution, is a relatively simple extension of the solution method used in the standard 

hydrodynamic module and it may basically be described as: 

 

Along common grid lines, see Figure 12.1, the mass and momentum equations (in the 

staggered grids) are dynamically connected across the borders by first setting up all 

coefficients for the double sweep algorithm in both coarse and fine grids. Hereafter the tri-

diagonal system of equations is established. 
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Figure 12.1 Coupling across a border line between coarse and fine    staggered grid during an x-

sweep. 

 

 

At the end points (points B in Figure 12.1) of the two unconnected grid lines in the fine 

grid, between the connected grid lines, a level (i.e. pressure) boundary condition is 

applied. The pressure boundary values are found by assuming that P/t in the common 

mass point (point A in a down-sweep and point C in an up-sweep due to the applied ADI 

technique) on the border of the connected grid line is identical to P/t at the end point 

(mass point B) of the unconnected grid line. 

 

At the borders, explicit parameters and values of the prognostic variables at old time 

steps are found by interpolation between the fine grid and the coarse grid.  

In MIKE 3 NHD, the equations for all the different spatial scales in the actual model are 

solved at the same time. As for the standard MIKE 3 HD, the computations are divided 

into two parts:  

 

• the coefficient sweeps (traditionally referred to as EF sweeps), and 

• the SP- or SQ-sweeps (a traditional notation inherited from MIKE 21 NHD: S for 

surface elevation, P and Q for the two fluxes) 

according to the double sweep algorithm.  

 

The horizontal sweep structure for the hydrodynamic module in the nested version of 

MIKE 3 is described in the following. Remember that the nesting is in the horizontal 

direction only. For the vertical direction, the sweeps are conducted as for the standard 

MIKE 3 HD. 

 

For odd time steps, the computations start in the upper-right corner with an x-sweep 

moving down in the model, followed by a y-sweep moving left in the model. These 

sweeps are referred to as down-sweeps. For even time steps so-called up-sweeps are 

performed, i.e. the computations start in the lower-right corner with an x-sweep moving 

up in the model, followed by a y-sweep moving right in the model. The superior 

computation structure is shown in Figure 12.2. 
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Figure 12.2 Superior structure of the computations for the nested MIKE 3 HD. X and Y indicate 

the sweep-direction, - indicates down-sweeps, + indicates up-sweeps. 

 

 

The detailed computation structure for a down-sweep (odd time step) in the x-direction is 

shown in Figure 12.3. The equations at the different scales are solved at the same time. 

Thus, information can travel in two directions: Effects from the coarse grid influence the 

solution in the fine grids but also the effects in the fine grids can influence the solution in 

the coarse grid. 

 

 

 
 
Figure 12.3 Computation structure for a down-sweep in the x-direction. The corresponding up- or 

y-sweeps are symmetrical. 
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