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1 Introduction

The present Scientific Documentation aims to give a description of the equations and
numerical formulation used in the Advection-Dispersion (AD) module of the MIKE 21 Flow
Model and MIKE 3 Flow Model.

The equation for the Advection-Dispersion module is shown below. The numerical
schemes for the calculations are described in Chapter 2. The numerical algorithm and
solution technique applied in the model is described in the paper “An Explicit Scheme for
Advection-Dispersion Modelling in Two Dimensions” in Section 2.2 and in the paper
“Advection-Dispersion Modelling in Three Dimensions” in Section 2.3. This is followed by
a discussion of Dispersion Coefficients, Chapter 3. The background for the Heat
Dissipation formula is described briefly in Chapter 4, and finally, the background for the
Flooding and Drying is described in Chapter 5.

The Advection-Dispersion module solves the so-called advection-dispersion equation for
dissolved or suspended substances. This is in fact the mass-conservation equation.
Discharge quantities and compound concentrations at source and sink points are
included together with a decay rate.

0 0 0 0 0 ac
—(hc)+—(uhc)+—(vhc)+ —(whc)=—| h-D, - —
5 )+ -, (uhe) ay( )+, whe) ax( X 8xj

(1.1)

0 oc 0 oc
+ 2 hp, L e+ LD, L |-F h-c+s
ay( DyayJ az( Dzaz)

Symbol list
c compound concentration (arbitrary units)
u,v horizontal velocity components in the x,y directions (m/s)
w vertical velocity component in the z direction (m/s)
h water depth (m)
Dy,Dy,D; dispersion coefficients in the x,y,z directions (m?/s)
F linear decay coefficient (sec?)
S Qs.(Cs-C)
Qs source/sink discharge (m3/s/m2)
Cs concentration of compound in the source/sink discharge.

Information on u, v, w and h at each time step is provided by the Hydrodynamic module.

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 1
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2 Numerical Schemes

2.1  General Description

The transport of the scalar quantities, salinity and temperature is handled by a general
advection-dispersion module. The general advection-dispersion equation reads,

@+%:i DIE + SS (21)
a . ox o | ox

in which c is the scalar concentration variable, D; the dispersion coefficients and SS a
source-sink term.

MIKE 21 utilises an explicit scheme (QUICKEST) for the advection-dispersion modelling.
The numerical algorithm and solution technique applied in the model is described in the
paper “An Explicit Scheme for Advection-Dispersion Modelling in Two Dimensions” in
Section 2.2

MIKE 3 offers four different advection-dispersion schemes:

. The fully 3D QUICKEST-SHARP scheme which is especially suitable for simulations
with steep gradients

*  The ULTIMATE-QUICKEST scheme with operator splitting and intermediate surface
elevations calculated on basis of locally 1D continuity equations. The ULTIMATE-
QUICKEST scheme is an alternative to the QUICKEST-SHARP scheme and it is
designed to reduce computation time when more than one component has been
selected

*  The simple UPWIND scheme which is similar to the ULTIMATE-QUICKEST scheme
except that upwinding is applied all over

. The fully 3D UPWIND scheme which is similar to the QUICKEST-SHARP scheme
except that upwinding is applied all over

The numerical algorithm and solution technique for the 3D QUICKEST scheme is described
in the paper “Advection-Dispersion Modelling in Three Dimensions” in Section 2.3. The
information of u; at each time step is provided by the hydrodynamic module and thus
assumed constant throughout the time integration of the advection-dispersion equation.
Unless otherwise specified the advection-dispersion equation is solved at each time step
following the time integration of the hydrodynamic equations.

The ULTIMATE-QUICKEST and the simple UPWIND schemes have a built-in internal
loop over components, which reduces the computation time when more components
have been selected. With the QUICKEST-SHARP and the 3D UPWIND schemes the
user may choose to turn on the “internal component loop”; this will increase the
computational speed in cases with more than one component at the expense of requiring
more memory during computations.

The schemes 3D QUICKEST-SHARP and the 3D UPWIND are so-called CWC schemes

(for Consistency With Continuity), both designed to be consistent with the continuity
equation (the mass equation) of the HD module. The CWC property is, however, not

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 2
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always completely fulfilled with the non-hydrostatic HD engine due to the inherent
compressibility of the ACM scheme.

For further details about the CWC schemes in MIKE 21 and MIKE 3, please see the
separate Scientific Documentation MIKE 21 & MIKE 3 Flow Model, CWC Schemes — file
name m3m21_cwc.pdf.
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2.2 An Explicit Scheme for Advection-Dispersion Modelling in Two
Dimensions

Computer Methods in Applied Mechanics and Engineering 88 (1991) 287-297
North-Holland

An explicit scheme for advection—diffusion
modelling in two dimensions

Lars Ekebjerg' and Peter Justesen'

Institute of Hydrodynamics and Hydraulic Engineering (ISVA), Technical University of Denmark,
DK-2800 Lyngby, Denmark

Received 6 November 1989
Revised manuscript received 8 June 1990

In this paper, an extension of the finite difference scheme QUICKEST for the advection—diffusion
equation from one dimension into two dimensions is given. Advection as well as diffusion are
formulated as transports leading to a very efficient scheme which lends itself to vectorization on
supercomputers. The practicability of the scheme is tested using the lid-driven cavity flow as a test case
and very good results are obtained.

1. Introduction

In recent years the third order finite difference scheme QUICKEST has appeared in various
papers dealing with turbulence modelling, environmental modelling and similar areas, where
the governing equation is the advection—diffusion equation. This is because the scheme in
many ways has very fine qualities. It avoids the wiggle instability problem associated with
central differencing of the advection terms, and at the same time it eliminates the numerical
damping often experienced with first order upwinding methods (see [1]).

The scheme itself is a Lax-~Wendroff or Leith-like scheme in the sense that it cancels out
any truncation error terms due to time differencing up to a certain order by using the basic
equation itself. In the case of QUICKEST, truncation error terms up to third order are
cancelled, that is for both space and time derivatives. Readers interested in a more in-depth
account of the schemes are referred to [2, 3].

The QUICKEST scheme was originally developed in [2] only for the one-dimensional case
although giving some hints for the extension to higher dimensions. In papers where this
scheme has been used in higher dimensions, it is evident that the extension to e.g. two
dimensions by no means is as straight-forward as could be expected. None of the existing
references come out with a clear two-dimensional counterpart of the original scheme. Some
drop the diffusion part out of the equation (e.g. [4]) and others the cross-derivative terms [5].
Therefore the purpose of this note is to give a complete development of the 2D version of the
QUICKEST scheme.

! Present address: Computational Hydraulics Centre (CHC), Danish Hydraulic Institute (DHI), DK-2970
Hgrsholm.

0045-7825/91/$03.50 © 1991 — Elsevier Science Publishers B.V. (North-Holland)
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288 L. Ekebjeerg, P. Justesen, An explicit scheme for advection—diffusion modelling

2. The scheme
Consider the two-dimensional advection—diffusion equation

ac ac ac a%c a’c
—+u—+v—=K.  —+K,— 1
at " Max TV ay T Trad T Ty gyt )

where c is any scalar quantity transported by the steady velocity field (u, v) and diffused by
the constant diffusion coefficients K, and K . The mesh on which the equivalent finite
difference equation is to be solved is depicted in Fig. 1.

From a Taylor series expansion of (1) around the point ( j, k) the following equivalent finite
difference equation is obtained:

n+1 n n n n n
Cik ~ Sk y Civik ~ Cj-1k " Cikv1 ™ Cjx—1
At ik T Ay i* T 2Ry
n n n n . n n
_K ch,k—ch,szrc,.,Lk LK Cire1 2c].,;+cj,k,1 LTE, @)
Ax y Ay
where
At 8°c A d'c Ax® d'c Ay* &c
TE=202C 420 28,28 224, 2 28 4 Hor, 3)

2 9t 6 ot 6 ox 6 a9y’

HOT contains all fourth-order and higher truncation error terms, which in this development
are to be neglected.

The next step in the development is to eliminate the time derivatives in (3). This can be
done by differentiating (1) with respect to time:

k‘] T
T+
¥
i
_ 1
% i
k > >
I I+
| | X
Y
A uw Ty
k-1 /
Controt
volume
k-21 ; -
j-2 j-1 ] AX )+
e———————

Fig. 1. Definition sketch.

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 5
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2

v 2 L2 d’c
dx dy ay*

’c d’c a’c a’c

—2vK
Y ax ay’ v yay

and s ,
ac 39 L, ¥k , d%c , ¥

u 3u‘v 3uv v
atr’ ax’ ax* dy ax ay’ y’

P
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(4)

(5)

If a flow direction as indicated in Fig. 1 is assumed, the following upwinded expression can

be given for the third order derivatives:

ﬁ _ (cj+1,k - 2cj,k + cj—l,k) - (cj,k - 2cj—1,lc + cj—2,k)

x> Ax’ ’
a’c _ (cj+1,k —2¢;,; + cj—l,k) - (cj+1,k—1 —2¢; 4t C,>1,k—1)
ax> ay Ax® Ay ’

and likewise for 6°c/ay’ and 8°c/ax ay>
The last term to be put on difference form is a°c/dx dy. This is done through
a’c _ Gk T G-tk T Gk T ¢k

dx dy Ax Ay

+TE'.

(6)

(7)

(8)

As can be seen, (8) is also upwinded. This upwinding implies that the indices have to be

adjusted according to the local flow direction.
The truncation error term in (8) is given by
A 3 3
TE = Ax 620 +§A_y acz
2 9x"9y 2 axay

and is modelled according to (7).

)

Finally, substituting (3)—(9) into (2) and defining the Courant numbers and dimensionless

diffusivities
we obtain after some rearrangement /
= {1-23CI+ )+ C,C,—2(4C2+ T) - 3(4C, — 1C - C,I)
-3(3C, - §C; — cyry) -2(3C,C, - iCiC,~ C,I,)
-2(3C,C, - 3C.C) - C. 1)}
+ead—3C+EC+ L) +(3C, - C - C.L)
+(3C,C, - 1CC, - G 1)}
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+ {36, + GO H L) +(EC, ~4C, - G T)
+(3C,C, - 3C,C2- CT))
+ c';—l,k{%cx + (%Cazc + I;) - Cxcy +3(%Cx - %Ci - Cx‘l—;)
+(1€,C, - 3C3C, - C,I) +2(3C,C, - 1C.C, - C.I)
+e {16, — C,C,+(1CI+ ) +3(5C,— 4C, ~ C,T)
+2(3C,C, - 1CIC, ~ C,I) + (3C.C, - 3C,C) — CI))}
+ C’;‘Z,k{_(%cx - %Ci - erx)}
+ ¢l {—(4C, — §C; — C, 1)}
+ c?—l,k—l{cxcy - (:_lleCy - %C)zccy - Cy‘l—;)
-(}C.C, - 1C.Ch - C L)}
+ c’;—l,k+1{—(%cxcy - %Cxci - Cxl-;r)}
+c?+1,k—l{_(%Cny— %Cicy_ Cyl—:t)} ‘ (10)

A computationally more convenient and efficient way of expressing the scheme, and more in
accordance with the original development, is by the use of transports. Here the scheme can be
written as

= AT G ) = TG Y +{T, (G k) = T (. k) (1
where the four transport terms are located as shown in Fig. 1. From the figure it is evident that

T,(j-LKk)=T.(j,k), (12)
implying that (11) can be written as

it = AT = L) = TG, )} + (T30 k= 1) = T30, B} (14)

where

ny . - n n n n n _ n n
T:(j, k)= QCi iyt opC T asC; g, + ot asC rxcj+1,k + rxcj,k (15)
and

T;(j’ k)= B]C';,kJr] + Bzc’;,k + BBC’;,k—l + B4C?+1,k + BSC;l‘l,k - FyC?,kH + ch?,k . (16)
16

Using (12)—(16) in connection with (10) leads to a series of isolated equations from which «;
and B, can be determined. The «; are given by

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 7
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o =(§C;—3C +3+T)C,, (17a)
a=(-3Cl+1ic,+3-1C,C,—5C,+5C —2I,-2I)C,, (17b)
a=(-t+iC:+)C,, o =(-3C,+3iCI+T)C,, (17¢, d)
as = (1C,C, +T,)C,. (17e)

The corresponding expressions for B; can be found by permutation of the x, y subscripts in
(17). The positions of the weights for the determination of x- and y-transports are depicted in
Fig. 2(a, b). When u and/or v are negative, the positions of «; and B, are changed accordingly
such that the scheme is always upwinded. An example of the weight distribution for
(u <0, v>0) is given in Fig. 2(c, d) for the «, and B;, respectively. Note that the velocities
which are used in the Courant numbers should be centered on the cell face across which the
transport is to be determined.

It is important to notice that by using the concept of transports instead of the complete
expression (10) for the scheme, the computational labour is significantly reduced. Further-
more, the explicit nature of the scheme means that it lends itself to vectorization on a
supercomputer thus giving very fast execution times.

a,
k+1 -~ k1 By
Ty(jk)
| 1 | |
I | | !
a3 0 ay Bs | B2 | By
k 1 Ll k T ‘r
l TR : !
! I
(R R
k=1 AV) Qg k=1 A.'V) B3
j-1 j j+ j-1 j j+1
(a (b)
k+1 C4 k+1 B
LT;‘(j.k)
_1__. - L
| | |
K a, ot P Bz | Bs
T4k | |
| | |
-1 __1 S E
(U,N (u,vl‘\
k-1 J5 k-1 3
j i+ j+2 )-1 j j+
{c) (d)

Fig. 2. Determination of x- and y-transports out of the cell (j, k). (a,b) T7(j, k) and T(j, k) for (u>0, v >0);
(c,d) T;(J, k) and T'(j, k) for (u<0,v>0).

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 8
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Another advantage of this scheme is that solid boundaries are easy to handle because the
transport vanishes across the boundary.

3. Stability analysis

For an explicit finite difference scheme it is very important to investigate the stability
properties in order to assess its practical applicability. Thus a stability analysis in the Von
Neumann sense of the scheme has been carried out. The results for the highest resolvable
wave number from this analysis for various values of the Courant numbers and dimensionless
diffusion coefficients are shown in Fig. 3.

As can be seen from the figure, in the diffusionless case the stability is bounded by the
criterion of not letting the sum of the Courant numbers exceed unity. Further it is seen by
comparing Fig. 3(a) and Fig. 3(b) that the introduction of diffusion increases the region of
stability. The stable region will, however, diminish as the diffusion becomes dominant, cf. Fig.
3(c). In Fig. 3(d), the Courant numbers are fixed, and the dimensionless diffusivity is varied.

For a more detailed discussion of stability, the reader is referred to [2-4].

2.0 — T T T T T T T T 20 T T T TTTTTTI T T T T T T

Cy

FUN N S U S T SN SN TN T S S S0 A SR M 1

(a) (b)

20 VT T T T T T 2.0

Cy 1

[ B

P S S T T ST T

0.8

IS TS S S SN WO N SO T B N W T 1

Lo

Iz

TT T T T T T roT

2.0

(c) (d)

Fig. 3. Stability diagrams. Stable regions are shaded. (a) I, =1,=0; (b) I,=1,=0.1; (¢) I,=T,=0.3; (d)
C.=C,=0.1.

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 9
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4. Test of the scheme

This section presents three test cases in order to illustrate the practicability of the scheme.
The two first cases are the conventional tests with convected and rotated cones and the third
case is a lid-driven cavity flow.

Convected cone

Five cases (T1-T5) of a cone which is convected in a uniform current field are presented.
Table 1 gives the Courant numbers and dimensionless diffusivities in the tests and also the
peak concentration and the change in total mass after a translation of 40 grid points relative to
the initial values. Figure 4 depicts contours of concentrations after 0, 20 and 40 grid points of
translation in four of the five tests.

From Table 1 it can be seen that the scheme possesses numerical diffusion giving a
reduction in the peak concentration when the Courant number is not unity. Further, the
scheme was unstable in 74 with Cr=1.42 and I', = 0.0. By adding diffusion (I, =0.1) in 75 a
stable solution was obtained. This is in agreement with the stability analysis presented in
Section 3. It can be noted that the scheme gives a very small mass falsification.

Rotated cone

Two cases (R1 and R2) of a cone which is convected in a rotating current field are
presented. Table 2 gives the Courant numbers and dimensionless diffusivities in the tests and
also the peak concentration and total mass at four instants during the first revolution relative
to the initial values. Figure 5 depicts contours of concentrations after 0.25, 0.5, 0.75 and 1.0
revolution.

This test is more severe than the T-series since the transport now takes place at all angles to
the grid since the velocity field is non-uniform. Again the scheme is seen to perform quite

well.
Table 2
Rotated cone tests. ¢, is the peak concentration; 7 is
the number of time steps. The Courant number is
based on the velocity at the cone centre
Case n T c, A ¢4 (%)
R1 0 0.0 1.000 0.0
Table 1 .
Convected cone tests. ¢ is the peak concentration Cr=025 64 0.25 0.728 —0.02
Ld 128 0.5 0.634 -0.12
Case Cr I c, AX ¢, (%) 192 075  0.570 ~0.22
T1T 05 00 0723 ~0.15 256 1.00 0524 —0.26
T2 1.0 0.0 1.000 0.00 R2 0 0.0 1.000 0.0
T3 1.0 0.1 0.255 —-0.56 Cr=05 32 0.25 0.752 —0.02
T4 1.42 0.0 unstable N/A? 64 0.5 0.665 -0.13
TS 1.42 0.1 0.308 -0.12 96 0.75 0.604 -0.23
‘ 128 1.00 0.559 -0.27

*N/A is ‘not available’.

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 10
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(a)

(b)

(c)

(d)

Fig. 4. Convected cone tests. The cones have been convected in a steady flow field according to Table 1. Initially
the peak concentrations were 1.0 and contours of concentration are given after 0, 20 and 40 grid points of
convection. Ac =0.05. (a) T1; (b) T2, (c) T3; (d) T5.

Lid-driven cavity flow

In order to show the application of the scheme to a ‘real’ problem we have considered the
lid-driven cavity flow which is a standard bench mark test case. A steady recirculating flow in a
square cavity with length and height H is produced by moving the top lid at a constant speed
U, . The Navier-Stokes equations are written in two dimensions using the streamfunction
vorticity formulation. No-slip conditions are imposed on the walls.

The present scheme has been used to integrate the vorticity transport equation whereas a
standard successive overrelaxation (SOR) technique has been used to compute the new

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 11
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(a) (b)

Fig. 5. Rotated cone tests. The cones have been convected in a rotating steady flow field according to Table 2.
Initially the peak concentrations were 1.0 and contours of concentration are given after 0.25, 0.5, 0.75 and 1.0
revolutions. Ac = 0.05. (a) R1; (b) R2.

(a) (b)

L /N g

(c) (d)

Fig. 6. Lid-driven cavity flow, Re = 100. (a) Streamfunction by present method (SOR); (b) Streamfunction in [6];
(¢) Vorticity by present method (QUICKEST); (d) Vorticity in [6]. Note that contours are only indicative since they
do not necessarily represent the same levels in the two sets of data.

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 12
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streamfunction field at each time step. The steady solution has been found by integration in
the time domain until the relative change in the solution was less than ~107",

Figure 6 depicts the computed streamfunction and vorticity distributions in the steady
solution for a Reynolds number Re = 100 where Re = U; H/v. 32 grid points were used in each
direction and 2000 time steps were completed with At =0.007H/U,; to reach the steady
solution. The solution is compared with a similar solution obtained in [6] and an excellent
agreement is observed. Also for Re =400, the agreement is convincing, cf. Fig. 7. Again 32
grid points were used in each direction and 3000 time steps were completed with At =0.015H/
U, to reach the steady solution.

When the Reynolds number is increased to 400 the solution changes such that the centre of
the circulating eddy moves down towards the centre of the cavity. This can also be seen in Fig.
8 which depicts vertical profiles of the horizontal velocity in the centre of the cavity for both
Reynolds numbers and by the present method as well as from [6]. The two sets of data agree
very well and the Reynolds number effect is evident.

It is fully recognized that the present procedure does not necessarily represent the most
efficient way of obtaining the steady solution for the lid-driven cavity flow. The test case serves
as an example only.

WY

(b)

(@)

N ~
(c) (d)
Fig. 7. Lid-driven cavity flow, Re = 400.

o [N
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Fig. 8. Lid-driven cavity flow. Comparison of vertical profiles of the horizontal velocity in the centre of the cavity
by the present method (——o——) and from [6] (e). (a) Re = 100; (b) Re = 400.
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Advection-dispersion modelling in three

dimensions

Hans Jacob Vested, Peter Justesen, and Lars Ekebjzrg

Danish Hydraulic Institute, Hgrsholm, Denmark

The explicit third-order-accurate finite-difference scheme QUICKEST for solving the advection-dis-
persion equation is extended to three dimensions. The scheme ensures mass conservation through the
control volume formulation in transport terms. An analysis of the numerical stability is carried out, and
stability diagrams are presented. Comparisons with three-dimensional analytical solutions as well as
with other schemes are shown. The scheme is simple und computationally fust and thus is well suited for
coupling to three-dimensional hydrodynamic models in order to simulate density-driven flows. An

application from groundwater flow is also presented.

Keywords: advection-dispersion, QUICKEST, three dimensions, stability analysis

Introduction

Numerical modelling of advection-dispersion pro-
cesses is an important aspect of many engineering prob-
lems. Advection-dispersion (AD) models are normally
used to determine the spreading of neutrally buoyant
substances, such as organic compounds or heavy met-
als, in the marine environment. The flow field is de-
termined by a hydrodynamic (HD) mode!l. The devel-
opment of three-dimensional (3-D) numerical hydrody-
namic models requires a coupling to AD models in order
to calculate flows in which horizontal or vertical density
gradients due to salinity or temperature variations exist.

The numerical solution of the AD equation using the
finite difference methods is often invalidated by numeri-
cal dispersion, the presence of wiggles at fronts, and
mass falsification.

A variety of numerical schemes have been developed
with the purpose of overcoming these obstacles. Basi-
cally, these schemes can be divided into Eulerian and
Lagrangian schemes, referring to whether a fixed or
moving coordinate system is used in the computations.
The Lagrangian schemes, taking advantage of the
advection equation itself, can resolve fronts or discon-
tinuities almost exactly (see, for example, Bode and
Sobey'). The main problem in using Lagrangian
schemes is the coupling of the transport description
with the Eulerian hydrodynamic description upon
which it depends, necessitating interfacing interpo-
lation routines. Real turbulent flow will also complicate

Address reprint requests to Mr. Vested at the Danish Hydraulic Insti-
tute, Agern Allé 5, DK-2970 Hgrsholm. Denmark.
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the Lagrangian mesh bookkeeping. However, for
slowly varying flow fields (e.g., continental shelf cir-
culation) the Lagrangian approach is an attractive
method.' The Eulerian schemes on a fixed finite differ-
ence grid can produce wiggles or oscillations for higher-
order schemes. Lower-order schemes (denor cell meth-
ods, upstream differencing} suffer from excessive nu-
merical dispersion. Hybrid schemes have been devel-
oped that reduce these obstacles and are positive
definite.’

An alternative numerical approach has been de-
scribed by Leonard,* who introduced an upstream inter-
polation method in an explicit finite difference scheme
for unsteady flow.

This scheme, named QUICKEST, was devised in
one dimension to circumvent the problem of numerical
dispersion of classical upwind differencing and the wig-
gles and stability problems introduced by central differ-
encing. Another scheme, QUICK, was devised for
quasi-steady flow. QUICKEST was used by Davis and
Moore® to consider the flow around a cylinder in two
dimensions. A survey of the state of the art in environ-
mental transport modelling, published by the ASCE,*
shows that only QUICK has been extensively used
in three-dimensional transport modeliing, whereas
QUICKEST is not referenced. For a discussion of the
QUICKEST scheme, see also Ref. 6.

QUICKEST is not in its formulation positive defi-
nite, as hybrid schemes are, but it provides an almost
wiggle-free and accurate method for solving the AD
equation. The explicit formulation ensures mass con-
servation through a control volume formulation, as well
as being very simple to implement in a computer code.
In a recent paper. Leonard’ gives an extension of the
QUICK scheme that eliminates the wiggles completely
by introducing an exponential interpolation in regions
with steep fronts.

© 1992 Butterworth—-Heinemann
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Flow problems involving AD processes are often
unsteady and three-dimensional, making an extension
of the QUICKEST scheme to three dimensions most
relevant. A description of the use of QUICKEST intwo
and three dimensions is given by Justesen et al.* How-
ever, this version of the scheme did not include a
compensation for the dispersion terms in the higher-
order truncation error correction terms. Ekebjarg and
Justesen” give a derivation of the QUICKEST scheme
in two dimensions including these terms. The presence
of a certain magnitude of dispersion improves the stabil-
ity of the scheme in accordance with the original results
of Leonard.*

In the following, a derivation of the QUICKEST
scheme for three dimensions is given using the method-
ology of Ekebjierg and Justesen.” Although the deriva-
tion might appear to be rather complicated, the final
formulation of the scheme as transport terms becomes
very simple. The explicit scheme is, of course, limited
by stability restrictions, and stability diagrams are pre-
sented. A series of analytical tests with the advection-
dispersion of a 3-D Gaussian concentration distribution
is described. The scheme is compared with a donor cell
scheme™ and the scheme of Smolarkiewicz.! Finally.
an example of coupling with hydrodynamics and a
practical application from groundwater modelling are
shown.

Formulation of the scheme

The partial differential equation describing advection-
dispersion can be written in conservation form as

Figure 1. Control volume and definition of transports

In terms of transports (advective and dispersive) the
advection-dispersion equation { 1) simply states that the
change in concentration is equal to the difference be-
tween the ingoing and outgoing transports plus the
source-sink contribution. This can be written as an
explicit scheme in finite difference form:

(.n-v—l - (.n _ (T‘» _ T_‘ ) _ (T“ — T_:)
(T =T))+ S8 (3)
A staggered computational grid is assumed in which the
velocities are defined between the nodes and the con-

centrations at the nodes. The transport terms can then
be written as

8
T 3 3 T =Tk D = S
“ o Loy + Zwer + Zwe) TV = Tk D = 2B
ar o odx v 6z i=1
] ac 1 ac i ac I 8
- L{D\-(}+ L{D.,ui}+ (—{D:—(}+ s () To =T~ 1kl = S8, 14
ax 0x ay av a9z az =l
where ¥
. . T,\-' =T.j k= 2 (i yidina
¢ = is a scalar (e.g., salinity or it
concentration) 4)

u, v, w = are the velocity components

¥
T) =T(j k= LD = 2y

D, D.. D. = are the directional dispersion i=1
coefficients %
S = is a source or sink term TX=TLi kD=2 (¢} Bil;xt
t = is the time ) ’ Qo o
X, y. z = are the coordinates

ltis assumed that the fluid is incompressible and that the
flow field satisfies the continuity equation. Accord-
ingly, equation (1) can be written as
o 0 ac a¢
+u
at dx v az

7 dc a de il dc
- '—{1)‘—‘} + k{Dv—(} + —{D.—(} +5 (2
ax dx ay ay az L "oz

To ensure mass conservation, it is natural to formulate
the AD problem using a control volume approach (see
Figure ).

8]
T. =Tk~ 1= (B)ss
i1

Here, ¢} is the concentration at the nodes around the
actual point, for example, (j, £, 1), and §,, v. B, are
discretization weights determined in such a way that the
scheme becomes third-order accurate, thereby re-
ducing numerical dispersion and wiggles. The locations
of 8, v, B; can be seen in Figure 2for 77, T, and T2,
The locations of §, v, B;for T, , T, ,and T, are obtained
by shifting the increments minus | forj, &, and /, respec-
tively.

The derivation of the scheme foliows Ekebjzrg and

Appl. Math. Modelling, 1992, Vol. 16, October 507
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Justesen.® A Taylor expansion of the time derivative in
equation (2) gives (retaining terms of up to third order)

il = ac e ac
i AL L R i
At ax oy az
&c dc e 1, e 1, L@
=D+ D+ D+ AL AR
ox” e dzz 2 a4t 6 at
(5)

Source-sink terms are omitted, and it is assumed that
the dispersion tensor is constant. The new time deriva-
tives are removed by differentiating the original equa-
tion (2} twice with respect to time and substituting it into
(5). The tlow field is assumed to be steady over the
control volume. The convective terms are discretized
by usual central differences. and all terms from the
Taylor expansions up to third order are retained.

The next step is to discretize the remaining space
derivatives, which 1s done by inserting Taylor ex-
pansions that are upstream centered and again retaining
terms up to third order. Itis convenient to introduce the
Courant numbers o, = wAt/Ax, o, = VA/AY, 0 =
wAt/A 7 and the dimensionless dispersion coefficients
a, = DAVAY, o, = DAUAY, o« = DAHAZ

The derivation of the scheme is from now on straight-
forward and requires only some algebraic effort (see the
Appendix). The outcome is the discretization weights
as functions of (o, o, o )and {a,, .. ) as given in
Table 1.

The locations of the weights are determined by the
points that enter into the discretization and therefore
have several possibilities. The locations of the weights
asseenin Figure 2have beenchosen. A scheme with ten
weights has also been used but did not prove to be
superior. It should be mentioned that, for example,
node 8 is necessary for discretizing the term a'c/ox v 9z
and obtaining the correct solution forg, = o, = o, =
1.0.

Because the scheme is upstream centered. the
weights are positioned retative to the actual direction of
the flow, whichis assumed to be inthe positive direction
of the coordinate systems shown in Figure 2. If the flow
1s in the negative direction, the locations of the weights
shift accordingly. A numerical scheme that changes its
form in this way with the flow is called a flow-adaptive
numerical scheme.'

Of course. the explicit formulation of the scheme
limits the possible time step length. However, this
formulation has been preferred for two reasons. First, it

Table 1. The weight functions

<\
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facilitates a mass conservative formulation, and sec-
ond, it gives a simple scheme to implement. An implicit
scheme can be formulated by letting all spatial deriva-
tives be located at the new time step. This leads to
solving the full matrix equation. Another possibility
could be to use the Thomas algorithm, solving the
matrix equation iteratively. The benefits of such an
approach and the consequence for the mass conserva-
tion will be documented later.

Stability analysis

To evaluate the application limits of the explicit finite
difference scheme, a von Neumann stability analysis of
the scheme has been carried out.

Consider the scheme in the Appendix, equation{A3).
The solution is expanded as a Fourier series. The con-
centration at point { j, &, /) at time step »n is written as

¢l = ViexpliCjo, + ko, + 16} (6)

where i is the imaginary unit, 8,, 8., and 8 are the phase
angles defined by
27 27 2@
6,=— 8= 6== (7
N, N N.
and N, N,. and N_are the numbers of grid points per
wavelength in the three directions. The amplification of
¢ 15 described by a matrix G defined by

v L Gvn (8)
which, for example, gives
el = GVPexplity + 16, + k6, + 18)} 9)

This gives an equation for G by substituting into equa-
tion {A3). The necessary and sufficient condition for
stability is then

|Gl =1 (10)

Examples of contour plots of |G| for the highest re-
solvable wave (N = 2)as afunction of o, and o, and for
two values of o_, 0.25 and 0.5, are given below. The di-
mensionless dispersion is the same in all three direc-
tions, and three values are shown: «, = a, = a, = 0.0,
0.1, and 0.2. Figures 3 and 4 reveal that an increasing
Courant number decreases the stable region. Dis-
persion increases the stable region up to a certain limit,
whereupon it restricts the stability again. Because an
infinite number of combinations of (o, o, o ) and («,,
@,, o) exists, the most convenient way to determine

v

/ 5, ¥, B,
ool - br, -4+ o) - e, oMol — o, + i+ a) - e alic? — o, + 1+ a) - a
a, — 28,542 g, = 2y, i~ 2 o, — 2B,/ =2
al—4+l0? + al al—s + il + o) al—4 + i0? + @)

2
sl

ol—wr, +

oo, + e, = o)
ol—%r, + 30? + a,)
g lio.o, + o — drur,)
o, 3o o)

¥

O~ U A WN =

+ o) ol—te, + 202 + a,)
o oo, + o — o)
()'V(—;U‘I + {(If + a{)
alirr, +oa, -
o by,

g l—to, + i + al
oo, +a — oo
of—wur, + %ai + @)
ol o, + o - 30,0,)
o lho o)

dorr,)
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stability is actually by using the stability program inter-
actively. For the applications of the scheme. stability
has not been a problem for two reasons. For pure AD
problems the velocity field is known a priori and the ap-
propriate time step can be determined from the stability
diagrams. When the model is coupled to an HD model,
it is this model that will usually determine the largest
possible time step.

It is interesting to note that for two dimensions the
stability criterion is restricted by the straight line o, +
a, = 0.5, whereas for three dimensions the stability
surfaces are curved, and a stability criterion on the safe

510 Appl. Math. Modelling, 1992, Vol. 16, October
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Figure 3. Amplification factor |G| as a function of -, and o, for
o, = (.25, The dimensionless dispersion coefficients, a, = a
= a, are {a) 0.0, (b) 0.7, and (¢) 0.2

¥

sideis o, + o, + o. < 0.8. Both these stability limits
are valid for the case of no dispersion.

Examples

Traditional two-dimensional benchmark tests, such as
convected and rotated cones and a two-dimensional
cavity flow, can be seen in Ref. 9. The present scheme
becomes identical to their scheme if the z-plane is omit-
ted. To illustrate the behavior of the present AD
scheme, advection-dispersion of a 3-D Gaussian con-
centration field is presented below. This concentration
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field represents an analytical solution to the AD equa-
tion for constant velocity field and dispersion co-

efficients.

U-I ¥

T 0.

Az = 10 mand At = 5 s. The grid dependence of the
scheme is examined by varying the Courant numbers

The initial Gaussian concentration field is written as

Comparison with analytical results
The AD scheme has been tested in a square repre-

sented by 31 grid points in each direction, Ax = Ay

c(x,y,z) = exp (—

L
28]

((X - xu)z + (_V - yo)z +(z - Z()):))
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Figure 5. Advection-dispersion of a Gaussian sphere in a 3-D
velocity field. Comparison between analytical calculated peak
concentration and simulation. (a) No dispersion; (b} e, = a, =
a, = 0.01; (¢ e, = a, = a, = 0.1

where (x,. ¥o. 200 = (7Ax, 7TAy, 7A7) is the center of
gravity. The initial standard deviation &;is equal to 2A x.
This means that the width of the initial Gaussian field is
approximately 12A x, that is, the concentration decays
from unity of the center to about zero over six grid
points.

First, the performance of the scheme is examined
with a uniform velocity field, defined by o, =
o, = a. = 0.2. Figure 5 shows the peak concentrations
through 50 computational steps and a comparison with
the analytical solutions (the center of gravity is cor-
rectly advected in all cases and therefore is not shown).
For the case with zero dispersion, a, = a, = a, = (.0,
the peak attenuates from 1.0 to 0.76 over the 30 time
steps. Also shown are the results from using an explicit
upwind scheme, reducing the peak to about 0.20. Add-
ing a dispersion coefficient, as defined by setting «, =
a, = a. = 0.01, reduces the relative error between the
AD scheme and the analytical solution as expected.

512 Appl. Math. Modelling, 1992, Vol. 16, October
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Increasing the dispersion coefficient further by a factor
of ten leads to exact agreement with the analytical
solution. A numerical experiment in which 4 negative
dispersionequal toa, = «, = a. = —0.01 has been used
leads to almost exact performance of the scheme (the
actual values deviated by 1-2 percent). This indicates
for these conditions an inherent numerical dispersion of
about 0.0] in dimensionless terms.

Changing the Courant numbers to investigate the
grid dependence of the scheme is visualized in Figure 6
for the case with zero dispersion. It is seen that the
numerical dispersion does not change for lower Courant
numbers or advection at a skew angle.

Comparison with other schemes

As was mentioned above, Figure 5 shows a compari-
son between the QUICKEST scheme and the simple
first-order explicit upwind scheme. The inherent nu-
merical dispersion of the upwind scheme can be evalu-
atedas D, . = vAx(1 — o }/2 = 0.4-1.0-(1 — 0.2)/2
= [.6ora, = 0.08. Anextension to three dimensions of
the Lax-Wendroff scheme was also examined. Thisisa
descent from the QUICKEST scheme in which all third-
order correction terms are omitted. This scheme gave
slightly less attenuation of the peak value (0.80 after 50
time steps); but the concentration field did not remain
symmetrical, and the center of gravity was not correctly
advected.

To further illustrate the use of QUICKEST with

PEAK CONCENTRATION

g, =0,=0;, =01
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Figure 6. Advection-dispersion of a Gaussian sphere in a 3-D
velocity field. Comparison between analytical calculated peak
concentrations and simulation. (a) Reduced Courant numbers, o,
= o, = o, = 0.1; {b) advection at a skew angle, o, = 7, = 0.3, 0,
= 0.1
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Figure 7. Sketch of a theoretical concentration field in a 3-D
scalar test

» X

respect to numerical dispersion, the classical cross-flow
of scalar transport' has been extended to a 3-D) prob-
lem. Consider a cube with uniform flow along the diago-
nal from the front lower left corner to the upper right
back corner, with the left wall boundary value equal to
unity and all other boundary values being zero. The
steady solution with no dispersion is a concentration
equal to unity along the direction of the streamlines as
sketched in Figure 7. Table 2 lists the steady-state
values as calculated by the 3-D scheme described by
Patankar" (implicit upwind scheme) and QUICKEST
through a forward time stepping. The computational
setup is equal to the one described above, but for
reasons of clarity, only a 10 x 10 grid point subset of
horizontal plane 10 is given. It is seen that the QUICK-
EST scheme resolves the front more correctly. though
not without minor wiggles close to the front. The donor
cell scheme or upwind scheme is, of course, maore dis-
persive. This is in agreement with Patankar,” who
states that reduction of the numerical dispersion can be
obtained by aligning the numerical mesh with the flow
direction or by involving more points in the numerical
scheme.

A very severe 3-D test case is reported by
Smolarkiewicz." Consider a computational box with

<\
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the dimensionsof 41 x 41 x 41 grid points. Ax = Ay =

Az = 2.5 m, and a constant angular velocity £} = (w/2,
w/2, w/V?2). where w = 0.1 s

The velocity components are u = — (v — y,) +
Dz — 7). 0= —Ihslx — x) — Oz — zg),w = —Lhlx ~

X))+ &y — w), where (x;, v, 7p) = (20Ax, 20Ay,
20Az). The initial condition was a sphere with a radius
of 7A x and a linearly variable density from zero at the
edge to four at the center (204 x — 7A xV6, 20A ¥ —
7AxV6, 200 x + 14AxV6). The sphere is rotating
around the diagonal axis of the box.

The time step was equal to 0.1 s, and a full revolution
takes 628 time steps. Smolarkiewicz used this test,
which is an extension to three dimensions of the tradi-
tional rotating cone test, for evaluating his positive
definite advection scheme (so-called four-point itera-
tion scheme).

Tuble 3 shows a comparison of the maximum values
and the variance error {ER2) between start and end after
five revolutions as given by Smolarkiewicz!" and as
calculated with the present scheme.

From Table 3 it can be seen that QUICKEST per-
forms approximately as well as the third-order-accurate
version of the four-point iteration scheme and, as ex-
pected, better than the second-order scheme. Figure &
shows a subset of the computational box visualizing the
initial concentration field and the concentration field
after five revolutions. It is seen that the field remains
symmetrical, though with a slight tendency to elongate
toward the center of rotation.

Coupling to a hydrodynamic model (lock exchange
flow)

The AD scheme can be coupled to a hydrodynamic
(HD) model. With an initial density distribution the HD
model solves the momentum and continuity equations,
giving a velocity field that is used as input to the AD

Table 3. Comparison between the results of Smolarkiewicz"”
and QUICKEST for a 3-D rotating sphere

Maximum value ER2
Smolarkiewicz
Second-order accurate 1.67 0.63
Third-order accurate 2.69 0.54
QUICKEST 2.32 0.32

Table 2. Comparison of the steady-state upwind scheme of Patankar’ and the QUICKEST scheme for a three-dimensional scalar

test. Horizontal plane 10

Upwind

QUICKEST

1.00 1.00 0.98 0.85 0.90 0.82 0.71 0.60 0.48 0.38
1.00 1.00 0.98 0.93 0.86 0.76 0.65 0.53 0.42 0.31
1.00 0.99 0.96 0.90 0.81 0.69 0.57 0.45 0.34 0.25
1.00 0.98 0.93 0.85 0.73 0.60 0.47 0.35 0.26 0.18
1.00 0.97 0.89 0.77 0.63 0.49 0.36 0.26 0.17 0.12
1.00 0.94 0.81 0.65 0.50 0.36 0.25 0.16 0.10 0.07
1.00 0.87 0.69 0.50 0.34 0.22 0.14 0.09 0.05 0.03
1.00 0.75 0.60 0.31 0.19 0.11 0.06 0.03 0.02 0.01
1.00 0.50 0.25 0.12 0.06 0.03 0.02 0.01 6.00 0.00
0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00

11.03 1.05 1.01 0.88 0.67 0.43
2 1.04 1.02 0.92 0.73 0.49 0.27
3 1.01 0.93 0.75 0.51 0.28 0.11
10.93 0.75 0.51 0.28 0.11 0.01
94 0.76 0.51 0.27 0.10 0.00 -.03
6 0.77 0.51 0.26 0.08 -.01 -.03 -.02
80 0.51 0.24 0.07 -.01 -03 -02 -.01
4 0.51 0.22 0.05 -.01 -.02 -.01 0.00 0.00
10.18 .03 -.01 -.01 -.01 0.00 0.00 0.00
.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

.00 1.00 1.0
.00 1.00 1.0
.001.011.0
.011.021.0
.01 1.02 0.
.01 0.9
.88 0.
.8

.5

Y e e e s
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Initial Conditions scheme to find the new density distribution, and so the
HD model can proceed. The HD model used is de-
scribed by Rasmussen et al."

As an example of a coupled HD-AD simulation, the
classical lock exchange flow has been simulated in
order to examine the performance of the AD scheme.
The flow is two-dimensional in the xz-plane. Initially,
the water is at rest, with the less dense water to the left
and the more dense water to the right, When the wall is
suddenly removed, the stratification is, of course, un-
stable, and the two water bodies will start to move.

To simulate the flow correctly, the density front must
remain sharp. Heavy numerical dispersion would
smooth out the front, the flow would cease, and numeri-
cal wiggles could cause nonphysical density gradients.
A test rig was set up defined by 20 x 40 grid pointsin the
vertical and horizontal directions, respectively. The
vertical grid size was 1.0 m, and the horizontal grid size
was 100 m. The time step was 2.5 s.

Figure 9 shows the temporal development in the flow
after 0, 600, and 1200 time steps. The initial front is three
grid spacings wide, and the actual density varies in
terms of salinity from 20 to 32. The presented results are
computed with pure advection.

It can be seen that the flow is symmetrical, as expec-
ted. The front is smoothed at the start of the simulation
and then remains unchanged, even though the velocity
field is very complicated and unsteady. The maximum
Courant numbers are about 0.02, so there are no stabil-
After 5 Revoluticns ity problems. (In the present case the time step is
determined by the HD model.)

There are, of course, also wiggles at the front pro-
viding variations of up to 10 percent of the maximum
salinity difference, but these are apparently not large
enough to influence the main flow features,

For a further discussion of the simulation of the lock
exchange flow and comparison with measurements, see
Ref. 14.

Application in groundwater flow

The AD scheme has ailso been used for simulating
dispersion in groundwater by coupling it to a 3-D
groundwater flow model.'” This model complex has
been applied as a part of a natural gradient dispersion
test in a sandy aquifer using tritium as a tracer. ' Tritium
was injected as a slug, and the advection and dispersion
of the plume were monitored by water sampling in a
dense three-dimensional mesh of piezometers, making
acomparison between model results and measurements
possible. The grid spacing was 1.0 m in the horizontal
model and 0.5 m in the vertical. There were 220 x 30
cellsin the horizontal and nine levels in the vertical. The
timeg step for the AD scheme was approximately 7
ABOVE 20 hours, restricted by the stability criteria. The simulation
2 16 - 20 period was about 6 months.

BELOO-\E . 01: In Figure 10 2 comparison is shown between mea-

: sured and calculated tritium concentrations taken from

Figure 8. Subset of the computational box, visualizing the initial Ref. 16. The upper part of th.e figure presents Cm.lt.our
and final concentration field after five revolutions, for the 3-D plots of the vertically and horizontally averaged tritium
rotating sphere test concentrations at different times after injection. The
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Figure 9. Lock exchange flow. (a}, (b}, and {c} are time steps 0, 600, and 1200, respectively. The plotted contours are isolines of salinity
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Figure 10. Groundwater flow. Vertically and horizontally integrated concentration field. Upper part: measured values; lower part:
simulated values™

corresponding simulated results are shown below, It is from central differencing of upwind schemes and is
seen that there is good agreement between measure- therefore well suited for coupling to a hydrodynamic
ments and calculations regarding travel velocity and model, thus simulating flow problems in which density
spreading in horizontal and vertical directions. The gradients are of importance. This is due to the rather
interesting point in this study was that the model dis- simple and thereby cost-effective formulation of the
persion coefficients that gave the best comparison with scheme together with a minimum of numerical diffusion
the measured concentration fields are also comparable and wiggles at fronts. The scheme admittedly suffers
to the actually measured dispersion coefficients, from some wiggling at steep fronts. In the intended area

of applications, which are turbulent flow in seas and
groundwater flow, some dispersion is always present,

Conclusion thus reducing the problem. However, the methodology
The explicit finite difference scheme QUICKEST for of using a bounded exponential inferpolation in regions
solving advection-dispersion problems has been ex- with steep fronts, as described by Leonard,” is under
tended to three dimensions. A control volume formula- consideration.

tion is used to ensure mass conservation. The scheme, The scheme being explicit necessitates a stability
which is accurate up to third order, limits the problems analysis, and diagrams have been prepared to deter-
of numerical wiggles and dispersion such as are known mine computationally stable regions.

516 Appl. Math. Modelling, 1992, Vol. 16, October

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 25



Numerical Schemes

Acknowledgments

The authors would like to thank Professor M. B. Abbott
of the International Institute for Hydraulic Engineering,
Delft, and their colleagues at the Danish Hydraulic
Institute, E. B. Rasmussen, K. W, Olesen, and I. R.
Warren, for inspiration and their help with carrying out
the presented work. Also thanks to our colleagues in the
field of groundwater flow for lending us their resuits.

The work has been supported by the Danish Techni-
cal Research Council.

References

1 Bode, L. and Sobey, R. J. Accurate modelling of two-dimen-
sional mass transport. Proceedings of the 19th International
Conference on Coastal Engineering, ASCE, Houston, 1984, pp.
24342448

Zalesak, S. T. Fully multi-dimensional flux-corrected transport
algorithms for fluids. J. Comput. Phys. 1979, 31, 335-362
Leonard, B. P. A stable and accurate convective modelling
procedure based on quadratic upstream interpolation, Comput.
Methods Appl. Mech. Engrg. 1979, 19, 59-98

Davis, R. W. and Moore, E. F. A numerical study of vortex
shedding from rectangles. J. Fluid Mech. 1982, 116, 475-506
ASCE. Turbulence modelling of surface water flow and trans-
port: Parts I-V. J. Hydraulic Engrg. 1988, 114(9), 970-1073
Abbott, M. B. and Basco, D. R. Computational Fluid Dynam-
ics: An Introduction for Engineers. Longman, London; Wiley,
New York, 1989

Leonard, B. P. Simple high-accuracy resolution program for
convective modelling of discontinuities. Inzernat. J. Numer.
Methods Fluids. 1988, 8, 1291-1318

Justesen, J., Olesen, K. W., and Vested, H. J. High accuracy
modelling of advection in two and three dimensions.
Proceedings of the 23rd IAHR Congress, Ottawa, Canada, 1989,

<\
MIKE

Advection-dispersion modelling: H. J. Vested et al.

9 Ekebjexrg, L. and Justesen, P. An explicit scheme for advection-
diffusion modelling in two dimensions. Comput. Methods Appl.
Mech. Engrg. 1991, 88, 287-2G7

Patankar, S. V. Numerical Heat Transfer and Fluid Flow.
Series in Computational Methods in Mechanical and Thermal
Sciences. McGraw-Hill, New York, 1980

Smolarkiewicz, P. K. A fully multidimensional posmve definite
advection transport algorithm with small implicit diffusion. J.
Comput. Phys. 1984, 54, 325-362

Abbott, M. B., Havng, K., and Lindberg, S. The fourth genera-
tion of numerical modelling in hydraulics, J, Hydraul, Res. 1991,
29(5), 581-600

Rasmussen, E. B., Vested, H. J., Justesen, P., and Ekebjaerg,
L. SYSTEM3 Final Report. Danish Hydraulic Institute,
Hgrsholm, Denmark, 1990

Rasmussen, E. B., Vested, H. J., and Ekebjerg, L. Numerical
3-D current modelling of stratified seas. Inrernational Confer-
ence on Coastal Engineering, The Netherlands, 1990, Chapter
89, p. 1186

Refsgaard, A., Refsgrd, J. C., and Clausen, T. Three dimen-
sional modelling of groundwater flow and solute transport. To
be submitted to Journal of Contaminant Transport, 1991
Hggh Jensen, K., Bitsch, K., and Bjerg, P. L. Large scale
experiment in a sandy aquifier in DK: observed tracer move-
ment and numerical analyses. Institute of Hydrodynamics and
Hydraulic Engineering (ISVA), Technical University of Den-
mark, submitted

10
11
12
13

14

15

Appendix: Derivation of the scheme

Taking the starting point in equation (5), where the
second and third derivatives in time are removed by
differentiating the original equation (2) twice with re-
spect to time and discretizing the convective terms by
usual control differences lead to equation (A1), in which
all the terms from the Taylor expressions up to third

pp. D239-246 order have been retained:
C_‘Et’:ll — iy oo — C;—l,k,!_l_ Ucﬁkﬂ,r - C,;'T.k—l,l+ wCﬁuH — i
At 2Ax 24y 2Az
1 azc 1 626‘ 1 & o*c e dc
=D, +=-Aw’ (D +-Atv ) (D + = Atw)—+A!uv—~+AI w—-l—A vw——
2 ax 2 ay? 2 o7t axdy oxdz dvaz

1 1 e 1 (1
—u(—Ax2 — 2D At - —Atzuz) A —v(—A
3 3 a2 \3

3
+1w(1Azl—2DZAz— LN 2)‘” +doanc
2°\3 3 o7 2

+;wAt( uzAthD) L

3
2

1 &
+Zuh K — AL — 2Dy)—c -
2 ay*y

+ 2vAt( w'At — 2D,

83

- 2D At - -At2 2)
y ay3

) 63c 1 .
uAt—ZD) + wA 1~ vAt~2D)
2 yaz

636‘

2/_\t—ZD)

(A1)

axayaz_ E

The next step is to discretize the remaining space derivatives, which is done by inserting Taylor expansions that are
upstream centered and again retaining terms up to third order. The Courant numbers o, = uAt/A x, o, = vA tiAy, o

wit/Az, and the dimensionless dispersion coefficients
introduced:

= DAHAX, o, DAI/’Ay a, = DAt/’Az are

[1%

1
Cﬁr:r,z - kl + 20“( S+ 1Lk c}l—l,k,i) + %C"y(c"fkﬂ,z — Cig —1:) + 20'( RIS ka,;—i)
= (ax T 3001 hi = 26500 F Cuad Loy 30Dy = 2600 T Cirt)
2
+ (a, + 3 )¢ -1 — 26500 + Cjik,1+1) + 0,0(C 0 = Ciotkg — Ca-1g T Cioti=1,)
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+ 00 Car — Ciorgg — Chpim1 T Cimnpi—1) F 00 (Cipr = Cix—1i — Caio1 T Cirt,i-1)
+ 3o, (4 — 20, — %0',2()(Cj+1,k,1 =3¢ T30 1 — Cj—z,k»!)
2
'+ %O'y(é - 201y - %O'y)(cj,mu - 3Cj,k,1 + 3Cj,k—1,1 - Cj.k—z,i)
+ 304 — 20 — 30 Cihir — 300 T 3C00—1 — Caisd)
+ %O'y(*o'i = 2a, + Ux)(cj—],k,{ - 2Cj.k.z + Gk — Cirtk-1g 2Cj,k~u - Cj—!.k~1.{)
+ %Uz(_a'i - 2% + O'y)(cj,k—l,t - zcj,k.: + Carrr T Carid T 2Cj,k.l—1 - Cj,k—],l—l)
2
tio -0k =20+ o) — 200 F et — Carai—1 F 260000 — G g 1)
2
+ %O-y(_o-z =20, + o Xei o1 — 26500 T Gt — Craorrs 2¢i 611~ Cip—14-1)
+i0 (-0l —2a,+ ONCpi-1 = 2C400 + Cipr1r — Cimyirr T 26 (ar — Cimtiiot)
+ %Ux(_a-i - 2o, + O)Crhm10 — 2040 T Coper — Crmtery T 26 140 — Cj—l,k—l,l)
+ 00,0 (¢ pm10 = Cotier—1 — Cra—1—1 T Crwr T Cra 1
+ Ciio1 — Gt T Gtk 1a- 1) (A2)
Equation {A2} is then reorganized after the discretized values as shown below:
it = {1 = 2oy + 302 — Aa, + o)) ~ N, +i0) 00, + 00, + 0,0,
3 3
- o (- 2a, — 46D — 0,3 - 20, dod) ~ 0 b - 20, - d0))
—o(-0l -2a,+0)—o -0 “2e,to)-ol-0% - 2a +o)
—o{—0l —2a,+0)—0f-0: =20, +0)—of-0) —2a,+0,)~ 00,0}
+fpg (0, + (o Hi0)) + H0.3 - 20, — d0) +io(—0F —2a,+0)
+iol-0% - 20 +0)}
+ s {30, + (o + i) + 30,3 - 2a, — d00) + fof—o? - 20, +0,)
+iol-0) - 2o+ 0)}
+ o b e, oD A do 20— dod) T o (—ol —2a,+0)
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+ C}’,k*Z.f {7%0-&(% - 2ay - %O’%)}
+ 2 {0 dd — 20, ~d02)}
+ef oo, —do(—0l — 20 to) o l-ol -2 +0,) 00,0}

2
¥ ¥y
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+ gy oo, —to (-0l 20, +0) o (-0l - 2a,+0)— 00,0}

+ i o0, —do(—ak —2a,+0) - 30 (-0 —2a,+0,)— 0,00}

+ Cj'q+l.k~l,! {‘%U'y(““a'i - 2a, + o'x)}

+ i 130 (—0% —2a,+a)}

+ Gttt {~to (0l —2a,+a)}

+ o 1-t0(— 0% = 20, + o)

T Ok {~tol-0 - 20, + 0}

+ et {—%G‘x("‘ﬂ'i - 2a, + o)}

+ Cf—l,k—l,l—l {U'xa'ya'z} (A3)

By recalling equations (3) and (4) and through inspection of equation (A3), the transport terms can be identified as
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T kD) = 8¢5 1hy + 8:Cas + B 1ur T 8Ciirta + 85Ciumry + 8Ciprt T dCiupr + BsCic—1.1-1
TAj— 1,k 0y = 81¢ip1 + Socimrhy + 8 2kr + 848 1uwrs 850 1u—10 + 8L acrs
) + 8 a1 Tt 8sCi 14101
Ty(j’ k)= YiCikwr1r T VoCiur T VaCik—1u + VeCrvpd T VsCiorkd T YeCikir1 + VCiki—1 T VCiotki—1
Tv(jﬂk - 1,1)= Vi€t T VCik-10 T ViCiu—2u + VaCiai k-1 T VsCim1k-11 T YeCik—10+1
+ ViCik—vi—1 T VeCio1h=-11-1
T(j k1) = BiCixiar T Boirs F Bkt + BiCiriar T Bsci—1aa t BeCrprrs T BiCrp—ra t BsCicv k-1
TLj k= D =BiCips + Botirior + BaCiii—z + BaCivins-1 T BsCimiii—1 t BsCiarra—1 + BiCirmrim1
+ B¢ 111 . (Ad)

The weights can now be computed by using equation (A3) and symmetry conditions, that is, giving each directiona
similar weight. The weights are listed in Table 1. The locations of the weights can be seen in Figure 2.
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3 Dispersion Coefficients

3.1  General Description

Dispersion is commonly used as a general term to refer to the scattering of fluid particles
that depend both on random-type processes (diffusion) and on the effect of velocity
gradients (shear), as schematised in Table 3.1. The diffusive processes are never
resolved, which led to early attempts by Fick (1855) and Taylor (1921) to parameterise
the mass fluxes of solutes due to molecular and turbulent motions, respectively. They
assumed that the mass fluxes could be set to be proportional to the concentration
gradients, the constants of proportionality being called the molecular and turbulent
diffusion coefficients, respectively. Taylor (1953, 1954) extended this approximation to
shear flows, the combined effect of differential advection and diffusion being thus
represented by the so-called dispersion coefficients. Elder (1959) applied Taylor's
analysis to shallow water flows in order to describe the shear effects of the vertical
velocity gradients.

The concept of dispersion of mass of any substance in solution or suspension in a flow
can be extended to other properties of the flow. Resorting to Backmeteff's principle of
momentum transfer, it follows that the velocity fluctuations act as a mechanism of transfer
of momentum between adjacent scales of circulation, i.e. they provide for the dispersion
of momentum. The corresponding coefficients are the so-called viscosity coefficients.

Table 3.1 Transport of Fluid Particles

MAIN TRANSPORT PROCESSES

ADVECTION

Movement of fluid particles due to the resolved flow processes

DISPERSION SHEAR

Scattering of fluid particles due to non- Spatial velocity gradients
resolved flow processes

DIFFUSION
Molecular motion

Turbulence
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3.2 Dispersive Processes

3.2.1 General

The commonly recognised filtering procedures used in the development of the
momentum and transport-dispersion equations are:

Scale 1

Filter out the random molecular — molecular diffusion

motion — viscosity

Scale 2

Filter out the turbulent motion — turbulent diffusion

below a given scale — eddy-viscosity

Scale 3

Depth averaging to filter out the — dispersion

vertical velocity profile for — bed & surface shear stresses
2-D models — horizontal shear stresses

- shear viscosity

Scale 1, which corresponds to filtering out the random molecular motions, is the basis of
Newton's law of viscosity

ou

T = H E (3.1)

where viscosity u may be regarded as a measure of the resistance of the flow to
deformation imposed by tangential stresses 1, which are generated by the transfer of
momentum due to velocity fluctuations normal to the corresponding surface. With respect
to the fluctuations due to molecular motions, their effect on the transfer of momentum is
independent of the flow conditions, thus the dynamic viscosity u is a characteristic of the
fluid. The corresponding dynamic equilibrium equations are the well-known Navier-Stokes
equations, where the influence of the non-resolved scales of random molecular motions
are accounted for by the following empirical terms (in the x; direction)

2 2 2
y 6ui+6ui+aui
ox*  oy* orf

]izl,Z,S (3.2)
v = wp being the Kinematic viscosity (L2 / T).

The random molecular motions also induce the transfer of mass of any substance
dissolved or in suspension in the fluid, which according to Fick's law is given by
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oc
T=D"— 3.3
ox (3.3)

where c represents the concentration of the constituent and Dm the molecular diffusion
coefficient. Applying a conservation principle to an arbitrary volume of control, an
empirical term similar to (3.2) will appear

| 6%c . 8%c . e
D |:8X2+ay2+822j| (3-4)

3.2.2 Turbulence

Although molecular agitation is always present even for fluids at rest, under flow
conditions fluid particles experience additional random motions of much higher
magnitude, so that their paths are very irregular and sinuous. It is apparent when
observing recorded time series of instantaneous velocities u', that the flow is
characterised by an unsteady fluctuating velocity u' superimposed on a temporal steady
mean velocity u, such that

u' (x,t) =u(x,t)+u'(xt) (3.5)

m:i j. u' (x,t)dt = u(x,t) (3.6)
AT

u'(x,1) L _t[ u(x,t)dt=0 3.7)
AT

In these conditions it is possible to filter out the fluctuations under a selected time scale
AT, by integrating the Navier-Stokes equations over AT. As a result, the following new
terms will be obtained

0 —_
— | PUY; ] (3.8)

o | —.
— | puc ] (3.9)

In the classical theory of turbulence the terms -pu; uj, called Reynold's stresses, are
empirically correlated to the resolved scales through a new coefficient vT, the "eddy
viscosity", such that

- pW =pv' Ny (3.10)
1] aXJ .
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which makes it possible to write the new terms in the following form
o VT% + 90 VT% + 9 VT% (3.11)
OX ox | oy oy | oz oz

It is apparent that vT is now dependent on the flow conditions. For the evaluation of vT
several models have been developed, each corresponding to a particular kind of
turbulence (e.g. isotropy). One of the formulations adopted by DHI is based on the so-
called Smagorinsky model of isotropic turbulence (1963), given by

VT:,OKZ(Xi)(Siiji )1/2 (3.12)

where / (xj) is a characteristic mixing length and S; the second order strain tensor. It is
obvious that considering vT constant, expression (3.11) reduces to the form of expression
(3.2) established for molecular motion (Boussinesq approximation).

In general it is difficult to determine vT but as a reference, for uniform channel flow it is
often assumed to take a value given approximately by

1
T~—hu* 3.13
1% 10 (3.13)

where h is the water depth and u* the friction velocity.

Introducing the Reynold's analogy for turbulent flows, that expresses the principle that the
transfer processes of dissolved or suspended matter are equivalent to the transfer
processes of momentum, and consequently the turbulent diffusion coefficient DT will be
such that DT = vT, the new dispersive terms of the conversation equation becoming

0 { . 80} o| ;oc|. 0 { . ac}
—| D =|+—| D = |+=—| D = (3.14)
OX oX| oy oy| oz 0z

3.2.3 Shear flows

For many coastal engineering applications where the depth is much smaller than the
horizontal dimensions of the domain under study, two-dimensional models are usually
adequate to describe the main flow processes. Nevertheless the depth-integration will
imply the filtering of the vertical velocity profiles, which are responsible for additional
spreading in the direction of the flow. Flows with velocity gradients are often referred to
as "shear flows", and the associated spreading mechanism discussed by Taylor (1954) is
currently known as the "shear effect". Hence, to account for "shear flows" in a depth
integrated model (i.e. 2D), additional empirical terms have to be included.

The filtering procedure can now be based on the following relationships:

u=(U +U) (3.15)

U'=

> =

£
IUUZ:O (3.16)
h
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h
u:%J'(U +U"dz=U (3.17)
3

where U represents the depth-integrated velocity and U’ the deviation of the velocity
profile from the average velocity U, at a general depth z.

Introducing these relationships in the Reynolds equations (Navier-Stokes equations after
filtering out turbulence under a time scale AT), it is possible to demonstrate that the
convective terms will be given by

¢ ¢
i I uudz+i_[vudz=
oX + oy

(3.18)
0 0 0%, ., 0% )
—(hUU)+—(hvVU)— | (u" )" dz+ — | (u'v') dz
o WO+ S (VO [y dze 2 [ W)

The last two terms represent the overall transfer of momentum over the depth due to the
shear effect, and in an assumption similar to that applied to the turbulent transfer of
momentum, it is common to accept the following correlations with the resolved dependent
variables (depth-integrated):

%Th(u Ydz=-% ‘ZL; (3.19)
and

lj UV ) dz=-y3 &2 (3.20)
h_h oy

The above assumptions and the Reynolds analogy make it possible to finally write the
new terms for the conservation of momentum and constituents in the following form

0 oU; 0 oU; 0 oU;
h , —| yih—= 3.21
ax{v 8x} ay{v ay} GZ{V az} 524
and
0 [D. ou; } Kl D; sp Ui |, 0 {D.hau'} .
OX OX ay oy 82 0z

where v = D, with v and D;® representing the horizontal shear stresses and dispersion
in depth-integrated shear flows (in the xi direction). The coefficient v will be called
hereafter the “shear viscosity”.

In the case of uniform channel flow (Abbott et al., 1976) the shear viscosity can be
estimated by
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oC -(OC’ )2
vi=D; :TCZU h (3.23)
with
¢
3
L __[u dz (3.24)
uh
and
¢
2
e _J;u dz (3.25)
uzh

where C; is the non-dimensional Chézy number, U the depth-averaged velocity and h the
water depth.

For example, considering a 10 meter deep channel with a depth- averaged velocity of 1
m/s and a non-dimensional Chézy number of 18, the shear viscosity coefficient that
corresponds to an exponential velocity distribution along the vertical given by KZ%2 is vS =
4 m?/s.

As expected, these results suggest that the intensity of transfer of momentum and
constituents is related to the magnitude of the scale considered, the molecular and
turbulent effects being in practice negligible in comparison to the shear effect (10-¢ to 101
m?2/s against 4 m2/s).

3.2.4 Subgrid scale processes

At this point it is convenient to emphasise that the concepts of viscosity and diffusion
have been brought about by the need to take into account non-resolved motions of the
fluid particles, i.e. diffusion and dispersion are the result of advective processes
associated with non-resolved scales. This concept is the one that really matters when the
filtering procedures are further extended to higher scales, as a consequence of the need
for horizontal and vertical spatial discretisation of the equations. It implies that additional
dispersion and viscosity will be required to account for higher order non-resolved scales
of motion, which magnitude will be dependent on the grid spacing used in the numerical
computations. Once again it is only natural to expect that by increasing the grid spacing,
the dispersive coefficients will also increase, with practice confirming that they can be
several orders of magnitude higher than e.g. the coefficients arising from depth-
integration. In the case of depth-integration where the grid spacing is similar to water
depth, Ax = h, the larger non-resolved scales of circulation will be related to the shear flow
and the extensive studies available on this subject provide very accurate first estimates
for the empirical coefficients, so long as the velocity profile is well defined, as will be
shown in Section 3.3.1.

One of the main difficulties found when estimating dispersion coefficients, so as to take
into account the horizontal spatial discretisations, is the characterisation of the new non-
resolved scales of motion, which can be greatly dependent on factors like local
bathymetric configurations, density gradients and wind friction and set-up. Although some
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general formulae can be used for guidance, the accuracy of the final values will always
be greatly dependent on calibration and on the experience of the modeller.

In conclusion, the fact that the numerical resolution of the primitive equations has to
resort to additional discretisations in space and time (generally, no analytical solutions
are available), makes it necessary to extend filtering to larger scales of motion which are
dependent on the model resolution, Ax and Az. Thus, following the previous
schematisation a fourth scale must be considered, such that

Scale 4
Averaging over the model — additional dispersion
resolution Ax, At — additional viscosity

In what follows the additional dispersion and viscosity will be referred to as Subgrid
Dispersion D® and Subgrid Viscosity v©.

3.3  Estimation of Coefficients in 2D Modelling

3.3.1 Basic formulations

The general advection-dispersion equation reads

o ue_0p &) s (3.26)
a ox ol o,

Where c is the concentration, D; the dispersion coefficient and SS a possible source term.

As a basis for the interpretation of dispersive coefficients in 2D, Elder's formulation will be
used. Consider the mass conservation equation for a dissolved constituent in an open
channel of infinite lateral extent, where the lateral and vertical velocity components are
zero and the horizontal diffusion can be neglected. Equation (3.27) can then be written

x,0 (uc)= 9 D o (3.27)

ot ox ozl oz '
Considering the vertical profile defined by equations (3.15) - (3.17) and taking into
account the flux continuity for incompressible fluids, equation (3.27) can be written

0 0 0 oC’

—(C+CH)+(U+U)—(C+Ch=—| DI — (3.28)

sy S crer= 2l o

Introducing now a non-inertial frame of reference moving at velocity U, C and C' will be
functions of X' = x - Ut and t' = t, which brings the previous equation to the following form

0 0 0 oC'’
—(C+C)+U'—(C+C)=—| DI — 3.29
g CHeruU(C+C) az[D az} (3:29)
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After a sufficiently long time, C and C' will become functions only of x' and t, respectively,
which make it possible to finally write

P Y

:—— |t (3.30)
ox' oz oz

Proceeding by integrating the previous equation, one gets

C':ﬁ o (IU dz ]dz } g)((: (3.31)

Multiplying by U' and integrating again over the vertical, it yields

%}(U'C')olz_£1 IU U (Iu’dzjdz:ldz (3.32)

and it is now clear that the dispersion coefficient can be given by

DS:E }U' jiUZ'U'dzjdz dz (3.33)
e a0t |

0

Elder evaluated D} using Von Karman'’s logarithmic profile for the velocity

U'2)= {1+In—} (3.34)
K h

where u* is the shear velocity (1, /p)* and k(~ 0.41) the Von-Karman constant. The
shear stress distribution is considered to be linear

t=1,(1-2/h) (3.35)

and the assumption is made that the turbulent transport of mass and momentum are
identical (Reynold's analogy). Noting also that the vertical turbulent momentum transfer is
given by

_ LU
T=pPv; (3.36)
oz
it transpires that
T— T— * z
D:=v:=uxz(l-) (3.37)

Considering now the independent variable in equation (3.33) given by {= z/h and taking
into account (3.34) and (3.37), Elder obtained

MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 36



- N 21\“‘
Dispersion Coefficients MI KE

j:(1+lng“)d§

D [asing) T dz |d
Di= 1+Ing ¢ |dg (3.38)
R o ¢(1-4)
Performing the integration, one gets
*
D= . 3h:KEU*h (3.39)

K
with Kge = 5.9 and « = 0.41.

Expressions similar to Elder's have been proposed with a wide variety of coefficients, as

for example

Krenkel (1962) for open channel flow: 9.1u*h
Yotsukura & Fiering (1964) for smooth channels: 13u*h
Thackston (1966) for natural streams: 7.25 (u/u*)¥4 u* h

to mention but a few, as presented by Bansal (1971).

Jobson and Sayre (1970) have provided some evidence that the Reynolds analogy holds
(i.e. vT/DT = 1). They also confirmed the parabolic distribution of vT and found that the
mean depth value was about

which justifies its being neglected in comparison to horizontal dispersion due to shear
flows.

In applications for natural streams, Fischer (1968) found that longitudinal dispersion
coefficients as predicted by Elder's formula were too small, values as much as 150 times
higher having been reported. Bowden (1964) pointed out that the effective coefficients of
horizontal dispersion are inversely proportional to the coefficient of vertical turbulent
diffusion, which is also apparent in Elder's development (3.33). The mixing produced
under a shearing current will thus be enhanced if some stability factors are present in the
vertical, their effects becoming important for local Richardson numbers of about 0.5 to 1.
According to Bowden the coefficient of vertical turbulent diffusion may then be reduced by
a factor of 10 or 20, with a corresponding increase in the horizontal dispersion
coefficients, to an order of 10° to 10® cm?/sec.

The conclusions of these authors clearly show that other mechanisms of spreading may
be dominant in comparison with shear effects. Fischer proposed that the main factor
contributing to longitudinal dispersion was transversal diffusion and not vertical diffusion,
i.e. the dominant mechanism of spreading should be associated with transversal
circulations (this analysis having been done for natural streams). Bowden recognised that
shear effects are likely to be most effective in estuaries and near the coastline, and that
the existence of large horizontal eddies may dominate among the dispersion processes.
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3.3.2 The evidence of experience

It is well demonstrated that dispersive effects due to physical processes at scales 1 and 2
are negligible in relation to those at scale 3. With respect to environmental flows, field
measurements and modelling results also show that in most situations Elder's coefficient
is several orders of magnitude too small as mentioned previously. This is illustrated in
Table 3.2, in which calibrated coefficients are compared with Elder's formula for 4
different applications with a two-dimensional circulation model (MIKE 21)

Table 3.2 Comparison between Elder's coefficient and calibrated coefficient
Case h u u* Ax At E. calib. | 6.hu*
m m/s m/s m s m?s m2/s
A 8 0.7 0.05 50 30 2-5 24
B 20 1.0 0.1 500 300 40-50 12
c 30 0.5 0.03 6000 600 ~500 54
D 1000 0.1 0.003 30000 900 >6000 18

The magnitude of the calibrated coefficients can only be explained by considering
processes at Scale 4, that for values of Ax >> h usually dominate over processes in Scale
3.

Many modellers attempt to account for the filtered processes at Scale 4 by increasing the
coefficient Ke in Elder's formulation, which will only be acceptable as long as those
processes remain related to flow variations in the vertical. However, to represent subgrid
processes it is only natural to relate the effective coefficients of viscosity and dispersion
to the length scale Ax and to the time scale At. Hence the effective coefficients for
subgrid processes may be considered in the following possible forms:

AX?
e (3.41)
K, AX u (3.42)
K, At u? (3.43)

In Table 3.3 the three different forms of the effective coefficient for Scale 4 have been
compared to calibrated results in five different situations.
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Table 3.3 Effective coefficients of scale 4

CASE h u Ax At Eca. K1 Kz K3

(m) (m/s) (m) (s) (m2/s)
A 8 07 50 30 15 0.06-0.01 0.14-0.03 0.34-0.07
B 20 1.0 500 300 40-50 0.06 0.10 0.17
c 30 05 6000 600 ~500 0.008 0.17 33
D 40 1.0 20 10 1-3 0.075-0.025 | 0.15-0.05 0.30-0.10
E 1000 0.1 30000 900 ~6000 0.006 2.0 667

The form K2Ax u appears to be promising since Kz is almost constant in the five different
cases.

It is important to emphasise that as equations (3.41) - (3.43) are not based on a defined
pattern of circulation, like Euler's formulation, the estimates can only be expected to be a
rough approximation to the true values. Furthermore, as will be analysed in the next
section, the values of the dispersive coefficients are dependent on the biggest non-
resolved circulations, and not directly on Ax or At. This is very important, and makes it
possible to justify that in situations where Ax>>h, the use of Elder's formulation may still
be valid although the associated dispersive processes will be irrelevant in comparison
with other effects. Nevertheless, the above formulae, when complemented with field
observations and experience obtained in similar situations, do provide valuable guidance
for the calibration of two-dimensional environmental models.

When Ax and h are of the same order of magnitude, the shear effects (processes at
Scale 3) will be the ones responsible for the transfer of momentum and constituents. In
practice, assuming that the friction velocity for coastal waters is about 6% of the mean
depth velocity, Elder's formula will give

vi=D;=5.9-0.06U h=0.4U h (3.44)

Thus, for application in MIKE 21 when Ax = h the dispersive coefficients (shear viscosity
and dispersion) are taken as a first approximation as, to be

vi=D;=1.0Uh (3.45)

with the factor 1.0 possibly varying by one order of magnitude according to calibration.

It should be stressed that in the above discussion direction x was assumed to be aligned
with the flow direction, the coefficients thus obtained being representative of the
longitudinal dispersive processes. In the case of shear effects the transverse or lateral
processes are found to be approximately one order of magnitude smaller than the
longitudinal ones, as indicated by tests reported by Talbot & Talbot (1974). For an
arbitrary direction of the flow in a Cartesian coordinate system, cross terms would then be

present, complicating the definition of the coefficients. Calling D}, D} longitudinal and

lateral coefficients, a reasonable approach would be to project them on the x and y
directions and disregard cross derivative terms. This can be accomplished by taking the
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ellipse of semi-axes D;, D} inwhich D} is aligned with the current vector (u,v), and

calculate D5 and DSy accordingly, eventually obtaining

r 2

1 2 . 2
1_ ( cosa] +[ sin a] (3.46)
Di |\ Di Dt
1 . 2 2 T
1 _ ( sin a j +( COSaj 347
Dy [\ Di Dt
Where
a = arctan(v/u) (3.48)

However, for dispersive processes associated with the largest scales, as is the case in
subgrid flow circulations, the influence of flow direction is no longer relevant, which
means that isotropy can be usually assumed.

3.3.3 A general interpretation

Abbott et al. (1985) showed that it is possible to simulate realistically secondary large
scale circulations by using two-dimensional models. Madsen et al. (1988) continuing on
the same subject referred to the existence of two fundamental mechanisms for the
generation of circulations, where the resistance forces (bottom friction) are balanced by:

. the momentum transfer resolved at the scale of the spatial discretisation adopted
(convective accelerations)

. the momentum transfer non-resolved at the scale of the spatial discretisation
adopted, represented by horizontal shear stresses ("subgrid viscosity")

The first mechanism is dominant in many situations where the scales of flow circulation
and space discretisation Ax are much bigger than the depth of the flow, and the second
one is fundamental to describe secondary circulations when Ax < h. Nevertheless, for
some situations where Ax>>h it is found in practice that the second mechanism is still
necessary to describe the resolved scales of circulation. A possible explanation may be
found in the following heuristic hypothesis:

. The transfer of momentum or constituents amongst resolved scales depends upon
the relative magnitude of the minimum resolved scale and the maximum non-
resolved scale. The transfer is only effective when these scales have the same order
of magnitude.

To analyse the consistency of this statement the following interpretations are made:

1. When the structure of the flow is well defined by a logarithmic profile of velocities
and Ax is of the same order of magnitude of the depth h, the biggest non-resolved
scale is the velocity profile itself, Elder's formula being thus valid for the estimation of
the effective viscosity and dispersion coefficients. The second mechanism is
fundamental to describe flow circulation.
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2. When Ax>>h several situations may be found:

a. The bottom is very regular and three-dimensional effects are negligible. In this
case the biggest non-resolved scale will still be related to the depth, thus being
much smaller than the minimum resolved scale. Consequently the transfer of
momentum due to the non-resolved scales (subgrid viscosity) is negligible.
Euler's formula is still valid but the model will not be sensitive to the values of
the viscosity coefficient. The circulation is only determined by the first
mechanism, i.e., by the dissipative terms, as the non-resolved scales only
contribute as energy absorbers.

b.  The bottom configurations and the existence of three-dimensional effects
originate circulations, the scales of which are of the same order of magnitude of
Ax, i.e., important in relation to the minimum resolved scales. In this case the
transfer of momentum due to the non-resolved scales becomes significant. This
can be easily illustrated by the experience of many authors, who for calibration
of regional models using large grid spacings (= 5000 m) employed dispersion
coefficients proportional to Ax or/and h. As an example one of the formulae
commonly used is given by E = K Ax?/At with 0.01 <K<0.06. For a regular mesh
with a 30,000 m grid spacing, a 15 min. time step and an average depth of
1000 m, we get 10,000<E<60,000 m?/s, i.e. 10 h <E< 60 h.

Schwiderski (1978), for his global oceanic tidal model used a dispersion
coefficient linearly proportional to the depth and -x, which gives values
consistent with the previous formula.

3. ltis logical to expect that by using the Prandtl model for the determination of the
dispersive coefficients, the mixing length will be related to the magnitude of the
maximum non-resolved scales. Using the Smagorinsky formulation and considering
the mixing length given by

! =C,AX (3.49)

Madsen et al. (1988) recommended values of Cs in the range (0.4 - 0.8). These values
are consistent with the hypothesis formulated before, i.e., the transfer processes of
momentum and constituents are only important when the non-resolved circulations are of
the same order of magnitude as Ax.
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4 Heat Dissipation

In the heat balance for a free surface the following items are included: net short-wave
radiation (from the sun), net long-wave radiation (e.g. from clouds), long-wave outgoing
radiation from the surface (Stefan-Bolzmanns law), evaporation and heat exchange to the
air as a function of the temperature difference between water and air (convection).

In connection with an artificially warmed aquatic area, the loss of heat will increase due to
long-wave radiation, evaporation and convection. This increase in heat loss is included as
a decay term in the calculation of the excess temperature field, F-T, where F is the heat
decay coefficient and T the excess temperature. The following simplified expression is
used for calculating the decay coefficient

if W > Whin:

F =0.2388/(p-C,-H )(4.6-0.09(T, +T)+4.06-W )

exp(0.033(T, +T))+0.2388K . /(o-C, - H) o

if W<Wmin:

F=02388/(p-C,-H)| ((46-0.09(T, +T)+0.06-W,, )
(4.2)
W 2
exp(003(Tr +T))_ Kmin {ﬁj + Kmin + Kshift J

where

v density of water

Cp specific heat

H water depth [m]

Tr reference temperature [°C]
T excess temperature [°C]
W wind speed [m/s]

¥.C, gives the value 10 Cal/m? °C in the program.
Whnin, Kmin @nd Kshir are by default 0.0, but can be specified by an option file.

The above expression is not valid for water surfaces with high excess temperatures, e.g.
cooling water reservoirs.
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5 Flooding and Drying

If the AD module is applied together with flooding and drying, then concentrations must
be calculated every time a cell is flooded, and the mass of the AD compounds stored
every time a drying sets in.

The HD modelling concepts at flooding/drying are described in MIKE 21 HD Scientific
Background. The related AD modelling concepts at flooding/drying are described in the
following sections.

51 General

When performing an AD calculation while using the flooding and drying functionality it is
necessary to book-keep the mass of the AD component (or MIKE ECO Lab State
Variable or MT fraction) in order to obtain an AD mass balance — similar in concept to the
handling of water depths in the HD simulation in order to obtain a water volume/mass
balance.

The AD functionality utilises 2 arrays at runtime:

*  c(j,k) (data structure used to bookkeep of concentrations while cells are wet/flooded)

. ad_mass(j,k) (data structure used to bookkeep AD mass per area while cells are
dry)

While a cell is wet c(j,k) will be directly updated by the AD equations of motion.

While a cell is dry ad_mass(j,k) will be updated with respect to mass per area when
sources, models, rain with concentrations are added to cell (j,k) while it is dry. When HD
mass violations takes place out of known reasons (water depth below EPSF) then
ad_mass(j,k) will be updated accordingly and be subject to a corresponding mass per
area violation.

We store the latest known AD mass per area in cell (j,k). The mass per area is what
should be conservative during the simulation — normally we understand that the mass
should be conserved, but since the area of the MIKE 21 computational cells have a
uniform area equal to dx*dy, we might as well say that mass per area is what should be
conservative.

5.2  Flooding due to External Sources

Flooding of a grid cell may be due to accumulation of water from external sources (Rain,
Sources, External model contributions). In this case, if it takes N water increments
(generally the same as number of taken time steps) to flood an initially dry cell (j,k), then
the concentration of the AD component in cell (j,k) at the time of the flooding will be
modelled according to a weighted average:

© DHI - MIKE 21 & MIKE 3 Flow Model - Advection-Dispersion Module 43



Flooding and Drying MI KE i b

Powered by DHI

ZnN:lcn -Ah,

2..8h,

Where Ah, is the water increment and c, is the concentration in the external source.

c(j,k)= (5.1)

The initial imaginary water with water depth EPSF in this concentration modelling is
ignored as we only take into account the concentration from the actual external
contributions: the fallen precipitation, the added water from sources or from coupled
models.

5.3  Flooding due to a High Water Level in Neighbour Cells

Flooding of a grid cell can also be due to a high water level in neighbour cells (water
chain expansion/chain flooding). In this case the calculation of the concentration depends
on the previous simulation steps.

5.3.1 Chain flooding for the first time

If a cell (j,k-1) — call it cell 1 - leads to a chain flooding of its neighbour cell (j,k) then the
concentration at cell (j,k) will be calculated as the average of the neighbour
concentrations in the neighbour wet cells. The general formula is highlighted below in
Figure 5.1. If all 4 neighbour cells are dry when the concentration in (j,k) is about to be
set, then we set c(j,k) = c(j,k-1) — e.g. we set the concentration in (j,k) to the original
concentration value in cell (j,k-1) — the cell that triggered that cell (j,k) got flooded.

Concentration handling:
JIF i {jk-1)=Dry => weight_1=0, conc_1=0
_ELSE: (jk-1)=Wet => weight_1=1, conc_1=c{j,k-1)

_. IF :(j+1,k}=Dry => weight_2=0, conc_2=0
(ELSE: (j+1,k)=Wet => weight_2=1, conc_2 = c(j+1,k)

_. IF : (j,k+1)=Dry => weight_3=0, conc_3=0
_ELSE: (j,k+1)=Wet => weight_3=1, conc_3 =c(jk+1)

UIF :(F1,k)=Dry => weight_4=0, conc_4=0
_ELSE: (j-1k)=Wet => weight 4=1, conc_4=c(j-1k)

General formula when (j,k) is chain flooded:
k+1 3
.y D, conci
_ clikj= Y, weight_i
k 4 c(j.k) 2
A If all 4 neighbor points are dry:
k-1 l c(j,k)= c(j,k-1) — before cell 1 dried
j-1 ] j+1
Figure 5.1 Illustration of concentration handling in case of first-time chain flooding
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5.3.2 Chain flooding on previously wet cell

If a cell that was previously wet and later became dry is chain flooded again, the latest
updated values for ad_mass(j,k) and h_flood_dry(j,k) are used to derive the concentration
at flooding time:

ad _mass(j,k)
_ flood _dry(j,k)

c(j.k)= H (5.2)
5.4  Drying

When drying of a cell (j,k) sets in, and then the mass per area of the AD component (or
MIKE ECO Lab State Variable or MT fraction) is stored as follows:

ad _mass(j,k)=c(j,k)-h_ flood _dry(j,k) (5.3)
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6 List of Symbols

Dm
DT
DS

Ke

Shear stresses

Density

Dynamic Molecular Viscosity
Kinematic Molecular Viscosity
Kinematic Turbulent Viscosity
Kinematic Shear Viscosity
Molecular Diffusion

Turbulent Diffusion

Shear Diffusion - Dispersion
Euler's coefficient

Von Karman's constant
Instantaneous Velocity
Time-integrated Velocity
Velocity Fluctuation

Shear Velocity
Depth-integrated Velocity
Depth-integrated Velocity Fluctuation
Time-integrated Concentration
Fluctuation of Concentration
Depth-integrated Concentration
Depth-integrated Fluctuation of Concentration
Mixing Length

Angular Deformation Tensor
Flow Depth

Water Surface Position

Vertical Direction
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