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1 Introduction 

The present document aims at giving a description of the equations and numerical 

formulations used in the Parabolic Mild-Slope Module of MIKE 21, MIKE 21 PMS. 

 

First, the basic equations are described. This is followed by a number of sections 

describing parabolic approximations, introduction of wave dissipation, method of 

superposition (used for simulating irregular and/or directional waves) and the numerical 

solution method. 
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2 Basic Equation 

MIKE 21 PMS is based on a parabolic approximation to the elliptic mild-slope equation, 

which is the governing equation for description of refraction, diffraction and reflection of 

linear time harmonic water waves on a gently sloping bottom. The equation was first 

derived by Berkhoff (1972). 

 

The elliptic mild-slope equation can be written as: 

 

    0 =  Wi + CCk + CC g
2

g   (2.1) 

 

where 

 

 two-dimensional gradient operator, 

















yx
,

 
C (x,y) phase speed 

Cg (x,y) group velocity 


(x,y) mean free surface velocity potential, related to the velocity potential 


 as 

 

e 
kd 

d)+(z k 
 y)(x,

g
 = z,t)y,(x, ti- 



Cosh

Cosh
 (2.2) 

 

z water level elevation measured from mean water level upwards 

d water depth 

k wave number =  2π/L 

W dissipation term = Ediss/E 

Ediss mean energy dissipation rate per unit time per unit area 

E mean energy per unit area 

ω circular frequency = 2πf 

L wave length 

f frequency 

 

Note also that the free surface elevation, η can be written as (Dean & Dalrymple, 1984): 

 

z=0

-i ( t+ /2)

1
 =    

g t

 

 =  (x, y) e
 




 




 

 
(2.3) 

 

For plane progressive waves, the mean free surface potential can be written as: 

 
 ieyxA ),(*  (2.4) 

 

where 

 

dyksin + dxkcos = 
yx

   (2.5) 
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and θ is the angle between the wave propagation direction and the x-axis. Now, 

assuming a predominant wave direction along the x-axis, the phase function ψ  can be 

written as: 

 

kdx = 
x
  (2.6) 

 

A parabolic approximation to Eq. (2.1) is obtained by assuming a predominant wave 

direction, the x-direction, and neglecting back-scatter and diffraction along this direction. 

 

Eq. (2.1) can be expanded as: 

 

0 =  W)i + CCk( + )CC( + )CC( g
2

yygxxg   (2.7) 

 

where the subscripts x,y imply derivative with respect to x and y, respectively. 

 

Using Eq. (2.4), the gradient terms can be expressed as: 

 

e )A + ikA( = i*
x

*

x

  (2.8) 

 

e )ACC + AC(i = CC
i*

xg
*

gxg
  (2.9) 

 

   

 



i

xxgxgxg

*
xg

*
gxg x

eACCCAiACi

ACC+ACi ik = CC

)()( *** 
 (2.10) 

 

The last term in Eq. (2.10), (CCgA*x)x representing the influence of back scatter and 

diffraction along the x-direction is neglected in the parabolic approximation. Thus, 

 

    e A C2i + A  )C(i + Ck-    CC
i*

xg
*

xggxg x

   (2.11) 

 

Finally, using Eq. (2.4), 

 

    eA CC = CC i*
yg yyg

y

  (2.12) 

 

Substituting Eq. (2.11) and (2.12) into Eq. (2.7) gives: 

 

0 = 
C2

W
A + 

C2

)C(
 A + )ACC( 

C2

i
 - A

g

*

g

xg*

y

*
yg

g

*
x


 (2.13) 

 

Now, suppose: 

 

e y)A(x, = xiko  (2.14) 

 

where ko is a reference wave number and A (x,y) is a slowly varying complex variable. It 

follows that: 

 

kdxxk=

 

 eyxAyxA

x

o

i







),(),(*

 (2.15) 
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Thus, Eq. (2.13) can be rewritten as: 

 

0 = A 
C2

W
 + )ACC( 

C2

i
-

 

 )C( 
C2

A
 + )Ak-i(k - A

g

yyg

g

xg

g

ox



 (2.16) 

 

Eq. (2.16) is the simplest parabolic approximation to the elliptic mild-slope equation. It is 

valid for waves propagating along a predominant direction (+x-axis) or within a small 

angle to the x-axis. The reference wave number ko is used as the average wave number 

along the y-axis. 

 

Kirby (1986) extended Eq. (2.16) to the case of waves propagating at a large angle to the 

assumed wave direction (x-axis). He derived the following equation: 

 

0 = A 
C2

W
 + )ACC( 

C
 +

 

)ACC( 
C

 + )C(
C2

A
 + k)A - ki( + A

g

yxyg

g

2

yyg

g

1

xg

g

1ox










 (2.17) 

 

where 

 

3 3 2

( )

2

g xo x
1 2

g

2 3

Ck k
 = i  + 

k k kC

  

= -  /k

 



  
        

 
(2.18) 

 

The coefficients β1 , β2 and β3 are given for different parabolic approximations in Table 

2.1. A discussion on the derivation of these coefficients is presented in Section 3. 
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Table 2.1 Coefficients of the rational approximation determined by varying aperture 

width  

 

Aperture Β1 β2 β3 

Simple 

Padé 

10
o
 

20
o
 

30
o
 

40
o
 

50
o
 

60
o
 

70
o
 

80
o
 

90
o
 

  1 

  1 

0.999999972 

0.999998178 

0.999978391 

0.999871128 

0.999465861 

0.998213736 

0.994733030 

0.985273164 

0.956311082 

- 0.5 

- 0.75 

- 0.752858477 

- 0.761464683 

- 0.775898646 

- 0.796244743 

- 0.822482968 

- 0.854229482 

- 0.890064831 

- 0.925464479 

- 0.943396628 

  0 

- 0.25 

- 0.252874920 

- 0.261734267 

- 0.277321130 

- 0.301017258 

- 0.335107575 

- 0.383283081 

- 0.451640568 

- 0.550974375 

- 0.704401903 

 

 

Eq. (2.17) is the basic equation solved in the parabolic mild-slope module, MIKE 21 PMS. 

It may be called the parabolic mild-slope equation, since it is a parabolic approximation to 

the mild-slope equation. 
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3 Coefficients in Parabolic Mild-Slope Equation 

In this section, the coefficients in the various parabolic approximations shown in Table 1 

are formally linked to Padé approximants and minimax approximations. This is done by 

considering the case of linear waves propagating in an area of constant water depth. For 

this situation, Eq. (2.1) reduces to the Helmholtz equation, assuming no dissipation: 

 

0 = k + 22  (3.1) 

 

Now, assuming linear waves travelling in a predominant direction (x-axis), the surface wave 

potential is: 

 

e y)A(x, = ikx  (3.2) 

 

Now, substituting Eq. (3.2) in Eq. (3.1), and neglecting second order derivative terms in x, 

a simple parabolic approximation to Eq. (3.1) is obtained: 

 

0 = A + ikA2 yyx  (3.3) 

 

Following the procedure of Kirby (1986), the parabolic approximation above, Eq. (3.3), is 

examined in light of the plane wave of permanent form: 

 

e  ae = t-imy)+i(lx    (3.4) 

 

where 

 

k = m + l
222
 (3.5) 

 

Using Eq. (2.3) and Eq. (3.4): 

 
)2/(  mylxiae =  (3.6) 

 

Thus, 

 
 2/)1(),(  myxkiaeyxA  (3.7) 

 

Substituting in Eq. (3.3) gives: 

 










k

m
 

2

1
-1 = 

k

l
2

 (3.8) 

 

Eq. (3.8) is the lowest order binomial expansion (or the (1,0) Padé approximant) of: 

 





















 

k

m
 - 1 = 

k

l
2

2/1

 (3.9) 
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This approximation, Eq. (3.8), is good for m/k = sin θ « 1, θ being the propagation 

direction. Kirby (1986) showed that the error in this approximation is small when sin θ < 

0.4. 

 

One way of extending the accuracy of a polynomial expansion such as Eq. (3.9) is to 

construct a Padé approximant of the function. The Padé approximation has the property 

of predicting the proper value and slope of the approximated function l/k as m/k (or θ) 

becomes small, while at the same time extending the accuracy of the approximating 

function as θ increases. For Eq. (3.9) the (1,1) Padé approximant is given by: 

 



















k

m
 

4

1
-1

k

m
 

4

3
-1

 = 
k

l
2

2

 (3.10) 

 

or 

 

0 = mk)-(l
2k

1
- m + k)-2k(l 22  (3.11) 

 

Using Eq. (3.7) 

 

Ax  = i(l-k)A 

 

Ay  = imA 

 

Ayy = -m
2
A 

 

Axyy  =  -i(l-k)m
2
A 

 

(3.12) 

 

Thus, using the method of operator correspondence, Eq. (3.11) can be written as: 

 

0 = A 
2k

i
 + A + ikA2 xyyyyx  (3.13) 

 

Eq. (3.13) is the (1,1) Padé approximation of Eq. (3.1). Kirby (1986) showed that the 

errors in the (1,1) Padé approximation are small when sin θ < 0.65, or θ  40. 

 

In order to further extend the accuracy of the parabolic approximation as θ increases, 

Kirby (1986) used minimax approximations. This is written as: 

 



















k

m
  + 1

k

m
  + 

 = 
k

l
2

3

2

21





 (3.14) 

 

The minimax method of approximation consists of calculating the coefficients (β1 , β2 and 

β3), which minimizes the maximum error (l/k - cos θ) over a specified aperture (0  θ  

θa). Note that minimax approximations minimize the maximum error in the specified 

aperture width (0 < θ < θa). However, while reducing the error as θ increases, it may 
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give noticeable errors as θ  0 in some cases. Kirby (1986) showed that the errors as θ 

 0 become noticeable when θa > 60. 

 

Using the method of operator correspondence, the minimax approximation, Eq. (3.14), 

leads to the following parabolic approximation: 

 

 

 

22x 1

3
yy xyy3 2

2  + k - 1 A  ikA

 

2i
+ 2 -  -   = 0A A

k




 

 
(3.15) 

 

Notice that Eq. (3.14) becomes (3.15) for constant water depth and no dissipation, as 

would be expected. 
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4 Wave Dissipation 

The dissipation function W in the parabolic mild-slope equation is calculated as: 

 

fb WWW   (4.1) 

 

where Wb and Wf are the dissipation functions due to wave breaking and bottom friction 

respectively. In the following sections the expressions for the dissipation functions are 

presented. 

 

4.1 Wave Breaking 

The dissipation function Wb due to wave breaking is calculated using the method of Battjes 

and Janssen (1978). They expressed the rate of wave energy dissipation as: 

 

H 
T

2
  Q 

8

-
 = E

2

m

bdiss max





 (4.2) 

 

/EE = W dissb  (4.3) 

 

where 

 










H

H
 - = 

)Q(

Q-1 rms

2

b

b

maxln
 (4.4) 

 

  12

-1

1
kd/ k = H tanhmax  (4.5) 

 

 

/8H = E 2
rms  (4.6) 

 

In the equation above, α controls the rate of energy dissipation, Qb is the percentage of 

breaking waves in the irregular (Rayleigh distributed) wave train, Tm is the energy-

averaged mean wave period. Hmax is the maximum wave height before breaking, Hrms is 

the root mean square wave height, k is the wave number, d is the water depth, γ1 is a 

factor controlling the maximum wave steepness allowed before breaking and γ2 is a factor 

controlling the maximum H/d allowed before breaking. 

 

The expressions above are used for random waves. For monochromatic waves, the 

fraction of breaking waves, Qb is taken as 0 (non-breaking waves, H < Hmax) or 1 

(breaking waves, H  Hmax). 

 

4.2 Bottom Friction 

The rate of energy dissipation due to bottom friction is formulated using the quadratic 

friction law to represent bottom shear stress. For monochromatic waves, Putnam and 

Johnson (1949) derived: 
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








kd 

H
 

g

c
 

6

1-
 = E

3

fw

diss
sinh




 (4.7) 

 

where Cfw is a wave friction coefficient, H is the wave height and ω is the circular wave 

frequency. 

 

Dingemanns (1983) extended Eq. (4.7) to the case of unidirectional random waves 

(Rayleigh distributed) and obtained: 

 











kd 

H
  

g

c
 

8

1-
 = E

rms

3

fw

diss
sinh




 (4.8) 

 

Wf is calculated as: 

 

/EE = W dissf  (4.9) 

 

where Ediss is from Eq. (4.7) (monochromatic waves) or Eq. (4.8) (random waves) and E 

is from Eq. (4.6). 
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5 Random and Directional Waves 

In most practical situations, waves are not regular and long crested. In general, the wave 

energy is a function of frequency and direction. The distribution of energy with frequency 

and direction is written as: 

 

)D(f,  S(f)= )E(f,    (5.1) 

 

 

where 

 

S(f) an expression for the distribution of energy density with frequency, 

usually called the frequency spectrum. An example is the JONSWAP 

spectrum. 

 

D(f,θ) an expression for the distribution of energy with direction, commonly 

called the directional spreading function. An example is the cos
n
(θ-θ0) 

spectrum. Some formulations of the directional spreading function also 

include a dependence on frequency. 

 

f frequency 

 

θ wave direction 

 

θ  mean wave direction 

 

n directional spreading index 

 

The total energy, E1, in the spectrum is found as: 

 

 1
,E E f df d    (5.2) 

 

For a given significant wave height Hs, peak wave period Tp and mean wave direction, it 

is possible to use the MIKE 21 Tool for Generating Irregular and Directional Waves (MIKE 

21 Toolbox  Waves  Generate Energy Wave Spectrum) to obtain the distribution of 

energy with frequency and direction E(f,θ) distributed over discrete frequency and 

direction bands. This distribution would be specified at the offshore boundary (x=0) of the 

model. 

 

Thus, at the model boundary, a given amount of wave energy is associated with each 

discrete frequency and discrete direction. Hence, in discrete form, Eq. (5.2) is written as: 

 

  kjkj

NDIR

k

NFREQ

j

i ffEE   


,,

11

 (5.3) 

 

where 

 

NFREQ number of discrete frequencies 

NDIR number of discrete directions 
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In the numerical calculation of the wave climate over the study area, each of the discrete 

energy component represented in Eq. (5.3) is transformed independently using the 

parabolic mild-slope equation and the results re-assembled at the inshore grid points 

using the principle of linear superposition. This procedure is described in the following 

sections. 

 

5.1 Principle of Linear Superposition 

Decomposing the mean free surface potential,   as the sum of several components, we 

can write: 

 


n

NWAVES

=1n

  =   (5.4) 

 

Now, substituting Eq. (5.4) into Eq. (2.1) and neglecting wave dissipation results in: 

 

     0 = CCk +   CC 
ng

2

ng    (5.5) 

 

or 

 

  0 =   CC k + ) CC(  
ng

2

ng   (5.6) 

 

Thus, by solving Eq. (5.6). (or its parabolic approximation) for each individual wave 

component n , it is possible to use the principle of linear superposition to obtain the 

combined   using Eq. (5.4). 

 

It should be noted that the transformation from Eq. (5.5) to Eq. (5.6) is strictly valid when 

CCg and k
2
CCg do not change with the discrete wave components. This is the case when 

all the wave components have the same frequency. Thus, the principle of linear 

superposition as applied here is valid for directional waves with one frequency. It can be 

assumed that this principle will also be valid when all the frequencies lie within a narrow 

frequency band. CCg and k
2
CCg are calculated using the frequency for the discrete wave 

component considered. 

 

At the offshore boundary (x=0), the mean surface potential for each wave component, n  

is expressed as (see also Eq. (2.4)): 

 

  no,nnnn
 +y   k i  H = sinexp  (5.7) 

 

where 

 

Hn modules of Hn (Hn is complex) is the characteristic wave height for the 

discrete wave component, n 

 

kn  wave number for the discrete wave component 

 

θn wave direction for the discrete wave component 

 

χo,n initial phase for the discrete wave component. This is set to zero. 
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Since we actually solve for A (given by Eq. (2.14)) using Eq. (2.17), the boundary condition 

at x=0 may be written as: 

 

 yik H = A nnnn sinexp  (5.8) 

 

Now, assuming that the wave energy within each frequency band in Eq. (5.3) will stay 

within this frequency upon wave refraction, ie there is no transfer of energy across 

frequency bands, each discrete energy cell represented in Eq. (5.3) may be propagated 

independently and the results superposed, in the absence of dissipation. Hence, for each 

discrete frequency, fj and discrete wave direction, θj. The characteristic wave height can 

be obtained using: 

 

 kjkj, fE 8 = |H|   (5.9) 

 

where 

 

Ej,k the two-dimensional spectral energy density function at j,k 

 

Δfj, the frequency window at the discrete frequency fj, with fj representing 

frequencies in the range  

 

 
2/2/ jjjj ffff 

 
 

Δθk the wave direction window at the discrete direction θk, with θk 

representing directions in the range 

 

 / 2 / 2k k k k         

 

Hence the wave spectrum is discretized into NWAVES (= NFREQ x NDIR) components, 

where NFREQ is the number of discrete frequencies and NDIR is the number of discrete 

directions. 

 

5.2 Inclusion of Dissipation 

In coastal applications, it is necessary to include wave dissipation due to bottom friction and 

wave breaking in numerical wave computations. In MIKE 21 PMS, the procedure used for 

the wave computations is to solve the governing equation, Eq. (2.17) in two steps, namely, a 

propagation step and a decay step. For the propogation step, Eq. (2.17) is solved excluding 

the decay term (i.e. W = 0). Thereafter the decay term is included by solving: 

 

0 = A 
C2

W
 + A

g

x  (5.10) 

 

The finite difference equation is: 

 

 A + A
2

1
 

C2

W
 x + A = A 1+jj

g

j1+j **














  (5.11) 

 
where Aj* is the value of A at (j+1) after the propagation step only (the value of A at (j+1) 

after propagation step is transferred to (j) for the decay step. A similar procedure is used 

for time varying parabolic problems). 
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Thus, 

 

A 

C 4

W x
 - 1

C 4

W x
 + 1

 = A j

g

g

1+j *













 













 

 (5.12) 

 

The procedure can be summarized as follows: 

 

1. Starting from the offshore boundary x=0, calculate the complex function n for each 

component, assuming no wave dissipation at the next row, x+Δx. More correctly, we 

calculate An given by Eq. (2.14), in which the rapid variation of  with x has been 

factored out. An is calculated using the parabolic mild-slope equation, Eq. (2.17). 

 

2. Using the principle of linear superposition, the contribution of all the wave 

components to the total energy is summed, and the total energy and mean period 

can be found at  x+Δx. 

 

3. The dissipation term is now included by adjusting A for each wave component, n, 

using: 
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g

g
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
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
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











 

 (5.13) 

 

where the wave dissipation function, W, is calculated on the basis of the total 

energy, E, and the energy averaged mean frequency, fm. 
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6 Numerical Solution 

The parabolic mild-slope equation, Eq. (2.17) is solved using the Crank-Nicholson 

numerical scheme for parabolic differential equations. The resulting tridiagonal system of 

equations is solved using the double-sweep algorithm. 
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