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1 Introduction 

The present Scientific Documentation aims to give a description of the equations and 

numerical formulation used in the Advection-Dispersion (AD) module of the MIKE 21 Flow 

Model and MIKE 3 Flow Model. 

 

The equation for the Advection-Dispersion module is shown below. The numerical 

schemes for the calculations are described in Chapter 2. The numerical algorithm and 

solution technique applied in the model is described in the paper “An Explicit Scheme for 

Advection-Dispersion Modelling in Two Dimensions” in Section 2.2 and in the paper 

“Advection-Dispersion Modelling in Three Dimensions” in Section 2.3. This is followed by 

a discussion of Dispersion Coefficients, Chapter 3. The background for the Heat 

Dissipation formula is described briefly in Chapter 4, and finally, the background for the 

Flooding and Drying is described in Chapter 5. 

 

The Advection-Dispersion module solves the so-called advection-dispersion equation for 

dissolved or suspended substances. This is in fact the mass-conservation equation. 

Discharge quantities and compound concentrations at source and sink points are 

included together with a decay rate. 
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Symbol list 

c compound concentration (arbitrary units) 

u,v horizontal velocity components in the x,y directions (m/s) 

w vertical velocity component in the z direction (m/s) 

h water depth (m) 

Dx,Dy,Dz dispersion coefficients in the x,y,z directions (m2/s) 

F linear decay coefficient (sec-1) 

S Qs(cs-c) 

Qs source/sink discharge (m3/s/m2) 

cs concentration of compound in the source/sink discharge. 

 

Information on u, v, w and h at each time step is provided by the Hydrodynamic module. 
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2 Numerical Schemes 

2.1 General Description 

The transport of the scalar quantities, salinity and temperature is handled by a general 

advection-dispersion module. The general advection-dispersion equation reads,  
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in which c is the scalar concentration variable, Di the dispersion coefficients and SS a 

source-sink term.  

 

MIKE 21 utilises an explicit scheme (QUICKEST) for the advection-dispersion modelling. 

The numerical algorithm and solution technique applied in the model is described in the 

paper “An Explicit Scheme for Advection-Dispersion Modelling in Two Dimensions” in 

Section 2.2 

 

MIKE 3 offers four different advection-dispersion schemes: 

 

• The fully 3D QUICKEST-SHARP scheme which is especially suitable for simulations 

with steep gradients 

• The ULTIMATE-QUICKEST scheme with operator splitting and intermediate surface 

elevations calculated on basis of locally 1D continuity equations. The ULTIMATE-

QUICKEST scheme is an alternative to the QUICKEST-SHARP scheme and it is 

designed to reduce computation time when more than one component has been 

selected 

• The simple UPWIND scheme which is similar to the ULTIMATE-QUICKEST scheme 

except that upwinding is applied all over 

• The fully 3D UPWIND scheme which is similar to the QUICKEST-SHARP scheme 

except that upwinding is applied all over 

The numerical algorithm and solution technique for the 3D QUICKEST scheme is described 

in the paper “Advection-Dispersion Modelling in Three Dimensions” in Section 2.3. The 

information of ui at each time step is provided by the hydrodynamic module and thus 

assumed constant throughout the time integration of the advection-dispersion equation. 

Unless otherwise specified the advection-dispersion equation is solved at each time step 

following the time integration of the hydrodynamic equations. 

 

The ULTIMATE-QUICKEST and the simple UPWIND schemes have a built-in internal 

loop over components, which reduces the computation time when more components 

have been selected. With the QUICKEST-SHARP and the 3D UPWIND schemes the 

user may choose to turn on the “internal component loop”; this will increase the 

computational speed in cases with more than one component at the expense of requiring 

more memory during computations. 

 

The schemes 3D QUICKEST-SHARP and the 3D UPWIND are so-called CWC schemes 

(for Consistency With Continuity), both designed to be consistent with the continuity 

equation (the mass equation) of the HD module. The CWC property is, however, not 
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always completely fulfilled with the non-hydrostatic HD engine due to the inherent 

compressibility of the ACM scheme. 

For further details about the CWC schemes in MIKE 21 and MIKE 3, please see the 

separate Scientific Documentation MIKE 21 & MIKE 3 Flow Model, CWC Schemes – file 

name m3m21_cwc.pdf. 
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2.2 An Explicit Scheme for Advection-Dispersion Modelling in Two 
Dimensions 
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2.3 Advection-Dispersion Modelling in Three Dimensions 
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3 Dispersion Coefficients 

3.1 General Description 

Dispersion is commonly used as a general term to refer to the scattering of fluid particles 

that depend both on random-type processes (diffusion) and on the effect of velocity 

gradients (shear), as schematised in Table 3.1. The diffusive processes are never 

resolved, which led to early attempts by Fick (1855) and Taylor (1921) to parameterise 

the mass fluxes of solutes due to molecular and turbulent motions, respectively. They 

assumed that the mass fluxes could be set to be proportional to the concentration 

gradients, the constants of proportionality being called the molecular and turbulent 

diffusion coefficients, respectively. Taylor (1953, 1954) extended this approximation to 

shear flows, the combined effect of differential advection and diffusion being thus 

represented by the so-called dispersion coefficients. Elder (1959) applied Taylor's 

analysis to shallow water flows in order to describe the shear effects of the vertical 

velocity gradients. 

 

The concept of dispersion of mass of any substance in solution or suspension in a flow 

can be extended to other properties of the flow. Resorting to Backmeteff's principle of 

momentum transfer, it follows that the velocity fluctuations act as a mechanism of transfer 

of momentum between adjacent scales of circulation, i.e. they provide for the dispersion 

of momentum. The corresponding coefficients are the so-called viscosity coefficients. 

 

 
Table 3.1 Transport of Fluid Particles 

 

MAIN TRANSPORT PROCESSES 

ADVECTION 

Movement of fluid particles due to the resolved flow processes 

DISPERSION 

Scattering of fluid particles due to non-

resolved flow processes 

SHEAR 

Spatial velocity gradients 

DIFFUSION 

Molecular motion 

Turbulence 
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3.2 Dispersive Processes 

3.2.1 General 

The commonly recognised filtering procedures used in the development of the 

momentum and transport-dispersion equations are: 

 

 

Scale 1 
  

   
 
Filter out the random molecular 
motion } 

 
→ molecular diffusion 
→ viscosity 
 

   

Scale 2 
  

   
 
Filter out the turbulent motion 

below a given scale } 

 
→ turbulent diffusion 
→ eddy-viscosity 

   

Scale 3 
  

   

 
Depth averaging to filter out the 
vertical velocity profile for 
2-D models } 

 
→ dispersion 
→ bed & surface shear stresses 
→ horizontal shear stresses 
     - shear viscosity 

 

 

Scale 1, which corresponds to filtering out the random molecular motions, is the basis of 

Newton's law of viscosity 
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where viscosity  may be regarded as a measure of the resistance of the flow to 

deformation imposed by tangential stresses , which are generated by the transfer of 

momentum due to velocity fluctuations normal to the corresponding surface. With respect 

to the fluctuations due to molecular motions, their effect on the transfer of momentum is 

independent of the flow conditions, thus the dynamic viscosity  is a characteristic of the 

fluid. The corresponding dynamic equilibrium equations are the well-known Navier-Stokes 

equations, where the influence of the non-resolved scales of random molecular motions 

are accounted for by the following empirical terms (in the xi direction) 
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 = / being the Kinematic viscosity (L² / T). 

 

The random molecular motions also induce the transfer of mass of any substance 

dissolved or in suspension in the fluid, which according to Fick's law is given by 
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  (3.3) 

 

where c represents the concentration of the constituent and Dm the molecular diffusion 

coefficient. Applying a conservation principle to an arbitrary volume of control, an 

empirical term similar to (3.2) will appear 
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3.2.2 Turbulence 

Although molecular agitation is always present even for fluids at rest, under flow 

conditions fluid particles experience additional random motions of much higher 

magnitude, so that their paths are very irregular and sinuous. It is apparent when 

observing recorded time series of instantaneous velocities uI, that the flow is 

characterised by an unsteady fluctuating velocity u' superimposed on a temporal steady 

mean velocity u, such that 
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In these conditions it is possible to filter out the fluctuations under a selected time scale 

ΔT, by integrating the Navier-Stokes equations over ΔT. As a result, the following new 

terms will be obtained 
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Similarly for the conservation of property c, the result is, 
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In the classical theory of turbulence the terms -ui
' uj

', called Reynold's stresses, are 

empirically correlated to the resolved scales through a new coefficient T, the "eddy 

viscosity", such that 
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which makes it possible to write the new terms in the following form 
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It is apparent that T is now dependent on the flow conditions. For the evaluation of T 

several models have been developed, each corresponding to a particular kind of 

turbulence (e.g. isotropy). One of the formulations adopted by DHI is based on the so-

called Smagorinsky model of isotropic turbulence (1963), given by 

 

)S S( )x(  = jiiji
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where  (xi) is a characteristic mixing length and Sij the second order strain tensor. It is 

obvious that considering T constant, expression (3.11) reduces to the form of expression 

(3.2) established for molecular motion (Boussinesq approximation). 

 

In general it is difficult to determine T but as a reference, for uniform channel flow it is 

often assumed to take a value given approximately by 
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where h is the water depth and u* the friction velocity. 

 

Introducing the Reynold's analogy for turbulent flows, that expresses the principle that the 

transfer processes of dissolved or suspended matter are equivalent to the transfer 

processes of momentum, and consequently the turbulent diffusion coefficient DT will be 

such that DT  T, the new dispersive terms of the conversation equation becoming 
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3.2.3 Shear flows 

For many coastal engineering applications where the depth is much smaller than the 

horizontal dimensions of the domain under study, two-dimensional models are usually 

adequate to describe the main flow processes. Nevertheless the depth-integration will 

imply the filtering of the vertical velocity profiles, which are responsible for additional 

spreading in the direction of the flow. Flows with velocity gradients are often referred to 

as "shear flows", and the associated spreading mechanism discussed by Taylor (1954) is 

currently known as the "shear effect". Hence, to account for "shear flows" in a depth 

integrated model (i.e. 2D), additional empirical terms have to be included.  

 

The filtering procedure can now be based on the following relationships: 
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where U represents the depth-integrated velocity and U' the deviation of the velocity 

profile from the average velocity U, at a general depth z. 

 

Introducing these relationships in the Reynolds equations (Navier-Stokes equations after 

filtering out turbulence under a time scale ΔT), it is possible to demonstrate that the 

convective terms will be given by 
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The last two terms represent the overall transfer of momentum over the depth due to the 

shear effect, and in an assumption similar to that applied to the turbulent transfer of 

momentum, it is common to accept the following correlations with the resolved dependent 

variables (depth-integrated): 

 

x

U
  - =dz  )U(  

h

1 s
x

2

h-



 



 (3.19) 

 

and 
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The above assumptions and the Reynolds analogy make it possible to finally write the 

new terms for the conservation of momentum and constituents in the following form 
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and 
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where i
s   Di

s, with i
s and Di

s representing the horizontal shear stresses and dispersion 

in depth-integrated shear flows (in the xi direction). The coefficient i
s will be called 

hereafter the “shear viscosity”. 

 

In the case of uniform channel flow (Abbott et al., 1976) the shear viscosity can be 

estimated by 



Dispersion Coefficients  

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 34 

 

h UC 
2

)(- 
 = D = z

2

s
i

s
i


  (3.23) 

 

with 
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where Cz is the non-dimensional Chézy number, U the depth-averaged velocity and h the 

water depth. 

 

For example, considering a 10 meter deep channel with a depth- averaged velocity of 1 

m/s and a non-dimensional Chézy number of 18, the shear viscosity coefficient that 

corresponds to an exponential velocity distribution along the vertical given by KZ0.2 is S = 

4 m2/s. 

 

As expected, these results suggest that the intensity of transfer of momentum and 

constituents is related to the magnitude of the scale considered, the molecular and 

turbulent effects being in practice negligible in comparison to the shear effect (10-6 to 10-1 

m2/s against 4 m2/s). 

 

3.2.4 Subgrid scale processes 

At this point it is convenient to emphasise that the concepts of viscosity and diffusion 

have been brought about by the need to take into account non-resolved motions of the 

fluid particles, i.e. diffusion and dispersion are the result of advective processes 

associated with non-resolved scales. This concept is the one that really matters when the 

filtering procedures are further extended to higher scales, as a consequence of the need 

for horizontal and vertical spatial discretisation of the equations. It implies that additional 

dispersion and viscosity will be required to account for higher order non-resolved scales 

of motion, which magnitude will be dependent on the grid spacing used in the numerical 

computations. Once again it is only natural to expect that by increasing the grid spacing, 

the dispersive coefficients will also increase, with practice confirming that they can be 

several orders of magnitude higher than e.g. the coefficients arising from depth-

integration. In the case of depth-integration where the grid spacing is similar to water 

depth, Δx  h, the larger non-resolved scales of circulation will be related to the shear flow 

and the extensive studies available on this subject provide very accurate first estimates 

for the empirical coefficients, so long as the velocity profile is well defined, as will be 

shown in Section 3.3.1. 

 

One of the main difficulties found when estimating dispersion coefficients, so as to take 

into account the horizontal spatial discretisations, is the characterisation of the new non-

resolved scales of motion, which can be greatly dependent on factors like local 

bathymetric configurations, density gradients and wind friction and set-up. Although some 



Dispersion Coefficients  

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 35 

general formulae can be used for guidance, the accuracy of the final values will always 

be greatly dependent on calibration and on the experience of the modeller.  

 

In conclusion, the fact that the numerical resolution of the primitive equations has to 

resort to additional discretisations in space and time (generally, no analytical solutions 

are available), makes it necessary to extend filtering to larger scales of motion which are 

dependent on the model resolution, Δx and Δz. Thus, following the previous 

schematisation a fourth scale must be considered, such that 

 

Scale 4 
  

   
 
Averaging over the model 
resolution Δx, Δt } 

 
→ additional dispersion 
→ additional viscosity 

 

 

In what follows the additional dispersion and viscosity will be referred to as Subgrid 

Dispersion DG and Subgrid Viscosity G. 

 

3.3 Estimation of Coefficients in 2D Modelling 

3.3.1 Basic formulations 

The general advection-dispersion equation reads 
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Where c is the concentration, Di the dispersion coefficient and SS a possible source term. 

 

As a basis for the interpretation of dispersive coefficients in 2D, Elder's formulation will be 

used. Consider the mass conservation equation for a dissolved constituent in an open 

channel of infinite lateral extent, where the lateral and vertical velocity components are 

zero and the horizontal diffusion can be neglected. Equation (3.27) can then be written 
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Considering the vertical profile defined by equations (3.15) - (3.17) and taking into 

account the flux continuity for incompressible fluids, equation (3.27) can be written 
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Introducing now a non-inertial frame of reference moving at velocity U, C and C' will be 

functions of x' = x - Ut and t' = t, which brings the previous equation to the following form 
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After a sufficiently long time, C and C' will become functions only of x' and t, respectively, 

which make it possible to finally write 

 





















   t  , 

z

C
 D  

z
 = 

x

C
 U T

z  (3.30) 

 

Proceeding by integrating the previous equation, one gets 
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Multiplying by U' and integrating again over the vertical, it yields 
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and it is now clear that the dispersion coefficient can be given by 
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Elder evaluated D
s
x  using Von Karman’s logarithmic profile for the velocity 
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where u* is the shear velocity (  /o )½ and (~ 0.41) the Von-Karman constant. The 

shear stress distribution is considered to be linear 

 

z/h)-(1  = o  (3.35) 

 

and the assumption is made that the turbulent transport of mass and momentum are 

identical (Reynold's analogy). Noting also that the vertical turbulent momentum transfer is 

given by 
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it transpires that 
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Considering now the independent variable in equation (3.33) given by ζ= z/h and taking 

into account (3.34) and (3.37), Elder obtained 
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Performing the integration, one gets 

 

h* u K = 
h*u

 0.404 = D E3

s
x


 (3.39) 

 

with KE = 5.9 and  = 0.41. 

 

Expressions similar to Elder's have been proposed with a wide variety of coefficients, as 

for example 

 

Krenkel (1962) for open channel flow: 9.1 u* h 

Yotsukura & Fiering (1964) for smooth channels: 13 u* h 

Thackston (1966) for natural streams: 7.25 (u/u*)1/4 u* h 

 

to mention but a few, as presented by Bansal (1971). 

 

Jobson and Sayre (1970) have provided some evidence that the Reynolds analogy holds 

(i.e. T/DT  1). They also confirmed the parabolic distribution of T and found that the 

mean depth value was about 

 

hu  DT

z

*07.0  (3.40) 

 

which justifies its being neglected in comparison to horizontal dispersion due to shear 

flows. 

 

In applications for natural streams, Fischer (1968) found that longitudinal dispersion 

coefficients as predicted by Elder's formula were too small, values as much as 150 times 

higher having been reported. Bowden (1964) pointed out that the effective coefficients of 

horizontal dispersion are inversely proportional to the coefficient of vertical turbulent 

diffusion, which is also apparent in Elder's development (3.33). The mixing produced 

under a shearing current will thus be enhanced if some stability factors are present in the 

vertical, their effects becoming important for local Richardson numbers of about 0.5 to 1. 

According to Bowden the coefficient of vertical turbulent diffusion may then be reduced by 

a factor of 10 or 20, with a corresponding increase in the horizontal dispersion 

coefficients, to an order of 105 to 106 cm²/sec. 

 

The conclusions of these authors clearly show that other mechanisms of spreading may 

be dominant in comparison with shear effects. Fischer proposed that the main factor 

contributing to longitudinal dispersion was transversal diffusion and not vertical diffusion, 

i.e. the dominant mechanism of spreading should be associated with transversal 

circulations (this analysis having been done for natural streams). Bowden recognised that 

shear effects are likely to be most effective in estuaries and near the coastline, and that 

the existence of large horizontal eddies may dominate among the dispersion processes. 
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3.3.2 The evidence of experience 

It is well demonstrated that dispersive effects due to physical processes at scales 1 and 2 

are negligible in relation to those at scale 3. With respect to environmental flows, field 

measurements and modelling results also show that in most situations Elder's coefficient 

is several orders of magnitude too small as mentioned previously. This is illustrated in 

Table 3.2, in which calibrated coefficients are compared with Elder's formula for 4 

different applications with a two-dimensional circulation model (MIKE 21) 

 

 
Table 3.2 Comparison between Elder's coefficient and calibrated coefficient 

 

Case h 

m 

u 

m/s 

u* 

m/s 

Δx 

m 

Δt 

s 

E. calib. 

m2s 

6.hu* 

m2/s 

A 8 0.7 0.05 50 30 2-5 2.4 

B 20 1.0 0.1 500 300 40-50 12 

C 30 0.5 0.03 6000 600 ~500 5.4 

D 1000 0.1 0.003 30000 900 >6000 18 

 

 

The magnitude of the calibrated coefficients can only be explained by considering 

processes at Scale 4, that for values of Δx >> h usually dominate over processes in Scale 

3. 

 

Many modellers attempt to account for the filtered processes at Scale 4 by increasing the 

coefficient KE in Elder's formulation, which will only be acceptable as long as those 

processes remain related to flow variations in the vertical. However, to represent subgrid 

processes it is only natural to relate the effective coefficients of viscosity and dispersion 

to the length scale Δx and to the time scale Δt. Hence the effective coefficients for 

subgrid processes may be considered in the following possible forms: 

 

t

x
K



 2

1  (3.41) 

 

uxK 2  (3.42) 

 
2

3 utK   (3.43) 

 

In Table 3.3 the three different forms of the effective coefficient for Scale 4 have been 

compared to calibrated results in five different situations. 
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Table 3.3 Effective coefficients of scale 4 

 

CASE h 

(m) 

u 

(m/s) 

Δx 

(m) 

Δt 

(s) 

Ecal. 

(m2/s) 

K1 K2 K3 

A 8 0.7 50 30 1-5 0.06-0.01 0.14-0.03 0.34-0.07 

B 20 1.0 500 300 40-50 0.06 0.10 0.17 

C 30 0.5 6000 600 ~500 0.008 0.17 3.3 

D 40 1.0 20 10 1-3 0.075-0.025 0.15-0.05 0.30-0.10 

E 1000 0.1 30000 900 ~6000 0.006 2.0 667 

 

 

The form K2Δx u appears to be promising since K2 is almost constant in the five different 

cases. 

 

It is important to emphasise that as equations (3.41) - (3.43) are not based on a defined 

pattern of circulation, like Euler's formulation, the estimates can only be expected to be a 

rough approximation to the true values. Furthermore, as will be analysed in the next 

section, the values of the dispersive coefficients are dependent on the biggest non-

resolved circulations, and not directly on Δx or Δt. This is very important, and makes it 

possible to justify that in situations where Δx>>h, the use of Elder's formulation may still 

be valid although the associated dispersive processes will be irrelevant in comparison 

with other effects. Nevertheless, the above formulae, when complemented with field 

observations and experience obtained in similar situations, do provide valuable guidance 

for the calibration of two-dimensional environmental models. 

 

When Δx and h are of the same order of magnitude, the shear effects (processes at 

Scale 3) will be the ones responsible for the transfer of momentum and constituents. In 

practice, assuming that the friction velocity for coastal waters is about 6% of the mean 

depth velocity, Elder's formula will give 

 

h U 0.4  h U 0.06  5.9  D  s
x

s
x   (3.44) 

 

Thus, for application in MIKE 21 when Δx  h the dispersive coefficients (shear viscosity 

and dispersion) are taken as a first approximation as, to be 

 

h U   D  s
x

s
x 0.1  (3.45) 

 

with the factor 1.0 possibly varying by one order of magnitude according to calibration. 

 

It should be stressed that in the above discussion direction x was assumed to be aligned 

with the flow direction, the coefficients thus obtained being representative of the 

longitudinal dispersive processes. In the case of shear effects the transverse or lateral 

processes are found to be approximately one order of magnitude smaller than the 

longitudinal ones, as indicated by tests reported by Talbot & Talbot (1974). For an 

arbitrary direction of the flow in a Cartesian coordinate system, cross terms would then be 

present, complicating the definition of the coefficients. Calling D
s
L , D

s
T  longitudinal and 

lateral coefficients, a reasonable approach would be to project them on the x and y 

directions and disregard cross derivative terms. This can be accomplished by taking the 
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ellipse of semi-axes D
s
L , D

s
T  in which D

s
L  is aligned with the current vector (u,v), and 

calculate D
s
x  and D

s
y  accordingly, eventually obtaining 
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Where 

 

 uvarctan  (3.48) 

 

However, for dispersive processes associated with the largest scales, as is the case in 

subgrid flow circulations, the influence of flow direction is no longer relevant, which 

means that isotropy can be usually assumed. 

 

3.3.3 A general interpretation 

Abbott et al. (1985) showed that it is possible to simulate realistically secondary large 

scale circulations by using two-dimensional models. Madsen et al. (1988) continuing on 

the same subject referred to the existence of two fundamental mechanisms for the 

generation of circulations, where the resistance forces (bottom friction) are balanced by: 

 

• the momentum transfer resolved at the scale of the spatial discretisation adopted 

(convective accelerations) 

 

• the momentum transfer non-resolved at the scale of the spatial discretisation 

adopted, represented by horizontal shear stresses ("subgrid viscosity") 

 

The first mechanism is dominant in many situations where the scales of flow circulation 

and space discretisation Δx are much bigger than the depth of the flow, and the second 

one is fundamental to describe secondary circulations when Δx < h. Nevertheless, for 

some situations where Δxh it is found in practice that the second mechanism is still 

necessary to describe the resolved scales of circulation. A possible explanation may be 

found in the following heuristic hypothesis: 

 

• The transfer of momentum or constituents amongst resolved scales depends upon 

the relative magnitude of the minimum resolved scale and the maximum non-

resolved scale. The transfer is only effective when these scales have the same order 

of magnitude. 

 

To analyse the consistency of this statement the following interpretations are made: 

 

1. When the structure of the flow is well defined by a logarithmic profile of velocities 

and Δx is of the same order of magnitude of the depth h, the biggest non-resolved 

scale is the velocity profile itself, Elder's formula being thus valid for the estimation of 

the effective viscosity and dispersion coefficients. The second mechanism is 

fundamental to describe flow circulation. 
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2. When Δxh several situations may be found: 

 

a. The bottom is very regular and three-dimensional effects are negligible. In this 

case the biggest non-resolved scale will still be related to the depth, thus being 

much smaller than the minimum resolved scale. Consequently the transfer of 

momentum due to the non-resolved scales (subgrid viscosity) is negligible. 

Euler's formula is still valid but the model will not be sensitive to the values of 

the viscosity coefficient. The circulation is only determined by the first 

mechanism, i.e., by the dissipative terms, as the non-resolved scales only 

contribute as energy absorbers.  

 

b. The bottom configurations and the existence of three-dimensional effects 

originate circulations, the scales of which are of the same order of magnitude of 

Δx, i.e., important in relation to the minimum resolved scales. In this case the 

transfer of momentum due to the non-resolved scales becomes significant. This 

can be easily illustrated by the experience of many authors, who for calibration 

of regional models using large grid spacings ( 5000 m) employed dispersion 

coefficients proportional to Δx or/and h. As an example one of the formulae 

commonly used is given by E = K Δx²/Δt with 0.01 <K<0.06. For a regular mesh 

with a 30,000 m grid spacing, a 15 min. time step and an average depth of 

1000 m, we get 10,000<E<60,000 m²/s, i.e. 10 h <E< 60 h. 

 

Schwiderski (1978), for his global oceanic tidal model used a dispersion 

coefficient linearly proportional to the depth and -x, which gives values 

consistent with the previous formula.  

 

3. It is logical to expect that by using the Prandtl model for the determination of the 

dispersive coefficients, the mixing length will be related to the magnitude of the 

maximum non-resolved scales. Using the Smagorinsky formulation and considering 

the mixing length given by 

 

xCs  (3.49) 

 

Madsen et al. (1988) recommended values of Cs in the range (0.4 - 0.8). These values 

are consistent with the hypothesis formulated before, i.e., the transfer processes of 

momentum and constituents are only important when the non-resolved circulations are of 

the same order of magnitude as Δx. 

 

 



Heat Dissipation  

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 42 

4 Heat Dissipation 

In the heat balance for a free surface the following items are included: net short-wave 

radiation (from the sun), net long-wave radiation (e.g. from clouds), long-wave outgoing 

radiation from the surface (Stefan-Bolzmanns law), evaporation and heat exchange to the 

air as a function of the temperature difference between water and air (convection). 

 

In connection with an artificially warmed aquatic area, the loss of heat will increase due to 

long-wave radiation, evaporation and convection. This increase in heat loss is included as 

a decay term in the calculation of the excess temperature field, FT, where F is the heat 

decay coefficient and T the excess temperature. The following simplified expression is 

used for calculating the decay coefficient 

 

if W  Wmin: 
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where 

  

 density of water 

Cp specific heat 

H water depth [m] 

Tr reference temperature [°C] 

T excess temperature [°C] 

W wind speed [m/s] 

 

·Cp gives the value 106 Cal/m3 °C in the program. 

 

Wmin, Kmin and Kshift are by default 0.0, but can be specified by an option file. 

 

The above expression is not valid for water surfaces with high excess temperatures, e.g. 

cooling water reservoirs. 
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5 Flooding and Drying 

If the AD module is applied together with flooding and drying, then concentrations must 

be calculated every time a cell is flooded, and the mass of the AD compounds stored 

every time a drying sets in. 

 

The HD modelling concepts at flooding/drying are described in MIKE 21 HD Scientific 

Background. The related AD modelling concepts at flooding/drying are described in the 

following sections. 

 

5.1 General 

When performing an AD calculation while using the flooding and drying functionality it is 

necessary to book-keep the mass of the AD component (or MIKE ECO Lab State 

Variable or MT fraction) in order to obtain an AD mass balance – similar in concept to the 

handling of water depths in the HD simulation in order to obtain a water volume/mass 

balance. 

 

 

The AD functionality utilises 2 arrays at runtime: 

 

• c(j,k) (data structure used to bookkeep of concentrations while cells are wet/flooded) 

• ad_mass(j,k) (data structure used to bookkeep AD mass per area  while cells are 

dry) 

 

While a cell is wet c(j,k) will be directly updated by the AD equations of motion. 

 

While a cell is dry ad_mass(j,k) will be updated with respect to mass per area when 

sources, models, rain with concentrations are added to cell (j,k) while it is dry. When HD 

mass violations takes place out of known reasons (water depth below EPSF) then 

ad_mass(j,k) will be updated accordingly and be subject to a corresponding mass per 

area violation. 

 

We store the latest known AD mass per area in cell (j,k). The mass per area is what 

should be conservative during the simulation – normally we understand that the mass 

should be conserved, but since the area of the MIKE 21 computational cells have a 

uniform area equal to dx*dy, we might as well say that mass per area is what should be 

conservative.  

 

5.2 Flooding due to External Sources  

Flooding of a grid cell may be due to accumulation of water from external sources (Rain, 

Sources, External model contributions). In this case, if it takes N water increments 

(generally the same as number of taken time steps) to flood an initially dry cell (j,k), then 

the concentration of the AD component in cell (j,k) at the time of the flooding will be 

modelled according to a weighted average: 
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Where Δhn is the water increment and cn is the concentration in the external source. 

 

The initial imaginary water with water depth EPSF in this concentration modelling is 

ignored as we only take into account the concentration from the actual external 

contributions: the fallen precipitation, the added water from sources or from coupled 

models. 

 

5.3 Flooding due to a High Water Level in Neighbour Cells  

Flooding of a grid cell can also be due to a high water level in neighbour cells (water 

chain expansion/chain flooding). In this case the calculation of the concentration depends 

on the previous simulation steps. 

 

5.3.1 Chain flooding for the first time 

If a cell (j,k-1) – call it cell 1 - leads to a chain flooding of its neighbour cell (j,k) then the 

concentration at cell (j,k) will be calculated as the average of the neighbour 

concentrations in the neighbour wet cells. The general formula is highlighted below in 

Figure 5.1. If all 4 neighbour cells are dry when the concentration in (j,k) is about to be 

set, then we set c(j,k) = c(j,k-1) – e.g. we set the concentration in (j,k) to the original 

concentration value in cell (j,k-1) – the cell that triggered that cell (j,k) got flooded. 

 

 
 
Figure 5.1 Illustration of concentration handling in case of first-time chain flooding 
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5.3.2 Chain flooding on previously wet cell 

If a cell that was previously wet and later became dry is chain flooded again, the latest 

updated values for ad_mass(j,k) and h_flood_dry(j,k) are used to derive the concentration 

at flooding time: 

 

 
 kjdryfloodh

kjmassad
kjc

,__

,_
),(   (5.2) 

 

5.4 Drying 

When drying of a cell (j,k) sets in, and then the mass per area of the AD component (or 

MIKE ECO Lab State Variable or MT fraction) is stored as follows: 

 

     kjdryfloodhkjckjmassad ,__,,_   (5.3) 
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6 List of Symbols 

 Shear stresses 

 Density 

 Dynamic Molecular Viscosity 

 Kinematic Molecular Viscosity 

T Kinematic Turbulent Viscosity 

S Kinematic Shear Viscosity 

Dm Molecular Diffusion 

DT Turbulent Diffusion 

DS Shear Diffusion - Dispersion 

KE Euler's coefficient 

  Von Karman's constant 

uI Instantaneous Velocity 

u Time-integrated Velocity 

u' Velocity Fluctuation 

u* Shear Velocity 

U Depth-integrated Velocity 

U' Depth-integrated Velocity Fluctuation 

c Time-integrated Concentration 

c' Fluctuation of Concentration 

C Depth-integrated Concentration 

C' Depth-integrated Fluctuation of Concentration 

  Mixing Length 

S Angular Deformation Tensor 

h Flow Depth 

  Water Surface Position 

z Vertical Direction 
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