

MIKE 21 Maritime Mooring Analysis Step-by-step training guide

DHI headquarters Agern Allé 5 DK-2970 Hørsholm Denmark

+45 4516 9200 Telephone +45 4516 9333 Support +45 4516 9292 Telefax

mike@dhigroup.com www.mikepoweredbydhi.com

CONTENTS

MIKE 21 Maritime Mooring Analysis Step-by-step training guide

1 MIKE 21 Mooring Analysis Step-by-Step Training Guide......1

2	Example: 0D Wave Forcing on a Vessel	3
2.1	Step 1 – Launch the Frequency Response Calculator	
2.2	Step 2 - Create a Frequency Response Calculator setup	
2.3	Step 3 - Populate the FRC Setup with Data	
2.4	Step 4 – Run the FRC Simulation	6
2.5	Step 5 – Launch the MIKE 21 Mooring Analysis	7
2.6	Step 6 - Create a MIKE 21 Mooring Analysis Setup	
2.7	Step 7 - Populate the MIKE 21 Mooring Analysis setup with data	
2.8	Step 8 – Run the simulation in Convergence Mode and inspect results	17
2.9	Step 9 – Create a Wave File	
2.10	Step 10 – Populate the M21 MA Setup with Final Execution Mode Data	21
2.11	Step 11 – Run the Final Time-domain Simulation and Inspect Results	21
2.12	Step 12 – Visualise Vessel Movements in 3D	
2.12.1	Generate input files for MIKE Animator Plus	25
2.12.2	Create a MIKE Animator Plus setup	

3 2D Wave Forcing (Port of Brisbane, Passing Vessel Induced Moored Vessel

	Motions)	
3.1	Launch Frequency Response Calculator	
3.2	Prerequisite Tasks	41
3.3	Create the Moving Pressure Field of the Passing Vessel	44
3.4	HD Simulation – Create the Displacement Wave	50
3.5	Overview of MIKE 21 Mooring Analysis (MA) Steps	
3.6	Prerequisite Task – Access to Mooring Line and Fender Profiles	53
3.7	Launch MIKE 21 MA	54
3.8	Specify Mooring Line and Fender Profiles	56
3.9	Setup Mooring System	61
3.10	Environmental Forcings	62
3.11	Vessel Convergence	63
3.12	Final M21 MA Simulation	65
3.13	Visualise Vessel Movements in 3D	68
3.13.1	Generate input files for MIKE Animator Plus	69
3.13.2	Create a MIKE Animator Plus setup	74

1 MIKE 21 Mooring Analysis Step-by-Step Training Guide

This training guide includes the following two step by step examples:

The first example is a simple domain-independent example relying on 0D (time series) wave forcing used on a vessel in a user defined local domain, which on a basic level showcases the combined usage of Frequency Response Calculator and MIKE 21 Mooring Analysis in order to perform a simple mooring analysis.

The second example is more advanced and demonstrates the powerful combined workflow between MIKE 21 HD, Frequency Response Calculator and MIKE 21 Mooring Analysis in order to calculate the moored vessel motions of a tanker induced by a passing (transiting) vessel within the Port of Brisbane navigation channel. This example provides guidance on the entire simulation, from setting up and running the hydrodynamic model, to creating a moving pressure field and running a dynamic mooring analysis.

Note: If you have executed previous models from MIKE Zero project mode, where the output data is going to be used as input data in a subsequent MIKE 21 Mooring Analysis execution, please be aware that all the result files will be gathered in a common Result folder next to the (.mzp) file.

This means that if you are running the examples on basis of MZ project mode, then the paths to these files needs to be updated, as the default state of the examples are based on non-project mode, where all output data is stored in a Result Files folder next to each individual Setup file.

2 Example: 0D Wave Forcing on a Vessel

The step-by-step example in this Chapter demonstrates how to set up a MIKE 21 Mooring Analysis simulation, including usage of the Frequency Response Calculator, run the model and do a preliminary analysis of the results. The example calculates vessel motions in 6-DoF (Six Degrees of Freedom) of a moored tanker under a time series of incident wave conditions (0D wave forcing).

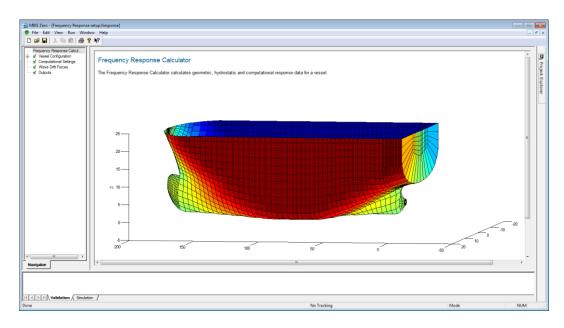
2.1 Step 1 – Launch the Frequency Response Calculator

The first step in any mooring analysis is to create a Frequency Response Calculator setup, in order to obtain the frequency response data for the vessel in question. From the MIKE Zero page the (.fresponse) editor is launched by:

 $\mathsf{File} \to \mathsf{New} \to \mathsf{File}...$

From here the (.fresponse) editor is found under the Maritime subgroup of MIKE 21.

🗟 New File		×
Product Types:	Documents:	
	M21 Mooring Analysis Model (.m21ma, .m21ma)	2)
	ОК	Cancel


Figure 2.1 Location of Frequency Response Calculator setup editor

2.2 Step 2 - Create a Frequency Response Calculator setup

The set of steps below outlines how to create a new Frequency Response Calculator (FRC) setup.

1. Continue to create a new instance of the (.fresponse) editor as showed in Figure 2.1 by clicking OK. The FRC main page (Figure 2.2) should appear on the screen.

Figure 2.2 FRC main page

 Start saving the file: Select 'File' → 'Save' and save the filename in the root folder: (<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Setups\Frequency Response.fresponse).

2.3 Step 3 - Populate the FRC Setup with Data

Below all the sequential steps for all FRC GUI dialogs are described in ascending order:

1. Dialog: Vessel Configuration

This is the first dialog to consider when setting up FRC. The only Type currently supported is Type = Single Vessel, so leave it this way. Provide the vessel the name 'DHI_Vessel'. Under common conditions use the following values: Set Water depth to 15 m and Density of water to 1020 kg/m³.

Finally, clicking on the 'Go to ...' button will take you to the Vessel instance dialog 'DHI_Vessel'.

2. Dialog: Vessel Instance

In this dialog you are to specify the vessel grid representing the 3D spatial vessel hull and the fundamental conditions which apply.

This dialog is divided into two tabs: Vessel Characteristics, where the fundamental data for the vessel instance are to be provided, and Vessel View, where the deck plane and waterline contours can be inspected spatially in an XY coordinate system encapsulating the vessel.

On the **Vessel Characteristics tab** start loading in the vessel grid: Leave the delimiter to be Space, and select the following vessel grid file: < example installation folder >\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Inputs\VesselGrid**Tanker.grd**

When the vessel grid is loaded, the remaining parameters on the Vessel Characteristics will automatically be supplied with some default values derived from the vessel hull itself.

In this example, the values shown in Table 2.1 should be utilised:

Table 2.1 Moored vessel parameters

Vessel Scaling (X-Dim)	1
Vessel Scaling (Y-Dim)	1
Vessel Scaling (Z-Dim)	1
r _{xx}	8.95 [m]
r _{yy}	55.95 [m]
r _{zz}	55.95 [m]
Vertical Center of Gravity (ZG)	10.8 [m]
Draft	9.8 [m]
Deck plane height	17.8 [m]

By setting these parameters as such, the FRC editor will subject to these conditions do an automatic computation of some Vessel Statistics (non-editable) as a service for the user. These values will be:

Vessel statistics Length overall (LOA)	223.802	[m]
Beam (B)	32.4	[m]
Max height	21.389	[m]
Submerged volume (∇)	55392	[m³]

Finally, you can inspect where the waterline and deck plane contours are positioned relatively, by switching to the **Vessel View tab**, cf. Figure 2.3.

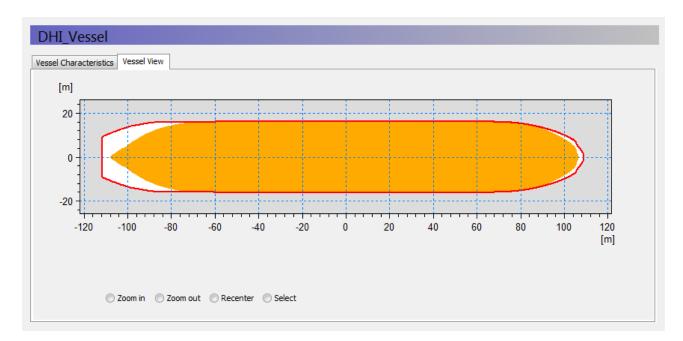


Figure 2.3 The Vessel View tab

- <u>Dialog: Computational Settings</u> In this dialog you leave the settings as the default: Simulation mode = M21 Mooring Analysis compatible mode, and Number of frequencies to solve = 256.
- <u>Dialog: Wave Drift Forces</u> Do not include 2nd order Wave drift forces.
- 5. Dialog: Outputs

All output data and file names are pre-populated with default settings. Do not change any settings here, and **important**: make sure you do not accidentally uninclude the Vessel Response output file, as it will be the basis for all subsequent analysis.

2.4 Step 4 – Run the FRC Simulation

Save the (.fresponse) setup and launch the FRC simulation The Launch settings pop-up is launched by clicking Run \rightarrow Start Simulation ...

Prior to the FRC execution, you can on the Parallelization tab in the Launch settings' popup window control how many cores the FRC simulation should utilise (among the number of cores available on the hardware). Use the maximum number of cores (default).

Then click OK, and the FRC simulation will begin.

Once the simulation is completed (takes approx. 1 hours on a 4 core PC) please verify that the following output file exists:

< example installation folder >\\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Setups\Frequency Response - 0D wave forcing.fresponse - Result Files**Vessel_Response.vre**

2.5 Step 5 – Launch the MIKE 21 Mooring Analysis

Similarly to the Frequency Response Calculator editor (.fresponse), the MIKE 21 Mooring Analysis editor (.m21ma) is also found under the Maritime subgroup of MIKE 21.

🗟 New File		X
Product Types:	Documents:	
	M21 Mooring Analysis Model (.m21ma,.m21ma) Frequency Response Calculator (.fresponse,.fresponse)	se)
M21 Mooring Analysis Model		
	ОК	Cancel

Figure 2.4 Location of MIKE 21 Mooring Analysis setup editor

2.6 Step 6 - Create a MIKE 21 Mooring Analysis Setup

The set of steps below outline how to create a new MIKE 21 Mooring Analysis (M21 MA) setup.

1. Open a new instance of the (.m21ma) editor as showed in Figure 2.4 by clicking OK. The M21 MA main page (Figure 2.5) should appear on the screen.

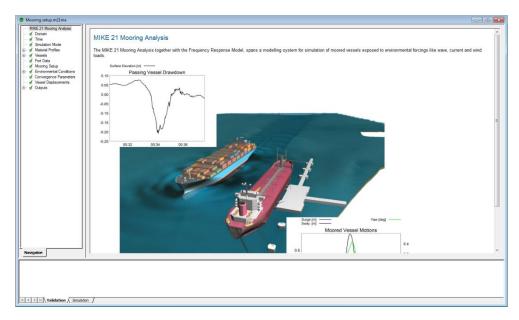


Figure 2.5 M21 MA main page

 Start saving the file: Select 'File' → 'Save' and save the filename in the root folder: (<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Setups\Mooring setup.m21ma).

2.7 Step 7 - Populate the MIKE 21 Mooring Analysis setup with data

Below all the sequential steps for all required M21 MA GUI dialogs are described in ascending order:

1. <u>Dialog: Domain (and creation of a Domain file)</u> The first step in creation of a M21 MA model always starts by selecting a Domain file.

Precise domain files displaying the exact positions of berths and breakwater structures are essential when utilizing 2D environmental forcings in a mooring study, but for this example we will only utilise 0D Wave data, so in this case we will just produce a local Domain file with enough spatial extent to spatially encapsulate the full mooring system we will create.

For illustrative purposes we have included bathymetry values to the domain file, even though they are not used in the calculations for 0D wave data.

Create a domain file that can contain the extent of the vessel and mooring system by following these steps:

- a. File \rightarrow New File \rightarrow Grid Series, and click OK
- b. Select 'Blank Grid', and click OK
- c. Select Type of file = 2 dimensional grid, and click Next
- d. Select Map projection: Type = Local Coordinates, and set Easting to -160 [m], Northing to -24 [m] and Grid Rotation to 0 [deg], and click Next
- e. Set: Axis Type to Equidistant Calendar Axis, Start time to 01/01/2016 00:00:00, Time Step to 1 [s], No. of Timesteps to 1, Number of grid points (J-dir) to 81, Number of grid points (K-dir) to 19, Spacing (J-dir) to 4 [m], Spacing (K-dir) to 4 [m], and click Next
- f. With respect to item record 1: type name = 'Bathymetry', Select Type = Bathymetry, set the Land value to 2 [m] and click Next
- g. Click Finish
- h. Add grid values to the file: Set all values in row 0-9 to -15 [m], row 10-17 to 2 [m] and row 18 to 5 [m].
- i. Save the file as: < example installation folder >\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Inputs\Domain**Domain.dfs2**

Finally, select this Domain file in the Domain dialog as shown in Figure 2.6:

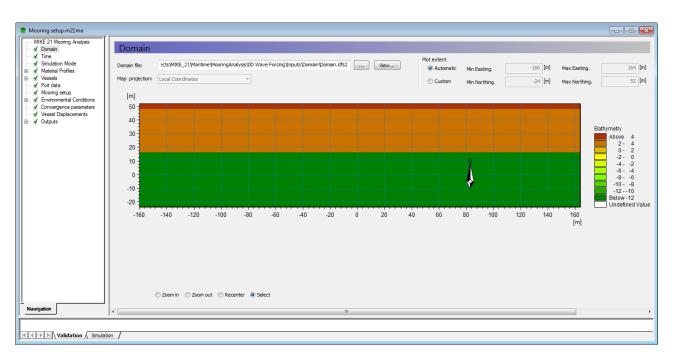


Figure 2.6 Selection of Domain file

2. Dialog: Time

Here you specify the temporal conditions applying for the time-domain computation (simulation mode = final computation mode).

Make the following:

- a. Set the No. of timesteps to 17995
- b. Set the timestep interval to 0.25 [s]
- c. Set the simulation start date to 01-01-2016 00:00:00
- d. Set the No. of warm up time steps to 0
- e. Set the No. of warm down time steps to 0
- 3. <u>Dialog: Simulation mode</u>

Set this to be Convergence mode.

Using convergence mode means that you prior to running the final time-domain simulation first will attempt to find the initial vessel displacement leading to a uniform tension distribution among all mooring lines.

Subsequently, determining a proper initial vessel displacement is an important preprocessing step to ensure a subsequent stable time-domain analysis.

- <u>Dialog: Material Profiles</u>
 Expand the node and go to Line profiles.
- <u>Dialog: Line profiles</u> Insert two Line profiles. Denote the first line 'Nylon_rope' and the second line 'Steel_wire'.
- <u>Dialogs: Line profile instances</u> On the **Nylon_rope** instance specify the following:
 - a. Total breaking strength = 74 [t]

- b. Failure load = 45 [%]
- c. Linear damping coefficient = 0 [kg/s]
- d. Quadratic damping coefficient = 0 [kg/m]
- e. Select this line profile: < example installation folder >\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Inputs\Material Profiles**Polyamide_Double-Braided.dfs0**

On the **Steel_wire** instance specify the following:

- a. Total breaking strength = 121 [t]
- b. Failure load = 55 [%]
- c. Linear damping coefficient = 0 [kg/s]
- d. Quadratic damping coefficient = 0 [kg/m]
- e. Select this line profile: < example installation folder >\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Inputs\Material Profiles\ **SteelLine42mm.dfs0**

After this go to the Fender Profiles dialog.

- 7. <u>Dialog: Fender profiles</u> Insert one Fender profile. Call it 'SCN1300'
- 8. <u>Dialog: Fender profile instance</u> Specify this for the 'SCN1300' instance:
 - a. Max reaction force = 1357 [kN]
 - b. Max deflection = 1.3 [m]
 - c. Failure deflection = 75 [%]
 - d. Fender friction coefficient = 0.3
 - e. Linear damping coefficient = 0 [kg/s]
 - f. Select this fender profile: < example installation folder >\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Inputs\Material Profiles\ SuperCone.dfs0

We will skip usage of chains in this setup, so no chains will be specified.

9. Dialog: Vessels

In this dialog you must select the vessel response file generated from the previously executed FRC setup:

< example installation folder >\MIKE Zero

Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Setups\Frequency Response - 0D wave forcing.fresponse - Result Files**Vessel_Response.vre**

Once the (.vre) file has been successfully loaded into M21 MA it will look like as shown in Figure 2.7.

Clicking 'Go to ...' on the vessel instance 'DHI_Vessel' will take you to the vessel instance dialog.

MIKE 21 Mooring Analysis	Vessels	
	Vessels	
✓ Time ✓ Simulation Mode ✓ Material Profiles	Vessel response file: uency Response - 0D wave forcing.fresponse - Result Files\Vessel_Response.vre	
⊡ v v Line Profiles Vylon_rope v steel wire	Number of vessels 1	
☐ ✓ Fender Profiles ✓ SCN1300 ✓ Chain Profiles	Vessel No. Name Edit 1 DHL Vessel Go to	
Mooring setup		
 		

Figure 2.7 Vessels dialog after successful loading of (.vre) file

10. Dialog: Vessel instance

On the Vessel data tab, specify the data as shown in Table 2.2:

Table 2.2Vessel data

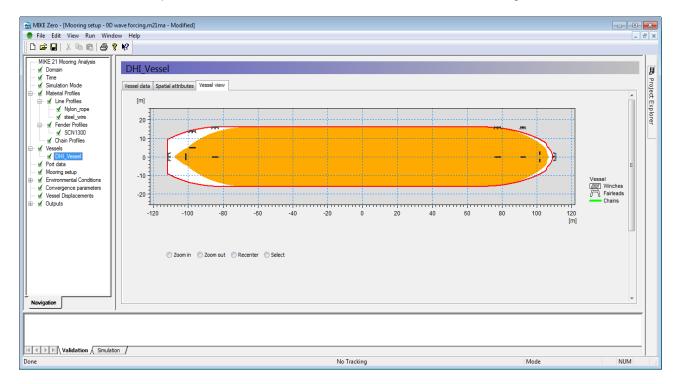
Longitudinal Area (Wind)	500 [m ²]
Transverse Area (Wind)	2000 [m ²]
Lpp	200 [m]
Loading Condition	90 [%]
Vessel Class	VLCC Conventional

Apart from this you will also see a summary of the vertical attributes from the (.vre) file. Among these only the deck plane is editable at this stage. Leave it as 17.8 m.

On the **Spatial attributes tab**, load in data for the full set of winch and fairlead positions (vessel-fixed) from the following files:

- Fairleads: < example installation folder >\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Inputs\Vessel Spatial Attributes\fairleads.xyz
- b. Winches: < example installation folder >\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Inputs\Vessel Spatial Attributes\winches.xyz

These values are as the ones shown in Table 2.3 and Table 2.4.The X and Y values are relative to amidship of the vessel and the Z values are relative to the keel.


Table 2.3 Fairlead positions relative to amidship at the vessel

Name	X [m]	Y [m]	Z [m]
Fairlead 1	110.455	-1	19.8
Fairlead 2	110.455	1	19.8
Fairlead 3	92.455	16	19.3
Fairlead 4	91.455	16	19.3
Fairlead 5	76.455	16	17.8
Fairlead 6	78.455	16	17.8
Fairlead 7	-83.545	16	17.8
Fairlead 8	-85.545	16	17.8
Fairlead 9	-96.545	14	19.3
Fairlead 10	-98.545	14	19.3
Fairlead 11	-111.545	1	19.8
Fairlead 12	-111.545	-1	19.8

Table 2.4 Winch positions relative to amidship at the vessel

Name	X [m]	Y [m]	Z [m]
Winch 1	101.455	-2	19.8
Winch 2	101.455	2	19.8
Winch 3	92.455	0	19.3
Winch 4	91.455	0	19.3
Winch 5	76.455	0	17.8
Winch 6	78.455	0	17.8
Winch 7	-83.545	0	17.8
Winch 8	-85.545	0	17.8
Winch 9	-96.545	5	19.3
Winch 10	-98.545	5	19.3
Winch 11	-101.545	1	19.8
Winch 12	-101.545	-1	19.8

On the **Vessel View tab**, you can see where the full set of fairleads and winches are positioned relative to the vessel. It should look as seen in Figure 2.8.

Figure 2.8 Vessel view after Fairlead and Winch positions have been specified

11. Dialog: Port data

On the **Port data tab**, load in data for the full set of bollard and fender positions (port/land fixed) from the following files:

- Bollards: < example installation folder >\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Inputs\Port Data\bollards.xyz
- b. Fenders: < example installation folder >\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Inputs\Port Data\fenders.xyz

The bollard and fender positions in the custom made local dfs2 domain are as the ones shown in Table 2.5 and Table 2.6. The X and Y values are relative to the origo of the local projection and the Z values are relative to the water surface.

Table 2.5 Bollard positions in domain

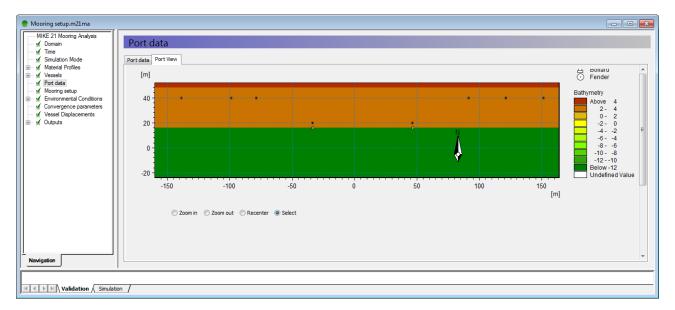

Name	X [m]	Y [m]	Z [m]
Bollard 1	151.4556	40	3
Bollard 2	121.4556	40	3
Bollard 3	91.4556	40	3
Bollard 4	46.4556	20	3
Bollard 5	-33.5444	20	3
Bollard 6	-78.5444	40	3
Bollard 7	-98.5444	40	3
Bollard 8	-138.5444	40	3

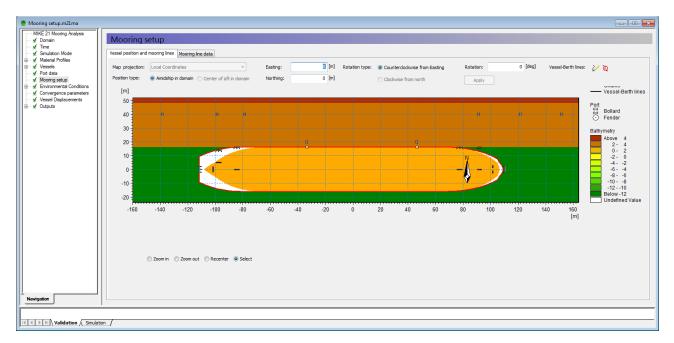
Table 2.6 Fender positions in domain

Fender Name	X [m]	Y [m]	Z [m]	Туре
Fender 1	46.4556	16	1	SCN1300
Fender 2	-33.5444	16	1	SCN1300

There is only one material fender profile declared (SCN1300), so both fenders will have this profile associated. Set both fender directions to be 270 [deg] (meaning: fender forces goes straight south (eg. straight against the vessel as we shall see).

On the **Port View tab**, you can see where the full set of bollards and fenders are positioned in the domain. It should look as seen in Figure 2.9.

Figure 2.9 Bollard and Fender positions in the domain


12. Dialog: Mooring setup

There are two steps in defining the mooring setup and they should be performed in this order:

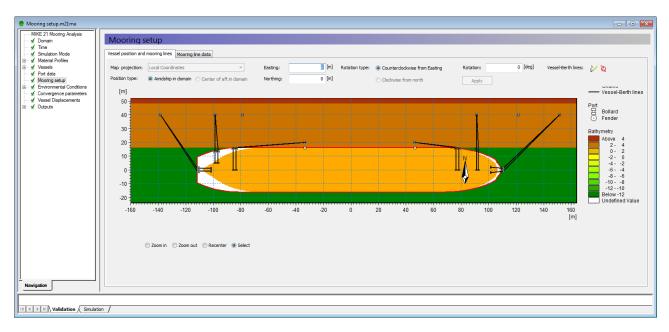
- Position the vessel in the domain, reasonably
- Specify the mooring lines, by connecting (winch, fairlead, bollard) pairs

On the **Vessel position and mooring lines tab**, specify the vessel position to be at (easting, northing) = (0, 0) [m] and a vessel rotation of 0 [deg], and click Apply.

You will now see the vessel and its vessel-fixed attributes relative to the port-fixed attributes in a default extent as defined by the domain file, see Figure 2.10:

Now that the vessel has been appropriately positioned, the next step is to define the mooring lines. The mooring system we would like to obtain is as given in Table 2.7.

Each mooring line can be drawn/defined interactively by:


- a. Visual identification the relevant winch-fairlead-bollard pair, to span the mooring line
- b. Initiate the mooring line insertion by: clicking the Vessel-Berth lines icon
- c. Perform the mooring line insertion by:
- d. Click the relevant winch icon, move the cursor to the relevant fairlead icon, click on the fairlead icon, continue the line to the bollard, and finally click on the bollard icon.

If you make an error by connecting some incorrect attributes, then delete the line

again by selecting the delete line icon and subsequently click on the given line.

After insertion of all mooring lines, the Mooring setup should look like the one shown in Figure 2.11.

Figure 2.11	Vessel	View after	definition o	f all	mooring lines
					gg

Table 2.7	The full Mooring Line of	definitions
-----------	--------------------------	-------------

Name	Bollard	Fairlead	Winch	Line profile	Line pretension (t)	Tail profile	Tail length (m)
Line 1	Bollard 1	Fairlead 1	Winch 1	Steel_wire	5	Nylon_rope	5
Line 2	Bollard 1	Fairlead 2	Winch 2	Steel_wire	5	Nylon_rope	5
Line 3	Bollard 3	Fairlead 3	Winch 3	Steel_wire	5	Nylon_rope	5
Line 4	Bollard 3	Fairlead 4	Winch 4	Steel_wire	5	Nylon_rope	5
Line 5	Bollard 4	Fairlead 5	Winch 5	Steel_wire	5	Nylon_rope	5
Line 6	Bollard 4	Fairlead 6	Winch 6	Steel_wire	5	Nylon_rope	5
Line 7	Bollard 5	Fairlead 7	Winch 7	Steel_wire	5	Nylon_rope	5
Line 8	Bollard 5	Fairlead 8	Winch 8	Steel_wire	5	Nylon_rope	5
Line 9	Bollard 7	Fairlead 9	Winch 9	Steel_wire	5	Nylon_rope	5
Line 10	Bollard 7	Fairlead 10	Winch 10	Steel_wire	5	Nylon_rope	5
Line 11	Bollard 8	Fairlead 11	Winch 11	Steel_wire	5	Nylon_rope	5
Line 12	Bollard 8	Fairlead 12	Winch 12	Steel_wire	5	Nylon_rope	5

To complete the mooring line definitions, go to the **Mooring line data tab** and set the Line profile, Line pretension, Tail profile and Tail length values for all the Mooring lines (Line 1 - Line 12) according to the values shown in Table 2.7.

- 13. Dialog: Physical Parameters
 - In this dialog, you should use the default values:
 - Density of water = $1020 [kg/m^3]$
 - Density of air = $1.28 \text{ [kg/m}^3\text{]}$
 - Viscosity (water) = 10⁻⁶ [m²/s]
 - Viscosity (air) = $1.48 \cdot 10^{-5}$ [m²/s]
- 14. <u>Dialog: Drift Forces</u> Drift forces are not included.
- 15. <u>Dialog: Current</u> Do not include a current field.
- 16. <u>Dialog: Wind</u> Do not include a wind field.
- 17. <u>Dialog: Convergence Parameters</u> In this dialog, you should specify the following values:
 - Max no. of iterations = 1000
 - Line convergence threshold = 0.1 %
- 18. <u>Dialog: Vessel Displacements</u> Apply default parameters.
- <u>Dialog: Convergence Output</u> Apply the default output file names. All output files except 'External forces' and 'Chain forces' are included.

Ensure that all data in the (.m21ma) setup are saved.

2.8 Step 8 – Run the simulation in Convergence Mode and inspect results

To execute the setup in Convergence Mode, click:

Run \rightarrow Start simulation ... \rightarrow Click OK in the Launch settings' pop-up window

As you will see, the simulation converges within the specified number of iterations.

Open the output file 'Convergence_line_pretension_deviation.dfs0'. As you can see, the percentage deviations between the line tensions and the line-pretension are all less than the specified line convergence threshold of 0.1 % for all lines, at the final iteration.

This means that the spatial vessel state (Surge, Sway, Heave, Roll, Pitch, Yaw) at the final iteration in file 'Convergence_DHI_Vessel_motions.dfs0' is a reasonable initial vessel displacement, within the chosen line convergence threshold of 0.1 %, to launch the final time-domain computation with.

With this initial vessel displacement known, we can move on with the final time-domain computation.

2.9 Step 9 – Create a Wave File

Before continuing with final time-domain simulation in M21 MA, we will have to create the time series wave file to be used as the primary forcing in this example.

- 1. Go to MIKE Zero and Click on 'New File'.
- 2. Under 'MIKE 21' select 'MIKE 21 Toolbox (.21t)'.

🗟 New File		
New File Product Types: MIKE 2fro MIKE HYDRO MIKE 21 MIKE 21 MIKE 21 MIKE 21 MIKE 21/ MIKE 21/ MIKE 21/ MIKE 21/ MIKE 21/ MIKE SHE	Documents: Flow Model Flow Model FM Spectral Boussine (.m21) Flow Model FM Waves Waves (. Parabolic Mild Non-Cohesive Slope Wav Sediment T Flow Mo Toolbox (esq Elliptic Mild bw) Slope Wa
MIKE 21 Toolbox		Cancel

Figure 2.12 Location of MIKE 21 Toolbox

3. Expand the 'Waves' Selection and double click on 'Random Wave Generation'.

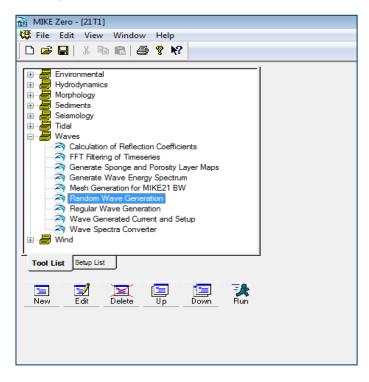


Figure 2.13 MIKE 21 Toolbox: Random Wave Generation

- 4. Create a new Setup called 'M21 MA 0D Wave'.
- 5. Select the JONSWAP spectrum with the following parameters significant wave height (Hm0) 1m and peak wave period (Tp) 10 s.
- 6. Set the water depth to 15 m.
- 7. Set the smallest wave period in series to 1 s.
- 8. Select 'Enable Second Order Correction'.
- 9. Specify the Start date as: 01/01/2016 00:00:00 and 'Number of time steps' as 4500 and interval as 1 s.
- Save the file at the following location: <example installation folder>\ MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing \Inputs\Metocean_timeseries\Hm0_1m_tp10s.dfs0
- 11. Click on 'Execute' to run.
- 12. At successful completion, a pop up box saying 'Status: OK': will show up. Click 'OK' and 'Finish' and Save the setup as 'M21 MA -0D Wave.21t'.
- 13. Open the .dfs0 that was created entitled Hm0_1m_tp10s.dfs0 and delete all the items except the Surface Elevation item.
- 14. Create a zero warmup period of roughly 15 minutes:
 - a. Go to time steps 0 and 875 and set the surface elevation values to 0.
 - b. Delete all values between time steps from (and including) 1 874
 - c. Select all values from (and including) 0 and time step 875.
 - d. Click on 'Tools' \rightarrow 'Interpolation'. Click 'OK'
 - e. The final surface elevation time series are shown in Figure 2.15.

Interpolation/Gap Filling	×
Interpolation/Gap Filling	
Interpolate on	
Entire Data Set	
Current Sub-Set	
Time Series Type	
Data interpreted as:	Instantaneous 🔹
Maximum Gap Length	
Use Max. gap length	
Do not fill gaps longer than:	0 Seconds v
	OK Cancel Help

Figure 2.14 Interpolation feature from the time series (.dfs0) editor

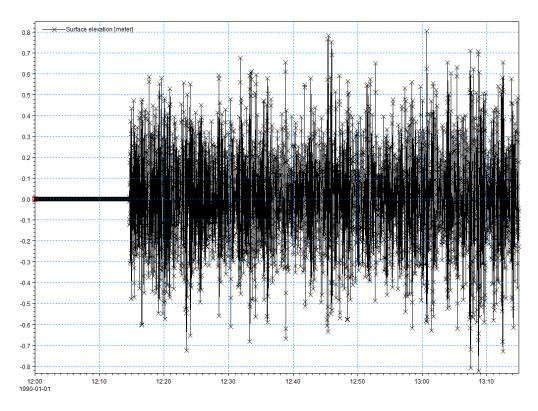


Figure 2.15 Water Surface Elevation time series with a zero warmup period

- 15. Next, insert a new wave direction item in front of the existing Surface Elevation item by following these steps:
 - a. Click Edit \rightarrow Properties ...
 - b. Mark the Surface Elevation item record by left-clicking on the record 1 field, so the whole record is highlighted (black)
 - c. Click Insert to open a new first item and give this new item the name 'Wave direction'
 - d. Select Type = Wave direction and set Unit to degree.
 - e. Click OK.
- 16. The wave direction in a time series wave file to be used in M21 MA must be provided constant per individual (wave direction, surface elevation) wave pair. Set the wave direction uniformly to 120 [deg] (eg. wave is coming from 120 [deg] True North) by following these steps:
 - a. Put a value of 120 [deg] at first time step (0) for the wave direction item
 - b. Put a value of 120 [deg] at last time step (4499) for the wave direction item
 - c. Highlight the whole wave direction column, and click on 'Tools' \rightarrow 'Interpolation'. Click 'OK'
 - d. The wave direction is now uniformly set to 120 [deg] for the single wave pair (wave dir., surface elevation) used in this example.

2.10 Step 10 – Populate the M21 MA Setup with Final Execution Mode Data

1. Dialog: Simulation Mode

In the setup 'Mooring setup .m21ma', go to the Simulation mode dialog and switch from Convergence Mode to Final Computation Mode.

This will open the Wave dialog, which is specific for this mode:

2. Dialog: Wave

In this dialog you should do the following:

- a. Select Wave type = Wave field
- b. Uncheck 'Include warm up/down'
- c. Select Format = Varying in time, constant in domain
- d. Set Number of waves to 1
- e. Set Power (N) to 12 (leading to FFT size = 4096)

Finally, select the wave file, which was created earlier: <example installation folder>\ MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Inputs\Metocean_timeseries**Hm0_1m_tp10s.dfs0**

 <u>Dialog: Vessel Displacements</u> In this dialog you should by now see an enabled Load button.

Click on the Load button. This will populate the 6 Initial Vessel displacement fields (Surge, Sway, Heave, Roll, Pitch, Yaw) with the data from the final iteration of the output file 'Convergence_DHI_Vessel_motions.dfs0' we previously produced from the convergence mode execution.

This action ensures the final time-domain computation starts from a vessel state where there is a sufficient state of tensional equilibrium in all mooring lines.

4. Dialog: Final output

Leave the output file settings as default. All output files except 'External forces' and 'Chain forces' are included.

2.11 Step 11 – Run the Final Time-domain Simulation and Inspect Results

To execute the (.m21ma) setup in Final Computation Mode, click:

Run \rightarrow Start simulation ... \rightarrow Click OK in the Launch settings' pop-up window.

The simulation will be fast and produce the relevant output files for the time-domain analysis.

First thing to consider is the Operability Summaries for Lines and Fenders at the end of the (.log) file produced by the engine. For this simulation the critical line loads and critical compressions were never exceeded, indicating the mooring system dynamics is within the provided safety limits.

ine	Status	Cause																		
, in the	Pagg	critical load	was nev	er exce	eded ((line-	nart.	55 %	of T	BS =	121	[ton]	tail-na	rt	45 %	of	TBS =	74	[ton]	,
2	Pass	critical load																		
	Pass	critical load				-	-						_							
	Pass	critical load					-						-							
	Pass	critical load					-						-							
5	Pass	critical load	was nev	er exce	eded ((line-	part:	55 %	of I	BS =	121	[ton].	tail-pa	rt: 4	45 %	of	TBS =	- 74	[ton])
,	Pass	critical load					-						-							
в	Pass	critical load	was nev	er exce	eded ((line-	part:	55 %	of I	BS =	121	[ton],	tail-pa	rt: (45 %	of	TBS =	74	[ton])
9	Pass	critical load	was nev	er exce	eded ((line-	part:	55 %	of I	BS =	121	[ton],	tail-pa	rt: (45 %	of	TBS =	74	[ton])
10	Pass	critical load	was nev	er exce	eded ((line-	part:	55 %	of I	BS =	121	[ton],	tail-pa	rt: (45 %	of	TBS =	- 74	[ton])
11	Pass	critical load	was nev	er exce	eded ((line-	part:	55 %	of I	BS =	121	[ton],	tail-pa	rt: (45 %	of	TBS =	74	[ton])
12	Pass	critical load	was nev	er exce	eded ((line-	part:	55 %	of I	BS =	121	[ton],	tail-pa	rt: 4	45 %	of	TBS =	- 74	[ton])
	Status	Operabil	ity Summ	ary: Fe	enders					:										
Fender 1	Status Pass	Cause Compression :	-	-			lectio		580	of Ma:	x Dei	flectio	n (1.3	m])						
1		Cause	never ex	ceeded	failur	re def														
1 2 Total Elaps Syste	Pass Pass i number of sed time em time	Cause compression	never ex never ex	ceeded ceeded	failur failur 17 2. 3.	re def re def 7995 .696 [.011 [lectio s]													
1 2 Total Elaps Syste	Pass Pass	Cause compression : compression :	never ex never ex	ceeded ceeded	failur failur 17 2. 3.	re def re def 7995 .696 [lectio s]													
1 2 Total Elaps Syste Sec/I	Pass Pass i number of sed time em time	Cause compression compression : Run Statistic of Timesteps	never ex never ex	ceeded ceeded	failur failur 17 2. 3.	re def re def 7995 .696 [.011 [lectio s]													
1 2 Total Elaps Syste Sec/I	Pass Pass I number of red time em time Cimestep	Cause compression compression : Run Statistic of Timesteps	never ex never ex	ceeded ceeded	failur failur 17 2. 3.	re def re def 7995 .696 [.011 [lectio s]													

The following steps will outline how to plot the results of three vessel motions (surge, sway and roll) and the diffraction forces (Fx, Fy and Mz) acting on the vessel.

 Go to the result files folder below: (<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Setups\Mooring setup .m21ma - Result Files). Open the file 'DHI_Vessel_motions.dfs0'.

The first time step of each vessel motion is a non-zero value. This small initial displacement is the result of the convergence process (where the length of the mooring lines is adjusted in order to distribute the tension in the lines equally).

When analysing results, the time series values will need to be adjusted to account for the initial 'shift. For each item in the vessel motion output file this is done by subtracting the initial value for the given item from all the time steps for that item. For item 3 it would be done like this:

- a. Go to 'Tools' \rightarrow 'Calculator'
- b. Under 'Current Expression', type i3=i3 (insert initial value for item 3)
- c. Click 'OK'
- d. Check that the first time step is equal to zero
- e. Save the dfs0 file.
- 2. Create a new plot composer (.plc) file. Open a new MIKE Zero file. Click on 'New' → Plot Composer (.plc).
- 3. Create a new .plc file with three subplots,
- Go to 'Plot' → 'Insert New Plot Object'. Select 'Multiple Plots Tiled' and set nx to 2 and ny to 3. Select 'Time Series Plot' and click OK.

5. For the first plot window: Mark the window, right click, click Properties...

Time Series Pl	ot Properties							
Items X-Ax	tis Y-Axis C	urves T	ext Annotation	S				
Item Defin	nition						~	
								()+
	Item name	Items	File name	Item type	Unit	Glb min	GIb m Nev	v Item 🖻 tyl
•								•
,								
				ОК		Cancel	Apply	Help

6. Click on 'New Item', cf. Figure 2.17.

- Link to the time series file: <example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing\Setups\Mooring setup - 0D wave forcing.m21ma - Result Files\ DHI_Vessel_motions.dfs0'
- 8. Select item 1 'Surge'
- 9. A plot of surge will appear in the first window.
- 10. Repeat the steps 6-10 for the remaining 5 windows and plot items: sway and yaw (from output file: DHI_Vessel_motions.dfs0) and Fx, Fy and Mz (from output file: DHI_Vessel_diff_forces.dfs0). The final plots are shown in Figure 2.18.

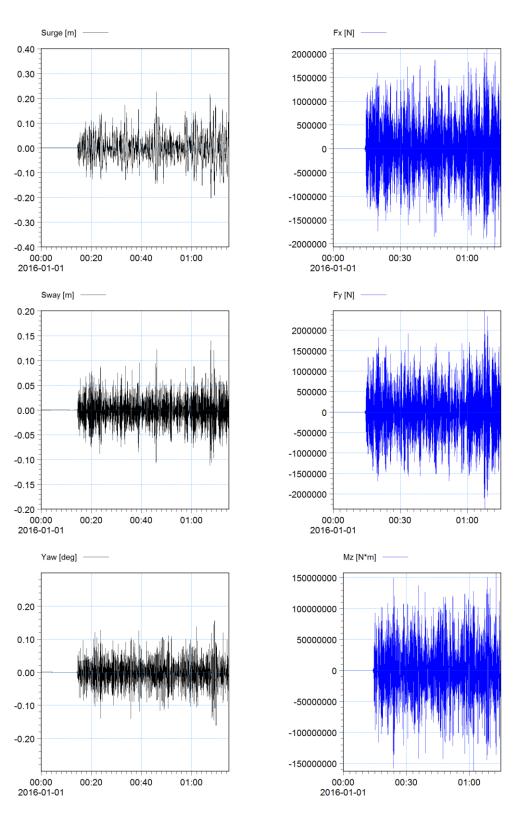


Figure 2.18 Time series of vessel motions and diffraction forces

2.12 Step 12 – Visualise Vessel Movements in 3D

It is possible to visualise the vessel movements by using MIKE Animator Plus. MIKE Animator Plus is a digital video production studio which enables you to turn e.g. MIKE 21 model results into 3D video presentations.

The results from the MIKE 21 Mooring Analysis module include a time series file with vessel motions. By using information from this together with a 3D solid representing the vessel, and data files with bathymetry and time-varying water level it is possible to use MIKE Animator Plus to create an informative animation of the vessel movements for the given mooring situation.

The following sections describe how to setup MIKE Animator Plus to visualise the findings from the MIKE 21 Mooring Analysis model. Note that you can still visualise the data if you do not have a license for MIKE Animator

Plus, however in that case a DHI icon will be displayed in front in the graphics window.

All references to file locations in the following are given with reference to the top folder .\MIKE_21\Maritime\MooringAnalysis\0D Wave Forcing.

2.12.1 Generate input files for MIKE Animator Plus

Before opening MIKE Animator Plus you must ensure the input data files fits the purpose. This example only displays the results for 10 minutes from the end of the simulation.

Bathymetry

The bathymetry is already defined in the file .\Inputs\Domain**Domain.dfs2.** For better overview in the MIKE Animator Plus setup, copy the file to the folder dedicated the MIKE Animator Plus setup: .\MAPlus**Domain.dfs2.**

Surface elevation

The surface elevation in the mooring analysis simulation was specified as a dfs0 file, however this information needs to be represented by a dfs2 file in MIKE Animator Plus. In order to reduce the size of the dfs2 file holding the water levels over time first a coarse grid version of the bathymetry is created:

- 1. Go to MIKE Zero and Click on 'New File'
- 2. Under 'MIKE Zero' select 'MIKE Zero Toolbox'
- 3. Expand the 'Transformation' section and double click on 'Rotate Grid'

II mztl	- • •
Concatenation Extraction File Converter GIS Hydrology Statistics Transformation Rotate Grid	
Tool List Setup List	
New Edit Delete Up	Down Run

Figure 2.19 MIKE Zero Toolbox: Rotate Grid

- 4. Create a new setup called 'Coarse Bathy'
- 5. Select the input bathymetry file **Domain.dfs2** mentioned above
- 6. Accept the subseries selection
- 7. Select item as 'Scalar'
- 8. Define a new grid with 9 grid points in the X direction and 2 grid points in the Y direction, both with grid spacing 40 m. The relative origin is set to (0,0) cells and the rotation angle to 0 deg.
- 9. Define Land-water interpolation option to 'Data is bathymetry data' and set minimum land value to 2 m.
- 10. Save the resulting dfs2 file in the following location: \MAPlus\CoarseDomain.dfs2
- 11. Click on 'Execute' to run.
- 12. At successful completion, a pop up box saying 'Status OK!' will show up. Click 'OK* and 'Finish' and save the setup as 'GenerateTSData.mzt'.

Next the water levels from the input dfs0 file must be populated into a coarse grid file.

- 1. In MIKE Zero open the MIKE Zero Toolbox file 'GenerateTSData.mzt' (if closed)
- 2. Expand the 'Time Series' section and double click on 'Preprocessing Temporal Data'

GenerateTSData.mzt	
Concatenation Extraction File Converter GIS Hydrology Statistics Time Series One Year Summary Preprocessing Temporal Data Sorting Temporal Data Time Series Batch Conversion Transformation	
Tool List Setup List	
New Edit Delete Up	Down Run

Figure 2.20 MIKE Zero Toolbox: Preprocessing Temporal Data

- 3. Create a new setup called 'Waterlevel 2D'
- 4. Select to import station location 'From x,y,name file' and select the existing file .\Inputs\Port Data**Fenders.xyz.**
- 5. Set the Projection to 'Local Coordinates' and press 'Import stations'.
- 6. Highlight the second row and press the 'Delete' button (only one point in the Domain is needed)
- Press the '...' button in the remaining row and select the second item ('Surface elevation) from the previously generated time series file .\Inputs\Metocean_timeseries\Hm0_1m_tp10s.dfs0
- 8. Press Next and accept default calculation method. Press Next.
- 9. For Model output select 'Spatially and temporally distributed data'. Define the static model area by 'dfs2 file' and select the previously generated coarse bathymetry file .\MAPlus\CoarseDomain.dfs2
- 10. Save the output file name at the following location: .\MAPlus\Waterlevel_2D.dfs2. Define the 'Item name' as 'Water level'
- 11. Define 'Start time' as **01/01/2016 01:00:00** and 'End time' as **01/01/2016 01:10:00**. Set the 'Time step in output' as 1 second.

- 12. The Overview will show the position of the station in the domain
- 13. Click on 'Execute' to run.
- 14. At successful completion, a pop up box saying 'Finished successfully!' will show up. Click 'OK* and 'Finish' and save the setup.

Vessel movements

In order to visualise the movements of the vessel in MIKE Animator Plus a 3Dsolid (.3ds) can be linked to a trajectory file. In this example the 3Dsolid **Ship-DHI.3d**s is selected as a representative for the vessel.

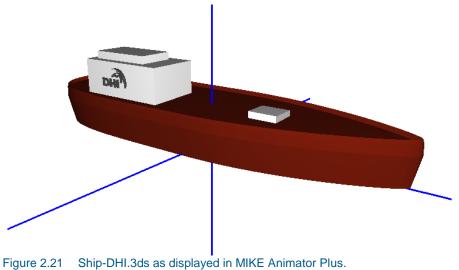


Figure 2.21 Ship-DHI.3ds as displayed in MIKE Animator Plus. The cross shows the origin of the 3D solid in its local coordinate system

The MIKE 21 Mooring Analysis simulation creates an output file with resulting vessel movements relative to the origin (0,0). As the selected 3D solid is defined with a local Z-level origin at the bottom of the ship, it is necessary to modify the vessel motion values to position the vessel correctly with the water level. Also, the item descriptions need to be modified in order to meet the standard for trajectory files in MIKE Animator Plus. For simplicity the time step in the file is modified to match the water level, i.e. 1 second.

- 1. In MIKE Zero open the MIKE Zero Toolbox file 'GenerateTSData.mzt' (if closed)
- 2. Expand the 'Time Series' section and double click on 'Interpolate Time Series'

GenerateTSData.mzt	
Concatenation Extraction File Converter GIS Hydrology Statistics Time Series Interpolate Time Series One Year Summary Preprocessing Temporal Data Sorting Temporal Data Time Series Batch Conversion Transformation	
Tool List Setup List	
New Edit Delete Up	Down Run

Figure 2.22 MIKE Zero Toolbox: Interpolating Time Series

- 3. Create a new setup called 'MAPlus Trajectory file'
- Select the output file .\Setups\Final Mooring setup 0D wave forcing.m21ma Result Files\DHI_Vessel_motions.dfs0' and select all six items in the file. Press OK and Next.
- 5. Define 'Start time' as **01/01/2016 01:00:00** and 'End time' as **01/01/2016 01:10:00**. Set the time Interval to 1 second. Press Next
- 6. Specify the new output file as .\MAPlus\DHI_Vessel_motions_MAPlus.dfs0
- 7. Press next and click on 'Execute' to run.
- 8. At successful completion, a pop up box saying 'Interpolation succeeded' will show up. Click 'OK* and 'Finish' and save the setup.

Now it is necessary to modify the dfs0 file to match the requirements for this MIKE Animator Plus setup.

- 1. Open DHI_Vessel_motions_MAPIus.dfs0 in Time Series Editor
- 2. Subtract 9.8 m from the third item (Heave) to account for the Draft of the vessel, see Figure 2.23. Press OK and save and close the file 'GenerateTSData.mzt'.

DHI Vessel motions MAPlus.dfs0	1			
DHL_Vessel_motions_MAPlus.dfs0 Calculations				
Calculator Sub-Series				5:Pitch - Body 1
1.2 Surge - Body 1 (meter	539	-0.0611097	0.312965	-0.00840636
Edit Expression	907	-0.0294897	0.234592	-0.0345091
1.0 Target Item: 13 V Inset Operand:	154	0.0125645	0.016524	-0.0465589
	981	0.0480659	-0.257849	-0.0397299
- L Vary Rock 1 [dograd]	021	0.0628937	-0.48128	-0.0179667
0.8	807	0.0521839	-0.573235	0.00834712
Expression	863	0.022064	-0.511047	0.0265037
0.6 Current Expression: i3 = i3-9.8	678	-0.0137817	-0.330278	0.0283158
	981	-0.0401098	-0.0956347	0.014816
0.4	186	-0.0471851	0.117346	-0.00550887
U.4 T	181	-0.0349695	0.239205	-0.0207545
i1: Surge - Body 1	855	-0.0116188	0.229562	-0.0213453
0.2	641	0.0114525	0.101325	-0.0055899
i4: Roll - Body 1	271	0.0247744	-0.0872086	0.0199699
0.0 distribution of the second s	894	0.0241335	-0.271266	0.0419368
In taw - bouy i	854	0.0123137	-0.389282	0.045999
	872 267	-0.0029604	-0.403497	0.0254377
-0.2 -	046	-0.0129482	-0.319622	-0.0141416
	182	-0.012542	-0.184791	-0.0563246
-0.4	889	-0.00258274 0.011463	-0.0581152 0.0141133	-0.0811863
	735	0.011463	0.0141133	-0.0756208
-0.6	612	0.0222261	-0.0277156	0.0109785
-0.0	092	0.0238417	-0.104001	0.010978
	092	-0.00370426	-0.104001	0.0596794
-0.8	121	-0.0228273	-0.171853	0.0885580
OK Cancel Help	273	-0.0228273	-0.196358	0.0870742
01:00 01:0	2/3			0.0040735
2016-01-01				Þ

Figure 2.23 Modifying position of vessel to accommodate local coordinate system of 3Dsolid.

- Change the item descriptions to meet MIKE Animator Plus requirements as follows:
 f. Click Edit → Properties ...
 - g. Change item type for item 1 (Surge) to be 'Geographical coordinate'
 - h. Change item type for item 2 (Sway) to be 'Geographical coordinate'
 - i. Change item type for item 3 (Heave) to be 'Item geometry 3-dimensional'
 - Leave item types for item 4 to item 6 as is (Angles)
 - k. Click OK and save file.

Properties								?
General Infor	mation							ОК
Title:								UK
								Cancel
Axis Informati	ion							Help
Axis Type:		Equidistant	t Cale	endar Axis 👻				
Start Time:		01/01/201	6.00	00.00				
Time Step:			U	[days]				
		0:00	0:01	[hour:min:sec]				
		0	.000	[fraction of sec.]				
No. of Times	tene:		4500		Axis Units:			
no. or ninos	stopo.							
Item Informat	ion							
	1	Name		-	•	1		
1	-			Тур	e	Un	_	
<u> </u>	Surge	- Body 1	Geo	graphical coordinate		meter		
2	Sway	- Body 1	Geo	graphical coordinate graphical coordinate				
2 3	Sway Heave	- Body 1 e - Body 1	Geo Iten	graphical coordinate graphical coordinate n geometry 3-dimens		meter meter meter		
2 3 4	Sway Heave Roll -	- Body 1 e - Body 1 Body 1	Geo Iten Ang	graphical coordinate graphical coordinate n geometry 3-dimens gles		meter meter meter degree		
2 3 4 5	Sway Heave Roll - Pitch	- Body 1 e - Body 1 Body 1 - Body 1	Geo Iten Ang Ang	graphical coordinate graphical coordinate n geometry 3-dimens gles gles		meter meter meter degree degree		
2 3 4 5	Sway Heave Roll - Pitch	- Body 1 e - Body 1 Body 1	Geo Iten Ang	graphical coordinate graphical coordinate n geometry 3-dimens gles gles		meter meter meter degree		
2 3 4 5 6	Sway Heave Roll - Pitch	- Body 1 e - Body 1 Body 1 - Body 1 Pody 1	Geo Iten Ang Ang	graphical coordinate graphical coordinate n geometry 3-dimens gles gles		meter meter meter degree degree		

Figure 2.24 Valid item descriptions in trajectory file for MIKE Animator Plus

2.12.2 Create a MIKE Animator Plus setup

The set of steps below outline how to create a new MIKE Animator Plus setup. The first task is to create a setup to display the initial conditions. After that the MIKE Animator Plus setup can be extended to make an animation by including time varying data.

Initial conditions

- 1. Open the MIKE Animator Plus editor. It can be located by searching for it in the Windows start menu.
- 2. Click 'File' \rightarrow 'Insert' \rightarrow 'Scene' and select the domain bathymetry file .\MAPlus**Domain.dfs2**
- 3. Highlight 'MIKE 21 file Domain.dfs2' in the property tree and double-click 'Bathymetry' to select to show bathymetry

🗟 MIKE Animator Plus	
File Insert View Help	
Application E Layout Scene E Data MIKE 21 file - Domain.dfs2 Objects	
File Projection	
Variables Bathymetry Animate	
Information name: MIKE 21 file - Domain.dfs2 geometry: regular orthogonal data points: 1539 data frames: 1	
Undo Apply P Auto apply	

Figure 2.25 Inserting and selecting bathymetry data in MIKE Animator Plus

- 4. Click on 'Scene' and select the 'Fill' tab. Click on 'Fountain fill' to change the colour of the background.
- 5. 'Select Scene mode' in the toolbar as shown in Figure 2.26 and change the viewpoint by click-and-drag in the graphics window.

RIKE Animator Plus	
File Insert View Help	
Application 당 Layout 너무 Scene 너무 Data 나와 MIKE 21 file - Domain.dfs2 너무 Objects Bathymetry	
Figure Fill View Flight path Lighting Projection Image: Solid fill Color Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Top color Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Image: Solid fill Imag	
Undo Apply 🔽 Auto apply	

Figure 2.26 View of domain bathymetry after changing the fill colour and viewpoint

- 6. Click 'File' \rightarrow 'Save Layout' and save the setup to the new file .\MAPlus\Vessel_motions.lyt
- 7. Right-click 'Scene' and select 'Load data..'

🗟 MIKE Animator Plus	
File Insert View Help	
Application Layout Application Layout Application Layout Application Data With View In.dfs2 Object Flight path Bathyn Load data. Delete View Ingerpath Lighting Projection V Solid fill Color Fountain fill Top color Bottom color	
Undo Apply F Auto apply	⊻₮ ◙@@ ◀◀₭■ਸ਼▸»◎

Figure 2.27 Adding data to existing scene

- 8. Select the file .\MAPlus**Waterlevel_2D.dfs2** and double-click the 'Water level' variable to display the item data in the graphics window
- 9. In the 'Surface' tab uncheck 'Mulit-color' and select 'Smooth' surface
- 10. Finally click the 'Color' button and change the Alpha value from 255 to 155 to include transparency of the water surface

RIKE Animator Plus	
File Insert View Help	
Application Layout Scene Data MIKE 21 file - Domain.dfs2 MIKE 21 file - Waterlevel_2D.dfs2 MIKE 21 file - Waterlevel_2D.dfs2 Bathymetry Water level Object Surface Contour Symbol Palette	
Vojeci Control Co	
☐ Wireframe ☐ Multi-color Color Line width 1.00 ☑ Antialias	
Undo Apply 🔽 Auto apply	<u>*************************************</u>

Figure 2.28 Transparent water level in the graphics window

- 11. Click 'File' \rightarrow 'Save Layout' and save the setup
- 12. Right-click 'Scene' and select 'Load data..'
- 13. Select the 3Dsolids file .\MAPlus**Ship-dhi.3ds** and double-click the 'Solids Model' variable to display the solids file in the graphics window

RIKE Animator Plus	
File Insert View Help HB Solids file - Ship-dhi.3ds • Objects Bathymetry • Water level Solids Model • Object Solids Trajectory Image: Visible Scale 1 Outline color Shift 0	
Size X extent 1408.534 [m] 1408.534 Y extent 373.669 [m] 373.669 Z extent 297.827 [m] 297.827 IF Uniform Scaling Reset Name Solids Model Image: Solids Model	
Undo Apply 🔽 Auto apply	

Figure 2.29 Initial view of Solids Model added to the graphics window

- 14. Now scale the Solids Model to resemble the outline of the vessel used in the Mooring Analysis simulations. Set the variables as follows:
 - a. Uncheck 'Uniform Scaling'
 - b. Set X extent to 223.8 m
 - c. Set Y extent to 32.4 m
 - d. Set Z extent to 35.6 m (twice the deck height)
- 15. To position the Solids Model correctly in the vertical for the initial time step, go to the 'Solids' tab and change the translation in the Z-domain to -9.8 m.
- 16. Click 'Objects' in the tree and change the Drawing order so the Water level is the last item drawn.

MIKE Animator Plus	
File Insert View Help	
Drawing order 📢 🖌 🕨	
Undo Apply V Auto apply	

Figure 2.30 View of Solids Model after scaling and repositioning from default values

17. Click 'File' \rightarrow 'Save Layout' and save the setup

Animation

- 1. Click 'Insert' \rightarrow 'Clock' to add a clock to the graphics window
- 2. Click the 'Select Layout mode' icon in the toolbar

🗟 MIKE Animator Plus	
File Insert View Help	
Application Layout Scene Data Data Dobjects Solids Model Water level Clock Figure File Object Text Typeface Arial Color B I Padding 4 [%] Format Date year month day Separator AM/PM C Offset 0 [h]	0000-00-00:00:00
Undo Apply 🔽 Auto apply	<u> </u>

- 3. In the 'Fill' tab un-check 'Solid fill'
- 4. Click-and-drag the Clock object in the graphics-window to a position in the upper left corner
- In the 'Clock' tab select the Source Figure to be 'Figure 1 Scene' and the Source File to be 'File 2 – MIKE 21 file – Waterlevel_2D.dfs2' (Now the clock will indicate the time stamp in the file while the animation is running)
- 6. Click the 'Play' button to watch the water level change in time

S MIKE Animator Plus	
File Insert View Help	
Application E Layout Scene B Data Clock - MIKE 21 file - Waterlevel_2D.dfs2	2016-01-01 01:00:44
Figure Fill Clock Source Figure Figure 1 - Scene File File 2 - MIKE 21 file - Waterlevel_2D.c▼ Object ▼	
Text Typeface Arial Color B I Padding 4 [%]	
Format Date year month day Time hour minute seconc AM/PM Offset 0	
Undo Apply 🔽 Auto apply	<u>₩ * ∞@@ (())</u> <

Figure 2.32 Animating time-varying water level with clock showing instant time step

- 7. Next click the Solids Model Object and select the 'Trajectory' tab.
- 8. Define the Movement to '6 parameters' and select the Source file .\MAPlus**DHI_Vessel_motions_MAPlus.dfs0**

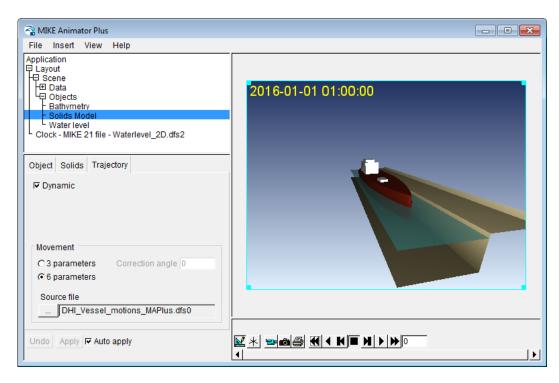


Figure 2.33 Specifying data file for vessel movement

- 9. Click the 'Play' button to watch the vessel move and water level change in time
- 10. Click 'File' \rightarrow 'Save Layout' and save the setup
- 11. Click Scene mode to rotate and position the domain to get the optimal view for you
- 12. Save the animation by clicking the 'Animate' button in the toolbar below the graphics window.
- 13. Save the file as e.g. Vessel_Motions.avi.
- 14. While the model records the animation the graphics window will be greyed out, and a progress bar appear in a new window.

MIKE Animator Plus		
File Insert View Help Application		
El avout		
-⊡ Scene -⊡ Data		
- P Objects		
- Bathymetry - Solids Model		
L Water level		
^L Clock - MIKE 21 file - Waterlevel_2D.dfs2		
	Recording in progress	
Data		
Files		
MIKE 21 file - Domain.dfs2	Progress	
MIKE 21 file - Waterlevel_2D.dfs2	Recording	
✓ Solids file - Ship-dhi.3ds		
	6%	
	Cancel	
Undo Apply V Auto apply		
ondo Appij ie nato appij		

Figure 2.34 Recording animation of vessel movement

- 15. When the recording is done click 'Close'.
- 16. The resulting animation file **Vessel_Motions.avi** can now be shown in e.g. Windows Media Player as shown in Figure 2.35.

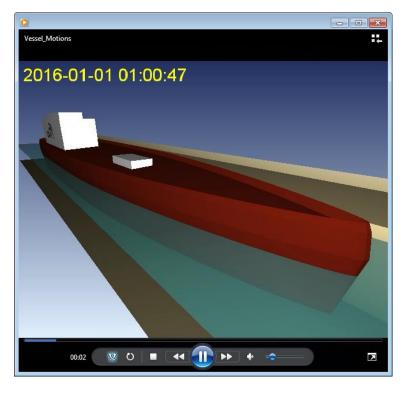


Figure 2.35 Recorded animation as shown in Windows Media Player

3 2D Wave Forcing (Port of Brisbane, Passing Vessel Induced Moored Vessel Motions)

This example is based on a scenario from the 2009 validation of physical model tests of passing vessel induced moored vessel interaction carried out for the Port of Brisbane, Australia presented in Mortensen et al (2009). The example files present a simplified version of the numerical validation.

The example consists of a passing vessel scenario where moored ship motions induced by the passing of a 47,000 m³ tanker were investigated at the Shell Berth in the Upper Lytton Reach of the Brisbane River.

This tutorial consists of three major sections:

- 1. Creating a passing vessel induced pressure field
- Running a MIKE 21 FM simulation to calculate passing vessel induced displacement waves
- Utilisation of the calculated displacement wave in M21 MA in order to calculate moored vessel motions, line and fender forces as a result of the passing vessel induced displacement waves.

3.1 Launch Frequency Response Calculator

As per Section 2.1, the first step in this analysis is to create an FRC setup to calculate the frequency determined response of the vessel.

- Create a new instance of the (.fresponse) editor or open the file DHI_Tanker.fresponse in the folder <example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\FRC\Setup
- 2. In the Vessel Configuration Dialog select the grid **1-3DHI.grd** located here:

<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\FRC\Inputs\VesselGrid\1-3DHI.grd

- 3. Set the water depth to 13.2m and Density of water to 1024.61 [kg/m³]
- 4. Click on the 'plus' symbol 🖭 to open the *Vessel 1* tab. Under Vessel Characteristics, enter the following parameter values

Table 3.1 Vessel Characteristics - Vessel 1

Parameter	Value	Unit	
Vessel Scaling (X-Dim)	1	dimensionless	
Vessel Scaling (Y-Dim)	1	dimensionless	
Vessel Scaling (Z-Dim)	1	dimensionless	
rxx	7.38	[m]	
гуу	46	[m]	
rzz	46	[m]	
Vertical Center of Gravity (ZG)	10	[m]	Relative to vessel keel
Draft	10	[m]	Relative to vessel keel
Deck plane height	14	[m]	Relative to vessel keel

Dialog: Computational Settings

- 5. Set Simulation Mode to : M21 Mooring Analysis compatible mode
- 6. Set Number of frequencies to solve to 512

Dialog: Wave Drift Forces

7. Ensure that Wave drift forces box is unticked. This is not necessary for this example

Figure 3.1 Wave drift forces checkbox

Dialog: Outputs

- 8. Ensure that the Vessel Response checkbox is ticked. This will output the *.vre* file required for the M21 MA simulation.
- 9. You may also wish to check the other boxes however, they are not essential for this example.
- 10. Run the simulation.

3.2 Prerequisite Tasks

Prerequisite Task 1 – Create vessel track

The first prerequisite task is to create the trajectory of the passing vessel and associated track boundaries for inclusion into the HD mesh. The track should comprise a sequence of coordinates of the centre of the vessel at each point in time and should be in a dfs0 format (equidistant calendar axis).

Note: The standard MIKE Zero time series editor only supports single precision for items, thus it can at times be necessary to represent the sail route coordinates in double precision, dependent on the associated projection. Double precision for items in a dfs0 time series file can be set through usage of the Time Series Package, which is available as a free, non-licensed download.

The general steps for putting a sail route into a dfs0 file in double precision are provided below:

- Create a new dfs0 file, with the standard time series (.dfs0) editor save the file as TrackCentre_8knots.dfs0. Include 2 items, name them 'Easting' and 'Northing' and set item type for both to 'Geographical coordinate' and provide the relevant start date and number of time steps.
- Go to http://mikepoweredbydhi.com, press Download and select the current release version. Download the Time Series Package:

gle mike by dhi download				👻 🛂 Search 🔹 🔣	Share More	»	
	and	MIKE 2016	Areas of applica	tion Products	Downloa	d MIKE Community	y Suppor
					GENERAL		
					DHIN	etwork License Manager	
						SDK	
						View	
					⊡ Time S	eries Package	

Figure 3.2 Download Time Series Editor

- Extract the downloaded file TimeSeriesPackage64bit.zip
- 4. Run the contained file setup.exe to complete the installation of the Time Series Package.
- 5. Launch the Time Series Editor from the start menu.
- Click File > Open -> Select dfs Timeseries Bridge and click OK. Now open file TrackCentre_8knots.dfs0
- 7. Set the precision of both Easting and Northing items to double precision, by doing this for each item:
 - Mark the item.
 - Right click -> Item Properties ...
 - On the item properties dialog, select Data Type = Type_Double and click OK

- Save the file

Geographical	coordinate		🖃 TSTabular Item	Selection		Time	Easting [m]	Northing [n
1.0 1			🖻 Sail Route (MGA-56)		1	27/02/2011 10:00:00.000	-1e-255	-1e-255
-		Easting [m]			In	2011 10:00:01.000	-1e-255	-1e-255
			Eastir Northi	Delete Item		2011 10:00:02.000		
0.8			i totali	Hide Item		2011 10:00:03.000		
1				Rename Item		2011 10:00:04.000	A	
0.6				Sector Sector		2011 10:00:05.000	-1e-255	
J.0 -				Item Propert	ies	2011 10:00:06.000	3	
1					10	2/102/2011 10:00:07.000	-1e-255	-1e-25
80	s							
ltem Name Data Type Value Type	Easting Type_Double					•		

Figure 3.3 Time Series Editor – Change item Type

8. Finally populate the Easting and Northing columns with the data values representing the sail route, and save the file:

You now have a file **TrackCentre_8knots.dfs0** with the Easting, Northing coordinates stored in double precision.

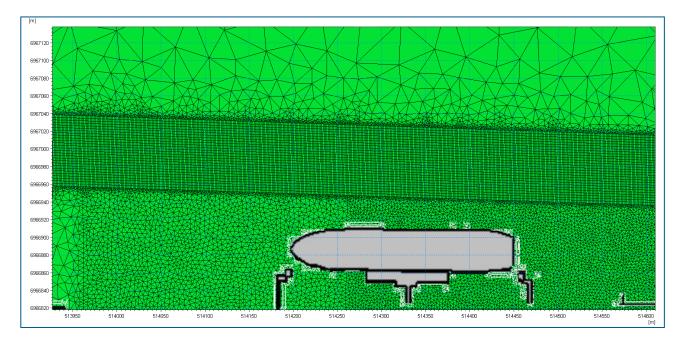
For the purposes of this example, a double precision version of the specific vessel track file is provided here:

<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\HD\PassingVessel**TrackCentre_8knots.dfs0**

Prerequisite Task 2 – Create HD mesh

Prior to creating a moving pressure field of the passing vessel, it is essential to first create a mesh on which the vessel will positioned at each time step. For the purpose of this stepby-step guide, a mesh file comprising the berth pocket and adjacent passing vessel trajectory has been provided here:

<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\HD\Bathy\2DExample_Mesh.mesh


The mesh was developed using a simplified, constant bathymetry, however, the complexity of the mesh layout was retained to provide an example of typical mesh requirements for such a passing vessel analysis.

The mesh is made up of three primary element types:

- 1. Coarse resolution triangular elements away from the moored vessel
- 2. High resolution triangular elements in the vicinity of the moored vessel
- 3. Quadrilateral mesh along the length of the vessel track

In order to prevent shock waves occurring from the introduction of the passing vessel into the model domain, it is recommended that the vessel track is created such that it extends well past the vessel, on either end. The quad mesh must be long enough to cover the entire vessel track. This is due to the fact that the engine for creation of the moving pressure field of the passing vessel, only supports a sail route which goes through quad mesh regions.

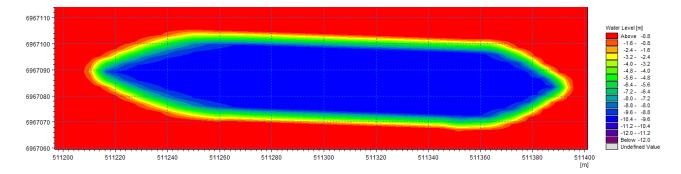
Figure 3.4 Extract from Port of Brisbane mesh showing the coarse mesh resolution further afield, high resolution in the vicinity of the moored vessel (visualised with graphics at the bottom of the plot), and quadrilateral mesh along the trajectory of the passing vessel

Instructions for mesh creation

This step by step guide does not provide detailed information on mesh creation, however, this is covered in the MIKE 21 HD FM manual.

To access this document go to:

- Start Menu -> Search for 'MIKE Zero Documentation Index'. The document will open in a web browser.
- From here, select MIKE 21 Documentation → MIKE 21 Flow Model FM → MIKE 21 & MIKE 3 Flow Model FM, Hydrodynamic Module, Step-by-Step, Training Guide


3.3 Create the Moving Pressure Field of the Passing Vessel

With the time series of the vessel position (vessel track) and mesh created, the next step is to create the moving pressure field.

For the purpose of modelling moving vessel induced displacement waves in MIKE 21 FM, the moving vessel can be represented by either a moving pressure field or a moving block of ice. In this tutorial the moving vessel will be represented by a moving pressure field. The moving pressure field for the passing vessel will be obtained through usage of a numerical engine in the MIKE installation PassingVessel.exe which as input requires a sail route trajectory in (.dfs0) format, a domain mesh (.mesh) and a panelised 3D vessel hull (.grd) file.

The first stage of the processing in the engine **PassingVessel.exe** will interpolate the 3D vessel hull onto a 3D stencil as illustrated in Figure 3.5. It should be noted that although the overall 3D shape of the vessel is well preserved, features such as the submerged part of the stern or bulb keel may be only partly represented.

A spatially and temporally varying pressure field is used to simulate the displacement of water caused by the moving vessel. The pressure field is generated from the vessel grid file containing the hull 3D geometry data, which is then interpolated to a 2D stencil in a dfsu format. Subsequently a pressure field representing the moving stencil is interpolated onto the mesh, with the vessel position's changing according to the pre-defined vessel track (the dfs0 based sail route trajectory).

In its current form, the Passing Vessel engine is a stand-alone engine without a user interface. So the engine can currently only be executed from the command line (batch mode). The steps below show how to run the Passing Vessel engine against the compatible input file (.m21pv) in batch mode by using a (.bat) file.

Follow the steps below to create the moving pressure field of the passing vessel:

1. Go to the folder

<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\HD\PassingVessel

- 2. Open the file **TrackCentre_8knots_1-3DHI.m21pv** with a text editor such as Notepad or Textpad. You will see that there are 7 main PFS sections in this file:
 - [DOMAIN]

- [VESSEL]
- [SIMULATION_TIME]
- [VESSEL_TRAJECTORY_DATA]
- [PHYSICAL_DATA]
- [COMPUTATIONAL_SETTINGS]
- [OUTPUT]

Dialog: Domain

3. Link to the file 2DExample_Mesh.mesh as below

```
[DOMAIN]
  file_name = |..\Bathy\2DExample_Mesh.mesh|
EndSect // DOMAIN
```

Dialog: Vessel

4. Link to the file 1-3DHI.grd and set the scaling parameters as below

```
[VESSEL]
vessel_grid = |.\1-3DHI.grd|
draft = 10
[VESSEL_SCALING]
x = 0.999
y = 1.038
z = 1
EndSect // VESSEL_SCALING
```

Dialog: Simulation Time

- 5. Set the *start_time* to 2011, 2, 27, 10, 0, 0
- 6. Set the number_of_timesteps to 540
- 7. Set the time_step_size to 1

```
[SIMULATION_TIME]
start_time = 2011, 2, 27, 10, 0, 0
number_of_time_steps = 540
time_step_size = 1
EndSect // SIMULATION TIME
```

Dialog: Vessel Trajectory Data

8. Set *type* to 0. This is currently the only mode supported in the passing vessel engine and is based on a dfs0 file (Equidistant calendar axis) containing 2 items which represents the sail route trajectory of the centre point of the vessel at each time step, with equidistant time steps. To check that the dfs0 has the correct format, open the dfs0 file and go to *File* →*Edit* →*Properties* and check that settings are as shown below.

File Pro	operties								? 🗙
Gen	neral Infor	mation							ОК
Title	e:		Matlab dfs() file					Cancel
Axis	: Informati	ion							Help
Axis	s Туре:		Equidistan	t Calend	dar Axis 🔹 👻				
Star	art Time:		27-Feb-201	1 10:00	0:00				
Tim	ne Step:			0 [c	days]				
			00:0	0:01 [ł	hour:min:sec]				
			0	.000 [f	fraction of sec.]				
No.	. of Times	teps:		609		Axis Units:		-	
ltem	n Informati	ion							
Г		N	lame		Туре		Unit	T	
1		Eastin	g	Geogi	raphical coordinate		meter	Instanta	
2		North	ing	Geogr	raphical coordinate		meter	Instanta	
•	Insert		III Append	I	Delete		Item	► Filtering	

Figure 3.6 Properties of input vessel track dfs0 file

- 9. Ensure that the projection is set to MGA-56.
- 10. Link the vessel_ file to the time series of vessel position TrackCentre_8knots.dfs0
- 11. Set *items* = 1, 2

```
[VESSEL_TRAJECTORY_DATA]
type = 0
projection = 'PROJCS["MGA-56",GEOGCS["Unused",DATUM["Australian
Datum",SPHEROID["Geodetic Reference System
1980",6378137,298.257222101]],PRIMEM["Greenwich",0],UNIT["Degree",0.01
74532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Ea
sting",500000],PARAMETER["False_Northing",10000000],PARAMETER["Central
Meridian",153],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_O
f_Origin",0],UNIT["Meter",1]]'
vessel_file = |.\TrackCentre_8knots.dfs0|
items = 1, 2
EndSect // VESSEL_TRAJECTORY_DATA
```

Note: The map projection string above must be obtained manually. The general and easiest way to obtain map projection strings is as follows:

- Open up a MIKE Zero window
- Under New File, select Mesh Generator (mdf)
- Under the dropdown list that appears, select the map projection that you would like to use and save the file
- Load the newly created .mdf file in a text editor
- Scroll to the section [MESH_DATA]. Under the item UTMZone you will see the projection string required for the passing vessel input file, which can now be copypasted.

Dialog: Physical Data

- 12. Set gravity_constant to 9.81
- 13. Set ambient_pressure to 1013.0
- 14. Set density_type to 1 Set to 1 to define a density value or 2 to derive from the temperature & salinity values
- 15. Set rho to 1024.61

If density_type is set to 2 then desired temperature and salinity values must be specified

```
[PHYSICAL_DATA]
gravity_constant = 9.81
ambient_pressure = 1013.0
density_type = 1
rho = 1024.61
temperature = 10.0
salinity = 32.0
EndSect // PHYSICAL DATA
```

Dialog: Computational Settings

- 16. Set mesh_x_resolution to 0.1 [m]
- 17. Set mesh_y_resolution to 0.1 [m]
- 18. Set interpolation_threshold to 0.05
- 19. Set include_max_pressure_difference to 0
- 20. Set include_soft_start_duration to 0

```
[COMPUTATIONAL_SETTINGS]
mesh_x_resolution = 0.1
mesh_y_resolution = 0.1
interpolation_threshold = 0.05
include_max_pressure_difference = 0
max_pressure_difference = 3
include_soft_start_duration = 0
soft_start_duration = 30.0
EndSect // COMPUTATIONAL SETTINGS
```

Dialog :Output

The following default outputs are specified:

- Vessel_pressure_field.dfsu this file represents the moving pressure field of the passing vessel and contains three items: Wind X, Wind Y and Pressure
- Global_initial_WL.dfsu water level file of the initial position of the moving vessel (used as initial condition in MIKE 21)
- Vessel_orientation.dfs0 The engine produces a timeseries (dfs0) file showing a time-series of the first order time derivative of the vessel azimuth. The curve is a quantification of the magnitude of the rotation of the vessel in each time step. The value should be less than at least 10⁻³ in order to avoid shockwaves in the MIKE 21 simulations.
- Vessel_log.dfs0

Local_Vessel_WL.dfs2

```
[OUTPUT]
   [MOVING PRESSURE FIELD]
     file_name = 'Vessel pressure field.dfsu'
  EndSect // MOVING PRESSURE FIELD
  [INITIAL WATER LEVEL]
     file_name = 'Global_initial_WL.dfsu'
  EndSect // INITIAL_WATER_LEVEL
   [VESSEL ORIENTATION]
     include = 1
     file_name = 'Vessel orientation.dfs0'
  EndSect // VESSEL_ORIENTATION
   [VESSEL LOG]
      file_name = 'Vessel log.dfs0'
  EndSect // VESSEL LOG
   [LOCAL VESSEL WATER LEVEL]
     include = 1
     file_name = 'Local_Vessel_WL.dfs2'
  EndSect // LOCAL_VESSEL WATER LEVEL
   [SOFT START]
     include = 1
     file_name = 'Vessel_pressure_field_soft_start.dfsu'
  EndSect // SOFT_START
EndSect // OUTPUT
```

The passing vessel input file is now complete and the passing vessel simulation is ready to be run.

Steps (continued)

21. Double click on the .bat file Run Passing Vessel.bat, located here:

<example installation folder>\MIKE Zero
Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave
Forcing\HD\PassingVessel\Run Passing Vessel.bat

The following window will pop up, dynamically updating the remaining time for completion of the simulation. Once the simulation is completed, a log file will be generated, with details of the simulation. The output files listed above will be located in the results folder.

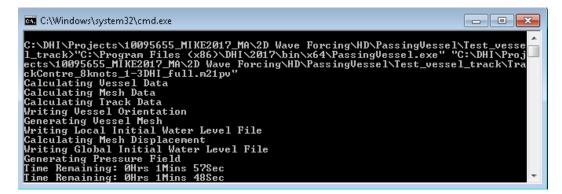
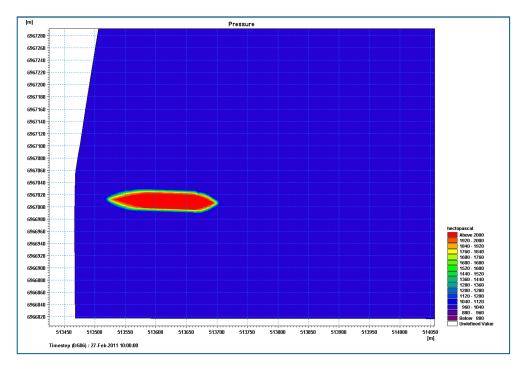
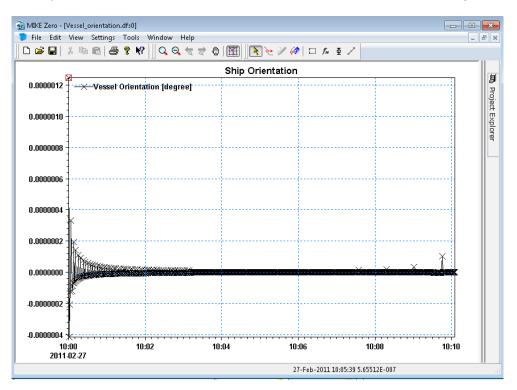



Figure 3.7 Passing Vessel engine (Passingvessel.exe) - working messages


22. Check that the pressure field generated has three items (Wind X, Wind Y, Pressure). The 2 Wind composant items will be 0, whereas the Pressure item will show the

vessel moving through the pressure field as seen in Figure 3.8 below. This dfsu file will be used in the ensuing HD simulation.

Figure 3.8 Vessel Pressure field dfsu - Pressure item

23. Open the Vessel_orientation.dfs0 file and ensure that the values are very small.

3.4 HD Simulation – Create the Displacement Wave

With the moving pressure field now created, a hydrodynamic (HD) simulation will be undertaken to create the displacement wave caused by the passing vessel, which then propagates to the adjacent berth pocket and impacts the moored vessel. For the purpose of this step-by-step guide, the MIKE 21 FM simulation file **PassingVessel Example.m21fm** has been provided here:

<example installation folder>\MIKE Zero Projects\MIKE_21_Maritime\MooringAnalysis\2D Wave Forcing\HD\Setup**PassingVessel_Example.m21fm**

Alternatively, create a new MIKE 21 FM simulation file by opening MIKE Zero -> Click on 'New' and select 'Flow Model FM (m21fm)', and save the file as PassingVessel_Example_Username.m21fm in the folder.

🚰 New File				×
Product Types:	Documents:	Spectral Waves	Boussinesq Waves (.bw)	Elliptic Mild Slope Wa
MIKE 3 MIKE 21/3 Integrated Models LITPACK MIKE FLOOD MIKE SHE	Parabolic Mild Slope Wav Sediment T	Curvilinear Flow Mo	MIKE 21 Toolbox (.21t)	
Flow Model FM			ОК	Cancel

Edit the file according to the following steps.

Figure 3.10 Creating a new MIKE 21 FM model

- 1. In the 'Domain' window, select the mesh file created earlier.
- 2. In the 'Time' window set the '*No. of time steps*' to be equal to the number of time steps in the .dfs2 file created by the moving pressure field tool.
 - Set the 'No. of time steps' to 539.
 - Set the '*Time step interval*' to 1 second.
 - Set the 'Start date' to 27-02-2011 10:00:00
- 3. Save the setup.
- 4. Select '*Higher Order*' scheme for both Time and Space in '*Solution Technique*'. Reduce the maximum time step to 1 second.
- 5. Deactivate Flood & Dry.

6. Select Wind Forcing to be 'varying in time and domain' and select the newly created moving vessel pressure field dfsu file:

<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\HD\PassingVessel\TrackCentre_8knots_1-3DHI.m21pv - Result Files\Vessel_pressure_field.dfsu

7. Set initial condition as 'Spatial varying surface elevation' and select the created initial water level file.

<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\HD\PassingVessel\TrackCentre_8knots_1-3DHI.m21pv - Result Files\ Global_initial_WL.dfsu

- 8. Generate Boundaries:
 - Go to 'Boundary Conditions'.
 - Under Land boundary ensure the Type is set to 'Land (zero normal velocity)'.
- 9. Create a new output called 'Vessel_Induced_Flux', which should include a 2D extraction of *Total water depth, P flux and Q flux* for the entire model domain. Under the tab *Output Specification,* Set *Field Type* to 2D (horizontal) and *Output format to* Area series.
- 10. Generate an output called '*Wave Gauges*'. The output section should include a point output of surface elevation for the two following points (MGA-56):

Easting	Northing	Name
514327.8	6966882	Wave Gauge 1
514475.7	6966858	Moored Vessel

- 11. Click 'Run' and start the simulation.
- 12. The simulation will generate an output dfsu file called Vessel_Induced_Flux.dfsu containing the three selected flux variables. In order to input this data into M21 MA, the dfsu file must be converted into a dfs2 file (structured grid file). Go to MIKE Zero homepage. Click on 'New' → select 'Grid Series (.dfs3,dfs2)'.

Rew File					×
Product Types:	Documents:				
MIKE Zero MIKE HYDRO MIKE 11 MIKE 21 MIKE 21 MIKE 21/3 Integrated Models LITPACK MIKE FLOOD MIKE SHE	Time Series (.dfs0) Result Viewer (.rev) EVA Editor (.eva)	Profile Series (.dfs1) Bathymetries (.batsf) Mesh Genera	Data Manager (.dfsu,.mes Climate Chan Data Extraction	Grid Series (.dfs3,.dfs2) Ecolab (.ecolab) MIKE Zero Toolbox (.mzt)	Plot Composer (.plc) Auto Calibrati
Grid Series				ОК	Cancel

Figure 3.11 Convert dfsu file to dfs2 grid – step 1

- 13. Double click, select '*From Dfsu File*' and link to the dfsu created by the MIKE 21 FM simulation.
- 14. When prompted, input the following parameters.

Projection	MGA-56
Easting Origin	514339
Northing Origin	6966809
Rotation	0.067
Spacing in J-dir. and K-dir	2 m
No. of grid points J-dir	136
No. of grid points K-dir	45

- 15. Click Next until Step 5 then click *Finish*. This concludes the mapping of data from the original (.dfsu) file to a (.dfs2) file with the desired properties. This (dfs2) file now contains the flux due to a passing vessel induced wave.
- 16. M21 MA uses FFT when calculating the incident wave forcing. In order to capture the entire simulation we will use 4096 time steps in the FFT analysis. This is done as follows:
 - Make a copy of the newly created dfs2 file.
 - Select *Edit->Time Steps* and select the first time step.
 - Click the *copy* radio button and select *before*.
 - Then type in the number of time steps required to reach 4096 (eg. 3556) and press *Insert*.
 - Save the dfs2 file as 'Grid1_Extended.dfs2'.

3.5 Overview of MIKE 21 Mooring Analysis (MA) Steps

In order to run the MIKE 21 MA simulation with 2D forcing successfully, a number of steps must be followed. These are outlined below and the step by step guide is structured to provide the user with an understanding of the sequence and method for undertaking the more complex M21 MA simulations, coupled to the usage of other MIKE models.

The ensuing guide is structured as follows:

- 1. Prerequisite Task Access to mooring line and fender profiles
- 2. Launch MIKE 21 MA
- 3. Specify mooring line and fender profiles
- 4. Setup the Mooring System
- 5. Specify Environmental Conditions
- 6. Run simulation in Convergence mode
- 7. Run simulation in Final computation mode

3.6 Prerequisite Task – Access to Mooring Line and Fender Profiles

For this example mooring line and fender profiles are given, but for general usage the M21 MA includes access to a comprehensive selection of standard mooring lines and fenders which the user can select. Mooring line stiffness curves have been digitised from OCIMF guidelines (OCIMF, 2008) and fender compression curves were obtained from Trelleborg manuals.

Non-standard mooring lines and fenders can if needed be custom-made and included in the model as time series (dfs0 – relative item axis) of percentage elongation (mooring lines) and compression (fender) as x-axis and percentage of reaction force as item 1.

Figure 3.12 and Figure 3.13 show examples of the line and fender curves supported in M21 MA.

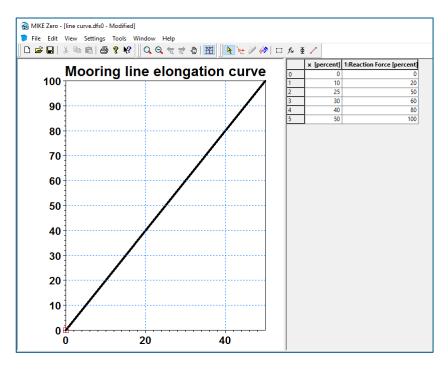


Figure 3.12 Linear Mooring line elongation curve – dfs0 for input into M21 MA

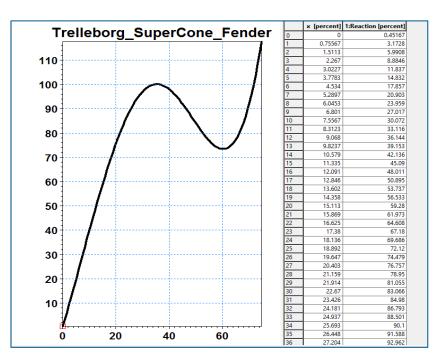


Figure 3.13 Trelleborg Supercone Fencer compression curve – dfs0 file for input into M21 MA

3.7 Launch MIKE 21 MA

Similarly to the Frequency Response Calculator editor (.fresponse), the MIKE 21 Mooring Analysis editor (.m21ma) is also found under the Maritime subgroup of MIKE 21.

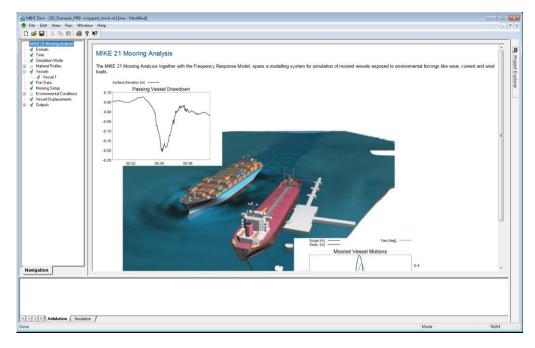

🚰 New File		— ×
: Product Types:	Documents:	
MIKE Zero MIKE HYDRO MIKE 11 MIKE 21 Maritime MIKE 3 MIKE 21/3 Integrated Mo IITPACK III	M21 Mooring Analysis Model (.m21ma,.m21 ma)	
M21 Mooring Analysis Model		
	ОК	Cancel

Figure 3.14 Location of MIKE 21 Mooring Analysis setup editor

The set of steps below outline how to create a new MIKE 21 Mooring Analysis (M21 MA) setup.

1. Open a new instance of the (.m21ma) editor as showed in Figure 2.4, by clicking OK. The M21 MA main page (Figure 3.15) should appear on the screen.

Figure 3.15 M21 MA main page

2. Load the provided tutorial file:

<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\M21MA\Setup**2D_Example.m21ma**

Alternatively

Start saving the file: Select 'File' -> 'Save' and save the filename in the root folder

<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\M21MA\Setup\2D_Example_*username*.m21ma

Take care not to overwrite the tutorial file

Dialog: Domain

In the 2D mode, M21MA displays the vessel within the 2D grid domain so that the user can clearly see the position of the ship in the domain where the spatial wave file extent applies. The first step is that a (dfs2) grid file comprising the bathymetry of the port/berth pocket must be loaded into the 'Domain' dialog. This domain file can be created by importing the (.mesh) file from the MIKE 21 FM setup into the mesh generator and exporting it as a (.dfsu) file with a Bathymetry item. The resulting (.dfsu) file can then be mapped into the (.dfs2) format, with the exact same settings as those we applied when mapping the wave file from (.dfsu) to (.dfs2) in Section 3.4.

This domain file will dictate the coordinate projection of the wave (dfs2) file, as in all other structured grid based M21 models. The user may then use the 'Plot extent' function to plot the area in the immediate vicinity of the vessel.

1. Load the file and apply the custom settings seen in Figure 3.16

<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\M21MA\Inputs**Domain\Domain.dfs2**

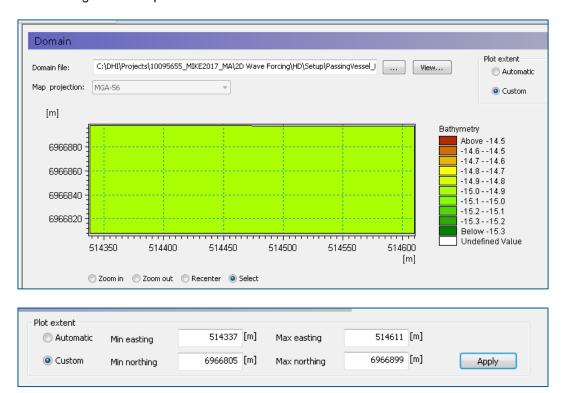


Figure 3.16 Domain window

We will skip the 'Time and Simulation mode' dialogs and return to them once the mooring system has been set up.

3.8 Specify Mooring Line and Fender Profiles

Dialog: Material Profiles

1. Click on the tab *Line Profiles, click new profile* and then click *Go to* button on the table that record appears

Li	ne Profile	es	
	Profile No.	Name	Edit
	1	Line1	Go to

- 2. This will open up a separate tab for *Line 1* where these properties of the mooring line profile should be set.
 - Set the Total Breaking Strength to 148 [t]
 - Set the Failure Load to 50 [%]

- Set the Linear damping coefficient to 0 [kg/s]
- Set the Quadratic damping coefficient to 0 [kg/m]
- Click on the Select button and load the file line curve.dfs0 here:
 <example installation folder>\MIKE Zero
 Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave
 Forcing\M21MA\Inputs\Material Profiles\line curve.dfs0
- 3. Click on Fender Profiles, click new profile and then click on the Go to button
- 4. This will open up a separate tab where these properties of the fender profile should be set:
 - Set the Max reaction force to 4900 [kN]
 - Set the Max deflection to 1 [m]
 - Set the failure deflection to 100 [%]
 - Fender friction coefficient to 0.45
 - Linear damping coefficient to 0 [kg/s]
 - Click on the Select button and link to the file fender curve.dfs0 here: <example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\M21MA\Inputs\Material Profiles\fender curve.dfs0

For the purposes of this example, linear mooring line and fender curves have been used.

Dialog Vessels

The Vessels dialog requires the user to select the vessel response file generated with FRC and it will subsequently show the involved vessels in the table records.

- 1. Click on the Vessels dialog
- 2. Under *vessel response file*, click on the button and select the (*.vre*) file created from the earlier FRC run. This should be located in the results subfolder here

<example installation folder>\MIKE Zero Projects\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing\FRC\Setup

From here, click on Go to

- 3. This will load the *Vessel data* tab representing the properties of the (to be) moored vessel. From here:
 - Set Longitudinal area (wind) to 1200 [m²]
 - Set Transverse area (wind) to195 [m²]
 - Set *Lpp* to 189.6 [m]
 - Set the Loading condition to 0 [%]
 - Select the vessel class '*VLCC conventional*' from the following available vessel classes in the drop down list shown below

Vessel 1		
Vessel data	Spatial attributes	Vessel view
Longitudina	l area (wind)	1200 [m²]
Transverse	area (wind)	195 [m²]
Lpp		189.6 [m]
Loading condition		0 [%]
Vessel class		VLCC conventional
-Vertical pa	arameters	Bulk Carrier VLCC Cylindrical
Vertical	center of gravity	VLCC conventional Container General Cargo Gas Carrier Prismatic
Water	depth	Gas Carrier Spherical
Draft		10 [m]
Deck pl	ane height	15 [m]

Figure 3.17 Vessel data tab showing available vessel class selection

- Set the Deck plan height to 15 [m]
- 4. Go to the Spatial attributes tab
- 5. Copy and paste the following values for fairleads and winches into the corresponding tables. **Note**: This data can also be loaded into the table if available in xyz format. The *symbol orientation* value allows the user to rotate the symbol of the connection point in the next tab *Vessel View*.

Table 3.2	Fairlead	coordinates
-----------	----------	-------------

Name	X [m]	Y [m]	Z [m]	Symbol orientation
Fairlead 1	91	5.8	20	0
Fairlead 2	-97	9.7	18.5	0
Fairlead 3	77	14	19.2	0
Fairlead 4	-82	13.4	18.5	0
Fairlead 5	48	15.1	18.5	0
Fairlead 6	-53	15.2	18.5	0

Table 3.3 Winch coordinates

Name	X [m]	Y [m]	Z [m]	Symbol orientation
Winch 1	86	5.8	20	0
Winch 2	-79	9.7	18.5	0
Winch 3	78	-1	19.2	0
Winch 4	-82	4.4	18.5	0
Winch 5	48	4.3	18.5	0
Winch 6	-53	5.5	18.5	0

Dialog: Vessel View

This third tab in the Vessel window shows the position of the fairleads and winches with respect to the mean deck level (defined by the deck plane height value) (red line) and waterplane (defined by draft) of the vessel (orange). Note that only the mean deck level has been shown here and that simultaneous visualisation of multiple deck levels is not supported. Often, the far most fore/aft fairleads are located on higher decks. In this case, they will thus appear as located outside the red line.

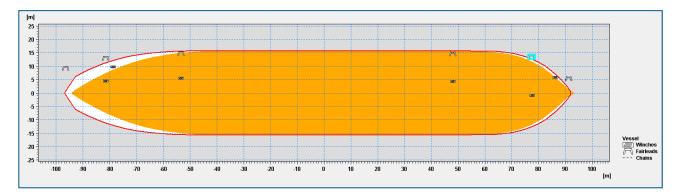


Figure 3.18 Vessel view window showing waterplane area (orange), mean deck level (red) and position of fairleads and winches

Dialog: Port Data

The Port data tab allows the user to position and visualise the bollards and fenders within the model domain.

- 1. Click on the Port Data tab.
- 2. Set the Map Projection to MGA 56 for both bollards and fenders.
- 3. Copy and paste the following data into the bollard and fender tables correspondingly.

Name	X [m]	Y [m]	Z [m]	Symbol orientation
Bollard 1	514385.53	6966835.65	4	90
Bollard 2	514594.93	6966835.10	4	90
Bollard 3	514411.20	6966807.42	1.9	90
Bollard 4	514570.40	6966807.13	1.9	90
Bollard 5	514476.63	6966836.64	4	90
Bollard 6	514505.43	6966836.31	4	90

Table 3.5 Fender coordinates, profile and Symbol orientation

Name	X [m]	Y [m]	Z [m]	Symbol orientation	Force dir. [deg]
Fender 1	514448.54	6966839.46	2	0	90
Fender 2	514533.54	6966839.43	2	0	90
Fender 3	514476.74	6966839.45	2	0	90
Fender 4	514505.44	6966839.44	2	0	90

4. Under *Fender profile*, select the Fender profile created in the Material Profiles. M21 MA allows the user to create several fender profiles from which to select. This also allows different fender types to be used within the same berth layout.

3.9 Setup Mooring System

Now that both vessel and shore based connection points have been specified, it is time to connect the entire mooring system together. The Mooring setup dialog allows the user to position the vessel in the domain correctly, create the mooring setup and visualise the vessel, connection points and bathymetry in the same window.

Dialog: Mooring Setup (Mooring line data tab)

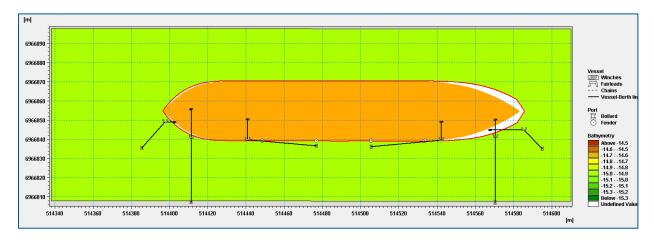

5. Create the mooring arrangement as below

Table 3.6 Mooring setup for M21 MA 2D example

Name	Vessel	Bollard	Fairlead	Winch	Line profile	Line pretension [t]	Tail profile
Line 1	Vessel 1	Bollard 1	Fairlead 1	Winch 1	Line1	10	None
Line 2	Vessel 1	Bollard 2	Fairlead 2	Winch 2	Line1	10	None
Line 3	Vessel 1	Bollard 3	Fairlead 3	Winch 3	Line1	10	None
Line 4	Vessel 1	Bollard 4	Fairlead 4	Winch 4	Line1	10	None
Line 5	Vessel 1	Bollard 5	Fairlead 5	Winch 5	Line1	10	None
Line 6	Vessel 1	Bollard 6	Fairlead 6	Winch 6	Line1	10	None

- 6. Click on the Vessel position and mooring lines tab.
- 7. Specify the following vessel coordinates:
 - Easting 514488.88217
 - Northing 6966854.824764
- 8. Set the vessel rotation to 180 deg.
- 9. The image shown in Figure 3.19 should show up on your screen showing the berth pocket depth (constant 15m), vessel and shore based connection points and the vessel position.

3.10 Environmental Forcings

Dialog: Environmental conditions

This dialog defines the environmental forcings on the vessel i.e. wind, currents, first order waves and 2nd order wave drift forces.

- 1. Physical Parameters dialog:
 - Set Density of water to 1024.61 [kg/m³]
 - Set Density of air to 1.28 [kg/m³]
 - Set Viscosity (water) to 1e-006 [m²/s]
 - Set Viscosity (air) to 1.48e-005 [m²/s]
- 2. Leave the *Drift Forces* checkbox unticked

For the purposes of this example we will not be using current or wind files as inputs to the M21 MA simulation. Therefore, leave these two dialogs set with '*No current*' and '*No wind*', respectively.

Now that the mooring setup is ready and the environmental forcings have been included, the next step is to find the equilibrium position of the vessel under the proposed mooring system. This is outlined further in the following.

3.11 Vessel Convergence

In practice, to ensure an even load distribution amongst the mooring lines, the tension in the mooring lines is manually adjusted by winching in the ropes until the vessel is idle. In M21 MA, this process is done as an automated convergence process which finds the equilibrium position of the vessel under the proposed mooring system and forcings, except for the influence of first order waves.

To do so, we will setup a convergence simulation. This will have a separate runtime and simulation mode and results from this will be used as an initial condition to the final M21 MA computation. The M21 MA simulation must be run in *convergence mode* prior to running in *Final computation mode* to ensure a reasonable initial vessel displacement, which during the final computation mode leads to more accurate modelling of the moored vessel motions.

Simulation Mode				
Simulation mode				
Convergence mode				
Final computation mode				

Figure 3.20 Simulation Mode - Convergence

Please follow the steps below to run the simulation in convergence mode:

Dialog: Time

- 1. Set the No. of Timesteps to 100
- 2. Set the Time step interval to 1
- 3. Set the *Simulation start date* to 27-Feb 2011 10:00:00. This must match the date in the HD simulation.
- 4. Set the No. of warm up steps to 0
- 5. Set the No. of warm down steps to 0

Dialog: Simulation Mode

6. Set the Simulation Mode to *Convergence mode* as shown in Figure 3.20.

Dialog: Convergence Parameters

- 7. Set the Max no. iterations to 100
- 8. Set the *Line convergence threshold* to 0.5 [%] This sets the simulation to converge when the dynamic line tensions in all lines are within 0.5% of the specified pretension values.

Dialog: Vessel Displacements

9. Apply default parameters

Dialog: Outputs

- 10. Select the following output files:
 - Convergence_line_pretension_deviation.dfs0
 - Convergence_lforces.dfs0
 - Convergence_Vessel 1_motions.dfs0

In the MIKE ribbon, Go to $Run \rightarrow Start Simulation \rightarrow OK$. The simulation will run and a summary will appear in the simulation window at the bottom of the MIKE page. A message *Successful Completion* will appear. Check that the final line forces (*Convergence_Iforces.dfs0*) are within 0.5% of the specified value and that the convergence deviation values (*Convergence_line_pretension_deviation.dfs0*) are small.

Figure 3.21 Final line pretensions after successful convergence shown in Convergence_lforces.dfs0 file

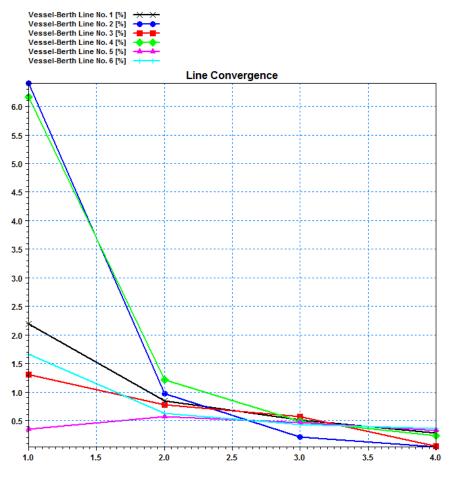


Figure 3.22 Convergence deviation values shown in Convergence_line_pretension_deviation.dfs0 file

Note: If a Convergence Mode run is not executed prior to the final time-domain computation (Final computation mode), the mooring system can cause the vessel to move. This will change the tension in each mooring line. For unbalanced mooring systems, the vessel response can be so significant that tension in some lines disappear completely. The subsequent vessel response in an incident wave/current/wind field will resultantly be significant different to specified design conditions and will most often be regarded as a serious flaw in the model setup.

3.12 Final M21 MA Simulation

Once the vessel has successfully converged, we are now ready to run the final M21 MA simulation. Please follow the steps below.

Dialog: Time

- 1. Continue using the 2D_Example.m21ma, or alternatively skip the following steps 2-11 and use the prepared setup final_2D_Example.m21ma
- 2. Set the No. of Timesteps to 16380
- 3. Set the *Time step interval* to 0.25
- 4. Set the *Simulation start date* to 27-Feb 2011 10:00:00. This must match the date in the HD simulation
- 5. Set the No. of warm up steps to 50

6. Set the No. of warm down steps to 0

Dialog: Simulation Mode

7. Set the Simulation mode to Final computation mode

Dialog: Wave

- 8. Go to the *Wave* tab dialog:
 - Click on the dropdown list for *Wave type* and select Wave field
 - Click on the box to include warm up/down:

📝 Include warm up/down

- Set Format to Varying in time and domain
- Set Lower frequency to 0 [Hz]
- Set Upper frequency to 0.5 [Hz]
- Set Power (N) to 12. This sets the FFT size (2^N) to 4096

Under Data file and items, click on the *Select* button and select the newly created Grid file. Select the grid (.dfs2) file from Section 3.4 where the time steps were extended to 4096 steps.

📸 Open				×		
Look jn:	PassingVessel_ExamplePRB_	cropped_mesh. 👻	G 🤌 📂 🛄 -			
An	Name		Date modified	Туре		
	🝞 Grid_Domain_15.dfs2		25-Oct-2016 14:39	MIKE Zerc		
Recent Places	🦻 Grid1.dfs2		26-Oct-2016 13:19	MIKE Zerc		
	Grid1_ Extended.dfs2		26-Oct-2016 13:20	MIKE Zerc		
Desktop						
Desktop						
Libraries						
Computer						
Network	•			F		
	File name: Grid1_Extende	:d.dfs2	-			
	Files of type: 2D grid files (*.					
		,				
	Select Item Period Info. Item Info. Constraints Info.					
	Title: Output 1	-				
	File Type: Equidistan	-				
		I 14.	em	-		
	Water Depth Total water depth					
	P Flux P flux					
	Q Flux	Q flux	•			
		Cancel				
	1			ОК		

Figure 3.23 Selecting wave input file for M21 MA simulation

9. Save the setup file.

If you have followed the steps shown in the guide, the wave file should have the correct

time and items and a green tick symbol will appear www in the GUI tree in the M21 MA editor. If this does not appear, go to the *Constraints Info* tab shown in Figure 3.23. This will show you exactly which item/setting is causing M21 MA to reject the input file.

Dialog: Vessel Displacements

10. Click on the 'load' button to load the initial (equilibrium) position of the vessel, obtained from the previous convergence mode simulation. You should see the numbers load automatically in the table as per Figure 3.24. Make sure that these values are very small.

Initial vessel displacement										
	Load displacen	nents from converger	nce results	Load						
	Vessel No.	Name	Surge [m]	Sway [m]	Heave [m]	Roll [deg]	Pitch [deg]	Yaw [deg]		
	1	Vessel 1	0.021418973	0.014153916	-0.00254294	-0.17890295	-0.00015190	-0.04428192		

Figure 3.24 Initial displacement of moored vessel

Dialog: Outputs

- 11. Select the following outputs:
 - Iforces.dfs0
 - fforces.dfs0
 - Vessel1_motions.dfs0
 - Vessel1_mforces.dfs0
 - Vessel1 selev.dfs0
 - Vessel1_diff_forces.dfs0
- Go to Run → Start Simulation and click OK. A summary of the run will appear in the window and a 'Successful Completion' should appear.
- 13. Check either the log file (created automatically in the .m21ma setup folder) or the Simulation window, to make sure that neither the fender compression nor mooring line tensions exceeded acceptable levels.
- 14. Open the newly created *Vessel1_motions.dfs0* file and plot the *Surge, Sway and Yaw motions.* You should see that the vessel is stable until around 11:05 when the passing vessel generated displacement waves arrive at the berth and induce a large surge motion of the moored vessel. Motions in the other degrees of freedom are relatively small. Your plotted surge, sway and yaw motions should appear as shown in Figure 3.25.

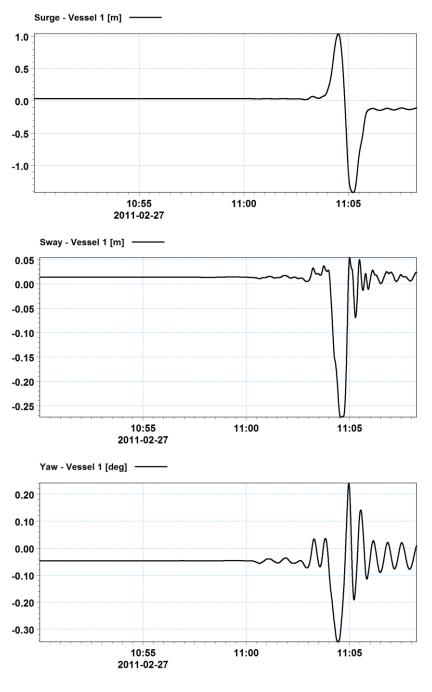


Figure 3.25 Passing vessel induced moored vessel motions - surge, sway and yaw

3.13 Visualise Vessel Movements in 3D

It is possible to visualise the vessel movements by using MIKE Animator Plus. MIKE Animator Plus is a digital video production studio that enables you to turn e.g. MIKE 21 model results into 3D video presentations.

The results from the MIKE 21 Mooring Analysis module include a time series file with vessel motions. By using information from this together with a 3D solid representing the vessel, and data files with bathymetry and time-varying water level it is possible to use

MIKE Animator Plus to create an informative animation of the vessel movements for the given mooring situation.

The following sections describe how to setup MIKE Animator Plus to visualise the findings from the MIKE 21 Mooring Analysis model.

Note that you can still visualise the data if you do not have a license for MIKE Animator Plus, however in that case a DHI icon will be displayed in front in the graphics window.

All references to file locations in the following are given with reference to the top folder .\MIKE_21\Maritime\MooringAnalysis\2D Wave Forcing.

3.13.1 Generate input files for MIKE Animator Plus

Before opening MIKE Animator Plus you must ensure the input data files fits the purpose. This example displays the results for 9 minutes at the end of the simulation. For better overview in the MIKE Animator Plus setup, new files are saved to the folder dedicated the MIKE Animator Plus setup: \MAPlus.

Domain area

The wave forcing simulation is carried out using the MGA-56 map projection, and the vessel location is defined as (514488.88 m, 6966854.82 m). However, the vessel motion output from the mooring simulation is always defined relative to the local amidship position of the vessel with an origo of (0,0). In order to show the vessel movements together with the 2D wave forcings, the two types of input must relate to the same coordinate system.

An easy way to do this is to define a local map projection, based on the MGA-56 coordinate system, but with a different origin corresponding to the ships local origo. This can be achieved by modifying the false easting and northing as follows:

New False Easting = Old false Easting – Easting ship New False Northing = Old False Northing – Northing Ship

The file **MGA56_Local.prj** reflects the local coordinate system described above and must be imported into MIKE Zero before further use:

- 1. Open MIKE Zero and select File \rightarrow Options \rightarrow Edit Map Projections ...
- 2. Select Import Projection File...'
- 3. Select the file MGA56_Local.prj and press OK.

Now you can use this map projection in files for the MIKE Animator Plus setup.

Surface elevation

The surface elevation and bathymetry for the MIKE Animator Plus setup are derived from the previously calculated wave forcing:

- 1. Go to MIKE Zero and open the file 'Grid1_Extended.dfs2'.
- 2. Select Tools \rightarrow Crop...
- 3. Select the item 'Total water depth' and set the start date as **2011/02/27 10:59.16**', corresponding to the last 540 time steps. Press OK.

Crop					×
Spatial Crop to v Crop to c	oordinates: j	c: 0	max: 135 44		OK Cancel Help
Item Item P flux Q flux					
Date: Time step:		0:59:16 🔷 🗸	To: 2011/02/27 4095	7 11:08:15 🔷 🗸	

Figure 3.26 Cropping data to relevant extent

- 4. Select Edit → Time steps...
- 5. Change the Start Time to **2011/02/27 10:00:00** and press OK.
- 6. Select Edit → Items...
- 7. Change the Item description and Item type to Water level and press OK.
- 8. Select Tools → Calculator...
- 9. Specify the expression **s** = **s-15** in order to derive the water surface. Go to the 'Sub-Set' tab and make sure to select all time steps. Then press OK.
- 10. Select Edit → Geographical Information...
- 11. Select the newly imported map projection **MGA56-Local**, press Open and OK.
- 12. In the pop-up window, select to 'Keep "Geographical coordinates" and derive "Map projection coordinates". This will result in a new origin for the 2D data as (-149.88 m, -45.82 m) in the local coordinate system.

Edit Properties	X	
Geographical Information		
Map Projection		
Туре:	MGA-56-Local 🗸	
Origin and Orientation		
Geographical Coordinat	es	
Synchronize Coordinates		
 Update both "Geographical Coordinates" and "Map Projection Coordinates" to match the origin of the new map projection Keep "Map Projection Coordinates" and derive "Geographical Coordinates" Keep "Geographical Coordinates" and derive "Map Projection Coordinates" Cancel 		
Validation Status		
OK!		
Import from dfs-file		
	OK Cancel Help	

13. Save the resulting dfs2 file in the following location: .\MAPlus\Waterlevel_Local.dfs2

Note that the bathymetry is contained in the file as a static item.

Vessel Movements

In order to visualise the movements of the vessel in MIKE Animator Plus a 3Dsolid (.3ds) can be linked to a trajectory file. In this example the 3Dsolid **Ship-DHI.3d**s is selected as a representative for the vessel.

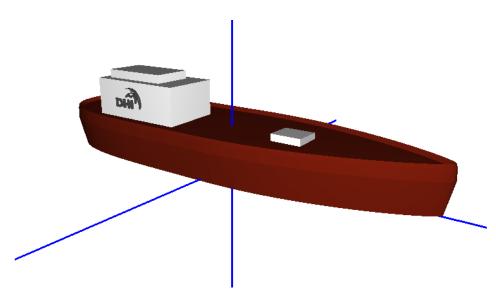


Figure 3.28 Ship-DHI.3ds as displayed in MIKE Animator Plus. The cross shows the origin of the 3D solid in its local coordinate system

The MIKE 21 Mooring Analysis simulation creates an output file with resulting vessel movements relative to the origin (0,0). As the selected 3D solid is defined with a local Z-level origin at the bottom of the ship, it is necessary to modify the vessel motion values to position the vessel correctly with the water level. Also, the item descriptions need to be modified in order to meet the standard for trajectory files in MIKE Animator Plus. For simplicity the time step in the file is modified to match the water level, i.e. 1 second.

- 1. In MIKE Zero create a new MIKE Zero Toolbox file and save it as 'GenerateTSData.mzt'.
- 2. Expand the 'Time Series' section and double click on 'Interpolate Time Series'.

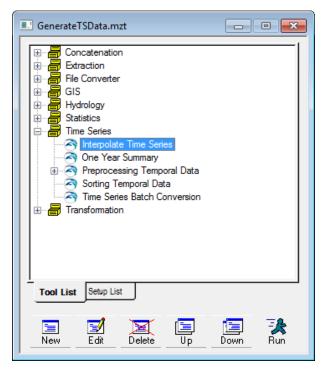


Figure 3.29 MIKE Zero Toolbox: Interpolating Time Series

- 3. Create a new setup called 'MAPlus Vessel Movements file'.
- 4. Select the output file .\Setups\Final 2D_Example.m21ma Result Files\Vessel 1_motions.dfs0' and select all six items in the file. Press OK and Next.
- 5. Define 'Start time' as **27/02/2011 10:59.16**' and 'End time' as **27/02/2011 11:08:15**. Set the time Interval to 1 second. Press Next.
- 6. Specify the new output file as .\MAPlus\Vessel1_motions_MAPlus.dfs0
- 7. Press next and click on 'Execute' to run.
- 8. At successful completion, a pop up box saying 'Interpolation succeeded' will show up. Click 'OK' and 'Finish' and save the setup as 'GenerateTSData.mzt'.

Now it is necessary to modify the dfs0 file to match the requirements for a trajectory file for this MIKE Animator Plus setup.

- 9. Open Vessel1_motions_MAPlus.dfs0 in Time Series Editor
- 10. Select Edit → Properties...
- 11. Modify the Start time to 27/02/2011 10:00:00 and press OK
- 12. Subtract 10 m from the third item (Heave) to account for the Draft of the vessel, see Figure 3.30. Press OK and Save

Vessel 1_motions_MAPlus.dfs0	Calculations 🔯	
		3:Heave - Vessel 1 [meter] 4:Ro ^
1.0 Surge - Vessel 1 [meter]	Calculator Sub-Series	-0.00266723
Sway - Vessel 1 [meter]	Edit Expression	-0.0026829
0.8 Heave - Vessel 1 [meter]		-0.00269772
Roll - Vessel 1 [degree]	Target Item:	-0.00271321
0.6 + Yaw - Vessel * [degree]	Insert Operator:	-0.00272924
1 \$\$		-0.00274443
0.4]	Expression	-0.00275745
	Current Expression: i3=i3-10	-0.00276842
0.2		-0.00277837
		-0.00278806
0.0	Item No	-0.00279691
	i1: Surge - Vessel 1	-0.00280368
-0.2	i2: Sway - Vessel 1	-0.00280772
	i3: Heave - Vessel 1 i4: Roll - Vessel 1	-0.00280983
-0.4	i5: Pitch - Vessel 1	-0.00281132
	i6: Yaw - Vessel 1	-0.00281254
-0.6		-0.00281219
		-0.00280854
-0.8		-0.00280119
X *		-0.00279183
-1.0		-0.00278268
		-0.00277444
-1.2		-0.00276541
		-0.0027532
-1.4		-0.00273687
	OK Cancel Help	-0.00271809
10:00 10:05	OK Cancel Help	-0.00269955
2011-02-27	<	-0.00268273

Figure 3.30 Modifying position of vessel to accommodate local coordinate system of 3Dsolid.

- Change the item descriptions to meet MIKE Animator Plus requirements as follows:
 a. Click Edit → Properties ...
 - b. Change item type for item 1 (Surge) to be 'Geographical coordinate'
 - c. Change item type for item 2 (Sway) to be 'Geographical coordinate'
 - d. Change item type for item 3 (Heave) to be 'Item geometry 3-dimensional'

- e. Leave item types for item 4 to item 6 as is (Angles)
- f. Click OK and save the file.

e Properties					? <mark>×</mark>			
General Info Title:	mation							OK Cancel
Axis Informat	tion							Help
Axis Type:		Equidistant	Cale	ndar Axis 🔹				Theip
Start Time:		27/02/201	1 10:	00:00				
Time Step:				[days]				
		00:00):01	[hour:min:sec]				
		0.	000	[fraction of sec.]				
No. of Time	steps:		540	Axis Units:			-	
Item Informat	tion							
	1	lame		Туре	1	Un	*	
1	Surge	- Vessel 1	Geo	graphical coordinate		meter		
2	Sway	- Vessel 1	Geo	graphical coordinate		meter	=	
3	Heave	e - Vessel 1	Iten	n geometry 3-dimensional		meter		
4	Roll -	ll - Vessel 1 Ang		les		degree		
5	Pitch	Pitch - Vessel 1 Ang		les		degree		
A Vau Vereil Analer degree								
Insert Append Delete Item Filtering								

Figure 3.31 Valid item descriptions in trajectory file for MIKE Animator Plus

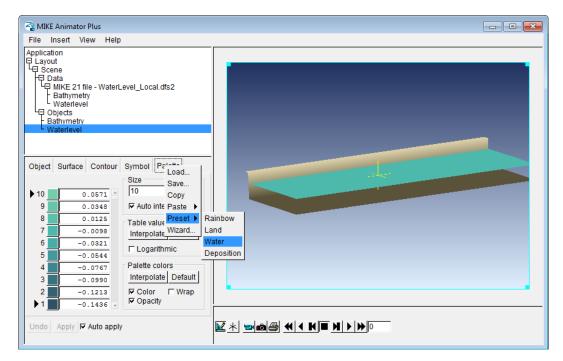
3.13.2 Create a MIKE Animator Plus setup

The set of steps below outline how to create a new MIKE Animator Plus setup.

The first task is to create a setup to display the initial conditions. After that the MIKE Animator Plus setup can be extended to make an animation by including time varying data. Finally an additional scene is created to show the overall wave forcings.

Initial conditions

- 1. Open the MIKE Animator Plus editor. It can be located by searching for it in the Windows start menu.
- 2. Click 'File' \rightarrow 'Insert' \rightarrow 'Scene' and select the wave forcings file .\MAPlus\Waterlevel_Local.dfs2
- Highlight 'MIKE 21 file Waterlevel_Local.dfs2' in the property tree and double-click variable 'Bathymetry' to select to show bathymetry.
- 4. Click on 'Scene' and select the 'Fill' tab. Click on 'Fountain fill' to change the colour of the background.



5. Select the 'View' tab and change the Focalpoint parameters to (0,0,0) and the Viewpoint parameters to (100,150,40) as shown in Figure 3.32.

File Insert View Help	
Application Layout Scene Data Bathymetry Objects Bathymetry Objects Bathymetry Figure Fill View Flight path Lighting Projection Focalpoint Frustum Field of view [60:000 Near clipping [2:701 Far clipping [1485:565 Viewpoint X [100 Y Fiso Z [40:000 Vertical scaling [1 Default Viewing distance [184.662]	

Figure 3.32 Defining View settings in MIKE Animator Plus

- Highlight 'MIKE 21 file Waterlevel_Local.dfs2' in the property tree, right-click variable 'Waterlevel', and select 'Surface - Mapped to magnitude' to show water level.
- 7. Select the 'Palette' tab and right-click 'Palette'.
- 8. From the drop-down menu select 'Preset' and 'Water', see Figure 3.33.

Figure 3.33 Adding data to existing scene

- 9. 'Click 'File' \rightarrow 'Save Layout' and save the setup to the new file .\MAPlus\Vessel_motions.lyt
- 10. Right-click 'Scene' and select 'Load data...'
- 11. Select the 3Dsolids file .\MAPlus**Ship-dhi.3ds** and double-click the 'Solids Model' variable to display the solids file in the graphics window.

Reference Animator Plus	
File Insert View Help	
Application Layout Image: Scene Image: Data Image: Data	
Undo Apply IF Auto apply	

Figure 3.34 Initial view of Solids Model added to the graphics window

- 12. Now scale the Solids Model to resemble the outline of the vessel used in the Mooring Analysis simulations. Set the variables as follows:
 - a. Uncheck 'Uniform Scaling'
 - b. Set X extent to 193.43 m
 - c. Set Y extent to 31.424 m
 - d. Set Z extent to 28 m (twice the deck height).
- 13. To position the Solids Model correctly in the vertical for the initial time step, go to the 'Solids' tab and change the translation in the Z-domain to -10 m.
- 14. Click 'File' \rightarrow 'Save Layout' and save the setup.

MIKE Animator Plus File Insert View Help	
Appreciation Layout I Layout I Scene I Data I MKE 21 file - WaterLevel_Local.dfs2 I Bathymetry Waterlevel Boilds file - Ship-dhi.3ds Object Solids Model Vaterlevel Solids Model	
Undo Apply 🔽 Auto apply	⊻×≥®® ≪< K∎×>>

Figure 3.35 View of Initial conditions after scaling and repositioning 3DS solid

Animation

- 1. Click 'Insert' \rightarrow 'Clock' to add a clock to the graphics window.
- 2. In the 'Fill' tab un-check 'Solid fill'.
- 3. Click-and-drag the Clock object in the graphics-window to a position in the upper left corner.
- 4. In the 'Clock' tab select the Source Figure to be 'Figure 1 Scene' and the Source File to be 'File 1 MIKE 21 file Waterlevel_Local.dfs2'

(Now the clock will indicate the time stamp in the file while the animation is running).

RIKE Animator Plus	
File Insert View Help	
Application E Layout Scene Data H KE 21 file - WaterLevel_Local.dfs2 H Bathymetry Waterlevel Solids file - Ship-dhi.3ds Objects H Bathymetry Waterlevel Solids Model Clock - MiKE 21 file - WaterLevel Local.dfs2 Figure Fill Clock Source	2011-02-27 10:00:00
Figure Figure 1 - Scene File File 1 - MIKE 21 file - WaterLevel_Loc Object Text	
Typeface Arial Color B I Padding 4 [%]	
Format Date year month day Separator - Time hour minute seconc AM/PM F Offset 0 [h]	
Undo Apply 🔽 Auto apply	⊻×≥®® ≪ <k∎x>>></k∎x>

Figure 3.36 Clock showing instant time step in animation

- 5. Next click the Solids Model Object and select the 'Trajectory' tab.
- 6. Define the Movement to '6 parameters' and select the Source file .\MAPlus\Vessel1_motions_MAPlus.dfs0

AIKE Animator Plus	
File Insert View Help	
Application	
Image: Scene in the second	2011-02-27 10:00:00
Clock - MIKE 21 file - WaterLevel Local.dfs2	
Object Solids Trajectory	
₩ Dynamic	
Movement	
O3 parameters Correction angle 0	
© 6 parameters	
Source file	
Vessel 1_motions_MAPlus.dfs0	
Undo Apply 🔽 Auto apply	

Figure 3.37 Specifying data file for vessel movement

- 7. Click 'File' \rightarrow 'Save Layout' and save the setup (as Vessel_Motions.lyt)
- 8. Click the 'Play' button to watch the vessel move and water level change in time.

Combining Scenes in Animation

It is possible to visualise from where the wave forcing origin by adding an additional scene to the MIKE Animator Plus view that shows the passing vessel in a larger domain.

- Click 'File' → 'Insert' → 'Scene' and select the calculated wave forcings file .\HD\Setup\PassingVessel_Example.m21fm - Result Files\ Vessel_Induced_Flux.dfsu
- Highlight 'MIKE 21/3 FM file Vessel_Induced_Flux.dfsu' in the property tree and right-click variable 'Total water depth' to create a 'Surface - Mapped to magnitude'. (This will show the whole domain from above. Note the suppression of the water level indicating the passing vessel).

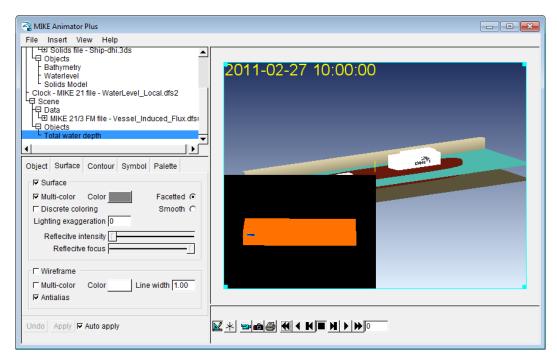


Figure 3.38 Added new scene, after selecting variable 'Total water depth'

- 3. Select 'Scene mode' to edit the layout of the new scene.
- 4. Select the new scene and click the 'Fill' tab to un-check 'Solid fill'.
- 5. Set the Focalpoint to the location of the moored vessel in the MGA-56 domain (514488.88, 6966854.82, 15).
- 6. Define the Viewpoint such that the Focalpoint indicator is shown in the top of the domain and the initial position of the passing vessel to the left.

Reference Animator Plus		
File Insert View Help		
Solids Model Objects Bathymetry Waterlevel Solids Model Clock - MIKE 21 file - WaterLevel Local.dfs2 Solids Model Clock - MIKE 21/3 FM file - Vessel_Induced_Flux.dfsi Objects Total water depth Figure Fill View Flight path Lighting Projection		
Focalpoint Frustum		
X 514488.88 Field of view 60.000		
Y 6966854.82 Near clipping 20.788		
Z 15.000 Far clipping 11433.230		
Viewpoint		
X 514489.7308 C Perspective		
Y 6967079.797 © Orthogonal		
7 1363 810		
Vertical scaling 1		
Default Viewing distance 1367.444		
Undo Apply V Auto apply	⊻≭ ๖๗⊜ ≪∢к∎и⊧»₀ ଢ⊕₅	- /

Figure 3.39 Defined Focal point and Added new scene, after selecting variable 'Total water depth'

- 7. Select the variable 'Total water depth' and click on 'Palette'.
- 8. Define the palette by blue colours to reflect the detailed variation around MWL and a darker value to show passing vessel. Save the palette file for future use.

Figure 3.40 Defined colour scale to represent passing vessel and total water depth

9. Next insert the 3Dsolids file .\MAPlus**Ship-dhi.3ds** into the scene the same way as described previously. Scale the vessel in similar way, but set the location of the vessel to (514488.88, 6966854.82, 5) to represent the location in the MGA-56 domain.

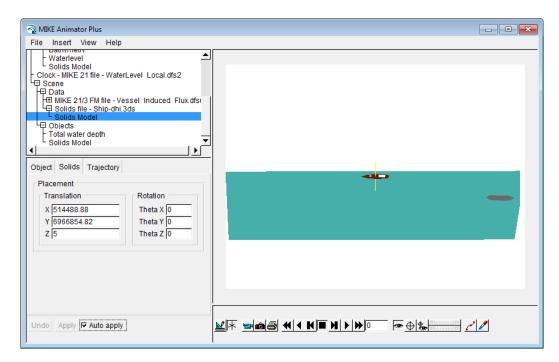


Figure 3.41 Location of moored vessel in overview scene

- 10. Click 'File' \rightarrow 'Save Layout' and save the setup under a new name: Vessel_Motions_CombinedScenes.lyt
- 11. Click 'Layout mode' to view both scenes together along with the clock. Drag and rescale scenes with the mouse weel to place scenes as required. Change the Viewpoint by changing the Viewing distance to zoom into the respective domains.
- 12. To insert a Colour legend for the water surface click 'File' \rightarrow 'Insert' \rightarrow 'Legend'.
- 13. Select the Palette source as 'Scene 0 File 0 Waterlevel' and accept the default location of the palette bar to the left in the view.
- 14. To match the colour legend for the two scenes, click the 'Waterlevel' object and rightclick to Load the saved water depth palette. Change the palette values from representing total water depth to represent surface elevation by subtracting the still water depth, 15 m, from the original values.

RIKE Animator Plus	
File Insert View Help	
H MIKE 21 file - WaterLevel_Local.dfs2 Bathymetry Waterlevel Colids Model Solids Model Solids Model Colids Model Data H MIKE 21/3 EM file - Vessel Induced Eliny ffe	2011-02-27 10:00:00
	0.50
Object Surface Contour Symbol Palette	0.40
▶ 15 0.5000 ▲ 14 0.4000 13 0.3000	0 30 0 20 0 10 0 06 - 0.05
12 0.2000 Interpolate Default	- 0.10 - 0.20
11 0.1000 C Logarithmic	- 0.30 - 0.40 - 0.50
9 -0.0500 Palette colors	-0.60
8 -0.1000 Interpolate Default	-0.70 -1.00
7 Color ☐ Wrap 6 Opacity	
Undo Apply 🗸 Auto apply	

Figure 3.42 Combined overview of scenes, clock and Legend

15. Click 'File' \rightarrow 'Save Layout' and save the setup.

Click the 'Play' button to watch the vessel move and water level change in time. Because of the very small movements, the moored vessel is set to be static in the scene showing the overview.