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1 Introduction 

MIKE 21 SW is a new generation spectral wind-wave model based on unstructured 

meshes. The model simulates the growth, decay and transformation of wind-generated 

waves and swell waves in offshore and coastal areas. 

 

 
 
Figure 1.1 MIKE 21 SW is a state-of-the-art numerical tool for prediction and analysis of wave 

climates in offshore and coastal areas 

 

 

MIKE 21 SW includes two different formulations:  

 

• Directional decoupled parametric formulation 

• Fully spectral formulation 

 

The directional decoupled parametric formulation is based on a parameterization of the 

wave action conservation equation. The parameterization is made in the frequency 

domain by introducing the zeroth and first moment of the wave action spectrum as 

dependent variables following Holthuijsen (1989).  

 

The fully spectral formulation is based on the wave action conservation equation, as 

described in e.g. Komen et al (1994) and Young (1999), where the directional-frequency 

wave action spectrum is the dependent variable.  

 

The basic conservation equations are formulated in either Cartesian coordinates for 

small-scale applications or polar spherical coordinates for large-scale applications. 

 

MIKE 21 SW includes the following physical phenomena: 

 

• Wave growth by action of wind  

• Non-linear wave-wave interaction 

• Dissipation due to white-capping 

• Dissipation due to bottom friction  

• Dissipation due to depth-induced wave breaking  

• Refraction and shoaling due to depth variations 

• Wave-current interaction 

• Effect of time-varying water depth 
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The discretisation of the governing equation in geographical and spectral space is 

performed using cell-centred finite volume method. In the geographical domain, an 

unstructured mesh technique is used. The time integration is performed using a fractional 

step approach where a multi-sequence explicit method is applied for the propagation of 

wave action. 
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2 Application Areas 

MIKE 21 SW is used for the assessment of wave climates in offshore and coastal areas - 

in hindcast and forecast mode. 

 

A major application area is the design of offshore, coastal and port structures where 

accurate assessment of wave loads is of utmost importance to the safe and economic 

design of these structures. Measured data is often not available during periods long 

enough to allow for the establishment of sufficiently accurate estimates of extreme sea 

states. In this case, the measured data can then be supplemented with hindcast data 

through the simulation of wave conditions during historical storms using MIKE 21 SW. 

 

MIKE 21 SW is particularly applicable for simultaneous wave prediction and analysis on 

regional scale (like the North Sea, see Figure 2.1) and local scale (west coast of Jutland, 

Denmark, see Figure 2.3). Coarse spatial and temporal resolution is used for the regional 

part of the mesh and a high-resolution boundary- and depth-adaptive mesh is describing 

the shallow water environment at the coastline. 

 

 
 
Figure 2.1 A MIKE 21 SW forecast application in the North Sea and Baltic Sea. The chart shows 

a wave field illustrated by the significant wave height in top of the computational 
mesh 

 

 

MIKE 21 SW is also used in connection with the calculation of the sediment transport, 

which for a large part is determined by wave conditions and associated wave-induced 

currents. The wave-induced current is generated by the gradients in radiation stresses 

that occur in the surf zone. MIKE 21 SW can be used to calculate the wave conditions 

and associated radiation stresses. 
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Figure 2.2 Illustration of typical application areas 

 

 

 
 
Figure 2.3 Example of a computational mesh used for transformation of offshore wave statistics 

using the directionally decoupled parametric formulation 

 

 

MIKE 21 SW can also be applied on global scale as illustrated in Figure 2.4. 

 

 
 
Figure 2.4 Example of a global application of MIKE 21 SW. Results from such a model can be 

used as boundary conditions for regional scale forecast or hindcast models 
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3 Basic Equations 

3.1 General 

The dynamics of the gravity waves are described by the transport equation for wave 

action density. For small-scale applications the basic transport is usually formulated in 

Cartesian coordinates, while spherical polar coordinates are used for large-scale 

applications. The wave action density spectrum varies in time and space and is a function 

of two wave phase parameters. The two wave phase parameters can be the wave 

number vector k


 with magnitude, k, and direction, . Alternatively, the wave phase 

parameters can also be the wave direction, , and either the relative (intrinsic) angular 

frequency,  = 2fr, or the absolute angular frequency,  = 2fa. In the present model a 

formulation in terms of the wave direction, , and the relative angular frequency, , has 

been chosen. The action density, ),( N , is related to the energy density ),( E  by 

 



E
N   (3.1) 

 

For wave propagation over slowly varying depths and currents the relation between the 

relative angular frequency (as observed in a frame of reference moving with the current 

velocity) and the absolute angular frequency, , (as observed in a fixed frame) is given by 

the linear dispersion relation 

 

Ukkdgk


  )tanh(  (3.2) 

 

where g is the acceleration of gravity, d is the water depth and U


 is the current velocity 

vector. The magnitude of the group velocity, cg, of the wave energy relative to the current 

is given by 

 

kkd

kd

k
cg

















)2sinh(

2
1

2

1
 (3.3) 

 

The phase velocity, c, of the wave relative to the current is given by 

 

k
c


  (3.4) 

 

The frequency spectrum is limited to the range between a minimum frequency, min , and 

a maximum frequency, max . The frequency spectrum is split up into a deterministic 

prognostic part for frequencies lower than a cut-off frequency and an analytical diagnostic 

part for frequencies higher than the cut-off frequency. A dynamic cut-off frequency 

depending on the local wind speed and the mean frequency is used as in the WAM Cycle 

4 model (see WAMDI Group (1988) and Komen et al. (1994)). The deterministic part of 

the spectrum is determined solving the transport equation for wave action density using 

numerical methods. Above the cut-off frequency limit of the prognostic region, a 

parametric tail is applied 
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   
m

EE















max

max ,,



  (3.5) 

 

where m is a constant. In the present model m = 5 is applied. The maximum prognostic 

frequency is determined as 

 

 )4,5.2max(,min max PMoffcut    (3.6) 

 

where max is the maximum discrete frequency used in the deterministic wave model,   

is the mean relative frequency and )28/( 10ugPM  is the Pierson-Moskowitz peak 

frequency for fully developed waves ( 10U  is the wind speed at 10 m above the mean sea 

level) The diagnostic tail is used in the calculation of the non-linear transfer and in the 

calculation of the integral parameters used in the source functions. Below the minimum 

frequency the spectral densities is assumed to be zero. 

 

As standard the mean frequency, used in Eq. (3.6), is calculated based on the whole 

spectrum. For swell dominated wave conditions this can result in a too low cut-off 

frequency and thereby an underestimation of the local generated wind waves. The 

predictions can be improved by calculation the mean frequency based on only the wind-

sea part of the spectrum.  The separation of wind-sea and swell can be estimated using 

the definitions in Section 5.1. 

3.2 Wave Action Conservation Equations 

The governing equation is the wave action balance equation formulated in either 

Cartesian of spherical coordinates (see Komen et al. (1994) and Young (1999)).  

 

Cartesian coordinates 

In horizontal Cartesian coordinates, the conservation equation for wave action can be 

written as  

 



S
Nv

t

N





)(


 (3.7) 

 

where ),,,( txN 


 is the action density, t is the time, ),( yxx 


 is the Cartesian 

coordinates, ),,,(  ccccv yx


 is the propagation velocity of a wave group in the four-

dimensional phase space x


,  and , and S is the source term for the energy balance 

equation.   is the four-dimensional differential operator in the x


, , -space. The four 

characteristic propagation speeds are given by 

 

Uc
dt

xd
cc gyx




),(  (3.8) 

 

s

U
kcdU

t

d

ddt

d
c gx



























  (3.9) 
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
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








m

U
k

m

d
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d
c






1
 (3.10) 

 

Here, s is the space coordinate in wave direction , and m is a coordinate perpendicular 

to s. x is the two-dimensional differential operator in the x


-space. 

 

Spherical coordinates 

In spherical coordinates, the conserved property is the action density ),,,(ˆ txN 


. Here, 

),( x


 is the spherical coordinates, where  is the latitude and  is the longitude. The 

action density N̂  is related to the normal action density N (and normal energy density E) 

through dxdydNdddddN  ˆ , or 

 






cos
cosˆ

2
2 ER

NRN   (3.11) 

 

where R is the radius of the earth. In spherical polar coordinates the wave action balance 

equation can be written 

 




S
NcNcNcNc

t

N





























 (3.12) 

 

Here  cos),,,(ˆ
2

SRtxS 


 is the total source and sink function. The four 

characteristic propagation speeds are given by 

 

R

uc

dt

d
c

g 



 


cos
 (3.13) 

 


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R
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 (3.14) 
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(3.15) 
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(3.16) 
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Here ),(  uu  are the components of the depth-averaged current U


 in the geographical 

space. For the wave direction  a nautical convention is used (positive clockwise from 

true North): the direction from where the wind is blowing. 

 

3.3 Source Functions 

The energy source term, S, represents the superposition of source functions describing 

various physical phenomena 

 

1in n ds bot surfS S S S S S      (3.17) 

 

Here Sin represents the generation of energy by wind, Snl is the wave energy transfer due 

non-linear wave-wave interaction, Sds is the dissipation of wave energy due to 

whitecapping, Sbot is the dissipation due to bottom friction and Ssurf is the dissipation of 

wave energy due to depth-induced breaking. 

 

3.3.1 Wind input 

In a series of studies by Janssen (1989), Janssen et al. (1989) and Janssen (1991), it is 

shown that the growth rate of the waves generated by wind depends also on the wave 

age. This is because of the dependence of the aerodynamic drag on the sea state. 

 

The input source term, Sin is given by 

 

     ,,max, fEfSin   (3.18) 

 
where α is the linear growth and   is the nonlinear growth rate. 

 

Non-linear growth 

A simple parameterisation of the growth rate,   ,of the waves is obtained by Janssen 

(1991) by fitting a curve to his earlier detailed numerical results. This fitted curve 

compares favourably with observations by Snyder et al., 1981. Janssen suggested 

 
2

x   (3.19) 

 

where  is the ratio of density of air to water wa  /  and   is the relative circular 

frequency. x is given by 

 

 w
c

u
x   cos*

 (3.20) 

 

where *u  is the wind friction velocity, c  is the phase speed and   and w  are the wave 

and wind directions, respectively. Finally,   is given by: 
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10

1ln
2.1 4

2











 (3.21) 

 
where   is von Karman's constant  =0.41 and   is the dimensionless critical height 

 

ckz  (3.22) 

 

Here k is the wave number and zc is the critical height defined as the elevation above sea 

level where the wind speed is exactly equal to the phase speed. Assuming a logarithmic 

wind profile, the critical height can be written as 

 

)/exp( xzz oc   (3.23) 

 

In the actual implementation of WAM, Eq. (3.20) was modified as follows: 

 

 wz
c

u
x  








 cos*

 (3.24) 

 

where 011.0z . According to Peter Janssen (private communication, 1995), this was 

necessary to account for gustiness and obtain a reasonable growth rate with WAM. 

 

Using Eqs. (3.21) - (3.24), the growth rate due to wind input can be calculated as 

 

 
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1cosln
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2
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2
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






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
  w

w

a z
c
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 (3.25) 

 

where 

 

)/exp( xkzo    (3.26) 

 

For a given wind speed and direction, the growth rate of waves of a given frequency and 

direction depends on the friction velocity, *u  and sea roughness, oz . In order to calculate 

*u , Janssen assumed a logarithmic profile for the wind speed u(z) of the form 

 

owob

owob

ow zzz
zz

zzu
zu 














 0

* ln)(


 (3.27) 

 

where obz  models the effect of gravity-capillary waves (can be seen as background 

roughness) and owz  models the effect of short gravity waves. obz  is parameterised as 

 

guzz Charnockb /
2
*0   (3.28) 

 

where Charnockz  is the Charnock parameter. The default value are 01.0Charnockz . 

Usually, owzz   and in that case 
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




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



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0

*

ln

)(

z

z

zu
u


 

(3.29) 

 

Three different formulations for estimating *u and zc has been implemented in the model: 

 

Uncoupled model using a drag law 

Here the relation between the wind speed )(zuU w   at a level windzz   and the wind 

friction velocity is given by a simple empirical formulation 

 

wdragdragDwD UCUCu  ,
22

*  (3.30) 

 

where drag  and drag  are two constants. The default values are mzwind 10 , 

4
6.3 10drag 

   and
5

106.6


drag , cf. Smith & Banke (1975). Then the sea 

roughness is obtained using Eq. (3.29). 

 













*

0 exp
u

U
zz w

wind


 (3.31) 

 

Uncoupled model using Charnock 

If owz  is assumed to be small compared to obz , the air roughness is given by 

 

guzzz charnockb /
2
*00   (3.32) 

 

For a given wind speed )(zuU w   at a level windzz   it is possible to solve by Eq. 

(3.29) and (3.32) iteratively to obtain the roughness length 0z  and the friction velocity *u

. Now, to limit the number of repetitive calculations of this type, the values of   for 

various combinations of wU  can be pre-computed and stored. The range of wU  used is: 

0-50 m/s in steps of 0.5 m/s. 

 

Coupled model 

Here the sea roughness is given by 

 
½

2
*

2
*

½
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




 (3.33) 

 

where w  is the wave induced stress, and   is the total stress  =
2
*uair . For a given 

wind speed )(zuU w   at a level windzz   and the wave induced stress, it is possible to 

solve Eqs. (3.29) and (3.33) iteratively to obtain *u . To limit the number of repetitive 



Basic Equations  

© DHI - MIKE 21 Spectral Wave Module 11 

calculations of this type, the values of   for various combinations of 10u  and w  can be 

pre-computed and stored. The range of  10U  used is: 0-50 m/s in steps of 0.5 m/s, while 

the range of    is: 0-5 m2/s2 in steps of 0.05 m2/s2. 

 

The wave-induced stress, w  is calculated as follows 

 





 ddf

t

P

wind

w 


 (3.34) 

 

where P


 is the wave momentum given by 

 

 


,fEP w  (3.35) 

 

Here


 is the unit vector along the wave direction ( kk /


 ). From Eq. (3.18) we obtain 

 








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

F
t

E

t

P
w

wind

w   (3.36) 

 
where   is the growth rate of the waves due to wind. Splitting the integral into low and 

high frequency parts, one obtains 

 

diagnosticwprognosticww ,, 


  (3.37) 

 

where 

 

 
max

2,

f

o

wprognosticw lddffE






 (3.38) 

 

 




max

2,

f

wdiagnosticw lddffE






 (3.39) 

 

Here maxf  is the maximum prognostic frequency. 

 

The prognostic part prognosticw,


 is calculated by numerical integration of Eq. (3.38) using 

the computed discrete spectra. The diagnostic part diagnosticw,


 (containing the high 

frequency part of the spectrum) is calculated assuming a 
5

f  spectra shape, see Eq. 

(3.5). For this high frequency waves, the wave celerity can be evaluated using the 

expression for deep water waves. Thus, fgc 2/ . Now, substituting Eq. (3.5) with 

m=5 and Eq. (3.25) into Eq. (3.39), we obtain: 

 

      



 


 ldIfEuf
g

wadiagnosticw

 2
max,

2
*

5
max2

4

, cos
2

 (3.40) 

 

where 
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f

df
I

fw 



max

  (3.41) 

 

By changing the variable f in Eq. (3.41) to a new variable y (defined as the square root of 

dimensionless roughness, okz ) 

 

gzfy o /2  (3.42) 

 

Eq. (3.41) is rewritten as 

 


1

maxy y

dy
I 


 (3.43) 

 

where gzfy o /2 maxmax   and the upper limit is set to 1.0. Assuming zch = 0.0185, this 

upper limit corresponds to a frequency of about 180 times the Pierson Moskowitz peak 

frequency. 

 

Eq. (3.43) can be re-written as 

 

y

dy
I

y
1

4

2
max

ln
2.1




  (3.44) 

 

where 

 

)/exp()/exp(
2

xyxkzo    (3.45) 

 

)cos()cos( **   






















 zy

gz

u
z

C

u
x

o

 (3.46) 

 

Substituting Eq. (3.46) into Eq. (3.45), we obtain 

 











































)cos(

exp

*

2






zy
gz

u
y

o

 (3.47) 

 

Now, diagnosticw,


can be calculated as 

 

     





2/

2/

2
max,

2
*

5
max2

4

, cos
2 


 


 ldIfEuf

g
wadiagnosticw

  (3.48) 

 

Where
w

I  is given by Eq. (3.44) and   is given by Eq. (3.47). 
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From Eqs. (3.44) and (3.47) it is clear that for given values of )( and , * wo uz   , 

))(,,( *0 wuzI
w

   can be calculated. To improve the efficiency
w

I can be 

precomputed for various values of the dependent parameters, in the same way it was 

done for  . Alternatively if guzo /
2

* , it follows that 
w

I  is a function of 

)( and , *  u . Thus, a table may be computed for 
w

I with the following parameter 

ranges:  goes from 0.010.11, step 0.001; *u  goes from 05 m/s, step 0.05; )(    

goes from 12/ step ,2/2/   . 

 

There are some significant differences between the procedure described above and what 

is implemented in WAM cycle 4. Basically, WAM approximates Eq. (3.48) as follows: 

 

     





2/

2/
*

3
max,

2
*

5
max2

4

, ),('cos
2 


 


 mduIfEuf

g
wadiagnosticw

  (3.49) 

 

where 

 



1

4

2*

'

max

'ln'
2.1

),(
y

y

dy
uI 


  (3.50) 

 















































zy
gz

u
y

o

*

2
exp'  (3.51) 

 

and m


 is the unit vector in the direction of the wind. The omission of the cosine term in 

Eq. (3.51) appears to be an error (compare Eq. (3.47) and Eq. (3.51)). This error cannot 

be compensated by the use of cos3 (Eq. (3.49)) instead of cos2 (Eq. (3.48)). Furthermore, 

it is not clear why the direction of  w


 was changed to the wind direction instead of the 

wave direction. At the time of writing this report, the WAM implementation (Eqs. (3.49) to 

(3.51)) is used in the present model. 

 

Linear growth 

The linear growth, α, is obtained following the approach by Ris (1997) 
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     

 

















































0cos0

0cosexpcos
2

4

4

*2

w

w

PM

wu
g

c











  (3.52) 

 

where 
3

1.5 10c


   and the Pierson-Moskowitz peak frequency is defined by 

 

*28

213.0

u

g
PM


   (3.53) 

 

The friction velocity *u  is obtained using SEqs. (3.30). The drag coefficients are given by 

(see Wu (1982)) 

 
















smUU

smU
C

ww

w
D

/5.7105.6108.0

/5.7102875.1

53

3

 (3.54) 

 
where Uw is given at mz 10 . 

 

3.3.2 Quadruplet-wave interactions 

The exact computations of the three-dimensional non-linear Boltzmann integral 

expressions for nlS (Hasselmann, 1962) are too time consuming to be incorporated in a 

general numerical wave model. Thus, a parameterisation of nlS is required. The discrete 

interaction approximation (DIA) is the commonly used parameterisation of nlS  in third 

generation wave models.  The DIA was developed by S. Hasselmann et al., 1985. The 

description below is taken from Komen et al., 1994 (pp. 226-228). 

 

S. Hasselmann et al. (1985) constructed a non-linear interaction operator by the 

superposition of a small number of discrete interaction configurations composed of 

neighbouring and finite distance interaction combinations. They found that the exact non-

linear transfer could be well simulated by just one mirror-image pair of intermediate range 

interaction configurations. In each configuration, two wave numbers were taken as 

identical: kkk


 21  , while 3k


 and 4k


  k


  lie at an angle to k


as required by the 

resonance condition1 

 

The second configuration is obtained from the first by reflecting the wave numbers 3k  

and 4k  with respect to the k-axis (see also Figure 3.1). The scale and direction of the 

reference wave number are allowed to vary continuously in wave number space. 

 

                                                      

1 Resonance condition requires that 
0

4321
 kkkk



 and 
0

4321
 

. 
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Figure 3.1 The two interaction configurations used in the discrete-interaction approximation. 

Contour lines represent the possible end points of the vectors k1 and k4 for any 
interaction quadruplet in the full interaction space. (from Komen et al., 1994). 

 

The simplified non-linear operator is computed by applying the same symmetrical 

integration method as is used to integrate the exact transfer integral (see also 

Hasselmann and Hasselmann, 1985b), except that the integration is taken over a two-

dimensional continuum and two discrete interactions instead of five-dimensional 

interaction phase space. Just as in the exact case the interactions conserve energy, 

momentum and action. 

 

For the configurations: 

 

















)1(

)1(

4

3

21

 (3.55) 

 

where 25.0 , satisfactory agreement with the exact computations was achieved. 

From the resonance conditions the angles 43,  of the wave numbers k3(k+) and k4(k-) 

relative to k are found to be  3=11.5,  4=-33.6. 

 

The discrete interaction approximation has its most simple form for the rate of change in 

time of the action density in wave number space. In agreement with the principle of 

detailed balance, we have  

 

   ,2

1

1

2
2198

kNNNNNNfCg

N

N

N

t




















































 (3.56) 

 

where tNtNtN  /,/,/   are the rates of change in action at wave numbers k, k+, k- 

due to the discrete interactions within the infinitesimal interaction phase-space element 

k  and C is a numerical constant. The net source function Snl is obtained by summing 

Eq. (3.56) over all wave numbers, directions and interaction configurations. 

 

In terms of the spectral energy densities ),( rfE , the increments to the source 

functions )/(),( tEfS rnl    at the 3 interacting wave numbers are given as: (S. 

Hasselmann et al., 1985) 
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 

 
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
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
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















































EEEfØ

f

f

f

f

f

f

S

S

S

nl

nl

nl





















 (3.57) 

 

where 

 


































 

 4244

2114

)1(

2

)1()1(
'),,,(



EEEEE
EfgCFFFfØ  (3.58) 

 

where C' is a numerical constant proportional to C, given as 3.107,  fff ,  are the 

discrete spectral resolution at fr, fr,+, and fr,─, respectively. The increments f  in the 

numerator refer to the discrete-interaction phase-space element, while the differentials in 

the denominator refer to the sizes of the "bins" in which the incremental spectral changes 

induced by a "collision" are stored. In the above, the angular increments   at 431 ,,   

are taken to be the same, while a possible frequency dependence on f  is allowed, i.e. 

fff   . Eq. (3.57) is summed over all frequencies, directions and interaction 

configurations to yield the net source function, Snl.  

 

The above analysis is made for deep water. Numerical computations by Hasselmann and 

Hasselmann (1981) of the full Bolzmann integral for water of arbitrary depth have shown 

that there is an approximate relation between transfer rates in deep water and water of 

finite depth: for a given frequency-direction spectrum, the transfer for finite depth is 

identical to the transfer for infinite depth, except for a scaling factor R: 

 

depth), infinite()(depth) finite( nlnl ShkRS   (3.59) 

 

where k  is the mean wave number. This scaling relation holds in the range 1hk , 

where the exact computations could be closely reproduced with the scaling factor 

 

,
4

5
exp

6

5
1

5.5
1)( 



















xx

x
xR  (3.60) 

 

with hkx )4/3( . This approximation is used in the WAM model. 

 

For constant frequency interval discretisation, Eq. (3.57) can be written as: 

 

),,,(
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1

2
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




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










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
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 (3.61) 
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For logarithmic frequency discretisation, Eq. (3.57) becomes: 
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 (3.62) 

 

The contributions to the gradient terms  ESnl  /  at the interacting wave numbers are 

obtained from: 
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 (3.63) 

 

As in Eq. (3.57), the total contribution to ESnl  /  at a given frequency f, and direction 

  is found by summing the contributions from all frequencies, directions and the two 

configurations (primary and mirrored configuration). 

 

Additional assumptions are required before computing Eq. (3.57) and Eq. (3.63) above. 

The reason for this is as follows: For the non-linear interactions, we always consider 

exchange of energy between the interacting wave numbers represented in frequency-

direction space as:      43 , and ,,,    fff . The frequencies  ff  and  are 

given by: 

 

ff )1( 
 (3.64) 

 

ff )1( 

 (3.65) 

 

where 25.0 . Now, our discretisation in frequency space needs to be finite: i.e. we 

discretise from a finite lower frequency, 1f  to a finite upper frequency, maxf . Thus, there 

are problems with evaluating Eq. (3.57) and Eq. (3.63) at the two limits of the discretised 

frequency space. The question is what should be done when 1max or  ffff   ? 

 

In order to answer this question, two additional assumptions are introduced: 

 

Case 1: maxff   

______________ 
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Firstly, the energy spectrum in the region maxff   is assumed to follow a 
5

f  tail, 

since this is the diagnostic region. Secondly, in the vicinity of maxf , there are 

contributions to nlS  from frequencies higher than the discretised maximum frequency in 

the model. The maximum frequency upperf , which contributes energy into the discretised 

frequency range, can be found by solving: 

 

 
max1 fff upper    (3.66) 

 

or 

 

  1/maxffupper  (3.67) 

 

Thus, in order to correctly compute the contributions to nlS  in the vicinity of maxf , the 

discretised frequency space is extended to upperf  and an 
5

f  tail assumed in this region. 

 

Case 2: 1ff   

______________ 

 

It is assumed that 0),( fE  in the region 1ff  . This is a reasonable assumption if 

the discretised frequency space has been selected carefully to include all the energy 

containing frequencies.  

 

Furthermore, since we assume 0E  in the region 1ff  , the contributions from this 

region to the discretised frequency range is zero. In order to minimise the repetitive 

calculations involved in the computation of the non-linear source term a procedure is 

used, which consists of the following five steps: 

 

1. For each discrete direction,  , the indices in the direction array, to the right and left 

of 43 ,    are calculated and stored. 

2. For each discrete frequency, f , in the extended frequency space, the indices to the 

right and left of      ffff    1 and 1  are calculated and stored. 

3. For each discrete frequency, direction and configuration the spectral energy values

),(),,( 43    fFfF  are found using bilinear interpolation. The values at 

the four corners of the f  grid are obtained from the indices obtained in steps 

(1) and (2) above.  

4. The computed contributions to ESS nlnl  / and  at ),( and ),,( 43    ff  

are distributed to the discrete frequency-direction mesh-points at the four corners of 

the f  grid.  

5. The contributions to  ,)/( and ),( fnlnl ESfS  calculated from steps (3) and 

(4) are summed over all frequencies, directions and configurations to obtain

),( fSnl  and  ,)/( fnl FS at each f  mesh point.  
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3.3.3 Triad-wave interactions 

In shallow water triad-wave interaction becomes important. Nonlinear transformation of 

irregular waves in shallow water involves the generation of bound sub- and super-

harmonics and near-resonant triad interactions, where substantial cross-spectral energy 

transfer can take place in relatively short distance. The process of triad interactions 

exchanges energy between three interacting wave modes. The triad-wave interaction is 

modelled using the simplified approach proposed by Eldeberky and Battjes (1995, 1996).  

 

( , ) ( , ) ( , )
nl nl nl

S S S     
 

   (3.68) 

 

where  
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 (3.69) 

 

( , ) 2 ( , )
nl nl

S S   
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   (3.70) 

 

This applies when 𝑈𝑟 > 0.1 and 𝑓(1) ≤ 2.5 𝑓𝑚𝑒𝑎𝑛 

 

Here / 2 

 , 2 


 , and /c k   - is the phase velocity, where k  is the wave 

number corresponding to   . EB
 is a tuning parameter. The biphase is parameterised 

by the parameter, β , which is given by 

 

0.2
1 tanh

2 Ur




  
     

  
 (3.71) 

 

The Ursell number, Ur, is given by 

 

0

2 2
2 2

m
g H

Ur
d

  (3.72) 

 
where    is the mean angular frequency. The interaction coefficient, J, is given by 
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(3.73) 

 

where B=1/15. 

 

3.3.4 Whitecapping 

The mathematical development of a whitecap model can be traced to Hasselmann 

(1974). Assuming that the mechanism for whitecap dissipation is pressure induced 

decay, he obtained a dissipation source function that is linear in both the spectral density 

and the frequency 
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ds
S E   (3.74) 

 

Later, it was realised that other mechanisms are important. These mechanisms are the 

attenuation of short waves by the passage of large whitecaps and the extent of whitecap 

coverage (which depends on the overall steepness of the wave field). Combining these 

processes Komen et al. (1984) proposed a dissipation function formulated in terms of the 

mean frequency. This expression was reformulated by the WAMDI group (1988) in terms 

of wave number so as to be applicable in finite water depth 

 

E
k

k
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m

PM

dsds 















ˆ

ˆ
'  (3.75) 

 

and '  and 
ds

C m  are fitting parameters,  is the mean relative angular frequency, k is 

the mean wave number, ̂  is the overall steepness of the wave field and PM̂ is the 

value of ̂  for the Pierson-Moskowitz spectrum. The overall steepness is defined as 

 

totEk̂  (3.76) 

 

where totE  is the total energy of energy spectrum and 
2/13

)1002.3(ˆ 
 xPM . In WAM 

cycle 3, 
5

1036.2' and4


 xCm ds  (see also Komen et al., 1984 and WAMDI 

group,1988). 

 

With the introduction of the Janssen's description for the wind input, it was realised 

(Janssen et al., 1989) that the dissipation source function needs to be adjusted in order to 

obtain a proper balance between wind input and dissipation at high frequencies. Thus, 

Eq. (3.75) was modified as (see Komen et al., 1994): 
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 (3.77) 

 

dsC ,   and m are constants. In WAM cycle 4 the values for dsC ,   and m are 

respectively, 4.1x10-5, 0.5 and 4. In the present implementation the tunable constants are 
4*

)/( PMdsds CC  and   while m = 4. The default values for 
*
dsC  and   are 

respectively, 4.5 and 0.5. 

 

The formulation of the source term due to whitecapping is as standard applied over the 

entire spectrum and the integral wave parameters used in the formulation is calculated 

based on the whole energy spectrum 
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 (3.79) 

 

where pσ=pk=-1 is applied. The integrals are calculated by a split into a resolved part 

(prognostic region) and unresolved part (deterministic region) following the approach 

used in Appendix A. For wave conditions with a combination of wind-sea and swell this 

may results in too strong decay of energy on the swell components. Introducing a 

separation of wind-sea and swell, the predictions for these cases can be improved by 

excluding the dissipation on the swell part of the spectrum and by calculating the wave 

parameters, used in the formulation of whitecapping, from the wind-sea part of the 

spectrum. The separation of wind-sea and swell are estimated using the definitions in 

Section 5.1. 

 

To improve the the whitecapping for wave conditions with a combination of wind-sea and 

swell Bidlot et. al 2007 proposed a revised formulation of whitecapping. Here Eq. (3.77) is 

still applied but the mean relative angular frequency and the mean wave number are 

calculated using Eq. (3.78) and Eq. (3.79), respectively, with pσ=pk=1 and the default 

values for 
*
dsC  and   are changed to 2.1 and 0.6, respectively. 

 

 

3.3.5 Bottom friction 

The rate of dissipation due to bottom friction is given by  

 

),(
2sinh

)/)((),(  fE
kd

k
kkufCfS cfbot   (3.80) 

 

where fC  is a friction coefficient, k  is the wave number, d  is water depth, cf  is the 

friction coefficient the for current and u is the current velocity. The coefficient fC  is 

typically 0.001-0.01 m/s depending on the bed and flow conditions (Komen et al., 1994). 

The default value for cf  is 0 corresponding to excluding the effect of the current on the 

bottom friction. 

 

Four models for determination of the possibilities for the dissipation coefficient are 

implemented: 

 

1. A constant friction coefficient fC . Tests with regional versions of the WAM model 

(see Chapter IV in Komen et al., 1994) have shown that the mean JONSWAP value 

of fC  = 2*0.038/g = 0.0077 m/s is adequate for moderate storms. The default value 

for fC  is 0.0077 m/s. 

2. A constant friction factor wf  in which the friction coefficient is calculated as 

 

bwf ufC   (3.81) 

 



Basic Equations  

© DHI - MIKE 21 Spectral Wave Module 22 

 where bu  is the rms wave orbital velocity at the bottom given by 
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 (3.82) 

 

 The default value for wf  is 0.015*21/2 = 0.021. 

 

3. A constant geometric roughness size kN, as suggested by Weber (1991) in which the 

friction coefficient is calculated by Eq. (3.81) and the friction factor is calculated 

using the expression of Jonsson and Carlsen, 1966 
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Here ba  is the orbital displacement at the bottom given by 
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 The default value for kN is 0.04 m. This value was suggested by Weber, 1991 as 

being compatible with the flow conditions for a range of swell and wind sea spectra. 

 

4. A constant median sediment size D50, in which the bed is modelled as a mobile bed. 

This approach was first used in a third generation wind-wave model by Tolman 

(1996). However, the present implementation is very different from Tolman’s 

formulation. Instead of using the Grant and Madsen model for determining ripple 

dimensions (as used by Tolman), we use the empirical expressions of Nielsen 

(1979) which is based on field measurements. Thereafter, the bed roughness is 

calculated using the expression by Swart (1976). Finally, the friction coefficient is 

computed as the product of the wave friction factor (using the expression of Jonsson 

and Carlsen, 1966) and the bottom orbital velocity. The default value for D50 is 

0.00025 m. 

 

Details of the bottom friction formulation can be found in Johnson and Kofoed-Hansen 

(2000). 

 

3.3.6 Wave breaking 

Depth-induced breaking (or surf breaking) occurs when waves propagate into very 

shallow areas, and the wave height can no longer be supported by the water depth. The 

formulation of wave breaking derived by Battjes and Janssen (1978) is used. The source 

term is written as (Eldeberky and Battjes, 1996): 
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where 0.1BJ  is a calibration constant, bQ  is the fraction of breaking waves, f  is the 

mean frequency and X  is the ratio of the total energy in the random wave train to the 

energy in a wave train with the maximum possible wave height  
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X  (3.86) 

 

where totE  are the total wave energy, mH  is the maximum wave, and totrms EH 8 .  

 

In shallow water at a local water depth, d, the maximum wave height can be calculated 

from 

 

dH m   (3.87) 

 
where  is the breaker parameter. The value of   varies from 0.5 to 1.0 depending on 

the beach slope and wave parameters.  

 

When the waves are described using the directionally decoupled parametric formulation, 

the maximum wave height is influenced by the wave steepness as well. 
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Where ws  is the breaking parameter related to breaking due to wave steepness and   

is the breaking parameter related to wave breaking due to water depth. meank  is the mean 

wave number. 

 

The default values for the tunable variables BJ ,   and ws  are respectively 1.0, 0.8 

and 1.0. 

 

In a random wave train with a truncated Raleigh distribution of wave heights the fraction 

of breaking waves bQ  is determined from 
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 (3.89) 

 

bQ  is obtained solving the nonlinear Eq. (3.89) using a Newton-Raphson iteration. As 

initial guess for the nonlinear iteration is used the following explicit approximation to bQ  

(Hersbach, 1996 private communication)  
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 (3.90) 

 

Based on laboratory data and field data it has been shown that the breaking parameter γ 

varies significantly depending on the wave conditions and the bathymetry. Kaminsky and 

Kraus (1993) found that γ values in the range between 0.6 and 1.59 with an average of 
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0.79. A number of expressions for determination of the breaking parameter γ have been 

proposed in literature. Battjes and Stive (1985) found that g depends weakly on the deep 

water wave steepness. They proposed the following expression  

 

00.5 0.4 tanh(33 )s    (3.91) 

  

Here s0 = H0 /L0 is the deep water steepness, where H0 and L0 is the wave height and the 

wave length, respectively, in deep water. This formulation cannot be used in the present 

spectral wave model, because the value of γ is not determined based on local 

parameters. Nelson (1987, 1994) found that γ can be determined as a function of the 
local bottom slope, sdd  / , in the mean wave direction. Nelson suggested the following 

expression  
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Recently, Ruessink et al. (2003) have presented a new empirical form for γ, where γ is 

determined as a function of the product of the local wave number k and the water depth d  

 

0.76 0.29kd    (3.93) 

 

Ruessink et al. showed that using this formulation for the breaking parameter the 

prediction of the wave heights in the breaking zone can be improved for barred beaches. 

However, the new formulation is also applicable to planar beaches.  

 

3.4 Diffraction 

Diffraction can be modelled using the phase-decoupled refraction-diffraction 

approximation proposed by Holthuijsen et al. (2003).  

 

The approximation is based on the mild-slope equation for refraction and diffraction, 

omitting phase information.  In the presence of diffraction the magnitude of the wave 

number, k, (the gradient of the phase function of a harmonic wave) is given by 

 

 2 2
1 ak     (3.94) 

 

where κ is the separation parameter determined from linear wave theory and a  is a 

diffraction parameter defined by 
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Here c and cg are the phase velocity and group velocity, respectively, without diffraction 

effects and a is the wave amplitude. Now the phase velocity, C, and the group velocity, 

C , in the presence of diffraction are given by 
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1
g g g a

k
C c c 


    (3.97) 

 

For wave propagation over slowly varying depths and currents the diffraction-corrected 

propagation velocities ),,,(  CCCC yx  of a wave group in the four-dimensional phase 

space x


,  and    are given by 
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Following the approach by Holthuijsen et al. (2003) the wave amplitude is replaced by the 

square root of the directional integrated spectral energy density  
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4 Numerical Implementation 

4.1 Space Discretisation 

The discretisation in geographical and spectral space is performed using a cell-centred 

finite volume method. In the geographical domain, an unstructured mesh is used. The 

spatial domain is discretised by subdivision of the continuum into non-overlapping 

elements. The elements can be of arbitrarily shaped polygons, however, in this paper only 

triangles are considered. The action density, N( x


,, ) is represented as a piecewise 

constant over the elements and stored at the geometric centres. In frequency space, a 

logarithmic discretisation is used 

 

1 min 1 1 1 2,l l l l lf l N                (4.1) 

 

where f  is a given factor, min is the minimum discrete angular frequency and N  is the 

number of discrete frequencies. In the directional space, an equidistant discretisation is 

used 

 

( 1) 2 / 1,m mm N m N           (4.2) 

 

where N is the number of discrete directions. The action density is represented as 

piecewise constant over the discrete intervals, l and m , in the frequency and 

directional space. 

 

Integrating Eq. (3.7) over area Ai of the ith element, the frequency increment l and the 

directional increment m give 
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(4.3) 

 

where  is an integration variable defined on Ai and NvFFFFF yx  ),,,(   is the 

convective flux. The volume integrals on the left-hand side of Eq. (4.3) are approximated 

by one-point quadrature rule. Using the divergence theorem, the volume integral on the 

right-hand can be replaced by integral over the boundary of the volume in the x , , -

space and these integrals are evaluated using a mid-point quadrature rule. Hence, Eq. 

(4.3) can be written 
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(4.4) 

 



Numerical Implementation  

© DHI - MIKE 21 Spectral Wave Module 27 

where NE is the total number of edges in the cell (NE = 3 for triangles). 

 
mlpyyxxmlpn nFnFF

,,,,)(   is the normal flux through the edge p in the 

geographical space with length lp. ),( yx nnn 


 is the outward pointing unit normal 

vector of the boundary in the geographical space. mliF ,2/1,)(   and 2/1,,)( mliF  are 

the flux through the face in the frequency and directional space, respectively. 

 

Convective flux in geographical space 

The convective flux in geographical space is derived using either a first-order upwinding 

scheme or a higher-order scheme. The convective flux at the edge between element i 

and j is given by is given by 
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Where lN and rN  is the action density the left and the right of the edge and nc  is the 

propagation speed normal to the cell face 
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Using the first-order scheme lN and rN  is approximated by the cell-centred values iN

and jN , respectively. 

 

The numerical diffusion introduced using first-order upwinding schemes can be 

significant, see e.g. Tolman (1991, 1992). In small-scale coastal applications and 

application dominated by local wind, the accuracy obtained using these schemes are 

considered to be sufficient. However, for the case of swell propagation over long 

distances, higher-order upwinding schemes may have to be applied. 

 

Second-order spatial accuracy is achieved by employing a linear gradient-reconstruction 

technique for calculating the values lN  and rN . The gradients are calculated based on 

cell-centred values. To provide stability and minimise oscillatory effects, an ENO 

(Essentially Non-Oscillatory) type procedure is applied to limit the gradients. Additionally, 

a simple limiter is applied for faceN  at the interface in that this value is limited by lN , rN , 

iN and jN . 

 

Convective flux in frequency and directional space 

The convective flux in frequency and directional space is derived using a first-order 

upwinding scheme. 
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Figure 4.1 ● centroid point and ○ midpoint of edges 

 

4.2 Time Integration 

The integration in time is based on a fractional step approach. Firstly, a propagation step 

is performed calculating an approximate solution N* at the new time level (n+1) by solving 

Eq. (3.7) without the source terms. Secondly, a source terms step is performed 

calculating the new solution Nn+1 from the estimated solution taking into account only the 

effect of the source terms. 

 

Propagation step 

The propagation step is carried out by an explicit Euler scheme 
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where  nmli tN  /,,  is given by Eq. (4.4) with 0,, mliS  and t is the global time step. 

To overcome the severe stability restriction, a multi-sequence integration scheme is 

employed following the idea by Vilsmeier and Hänel (1995). Here, the maximum time 

step is increased by locally employing a sequence of integration steps, where the number 

of steps may vary from element to element. Using the explicit Euler scheme, the time step 

is limited by the CFL condition stated as 
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where Crj,l,m is the Courant number and xi and yi are characteristic length scale in the x 

and y-directions for the ith element. The maximum local Courant number, Crmax, i, is 

determined for each element in the geographical space, and the maximum local time 

step, it ,max , for the ith element is then given by 

 

ii Crtt ,max,max /  (4.9) 

 

To ensure accuracy in time, the intermediate levels have to be synchronised. Therefore, 

the fraction, fg, of the local time step to the global time step is chosen as powers of ½ 

 

...,3,2,1,
2

1
1













gf

g

g  (4.10) 

 

The local time step, it , is then determined as the time step with the maximum value of 

the level index, g, for which 

 

igi tft ,max  (4.11) 

 

Two neighbouring elements are not allowed to have an index difference greater than one. 

The edges get the lowest index of the two elements they support. 

 

The calculation is performed using a group concept, in that groups of elements are 

identified by their index, g. The computational speed-up using the multi-sequence 

integration compared to the standard Euler method increases with increasing number of 

groups. However, to get accurate results in time, the maximum number of groups must be 

limited. In the present work, the maximum number of levels is 32. 

 

Source term step 

The source term step is performed using an implicit method 

 













 



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l

n
mlimli

mli
n

mli

SS
tNN



 1
,,

*
,,*

,,
1
,,

)1(
 (4.12) 

 

where  is a weighting coefficient that determines the type of finite difference method. 

Using a Taylor series to approximate Sn+1 and assuming the off-diagonal terms in the 

functional derivative ES  /  to be negligible such that the diagonal part 

 mlimli ES ,,,, / , Eq. (4.12) can be simplified as 

 

)1(

)/(
*

,,

,,

1

,,
t

tS
NN

lmlin

mli

n

mli










 (4.13) 

 

For growing waves ( > 0), an explicit forward difference is used ( = 0), while for 

decaying waves ( < 0), an implicit backward difference ( = 1) is applied. 

 

Especially for small fetches, stability problems may occur. Hence, a limiter on the 

maximum increment of spectral energy between two successive time steps is introduced. 

The limiter proposed by Hersbach and Janssen (1999) is applied 
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 
tugN l 







max

4

*3

7

max
~

2

103



 (4.14) 

 

where max is the maximum discrete frequency and *
~u u defined by 

 

))/(,max(~
**  PMuu   (4.15) 

 

Here *u  is the wind friction speed. 

 

4.3 Boundary Conditions 

At the land boundaries in the geographical space, a fully absorbing boundary condition is 

applied. The incoming flux components (the flux components for which the propagation 

velocity normal to the cell face is positive) are set to zero. No boundary condition is 

needed for the outgoing flux components. At an open boundary, the incoming flux is 

needed. Hence, the energy spectrum has to be specified at an open boundary. In the 

frequency space, the boundaries are fully absorbing. No boundary conditions are needed 

in the directional space. 

 

4.4 Diffraction 

For instationary calculations the inclusion of diffraction can cause oscillations in the 

numerical solution in areas with very fine resolution and/or large ratio between element 

sizes. For quasi-stationary calculations the inclusion of diffraction can cause convergence 

problems. To reduce these problems a smoothing is introduced for the discrete values of 

the square root of the directional spectral energy density, ),,(, liili yxAA  , which is 

used in the calculation of the diffraction parameter. This smoothing is done according to 

 

 
*

1 1

, , ,
(1 ) 1,

k k k

i l i l i l
A A A k nsteps  

     (4.16) 

 

Here k is the number of smoothing steps and α is the smoothing factor. The smooth 

approximation, A* , is calculated by first calculating the vertex values using the pseudo-

Laplacian procedure proposed by Holmes and Connell (1989) and then calculating the 

cell-centred values by averaging the vertex values corresponding to each element. By 

default one filtering step is performed with a smoothing factor of α=1. Note, the smoothing 

is only used in the calculation of the diffraction parameter. Increasing the smoothing 

(increasing the number of smoothing steps) with reduce the oscillation/convergence 

problem, but will also has the effect that the diffraction effect will be reduced. 

 

4.5 Structures 

The horizontal dimension of structures, such as piers and offshore wind turbines, is 

usually much smaller than the resolution used in the computational grid. Therefore, the 

presence of these structures must be modelled by a subgrid scaling technique. Two 

approaches have been developed for taking into account the effect of point structures. 

The effects of the structures can be taken into account by introducing a decay term to 
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reduce the wave energy behind the structure. This formulation is only accurate when the 

energy decay is limited and the reflection of the wave energy is not taken into account. 

The second approach is based on a correction of the convective flux term in geographical 

space. 

 

4.5.1 Source term approach 

The discrete source term, 𝑆𝑖,𝑙,𝑚 = 𝑆(𝑥⃗𝑖 , 𝜎𝑙 , 𝜃𝑚), due to the effect of a point structure can be 

written 

 

𝑆𝑖,𝑙,𝑚 = −
𝑐

𝐴𝑖

𝑐𝑔𝐸𝑖,𝑙,𝑚 (4.17) 

 

where Ai is the area of the cell i in the mesh in which the structure is located, c is the 

reflection factor, cg is the group celerity and 𝐸𝑖,𝑙,𝑚 = 𝐸(𝑥⃗𝑖 , 𝜎𝑙 , 𝜃𝑚) is the energy density. The 

reflection factor determines the amount of energy, which hits the structure, there is 

reflected. For a circular cylinder the factor c is obtained as 

 

𝑐 = 𝐷 ∙ 𝑟 (4.18) 

 

where 0≤r≤1 is the reflection coefficient and D is the diameter of the structure. The 

reflection coefficient r is obtained from a pre-defined table. Alternatively, the factor c can 

be specified directly as a function of the water depth and the wave period using a user-

defined table. 

 

The pre-defined  table consist of the reflection factors, ri,j , as function of discrete values 

of the dimensionless diameter, 𝐷̃, and the dimensionless wave period, 𝑇̃ 

 

𝐷̃𝑖 = 𝐷̃𝑚𝑖𝑛 + (𝑖 − 1)
𝐷̃𝑚𝑎𝑥 − 𝐷̃𝑚𝑖𝑛

𝑛𝑑 − 1
          𝑖 = 1, 𝑛𝑑 

 

𝑇̃𝑖 = 𝑇̃𝑚𝑖𝑛 + (𝑗 − 1)
𝑇̃𝑚𝑎𝑥 − 𝑇̃𝑚𝑖𝑛

𝑛𝑡 − 1
          𝑗 = 1, 𝑛𝑡 

(4.19) 

 

where 

 

𝐷̃ =
𝐷

𝑑
 

 

𝑇̃ =
2𝜋

𝜎
√

𝑔

𝑑
 

(4.20) 
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Here where d is the water depth, g is the acceleration of gravity, nd=18 is the number of 

discrete diameters, 𝐷̃𝑚𝑖𝑛=0.2 is the minimum dimensionless diameter, 𝐷̃𝑚𝑎𝑥=7 is the 

maximum dimensionless diameter, nt=20 is the number of discrete wave periods, 

𝑇̃𝑚𝑖𝑛=1.566 is the minimum dimensionless wave period, 𝑇̃𝑚𝑎𝑥=31.321 is the maximum 

dimensionless wave period. The reflection factor at a given location is calculated from the 

table using bilinear interpolation. 

 

The user-defined table containing the reflection factor as function of the water depth and 

the wave period must be given in form of an ASCII file. The first part of the ASCII file must 

contains the header information. The header information consists of two lines each with 

three space separated items. The first line contains the number of discrete depth, nd, the 

minimum depth (in m), dmin, and the maximum depth (in m), dmax. The second line 

contains the number of discrete wave periods, nt, the minimum wave period (in s), Tmin, 

and the maximum wave period (in s), Tmax. Data follows after the header information. The 

data consist of the reflection factors, ci,j , as function of discrete values of the depth and 

wave period 

 

𝑑𝑖 = 𝑑𝑚𝑖𝑛 + (𝑖 − 1)
𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛

𝑛𝑑 − 1
          𝑖 = 1, 𝑛𝑑 

 

𝑡𝑗 = 𝑡𝑚𝑖𝑛 + (𝑗 − 1)
𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛

𝑛𝑡 − 1
             𝑗 = 1, 𝑛𝑡 

(4.21) 

 

The format of a reflection factor table is shown below 

 

nd  dmin  dmax 

nt  Tmin  Tmax 

c1,1  c1,2  c1,3 ...  c1,nt 

c2,1  c2,2  c2,3 ...  c2,nt 

... 

... 

cnd,1  cnd,2  cnd,3 ...  cnd,nt 

 

 

The reflection factors in the file must be space separated. The reflection factor at a given 

location is calculated from the table using bilinear interpolation. 

 

In spherical coordinates the area Ai should be replaced by 𝐴𝑖̂ = 𝐴𝑖𝑅
2𝑐𝑜𝑠𝜙, where Ai is the 

area of the cell in the spherical coordinate system, R is the radius of the earth and 𝜙 is 

the latitude. 

 

4.5.2 Convective flux approach 

The contribution to the time-derivative of the cell-centred value of the wave action 
density, 𝑁𝑖,𝑙,𝑚 = 𝑁(𝑥⃗𝑖 , 𝜎𝑙 , 𝜃𝑚), from the convective transport in the geographical space into 

the element i is given by  

 

−
1

𝐴𝑖

∑(𝐹𝑛)𝑝,𝑙,𝑚∆𝑙𝑝

𝑁𝐸

𝑝=1

 (4.22) 

 

where Ai is the area of the cell, NE is the total number of edges in the cell (NE=3 for 

triangles and NE=4 for quadrilateral elements), (𝐹𝑛)𝑝,𝑙,𝑚 = (𝐹𝑥𝑛𝑥 + 𝐹𝑦𝑛𝑦)
𝑝,𝑙,𝑚

 is the normal 

flux through the edge p in the geographical space with length ∆𝑙𝑝   and 𝑛⃗⃗ = (𝑛𝑥, 𝑛𝑦) is the 

outward pointing unit normal vector of the boundary in the geographical space. 
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The convective flux in geographical space is derived using a first-order upwinding. The 

convective flux at the edge between cell i and the neighbouring cell j is given by 

 

𝐹𝑛 = 𝑐𝑛 (
1

2
(𝑁𝑖 + 𝑁𝑗) −

1

2

𝑐𝑛

|𝑐𝑛|
(𝑁𝑖 − 𝑁𝑗)) (4.23) 

 

where Ni and Nj are cell-centred values of the action density and cn is the propagation 

speed normal to the cell face 

 

𝑐𝑛 =
1

2
(𝑐𝑖 + 𝑐𝑗) ∙ 𝑛⃗⃗ (4.24) 

 

To take into account the effect of the structures a correction of the normal flux is 

introduced 

 
(𝐹𝑛)𝑝,𝑙,𝑚

∗ = (𝐹𝑛)𝑝,𝑙,𝑚 − (∆𝐹𝑛)𝑝,𝑙,𝑚 (4.25) 

 

where the correction term is given by 

 

(∆𝐹𝑛)𝑝,𝑙,𝑚 =  
𝑐

∆𝑙𝑝

(𝐹𝑛)𝑝,𝑙,𝑚           (𝐹𝑛)𝑝,𝑙,𝑚 < 0 

 
(∆𝐹𝑛)𝑝,𝑙,𝑚 =  0                               (𝐹𝑛)𝑝,𝑙,𝑚 ≥ 0 

(4.26) 

 

Hence, the decay of the energy in the cell i due to the point structure can be taken into 

account by adding the following correction term to the time-derivative of the cell-centred 

value of the wave action density 

 

1

𝐴𝑖

∑(∆𝐹𝑛)𝑝,𝑙,𝑚∆𝑙𝑝

𝑁𝐸

𝑝=1

 (4.27) 

 

The reflection factor, c, is obtained as described in the previous section. To include the 

reflected energy the following term is subtracted from the time-derivative of the cell-

centred value of the wave action density for the neighbouring cell j 

 
1

𝐴𝑗

(∆𝐹𝑛)𝑝,𝑙,𝑚+∆𝑚∆𝑙𝑝 (4.28) 

 

It is assumed that the energy is reflected 180 degrees. Hence, 𝜃𝑚+∆𝑚 = 𝜃𝑚 + 𝜋. If 𝜃𝑚+∆𝑚 

do not correspond to a discrete direction, a weighted correction is added to the two 

neighbouring discrete directions. 

 
In spherical coordinates the length ∆𝑙𝑝 in the correction term should be replaced by 

 

Δ𝑙𝑝̂ = ∆𝑙𝑝𝑅√𝑛𝜆𝑛𝜆 + 𝑛𝜙𝑛𝜙𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜙  (4.29) 

 
where ∆𝑙𝑝 and (𝑛𝜆, 𝑛𝜙) are the length and the outward pointing unit normal vector in the 

spherical coordinate system. 
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5 Output Data 

5.1 Field Type 

The following types of output data is possible 

 

• Parameters 

- Integral wave parameters 

- Input parameters 

- Model parameters 

 

• Spectral parameter (directional spectrum): 

The direction energy/action spectrum is obtained by integration over the discretised 

frequencies 

 

• Spectral parameter (frequency spectrum): 

The frequency energy/action spectrum is obtained by integration over the discretised 

directions  

 

• Spectral parameter (directional-frequency spectrum): 

The direction energy/action spectrum is obtained by integration over the discretised 

frequencies 

 

Integral Wave Parameters 

The integral wave parameters can be calculated for the total spectrum, for the wind sea 

part of the spectrum and the swell part of the spectrum. The distinction between the wind 

sea and the swell can be estimated in three different ways. 

 

Constant threshold frequency 
Swell wave components are defined as those components fulfilling the following criterion 

 

 cos 0threshold wf f or      (5.1) 

 

where and w   is the wave propagation and wind direction, respectively. thresholdf  is 

the constant threshold frequency, which must be specified by the user. The default value 

is 0.125 Hz (~ thresholdT  = 8 s). 
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Dynamic threshold frequency (version 1) 
Swell wave components are defined as those components fulfilling the following criterion 

 

 cos 0threshold wf f or      (5.2) 

 

where and w   is the wave propagation and wind direction, respectively. thresholdf  is 

the dynamic threshold frequency defined by  

 
31.0

mod

,7.0 











el

PM
PMpthreshold

E

E
ff  (5.3) 

 

where PMpf ,  is the peak frequency for a fully developed wind-sea described by a 

Pierson-Moskowitz spectrum (see also Young (1999) p. 92) given by 

 

10

, 14.0
U

g
f PMp   (5.4) 

 

PME  is the total wave energy in a fully developed wind-sea described by a Pierson-

Moskowitz spectrum 

 
4

10

4.1 









g

U
EPM  (5.5) 

 

and totalE  is the calculated total wave energy for the components (also named the wind 

sea components) fulfilling the following criterion 

 
𝑓 > 0.8 ∙ 𝑓𝑝,𝑃𝑀 𝑎𝑛𝑑 cos(𝜃 − 𝜃𝑤) > 0 (5.6) 

 

Dynamic threshold frequency (version 2) 
Swell wave components are defined as those components fulfilling the following wave-

age based criterion 

 

83.0)cos(10  w
c

U
  (5.7) 

 

where U10  is the wind speed, c the phase speed and θ and θw is the wave propagation 

and wind direction, respectively. 

 

The integral wave parameters are given by 

 

1. Significant wave height, Hm0 (m) 

 

omo mH 4  (5.8) 
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2. Maximum wave height, Hmax (m) 

 

 The maximum wave height, Hmax (m) is estimated as 

 

𝐻𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝐻𝑚𝑎𝑥
1  , 𝐻𝑚𝑎𝑥

2 ) (5.9) 

 

 
1

max
H  is determined assuming Rayleigh distributed waves 

 

1

max 0

1
ln

2
m

H H N  (5.10) 

 

 where N is the number of waves estimated as N = duration/T01.  The duration is set 

to 3 hours (10800 s). 

 

 
2

max
H  is determined assuming monochromatic waves 

 
2 3

2

max 2 3

0.141063 0.0095721 0.0077829

1 0.0788340 0.0317567 0.0093407
H d

  

  

 


  
 (5.11) 

 

 where 
2L

d kd


   , where k is the wave number corresponding to the peak wave 

period and d is the water depth. 

 

3. Peak period, Tp (s) 

 

pp fT /1  (5.12) 

 

 The peak frequency pf  is calculated from the one-dimensional frequency spectrum 

using a parabolic fit around the discrete peak. 

 

 The scheme for computing the peak frequency can be formulated thus: 

 

- Search through 1D frequency spectrum and obtain the index, pi  corresponding 

to maximum spectral density. 

- Using      1,,1 210  ppp iffiffiff  and similarly for 

210 ,, EEE , the peak frequency is given by 

 

 
c

b
iff pp

2
1   (5.13) 

 

 where 

 

       

       02

2

01

2

0201

02

2

0101

2

02

ffffffff

EEffEEff
b




  (5.14) 
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       

       02

2

01

2

0201

01020201

ffffffff

EEffEEff
c




  (5.15) 

 

4. Mean period, T01 (s) 

 

1001 / mmT   (5.16) 

 

5. Zero crossing period, T02 (s)  

 

2002 / mmT   (5.17) 

 

6. Energy averaged mean period, T-10 (s)  

 

10 1 0
1 / /T f m m

 
   (5.18) 

 

7. Peak wave direction, p  (degree)  

 

 This is defined as the discrete direction with maximum energy. 

 

8. Mean wave direction,   (degree)  

 

)/(tan270
1

ab


  (5.19) 

 

 where 
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  

 


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
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
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



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
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







2

0 0
0

2

0 0
0

,
2

3
sin

1

,
2

3
cos

1

dfdfE
m

b

dfdfE
m

a

 (5.20) 

 
9. Directional standard deviation,  (degree)  

 

  
1/2

1/2
2 2

2 1 180 /a b     
  

 (5.21) 

 

10. Wave velocity components  

 

))270sin(),270cos((),( 00 mmmm HHvu    (5.22) 
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11. Radiation stresses, xxS
, xyS

 and yyS
 (m3/s2) 

 

 ppuxx ffgS  2
2

1
 

 uvxy fgS
2

1
  

 ppvyy ffgS  2
2

1
 

(5.23) 

 

 where 
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





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


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
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2

0 0
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2
1 dfdfE
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kd
f pp  
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
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
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



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
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
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0 0

2
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)2sinh(

2
1

2

3
cos dfdfE

kd

kd
fu  

 

  
























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








2

0 0

,
)2sinh(

2
1

2

3
sin

2

3
cos dfdfE

kd

kd
fuv

 

  



















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
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0 0

2
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2
1

2

3
sin dfdfE
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fv  

 

(5.24) 

 

12. Particle velocities 

 

 The calculation of the horizontal and vertical particle velocity components u and w is 

based on Stokes first order theory for progressive waves, see e.g. Dean and 

Dalrymple (1991) p79f:   

 

 cos
sinh

)(cosh
),(

2
1

kh

dzk
Hzu


  

 

 sin
sinh

)(sinh
),(

2
1

kh

dzk
Hzw


  

(5.25) 

 

 where ω is the cyclic angular frequency, H is wave height, k the wave number, d 

water depth, z vertical coordinate and   the phase of the wave.  
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 Using the directionally decoupled parametric formulation the root-mean-squared of 

the maximum value of two components can be calculated as 
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(5.26) 

 

 where E(θ) is the wave energy at wave direction θ.  

 

 Using the fully spectral formulation the root-mean-squared of the maximum value of 

two components can be calculated as 
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(5.27) 

 

 where E(f,θ) is the wave energy at wave direction θ.  

 

 The following values are included in the output:  

 

- Maximum horizontal particle wave velocity at the sea bottom,  

Umax(z= -d)  

- Maximum horizontal particle wave velocity at the free surface, Umax(z= 0)  

- Maximum vertical particle wave velocity at the free surface,  

Wmax(z= 0)  

- Maximum horizontal particle wave velocity at a level  

z0, Umax(z= z0)  

- Maximum vertical particle wave velocity at a level, z0, Wmax(z= z0)  

 

 z0  is defined by 

 

0z d d    (5.28) 

 

 where Δd is a user-specified distance above the bed.  
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13. Wave power 

 The energy transport for a harmonic wave is 
EgcP genergy 

 in magnitude, where 

E is the energy density and cg is the group velocity, ρ is the density of water and g is 

the acceleration of gravity. In random seas the following to definitions of the wave 

power can be used  

 

- Omni-directional wave power (energy sink) Penergy 

 

  







2

0 0

,),( dfdfEfcgP gEnergy  (5.29) 

 

- Directional wave power (energy transport)  ),( ,, yenergyxenergyEnergy PPP 
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Input Wave Parameters 

The following input parameters can be written 

 

• Water levels, (m) 

• Water depth, D (m) 

• Current velocity, U (m/s) 

• Wind speed, U10 (m/s) 

• Wind direction, w (degree) 

• Ice concentration 

 

Model Wave Parameters 

The following model parameters can be written 

 

• Friction coefficient (m2/s) 

• Breaking parameter, gamma 

• CFL number 

• Time levels 

• Length (m) 

• Area (m2) 

• Threshold period (s) 

• Wind friction speed (m/s) 

• Roughness length 

• Drag coefficient 
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• Charnock coefficient 

 

Spectral Parameters 

• Wave energy 

• Wave action 

 

5.2 Output Format 

The following types of output formats is possible  

 

• Point series  

- Selected field data in geographical defined points  

- The geographical coordinates are either taken from the dialog or from an ASCII 

file  

 

• Lines series  

- Selected field data in geographical defined lines  

- The geographical coordinates are either taken from the dialog or from an ASCII 

file  

 

• Area series  

- Selected field data in geographical defined area  

 

• The geographical coordinates of the area are specified in the dialog  
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A Spectral Wave Parameters 

The spectral wave parameters the total energy, totE , the mean angular frequency, , 

and the mean wave number, k , are calculated as follows 

 

0mEtot   (A.1) 
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The spectral moments used in the calculation of spectral wave parameters are computed 

as follows 
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Split Eq. (A.4) into resolved part and unresolved part 
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Therefore: 
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Eq. (A.8) above is not valid for 4i . Finally, im  is given by: 

 

     















 


2

0 0

2

0

max

1
max

max

,
4

,

f i
i

i dfE
i

f
dfdffEm  (A.9) 

 

Finally, I used in the calculation of the mean wave number is given by 
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where the deep water expression for k has been used in the second term on the RHS of 

Eq. (A.10). 
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